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Abstract

In this work we �rst propose a method for the derivation of a general continuous antilinear

time-dependent (TD) symmetry operator I(t) for a TD non-Hermitian Hamiltonian H(t). As-

suming H(t) to be simultaneously �(t)-pseudo-Hermitian and �(t)-anti-pseudo-Hermitian, we also

derive the antilinear symmetry I(t) = ��1(t)�(t), which retrieves an important result obtained by

Mostafazadeh [J. Math, Phys. 43, 3944 (2002)] for the time-independent (TI) scenario. We apply

our method for the derivaton of the symmetry associated with a TD non-Hermitian linear Hamil-

tonian: a cavity �eld under linear ampli�cation. The computed TD symmetry operator is then

particularized for the equivalent TI linear Hamiltonian and its PT -symmetric restriction. In this

TI scenario we retrieve the well-known Bender-Berry-Mandilara result for the symmetry operator:

I2k = 1 with k odd [J. Phys. A 35, L467 (2002)]. The results here derived together with those in

the sequel, where we extend our analysis for a TD non-Hermitian quadratic Hamiltonian, enables

us to propose a useful symmetry-metric relation for TD non-Hermitian Hamiltonians.
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I. INTRODUCTION

In the last two decades, since the seminal contributions of Bender and Boettcher [1] and

Mostafazadeh [2, 3], PT -symmetric Hamiltonians � invariant under parity (P) and time-
reversal (T ) symmetries� have been investigated in practically all domains of physics, from

low to high energies, revealing to be an increasingly autonomous and thought-provoking �eld.

The PT -symmetry condition, much less demanding than that of Hermiticity, greatly expands
the possibility of the Hamiltonian description of physical systems (with real eigenvalues [1]

and conservation of the norm [2]), which is one of the strong calls for the �eld. And much has

been done recently, such as the experimental realizations of Floquet PT -symmetric systems
[4] and PT -symmetric �at bands [5], besides enhanced sensing based on PT -symmetric
electronic circuits [6] and PT -symmetric topological edge-gain e¤ect [7]. The linear response
theory for a pseudo-Hermitian system-reservoir interaction was developed [8], as well as a

protocol to approach non-Hermitian non-commutative quantum mechanics [9].

In this work we propose a method to derive a general time-dependent (TD) continu-

ous symmetry operator for a TD non-Hermitian Hamiltonian. This will be done in the

broader scenario of non-autonomous Hamiltonians, and to this reason we revisit the TD

non-Hermitian Hamiltonians of a cavity �eld under linear [10] and parametric [11] ampli�-

cations, the latter in Part II of this sequel. These Hamiltonians have been considered for

approaching TD non-Hermitian Hamiltonians under TD Dyson maps, thus extending the

method proposed by Mostafazadeh [2]. This extension was also undertaken in Refs. [12, 13].

Many interesting contributions to the subject of TD non-Hermitian Hamiltonians have

been presented [14]. We mention, in particular, a method that adds to the achievements

of Ref. [10], enabling the unitarity of the time-evolution and the observability of non-

Hermitian Hamiltonians through particular TD Dyson maps that de�ne time-independent

(TI) metric operators [15]. Moreover, we stress the introduction of the all-creation and all-

annihilation TD pseudo-Hermitian bosonic Hamiltonians [16], able to generate an in�nite

squeezing degree at a �nite time. A TD pseudo-Hermitian Hamiltonian for a cavity mode

with complex frequency is also able to generate an in�nite squeezing at a �nite time [17].

Finally, we mention the enhancement of photon creation through the pseudo-Hermitian

dynamical Casimir e¤ect [18].

Our subject, pseudo-Hermiticity beyond PT -symmetry, is in fact at the foundations of
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pseudo-Hermitian quantum mechanics. A theorem by Mostafazadeh [3] � formulated for TI

non-Hermitian Hamiltonians, symmetries and metric operators� asserts that a diagonal-

izable (non-Hermitian) Hamiltonian is pseudo-Hermitian if an only if it has an antilinear

symmetry, i.e., a symmetry generated by an invertible antilinear operator. Moreover, Ben-

der, Berry and Mandilara [19] have shown that a non-Hermitian Hamiltonian presents a

real spectrum not only when invariant under PT -symmetry, but also under any antiuni-
tary operator I satisfying I2k = 1 with k odd. We also mention the demonstration that

supersymmetry gives rise to non-PT -symmetric families of complex potentials with entirely
real spectra [20], and also the proposition of chiral metamaterials with PT symmetry and

beyond [21]. Despite the generality of the pseudo-Hermitian requirement, the particular case

of PT -symmetric Hamiltonians gained prominence due to Bender and Boettcher�s seminal
work and certainly due to the strong physical appeal of parity and time-reversal invariance.

Our objective is precisely to explore more general symmetries than PT starting from the
general scenario of TD non-Hermitian Hamiltonians. The method we propose for the deriva-

tion of TD symmetries for TD non-Hermitian Hamiltonians applies indistinctly to linear or

antilinear, unitary or nonunitary symmetries. However, we assume the symmetry to be an

antilinear operator aiming to retrieve the results by Mostafazadeh [3] and Bender-Berry-

Mandilara [19] in the particular case of a TI scenario, i.e., TI non-Hermitian Hamiltonians,

metrics and symmetries. The above mentioned theorem by Mostafazadeh [3] is retrieved

when considering an antilinear symmetry while the result by Bender-Berry-Mandilara is

retrieved when considering a unitary antilinear or antiunitary symmetry.

In addition, guided by the results in Refs. [2, 19], here we explore the connection between

antilinear symmetries and metrics. We derive a relation between the TD symmetry and a

pair of TD metrics operators, one linear and the other antilinear, which is annalogous to

the Mostafazadeh�s relation [3] for the TI scenario. In the sequel, this connection between

symmetry and metric is explored a little further, after the results derived here, for the non-

Hermitian linear ampli�cation, and there for the non-Hermitian quadratic ampli�cation.

After presenting our method to derive the symmetry operator, we then apply it for a

TD non-Hermitian linear Hamiltonian, leaving the quadratic Hamiltonian to Part II of this

sequel. As expected, we have derived TD continuous antilinear symmetries far more complex

than the spatial re�ection and time reversal. These TD symmetries are then particularized to

the equivalent TI non-Hermitian linear and quadratic Hamiltonians and their PT -symmetric
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restrictions. Then, in the TI scenario, the results in Refs. [2, 19] are perfectly retrieved.

Our analysis corroborate the fact that the PT -symmetry is a particular case of more
general symmetries in which spatial re�ection is generalized to continuous rotations followed

by additional displacement and/or squeezing in phase space. This in a way gives us physical

support to extend the scope of pseudo-Hermitian Hamiltonians beyond those invariants

under PT operation.
Our paper is organized as follows. In Section II we brie�y revisit the foundations of

pseudo-Hermitian quantum mechanics for TI and TD Hamiltonians. In Section III we

present a method for the construction of a general TD symmetry operator for a TD non-

Hermitian Hamiltonian. In Section IV we assume that the TD non-Hermitian Hamiltonian is

simultaneously �(t)-pseudo-Hermitian and �(t)-anti-pseudo-Hermitian, to derive the relation

I(t) = ��1(t)�(t) for our TD antilinear symmetry operator. From this relations, which

must be better explored in paper II, we retrieve the Mostafazadeh�s theorems for the TI

scenario [3]. The TD non-Hermitian Hamiltonian describing a cavity �eld under linear

ampli�cation is introduced in Section V. We then compute the TD symmetry operator

for this non-Hermitian linear Hamiltonian using the method presented in Section III. We

demonstrate that this TD symmetry reduces to the PT operator when the non-Hermitian

linear Hamiltonian is assumed to be PT symmetric. An ansatz for the Dyson map is then

proposed for the construction of the pseudo-Hermiticity relation. In Section VI we address

the TI equivalent of the TD non-Hermitian Hamiltonian introduced in Section V. In this TI

scenario we retrieves the Bender-Berry-Mandilara [19] result, and when considering a PT -
symmetric TI non-Hermitian Hamiltonian, we verify that the TI symmetry again reduces

to the PT operator. In Section VII we present our conclusions.

II. PSEUDO-HERMITICITY FOR TD AND TI NON-HERMITIAN HAMILTO-

NIANS

We start our review following the Ref. [10], where a method is presented for approaching

the quantum mechanics of TD non-Hermitian and non-observable Hamiltonians with TD

metric operators. Alternative developments for the TD scenario are also given in Refs.

[12, 13]. From the particularization of these results for TI non-Hermitian Hamiltonians

and metric operators, we then derive the results presented by Mostafazadeh in Ref. [2].
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Considering a TD non-Hermitian Hamiltonian H(t) and a nonunitary TD Dyson map �(t),

the Schrödinger equation i@t j	(t)i = H(t) j	(t)i (~ = 1) is transformed to i@t j (t)i =
h(t) j (t)i, with

h(t) = �(t)H(t)��1(t) + i

�
@

@t
�(t)

�
��1(t); (1)

and j (t)i = �(t) j	(t)i. This transformed Hamiltonian h(t) becomes Hermitian as long as
the TD pseudo-Hermiticity relation

Hy(t)�(t)� �(t)H(t) = i@t�(t); (2)

is satis�ed, where �(t) = �y(t)�(t) is the TDmetric operator ensuring the norm-conservation:

D
	(t)

���~	(t)E
�(t)
=
D
	(t) j�(t) ~	(t)

E
=
D
 (t)

��� ~ (t)E : (3)

In the same way that Eq. (2) ensures the norm-conservation � through the time derivative

of Eq. (3)� , it also ensures the similarity transformation

O(t) = ��1(t)o(t)�(t); (4)

between the observables O(t) and o(t) in the pseudo-Hermitian and Hermitian systems,

respectively, thus enabling the computation of the matrix elements

D
	(t) jO(t)j ~	(t)

E
�(t)
=
D
	(t) j�(t)O(t)j ~	(t)

E
=
D
 (t) jo(t)j ~ (t)

E
: (5)

The reason why a TD Dyson map is required for the construction of the Hermitian

counterpart h(t) of an equally TD non-Hermitian H(t), is to avoid unwanted constraints

between the parameters de�ning H(t). When considering a TI non-Hermitian H so that

an equally TI Dyson map � can be considered, as in Ref. [2], the TD Dyson relation (1)

simpli�es to the similarity transformation

h = �H��1, (6)

whereas the Eq. (2) simpli�es to the well-known pseudo-Hermiticity relation

Hy� = �H: (7)

We now analyze the consequences of the TD extension of the Mostafazadeh�s method

based on the last two equations (6) and (7). First, within the TD extension and then the
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TD Dyson relation (1), we lose the similarity transformation (6) which ensures the observ-

ability of the Hamiltonian. However, the similarity transformation (4) remains valid for all

operators O(t) other than the Hamiltonian, making the TD pseudo-Hermitian Hamiltonians

as pertinent as their TI partners. It is worth noting that the observability of TD Hamilto-

nians is a sensitive point even in Hermitian quantum mechanics, where, as discussed in Ref.

[15], the Hamiltonian acts essentially as the generator of the model�s dynamics.

We end this brief review noting that in Ref. [15] a method is proposed for the deriva-

tion of particular TD Dyson maps which ensures the observability of TD pseudo-Hermitian

Hamiltonians � as much as in Hermitian quantum mechanics� by restoring the similarity

transformation between H(t) and h(t). In the treatment we have developed bellow, how-

ever, we are not considering the method in [15], and the Hamiltonians H(t) and h(t) must

be transformed through the TD pseudo-Hermiticity relation (2).

III. A METHOD FOR THE CONSTRUCTION OF A GENERAL TD SYMMETRY

OPERATOR

In order to explore more general symmetries than PT for a TD non-Hermitian Hamil-

tonian H(t), we �rst propose a method to derive this symmetry I(t) which applies indis-

tinctly to linear or antilinear, unitary or nonunitary symmetries. However, as anticipated

above, from now on we assume this symmetry to be antilinear so that we can retrieve the

results in Refs. [3, 19] for the particular case of TI Hamiltonians and symmetries. Moreover,

as well as the Hamiltonian, we assume the symmetry to be a TD operator. Starting from the

Schrödinger equation for H(t), we apply the antilinear operator I(t) on both its left-hand

sides and then replace t by �t, to obtain

i
@

@t
I(�t) j (�t)i =

�
I(�t)H(�t)I�1(�t) + i

@I(�t)
@t

I�1(�t)
�
I(�t) j (�t)i : (8)

Therefore, for the transformation I(t) to be a symmetry of the system modeled by the

Hamiltonian H(t), thus producing an independent solution I(�t) j (�t)i of the Schrodinger
equation from a given solution j (t)i, we ends up with the equation

i
@I(t)

@t
+H(�t)I(t)� I(t)H(t) = 0: (9)
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If we had considered a linear instead of antilinear transformation I(t), we would have

obtained the well-known equation of an invariant operator [22�24]

i
@I(t)

@t
+ [I(t); H(t)] = 0; (10)

associated, however, with a non-Hermitian Hamiltonian H(t). Therefore, an TD invariant

is a linear TD symmetry of the system.

For a TI symmetry I, the Eq. (9) simpli�es to the form

IH(t)I�1 = H(�t), (11)

and for the case where both the symmetry and the Hamiltonian are TI operators, the

condition (11) is further simpli�ed to the commutation

[I;H] = 0: (12)

Regarding the TI PT operation, the condition for a TD Hamiltonian to be PT -symmetric
is given by

PT H(t) (PT )�1 = H(�t); (13)

which reduces, for TI Hamiltonians, to the commutation relation [PT ; H] = 0.
We thus verify that the condition for the TD operator I(t) to be the symmetry associ-

ated with a TD Hamiltonian H(t), given by the di¤erential equation (9), simpli�es to the

algebraic equation (11) for a TI symmetry operator. This represents a major reduction in

the generality of the symmetry operator, which becomes even greater for a TI Hamiltonian.

Following the reasonings in Ref. [23], where a method for the construction of nonlin-

ear Lewis-Riesenfeld TD invariants is presented, we de�ne the general symmetry operator

as the product I(t) = �(t)U(t), with �(t) being either a unitary or non-unitary operator.
Regarding U(t), from now on we assume it to be antilinear in accordance with the condi-

tion imposed in references [3, 19], whose results we want to rescue in the scenario of TI

Hamiltonians, symmetry and metric operators.

Considering the product I(t) = �(t)U(t), Eq. (9) can be rewritten in the form

�
i
@�(t)

@t
+H(�t)�(t)� �(t)H(t)

�
U(t) + �(t)

�
i
@U(t)
@t

+ [H(t);U(t)]
�
= 0: (14)
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By also rewriting the Hamiltonian asH(t) = H0(t)+V (t), withH0(t) being either a diagonal

or nondiagonal operator with known eigenstates, we propose the ansatz U(t) = R(t)T , with
T being the time-reversal operator andR(t) = ei�(t)H0(t), with a TD complex parameter �(t).

For an Hermitian H0(t), U(t) then becomes an antiunitary operator. We thus de�ne the TD
operator

�(t) =

�
i
@U(t)
@t

+ [H(t);U(t)]
�
U�1(t); (15)

such that Eq. (14) becomes

i
@�(t)

@t
+H(�t)�(t)� �(t)H(t) = ��(t)�(t): (16)

In summary, to obtain I(t) = �(t)U(t), we �rst compute the TD operator �(t) from Eq.

(15), by taking the advantage of the known eigenstate basis of H0(t) which de�nes R(t).
Next, starting from an ansatz for �(t), based on the symmetry group of V (t), we then

compute this operator from Eq. (16), what �nally gives us the symmetry I(t). It is evidently

straightforward to derive the equivalent of Eq. (9) for a linear symmetry operator, with the

same ansatz I(t) = �(t)U(t) applying for its solution.

IV. THE ANTILINEAR SYMMETRY DESCRIBED BY A COUPLE OF LINEAR

AND ANTILINEAR METRIC OPERATORS

Let us consider a TD non-Hermitian Hamiltonian H(t) which obeys the TD pseudo-

Hermiticiy relation given by Eq. (2): Hy(t)�(t) � �(t)H(t) = i@t�(t). Starting with the

Schrödinger equation for H(t), i@t j (t)i = H(t) j (t)i, applying the linear metric operator
�(t) on its l.h.s., and assuming the relation in Eq. (2), we obtain

i
@

@t
j�(t)i = Hy(t) j�(t)i : (17)

where we have de�ned j�(t)i = �(t) j (t)i. Next, assuming that H(t) also obeys a TD
anti-pseudo-Hermiticiy relation

Hy(t)�(t)� �(t)H(�t) = i _�(t), (18)

for the TD antilinear metric operator �(t), the application of the operator �(�t) on the
l.h.s. of the Schrödinger equation for H(t), leads us again to the Eq. (17) once we de�ne

j�(t)i = �(t) j (�t)i.
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Considering both the TD pseudo-Hermiticity relations, in Eqs. (2) and (18), we de-

rive Hy(t) = �(t)H(t)��1(t) + i _�(t)��1(t) from the former and then substitute this adjoint

Hamiltonian into the latter to obtain

i
@

@t

�
��1(t)�(t)

�
=
�
��1(t)�(t)

�
H(t)�H(�t)

�
��1(t)�(t)

�
: (19)

It is straightforward and remarkable to verify that the above expression recovers the Eq. (9)

for the TD antilinear symmetry operator de�ned as

I(t) = ��1(t)�(t): (20)

In fact, for the case where only the Hamiltonian H(t) is a TD operator, we then obtain the

simpli�ed linear and antilinear pseudo-Hermiticity relations Hy(t)� = �H(t) and Hy(t)� =

�H(�t), with the TI antilinear symmetry I = ��1�. When the Hamiltonian is also a TI

operator, we then retrieve from our assumption of a TD anti-pseudo-Hermitian relation (18),

the results proved by Mostafazadeh in Ref. [3], that every (non-Hermitian) diagonalizable

Hamiltonian is anti-pseudo-Hermitian and that the pseudo-Hermiticity of the Hamiltonian

implies the presence of an antilinear symmetry. In fact, in this case we have �H��1 = Hy =

�H��1, and hence [H;��1�] = 0.

We have thus veri�ed that, for TD Hamiltonians, symmetry and metric operators, we

have derived the TD counterpart of the important Mostafazadeh�s relation for the sym-

metry operator, I = ��1�. We do not, of course, have a counterpart to the theorem

proved by Mostafazadeh in the TI scenario, but verifying that the symmetry operator

I(t) = �(t)U(t) we have derive through Eq. (9) can also be written in the form that

generalizes Mostafazadeh�s expression to the TD scenario, is signi�cant and will be explored

in the sequel.

V. THE TD NON-HERMITIAN HAMILTONIAN OF A CAVITY FIELD UNDER

LINEAR AMPLIFICATION

The TD non-Hermitian Hamiltonian modeling a cavity �eld under linear ampli�cation is

given by

H(t) = !(t)aya+ �(t)a+ �(t)ay; (21)

with the TD parameters !(t); �(t); and �(t) being complex functions. Here we just demand

that Hy(t) 6= H(t), such that !�(t) 6= !(t) and/or ��(t) 6= �(t). The usual requirement for
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the Hamiltonian (21) to be PT -symmetric, given by Eq. (13), imposes the more restrictive
conditions !�(�t) = !(t), ��(�t) = ��(t), and ��(�t) = ��(t). From Eq. (13) we also

verify that the Hamiltonian (21) is PT -symmetric under spatial re�ection about both x0 = 0
and

x0 = �
s

1

2m!(t)

�(t) + �(t)

!(t)
= real constant: (22)

For the case of a TI Hamiltonian, x0 6= 0 implies a Hermitian Hamiltonian, whereas for a
TD Hamiltonian, x0 6= 0 imposes constraints on the Hamiltonian parameters which do not
occur for x = 0.

A. The TD antilinear symmetry operator

Considering the method proposed for deriving the symmetry operator, we rewrite the

Hamiltonian (21) in the form H(t) = H0(t) + V (t), with H0(t) = !(t)aya and V (t) =

�(t)a + �(t)ay. We then de�ne the operator R(t) = e�i�(t)a
ya, such that U(t) = e�i�(t)a

yaT .
Consequently, using Eq. (15) we obtain

�(t) =
h
!(t)� !�(t) + _�(t)

i
aya+

�
�(t)� ��(t)ei�(t)

�
a+

�
�(t)� ��(t)e�i�(t)

�
ay: (23)

where the dot indicates a time derivative. Next, we consider, as an ansatz, the generalized

displacement operator

�(t) = e�(t)a
y+�(t)a+�(t); (24)

which becomes a unitary operator for �(t) = ���(t), and an Hermitian operator for �(t) =
��(t). We thus obtain from Eqs. (24) and (16):

i
@�(t)

@t
+H(�t)�(t)� �(t)H(t) = �

�
A(t)aya+B(t)a+ C(t)ay +D(t)

�
�(t) (25)

where

A(t) = !(t)� !(�t); (26a)

B(t) = � _�(t) + !(t)�(t) + �(t)� �(�t); (26b)

C(t) = � _�(t)� !(t)�(t) + �(t)� �(�t); (26c)

D(t) = � _�(t)� 1
2

h
_�(t)�(t)� �(t) _�(t)

i
� !(t)�(t)�(t)� �(t)�(t) + �(t)�(t): (26d)
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From the r.h.s. of Eqs. (16) and (25), it follows that

�(t)�(t)��1(t) = A(t)aya+B(t)a+ C(t)ay +D(t); (27)

and by substituting Eqs. (23) and (24) in Eq. (27), we obtain

�(t) = �0 +

Z t

0

[!�(�)� !(��)] d�; (28a)

_�(t) = !(�t)�(t) + ��(t)ei�(t) � �(�t); (28b)

_�(t) = �!(�t)�(t) + ��(t)e�i� � �(�t); (28c)

�(t) = �0 �
1

2

Z t

0

��
��(�)ei�(�) + �(��)

�
�(�)

�
�
��(�)e�i�(�) + �(��)

�
�(�)

	
d�: (28d)

Note from Eq. (28d) that the parameter �(t) is added to the generalized displacement

operator to avoid undesirable constraints in the Hamiltonian�s parameters. For the particular

case of a unitary operator �(t), where �(t) = ���(t), we use Eqs. (28b) and (28c) to obtain

�(t) =
�(t) + ��(t)

!(�t) + !�(�t)e
�i� � ��(�t) + �(�t)

!(�t) + !�(�t) : (29)

Therefore, from Eqs. (28) we obtain the parameters de�ning the TD antilinear symmetry

operator

I(t) = D(t)R(t)T ; (30)

where we have replaced � for D, which, for a unitary � becomes the displacement operator.
This symmetry operator describes the successive actions of a time-reversal operator T , a
TD global rotation in phase space R(t) = e�i�(t)a

ya and, �nally, let us say, a TD generalized

displacement in phase space D(t) = e�(t)a
y+�(t)a+�(t). For a unitary �, this TD symmetry

I(t) = D(t)R(t)T resembles the evolution operator for the Hermitized counterpart of the TD
Hamiltonian in Eq. (21), except, of course, for the time-reversal operation. Such evolution

operator can be derived following the reasonings in Refs. [11, 16, 23]. Therefore, if applied to

a given state of the Hermitized counterpart of our Hamiltonian, this peculiar TD symmetry

operator I(t) = D(t)R(t)T causes the probability distribution to trace an upward spiral in

phase space.
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B. The Dyson map and pseudo-Hermiticiy relation

For treating a TD non-Hermitian Hamiltonian we consider a TD Dyson map � which

results, in general [15], in a TD metric operator � = �y�. Otherwise, the TD pseudo-

Hermiticity relation (2) imposes undesirable constraints on the TD parameters of the Hamil-

tonian. For the TD Dyson map we consider the ansatz

� = e�a
ya+a+�ay ; (31)

with �(t) being a real function. To determine its time derivative we use the method of

parameter di¤erentiation [25], by which

@

@t
eZ =

Z 1

0

exZ
@Z

@t
e�xZdxeZ ; (32)

where Z = �aya+ a+ �ay. We thus obtain the Hamiltonian

h = Waya+ Ua+ V ay + F; (33)

where

W = i _�+ !; (34a)

U = i _ + i

�
1� 1� e��

�

��
�
_�� _

�
+ !

1� e��

�
+ �e��; (34b)

V = i _� + i

�
1 +

1� e�

�

��
�

�
_�� _�

�
+ !�

1� e�

�
+ �e�; (34c)

F = 2 jj2
�
i
_�

�
+ !

�
1� cosh �

�2
� i

�

�
1� 1� e��

�

�
� _

� i

�

�
1 +

1� e�

�

�
 _� � ��

�

�
1� e��

�
� �

�
(1� e�) : (34d)

To ensure the Hermiticity of h(t) we impose a complex TD frequency !(t) = !R(t)�i _�(t),
with !R(t) being a real function, in addition to U = V � and F 2 R, what demands that

_ +

�
� coth �� 1

�
_�� i!R

�
 � i

�

2 sinh �

�
�e�� � ��e�

�
= 0; (35a)

2i

�
sinh �

�
� 1
�
( _� + � _) + 2

�
! � !� + 2i

_�

�

�
jj2 1� cosh �

�

� (�� � ��)
�
1� e��

�
� (� � ���) (1� e�) = 0: (35b)
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From (35a) we obtain

 = e��
�
0 + i

Z t

0

�e�

2 sinh �

�
�e�� � ��e�

�
d�

�
; (36)

with

� =

Z t

0

�
(� coth �� 1)

�
_�� i!R

�
d�: (37)

Now, by substituting Eq. (35a) into Eq. (35b), and admitting momentarily the approxima-

tion �� 1, we obtain

� ' exp
�
�i
Z t

0

(�� + �)  � (�+ ��) �

2 jj2
d�

�
; (38)

showing that the Hermiticity requirements in Eqs. (35) imposes no additional constraints

on the Hamiltonian parameters, apart from the complex TD frequency !(t) = !R(t)� i _�(t)
coming from Eq. (34a). Otherwise, when we assume that !(t) is real from Eq. (21), it

follows that � must be constant, Which leads to a new Hamiltonian h in Eq. (33), and

consequently to a new system in Eq. (34) and a new hermitization condition in Eq. (35).

When the simpli�ed Dyson map � = ea+
�ay is considered, as in Ref. [10], with � = 0,

the pseudo-Hermiticity requirement of a complex frequency simpli�es to that of a real one,

!(t) = !R(t), still with no constraints on �(t) and �(t).

Therefore, when considering the symmetry operator for the TD pseudo-Hermitian Hamil-

tonian (33), with  and � following from Eqs. (36) and (38), we must necessarily assume the

function !(t) appearing in Eqs. (28) to be of the form !(t) = !R(t) � i _�(t) (or ! = !R for

the particular Dyson map � = ea+
�ay). Despite of the frequency constraint, the symmetry

operator in Eq. (30), have no restrictions for the ampli�cation parameters �(t) and �(t).

C. From I(t) in Eq. (30) to PT

The TI PT operator can be directly recovered from Eq. (30), starting with the constraints
under which the Hamiltonian (21) is PT -symmetric: !�(�t) = !(t), ��(�t) = ��(t), and
��(�t) = ��(t). Assuming also a unitary �(t), we verify from Eqs. (28a) and (28b) that

the rotation is reduced to a TI operator with �(t) = �0, while the parameter �(t) of the

displacement operator is simpli�ed to

�(t) =
�(t) + ��(t)

!�(t) + !(t)

�
1 + ei�0

�
: (39)
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For a TI symmetry operator, where I = DU must be a TI parameter, we must then as-
sume, to avoid undesirable constraints on the Hamiltonian parameters, that �0 = (2n+ 1) �,

with n 2 Z. From this assumption we obtain �(t) = �(t) = 0, and noting that the parity

operator can be written in the form e�i(2n+1)�a
ya, we �nally recover the TI operator PT from

Eq. (30), i.e.,:

I(t)! I = e�i(2n+1)�a
yaT = PT : (40)

VI. THE TI NON-HERMITIAN HAMILTONIAN OF A CAVITY FIELD UNDER

LINEAR AMPLIFICATION

Now we consider the particular case of a TI non-Hermitian Hamiltonian

H = !aya+ �a+ �ay; (41)

with !� 6= ! and/or �� 6= �. The PT -symmetry of H, now following from the commutation
[PT ; H] = 0, imposes here the more restrictive conditions !� = !, �� = ��, and �� = ��,
and enables the spatial re�ection only about x0 = 0, for

! 2 R, � = j�j ei(n+1=2)�, � = j�j ei(m+1=2)�; with n;m 2 Z: (42)

The case x0 6= 0 implies a Hermitian Hamiltonian as anticipated above.

A. The TI antilinear symmetry operator

The condition for the TI Hamiltonian (41) to be invariant under a TI antilinear operator

I is given by the commutation relation [I;H] = 0. From the knowledge of the TD symmetry

operator in Eq. (30), it is natural to assume for its TI equivalent the form I = DRT , with
a TI global rotation R = e�i�a

ya and a TI D = e�a
y+�a. We have neglected the parameter �

added to the Eq. (24) since it is insensitive to the commutation relation [I;H] = 0, which

imposes the equations

14



!� = !; (43a)

!�� �+ ��ei� = 0; (43b)

!� + � � ��e�i� = 0; (43c)

!�� + ���ei� � ���e�i� = 0: (43d)

For a unitary � (� = ���), and using the polar forms � = j�j ei'� and � = j�j ei'� , it follows
from Eqs. (43) that

� = i ln
�� � �

�� ��
; (44a)

j�j = 1

!

�
j�j sin

�
'� �

�

2

�
� j�j sin

�
'� +

�

2

��
; (44b)

'� =

�
n+

1

2

�
� � �

2
: (44c)

Substituting Eqs. (44b) and (44c) into Eq. (43d) (with � = ���), we obtain the expression

j�j
�
j�j cos

�
'� �

�

2

�
� j�j cos

�
'� +

�

2

��
= 0; (45)

which result in two di¤erent solutions, one for j�j = 0 and the other for j�j 6= 0. For j�j = 0,
the Eq. (45) is automatically satis�ed and using Eq. (44b) we obtain the constraints

'� = �=2 + n� and '� = ��=2 +m�, with n;m 2 Z, which satisfy Eq. (44a) for n = 0,
such that � = 2'� and the Hamiltonian�s parameters become

! 2 R; � = j�j ei'� ; � = j�j ei[m��'�]: (46)

and the TI antiunitary symmetry operator

I = e�2i'�a
yaT : (47)

For j�j 6= 0, we get the constraint

cos ('� � �=2)

cos ('� + �=2)
=
j�j
j�j = p: (48)

which, considering '� + '� = ', leads to the relation

� = 2'� � 2 tan�1
1� p cos'
p sin'

; (49)
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in agreement with Eq. (44a). From the above results, we obtain from Eq. (44b) the

expression

j�j = j�j
!

1� p2
1 + p2 � 2p cos'; (50)

which imposes

f = p2 � 2! cos'
! + j�j p+

! � j�j
! + j�j < 0; (51)

together with jcos'j >
q
!2 � j�j2=2!, and then p� < f < p+, with

p� =
!

! + j�j

0@1�
s
1� !2 � j�j2

4!2 cos2 '

1A : (52)

The parameters in Eqs. (49) and (50), under the above constraints for ' and f, de�ne the

TI antiunitary symmetry operator

I = e�a
y���ae�i�a

yaT : (53)

Although the TI continuous symmetry operators in Eqs. (47) and (53) are particular

cases of the TD symmetry operator in Eq. (30), they are generalizations of the discrete

parity and time-reversal transformation. Di¤erently from the operator I(t) in Eq. (30),

whose TD parameters depends on the Hermiticity conditions only through the frequency

requirement ! = !R � i _� (or ! = !R for the particular Dyson map � = ea+
�ay), the

operators in Eqs. (47) and (53) takes into account the constraints imposed on !; � and �.

The TI non-Hermitian Hamiltonians and consequently the associated symmetry operators

are more vulnerable than their general TD equivalents to the constraints imposed by the

pseudo-Hermiticity relation. This vulnerability to the constraints follows from the more

stringent condition for the invariance of a TI Hamiltonian: [I;H] = 0.

1. Bender-Berry-Mandilara

Although it is straightforward to verify the validity of the relation I2k = 1, with k odd

[19], for the symmetry operator in Eq. (47), its validity for the operator in Eq. (53) demands

a little algebra. In fact, for the operator in Eq. (53) we obtain

I2 = e�a
y���ae�i�a

yae�
�ay��aei�a

yaT 2

= exp
�
�ay � ��a

�
exp

�
��e�i�ay � �ei�a

�
= 1; (54)
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since it follows from Eqs. (44c) and (50) that �ei� = ���.
It is important to note that the TD symmetry operator I(t) does not obey the Bender-

Berry-Mandilara relation. Although we still have the relation

I2(t) = exp
�
�(t)ay � ��(t)a

�
exp

�
��(t)e�i�(t)ay � �(t)ei�(t)a

�
; (55)

the equality �(t)ei�(t) = ���(t) is no longer satis�ed in the TD scenario.

B. Dyson map and pseudo-Hermiticiy

For the TI Hamiltonian (41), we consider the TI Dyson map � = e�a
ya+a+�ay, with

� 2 R, leading to the Dyson relation (6)

h = �H��1 = !aya+ ua+ vay + f; (56)

where u, v and f follow directly from U , V and F in Eqs. (34). The Hermiticity condition

h = hy imposes !; f 2 R and u = v�, such that

 =
�

!

�e�� � ��e�

e�� � e�
; (57a)

�


=
�� (1� e��) + � (e� � 1)
� (1� e��) + �� (e� � 1) : (57b)

By substituting Eq. (57a) into Eq. (57b) we obtain �� 2 R. With the polar forms
� = j�j ei'� and � = j�j ei'� , it follows that '� = n� � '�, with n 2 Z . Therefore, for the
chosen TI Dyson map �, the Hamiltonian (41) becomes pseudo-Hermitian, with  given by

Eq. (57a) and � being a free real parameter, under the constraints

! 2 R, � = j�j ei'� , � = j�j ei(n��'�); (58)

exactly those in Eq. (46). Therefore, for the case j�j = 0, the pseudo-Hermiticity does not
impose additional constraints on the symmetry operator (47) beyond those already following

from the commutation relation [I;H] = 0. The same does not apply to the case j�j 6= 0

which leads to the much more complex symmetry operator (53).

C. From I in Eq. (47) to PT

Under the requirement for the PT -symmetry invariance of the TI Hamiltonian (41),
which imposes '� = '� = (n+ 1=2)�, the TI symmetry in Eq. (47) automatically reduces
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to

I = e�i(2n+1)�a
yaT = PT : (59)

VII. CONCLUSIONS

In this work we have proposed a method for the derivation of general TD continuous

symmetry operators for TD non-Hermitian Hamiltonians. Although our method applies

indistinctly to linear or antilinear, unitary or nonunitary symmetries, we then assume an

antilinear symmetry to retrieve the results by Mostafazadeh [3] and Bender-Berry-Mandilara

[19] for the case of TI Hamiltonian and symmetry operators. In fact, assuming that the

TD non-Hermitian Hamiltonian is simultaneously �-pseudo-Hermitian and �-anti-pseudo-

Hermitian, we then derive the relation I(t) = ��1(t)�(t) for our TD antilinear symmetry

operator. From this relation we recover the Mostafazadeh�s theorem, for TI Hamiltonian

and symmetry operators, asserting that the pseudo-Hermiticity of a Hamiltonian implies the

existence of an antilinear symmetry of the form I = ��1�. We also retrieves the Bender-

Berry-Mandilara result that a non-Hermitian Hamiltonian presents a real spectrum when

invariant under any antiunitary operator I satisfying I2k = 1 with k odd.

Our method is also based on a proposal in Ref. [23], for the construction of Lewis

& Riesenfeld TD nonlinear invariants, and we have applied it for the case of a TD non-

Hermitian linear Hamiltonian modelling a cavity �eld under linear ampli�cation. We have

thus derived a TD continuous symmetry operator, given in Eq. (30), which describes the

successive actions of a time-reversal operator T and TD rotation and (unitary or nonunitary)
displacement in phase space, respectively. This TD continuous symmetry automatically

reduces to the TI discrete PT operator when we restrict our TD Hamiltonian to be PT -
symmetrical.

After computing the symmetry operator we then consider the pseudo-Hermitization of

our TD linear Hamiltonian. For the case of the TI equivalent of our non-Hermitian linear

Hamiltonian, the stringent invariance requirement [I;H] = 0, imposes a TI continuous

symmetry operator which is a very particular case of the TD symmetry operator in Eq. (30),

even though it is a generalization of the discrete parity and time-reversal transformation. The

TI non-Hermitian Hamiltonians and the associated symmetry operators are more vulnerable,

as expected, than their general TD equivalents to the constraints imposed by the pseudo-
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Hermiticity relation.

Back to the TD general symmetry in Eq. (30), when considering the case of a TD antiu-

nitary symmetry, it strongly resembles the evolution operator for the Hermitized counterpar

of our TD non-Hermitian Hamiltonian, except for the time-reversal operation [16, 17, 24].

If applied to a given state of this Hermitized counterpart of our Hamiltonian, this peculiar

symmetry operator causes the probability distribution to trace an upward spiral in phase

space, with TD rotation and translation rates.

The results we have derived here together with those in the sequel for the TD non-

Hermitian quadratic Hamiltonian, allow us to infer a relation between symmetry and metric

that can be useful in the exploration of pseudo-Hermitian quantum mechanics beyond PT -
symmetry.

Acknowledgements

The authors would like to thank CAPES, CNPq, and INCT-IQ, for support..

[1] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).

[2] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); ibid. 43, 2814 (2002).

[3] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).

[4] M. Chitsazi, H. Li, F. M. Ellis, and T. Kottos, Phys. Rev. Lett. 119, 093901 (2017).

[5] T. Biesenthal, M. Kremer, M. Heinrich, and A. Szameit, Phys. Rev. Lett. 123, 183601 (2019).

[6] Z. Xiao, H. Li, T. Kottos, and A. Al�u1, Phys. Rev. Lett. 123, 213901 (2019).

[7] A. Y. Song, X.-Q. Sun, A. Dutt, M. Minkov, C. Wojcik, H. Wang, I. A.D. Williamson, M.

Orenstein, and S. Fan, Phys. Rev. Lett. 125, 033603 (2020).

[8] O. S. Duarte, F. S. Luiz, and M. H. Y. Moussa, Europhys. Lett. 121, 50006 (2018).

[9] J. F. G. dos Santos, F. S. Luiz, O. S. Duarte, and M. H. Y. Moussa Eur. Phys. J. Plus 134,

332 (2019).

[10] A. Fring and M. H. Y. Moussa, Phys. Rev. A 93, 042114 (2016).

[11] A. Fring and M. H. Y. Moussa, Phys. Rev. A 94, 042128 (2016).

[12] M. Znojil, Phys. Rev. D 78, 085003 (2008).

[13] J. Gong and Q.-H. Wang, J. Phys. A 46, 485302 (2013).

19



[14] J. Gong and Q. Hai Wang, J. Phys. A: Math. Theor. 46, 485302 (2013); A. Fring and T.

Frith, Phys. Lett. A 381, 2318 (2017); M. Maamache, O. K. Djeghiour, N. Mana, and W.

Koussa, Eur. Phys. J. Plus 132, 383 (2017); A. Fring and T. Frith, Phys. Rev. A 100, 010102

(2019); B. Khantoul, A. Bounames, and M. Maamache, Eur. Phys. J. Plus 132, 258 (2017);

N. Manaa, O. Zaidib, and M. Maamachec, J. Math. Phys. 61, 102103 (2020).

[15] F. S. Luiz, M. A. de Ponte, and M. H. Y. Moussa, Phys. Scr. 95, 065211 (2020).

[16] M. A. de Ponte, F. S. Luiz, O. S. Duarte, and M. H. Y. Moussa, Phys. Rev. A 100, 012128

(2019); Erratum Phys. Rev. A 102, 049903 (2020).

[17] R. A. Dourado, M. A. de Ponte, and M. H. Y. Moussa, Physica A 581, 126195 (2021).

[18] D. Cius, F. M. Andrade, A. S. M. de Castro, and M. H. Y. Moussa, arXiv:2108.05859 [quant-

ph].

[19] C. M. Bender, M. V. Berry, and A. Mandilara, J. Phys. A: Math. Gen. 35, L467 (2002).

[20] M.-A. Miri, M. Heinrich, D. N. Christodoulides, Conference on Lasers and Electro-Optics

(CLEO), San Jose, CA, 2014.

[21] S. Droulias, I. Katsantonis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, Phys. Rev.

Lett. 122, 213201 (2019).

[22] H. R. Lewis Jr. and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).

[23] M. A. de Ponte, P. M. Consoli, and M. H. Y. Moussa, Phys. Rev. A 98, 032102 (2018).

[24] B. Baseia, S. S. Mizrahi, and M. H. Y. Moussa, Phys. Rev. A 46, 5885 (1992); S. S. Mizrahi,

M. H. Y. Moussa, and B. Baseia, Int. J. Mod. Phys. B 8, 1563 (1994).

[25] R. M. Wilcox, J. Math. Phys. 4, 962 (1967).

20


