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Toulouse, UPS, 118 route de Narbonne, F-31062 Toulouse, France

2European Theoretical Spectroscopy Facility (www.etsf.eu)

3Laboratoire de Physique Théorique, CNRS, Université de
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Abstract

We present an original approach for the calculation of direct and inverse photo-emission spectra

from first principles. The main goal is to go beyond the standard Green’s function approaches,

such as the GW method, in order to find a good description not only of the quasiparticles but also

of the satellite structures, which are of particular importance in strongly correlated materials. Our

method uses as a key quantity the three-body Green’s function, or, more precisely, its hole-hole-

electron and electron-electron-hole parts. We show that, contrary to the one-body Green’s function,

satellites are already present in the corresponding non-interacting Green’s function. Therefore,

simple approximations to the three-body self-energy, which is defined by the Dyson equation for

the three-body Green’s function and which contains many-body effects, can still yield accurate

spectral functions. In particular, the self-energy can be chosen to be static which could simplify a

self-consistent solution of the Dyson equation. We also show how the one-body Green’s function

can be retrieved from the three-body Green’s function. We illustrate our approach by applying it

to the symmetric Hubbard dimer.
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I. INTRODUCTION

Photoemission spectroscopy is one of the most widely used experimental techniques to

study the electronic structure of materials [1]. Several photoemission techniques exist and

many properties can be obtained like, for example, the band structure of crystalline solids,

the binding energies of electrons in molecules such as those involved in chemical bonding,

satellites due to (strong) electron correlation etc.. While direct photoemission spectroscopy

studies the core and valence states of a material, inverse photoemission spectroscopy studies

the unoccupied states. Given the importance of photoemission spectroscopy for the under-

standing of materials, it is of great importance to complement experiment with theoretical

models in order to analyse the experimental data and even to predict these spectra using

first-principles methods.

The most popular first-principles approach to calculate photoemission spectra is many-

body perturbation theory based on Green’s functions. The main reason is that the one-body

Green’s function (1-GF) can be easily linked to photoemission spectra since its poles are

the electron removal and addition energies. The 1-GF describes the propagation of a single

hole or a single electron in a many-body system. Therefore, all the many-body effects are

only implicitly included. In practice the 1-GF is most often obtained from the Dyson equa-

tion G1 = G0
1 + G0

1Σ1G1, where G1 is the 1-GF, G0
1 is the noninteracting 1-GF and Σ1 is

the self-energy (1-SE), an effective potential that includes all the many-body effects, which

in practice has to be approximated. While there exist approximations to the self-energy

that can accurately and efficiently describe quasi-particle energies, e.g., the GW approxi-

mation [2], (at least for weakly/moderately correlated systems), the description of satellites,

which are a signature of electron correlation in a many-body system, is problematic. In order

to obtain non-vanishing satellite structures in the photoemission spectra the self-energy has

to be dynamical, i.e., a function of the energy. Since the non-interacting 1-GF only con-

tains information about quasiparticles a static self-energy can, at most, correct the energy

of the quasiparticles but it cannot create additional excitations. It is not straightforward to

find good approximations for the dynamical part of the self-energy. Moreover, a dynamical

self-energy is inconvenient from a practical point of view because it makes self-consistent

calculations very cumbersome. Although fully self-consistent GW calculations have been

performed on small atoms and molecules [3–10], there are, to the best of our knowledge, no
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such calculations for solids. Therefore, whenever self-consistency is important, one usually

employs partial self-consistent GW methods, e.g. quasi-particle self-consistent GW , that

use a static approximation to the GW self-energy [11–15]. As a consequence, there is no

self-consistent GW approach that can treat both quasiparticles and satellites in solids.

We note that an alternative to solving the Dyson equation is to make an ansatz for the

1-GF, which is the strategy of the cumulant approach [16, 17]. When combined with GW

this method has been shown to yield accurate quasiparticle energies as well as plasmon

satellites [18–26]. However, the precision of the GW plus cumulant approach for other

types of satellites has still to be investigated.

In this work we adopt a completely different strategy to capture the physics of both

quasi-particles and satellites. In an (inverse) photoemission process a hole (electron) is

created and the system will react to this extra particle, by creating electron-hole pairs.

Photoemission spectroscopy could therefore be seen as a three-particle process, the electron

or hole that is added plus an electron-hole pair. Therefore, we will study here the three-body

Green’s function (3-GF) as the fundamental quantity from which to calculate photoemission

spectra. In particular, we will study the electron-hole-hole 3-GF (Gehh
3 ) and the electron-

electron-hole 3-GF (Geeh
3 ) which contain all the required information about photoemission

and inverse photoemission spectra, respectively. We will show that already at the level of the

non-interacting 3-GF there is information about the satellites. Therefore, a static self-energy

(3-SE) is sufficient to obtain both quasiparticles and satellites in the photoemission spectra.

We will also demonstrate how one can retrieve the 1-GF and, therefore, the spectral function,

from Gehh
3 and Geeh

3 . We illustrate these principles by studying the symmetric Hubbard dimer

at 1/4 and 1/2 filling. In particular, we will show that a static approximation to the 3-SE

yields excellent results for quasi-particles and satellites at weak correlation and that the

results at strong correlation are still very good.

This paper is organized as follows. In section II we discuss the theoretical details of the

3-GF and its link to photoemission spectra. We introduce the symmetric Hubbard dimer

in section III and we show the results we obtained for the spectral functions. Finally, in

section IV we draw our conclusions and we discuss future perspectives.

3



II. THEORY

A. The three-body Green’s function

The 3-GF is defined by

G3(1, 2, 3, 1
′, 2′, 3′) = i〈ΨN

0 |T [ψ̂H(1)ψ̂H(2)ψ̂H(3)ψ̂†H(3′)ψ̂†H(2′)ψ̂†H(1′)]|ΨN
0 〉, (1)

where |ΨN
0 〉 is the ground state of an N -particle system, ψ̂H , ψ̂

†
H are the annihilation and

creation operator, respectively, in the Heisenberg representation and T is the time-ordering

operator. We use the short-hand notation (1) = (r1, s1, t1) which are the space, spin and time

coordinates, respectively. In the following we will express space and spin coordinates as a

single variable, namely x1 = (r1, s1). The 3-GF depends on six times or five time differences

when the Hamiltonian is time independent, and the total number of permutations of the

field operators in Eq. (1) due to the T operator is 6! = 720. Depending on the order of

the field operators (and therefore of the times) the 3-GF yields different information. In

general, it describes the propagation of three particles (electrons or holes) and the 3-GF

can therefore be split in four components: Ghhh
3 , Geee

3 , Ghhe
3 and Geeh

3 . In order to make

this separation explicit one can rewrite the six time-ordered field operators in Eq. (1) as a

sum of products of two terms each containing three time-ordered field operators (see also

appendix A). Therefore, 6!/(3! 3!) = 20 different couples of three time-ordered operators

can be formed, one that corresponds to Geee
3 and one to Ghhh

3 and nine that correspond to

Ghhe
3 and nine to Geeh

3 . As mentioned in the Introduction, in this work we are interested in

describing a charged excitation due to an added electron or hole plus an electron-hole pair.

Therefore we will focus here on Ghhe
3 and Geeh

3 . In order to have a more compact notation,

we use here and in the following Gh
3 and Ge

3, for Ghhe
3 and Geeh

3 , respectively, i.e., the presence

of the electron-hole pair is implied. It is instructive to write Ge+h
3 = Ge

3 +Gh
3 as a function
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of the five time differences. It is given by

Ge+h
3 (x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ23′ , τ1′2′ , τ2′3, τ) =

= i
∑
n

Xn(x1, x2, x3′ ; τ12, τ23′)X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)

× exp[iτ(EN
0 − EN+1

n )]θ(τ + F (τ12, τ3′1, τ1′2′ , τ31′))

− i
∑
n

Z̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)Zn(x1, x2, x3′ ; τ12, τ23′)

× exp[−iτ(EN
0 − EN−1

n )]θ(−τ + F (τ1′2′ , τ31′ , τ12, τ3′1)), (2)

where

τ =
1

3
(t1 + t2 + t3′)−

1

3
(t3 + t1′ + t2′) and τij = ti − tj, (3)

EN
n is the energy of the nth excited state of the N -particle system and the function F is

defined as

F (τ12, τ3′1, τ1′2′ , τ31′) =
∑

i 6=j 6=k=1,2,3′

1

3
(τij− τki)θ(τjk)θ(τki)−

∑
i 6=j 6=k=1′,2′,3

1

3
(τij− τki)θ(τjk)θ(τij).

(4)

The amplitudes Xn and Zn are defined as

Xn(x1, x2, x3′ ; τ12, τ23′) =
∑

i 6=j 6=k=1,2,3′

(−1)P θ(τij)θ(τjk)

exp[
i

3
(EN

0 (2τij + τjk) + EN+1
n (2τjk + τij))]〈ΨN

0 |Υ(xi)e
−iHτijΥ(xj)e

−iHτjkΥ(xk)|ΨN+1
n 〉

(5)

Zn(x1, x2, x3′ ; τ12, τ23′) =
∑

i 6=j 6=k=1,2,3′

(−1)P θ(τij)θ(τjk)

exp[
i

3
(EN

0 (2τjk + τij) + EN−1
n (2τij + τjk))]〈ΨN−1

n |Υ(xi)e
−iHτijΥ(xj)e

−iHτjkΥ(xk)|ΨN
0 〉

(6)
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where P is the number of permutations with respect to the initial order i = 1, j = 2, k = 3′.

Similarly, the amplitudes X̃n and Z̃n are defined as

X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3) =
∑

i 6=j 6=k=1′,2′,3

(−1)P θ(τij)θ(τjk)

exp[
i

3
(EN+1

n (2τij + τjk) + EN
0 (2τjk + τij))]〈ΨN+1

n |Υ(xi)e
−iHτijΥ(xj)e

−iHτjkΥ(xk)|ΨN
0 〉

(7)

Z̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3) =
∑

i 6=j 6=k=1′,2′,3

(−1)P θ(τij)θ(τjk)

exp[
i

3
(EN−1

n (2τjk + τij) + EN
0 (2τij + τjk))]〈ΨN

0 |Υ(xi)e
−iHτijΥ(xj)e

−iHτjkΥ(xk)|ΨN−1
n 〉

(8)

where P is the number of permutations with respect to the initial order i = 1′, j = 2′, k = 3.

Finally, Υ(xi) is given by

Υ(xi) =

ψ̂(xi) if i = 1, 2, 3

ψ̂†(xi) if i = 1′, 2′, 3′.
(9)

The details of the derivation of Eq. (2) can be found in Appendix A.

The time τ in Eq. (3) corresponds to the time of the combined propagation of the added

particle (electron or hole) and the electron-hole pair. A Fourier transformation with respect

to τ yields the following expression

G3
e+h(x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ23′ , τ1′2′ , τ2′3, ω) =

=−
∑
n

e−i[ω−(E
N+1
n −EN

0 )]F (τ12,τ3′1,τ1′2′ ,τ31′ )
Xn(x1, x2, x3′ ; τ12, τ23′)X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)

ω − (EN+1
n − EN

0 ) + iη

−
∑
n

e−i[ω−(E
N
0 −E

N−1
n )]F (τ1′2′ ,τ31′ ,τ12,τ3′1)

Z̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)Zn(x1, x2, x3′ ; τ12, τ23′)

ω − (EN
0 − EN−1

n )− iη
.

(10)

From Eq. (10) we see that the first term on the right-hand side corresponds to Ge
3 since

it has poles at the electron addition energies while the second term on the right-hand side

corresponds to Gh
3 since its poles are the electron removal energies. The addition (removal)

poles are located infinitesimally below (above) the real axis.

The four remaining time differences correspond to the following physical processes: 1) the

time between the added particle and the creation of the electron-hole pair ; 2) the time needed
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to create the electron-hole pair ; 3) the time needed to recombine the electron-hole pair ; 4)

the time between the recombination and the removal of the particle. Which time difference

corresponds to which process depends on the order of the times. For the description of

(inverse) photoemission spectroscopy all four processes can be considered instantaneous.

Therefore, we can take the limit τij → 0 for each of the four time differences. However,

the result will depend on the order in which the four limits are taken. It is convenient to

choose a time ordering that is coherent with the chronology of the (inverse) photoemission

process. For example, in direct photoemission spectroscopy first an electron is emitted from

the system leading to the creation of electron-hole pairs. After a time τ the electron-hole

pairs recombine and finally an electron is added. This corresponds to the following order

of the field operators ψ̂†ψ̂†ψ̂ψ̂†ψ̂ψ̂ that act on |ΨN
0 〉. This order of the field operators is

obtained with the following choice for the time differences,

τ12 = 0−, τ23′ = 0−, τ1′2′ = 0+, τ2′3 = 0+. (11)

From eqs. (5) to (8) one can see that, due to the presence of the Heaviside step functions,

only one term in the sum remains after fixing the time differences. We note that other choices

for the time differences are possible to obtain the same order of creation and annihiliation

operators mentioned above.

With the time differences given in Eq. (11) we obtain the following expression for Ge+h
3

G3
e+h(x1, x2, x3, x1′ , x2′ , x3′ ;ω) =

=
∑
n

Xn(x1, x2, x3′)X
∗
n(x1′ , x2′ , x3)

ω − (EN+1
n − EN

0 ) + iη
+
∑
n

Z∗n(x1′ , x2′ , x3)Zn(x1, x2, x3′)

ω − (EN
0 − EN−1

n )− iη
(12)

where the electron-electron-hole and hole-hole-electron amplitudes, Xn and Zn, respectively,

are defined as

Xn(x1, x2, x3′) = 〈ΨN
0 |ψ̂†(x3′)ψ̂(x2)ψ̂(x1)|ΨN+1

n 〉 (13)

Zn(x1, x2, x3′) = 〈ΨN−1
n |ψ̂†(x3′)ψ̂(x2)ψ̂(x1)|ΨN

0 〉, (14)

For completeness, we also give here the explicit expressions of the complex conjugates of

these amplitudes,

X∗n(x1′ , x2′ , x3) = 〈ΨN+1
n |ψ̂†(x1′)ψ̂†(x2′)ψ̂(x3)|ΨN

0 〉 (15)

Z∗n(x1′ , x2′ , x3) = 〈ΨN
0 |ψ̂†(x1′)ψ̂†(x2′)ψ̂(x3)|ΨN−1

n 〉. (16)
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The representation of Ge+h
3 in Eq. (12) is similar to the Lehmann representation of G1,

i.e., the poles are the same but the amplitude corresponding to each pole is different. In

section II B we will use this similarity to obtain a relation that links Ge+h
3 to G1.

While the time ordering in Eq. (11) yields the chronological order of the field operators for

the electron removal process it does not yield an equivalent order for the electron addition

process, which would be ψ̂ψ̂†ψ̂ψ̂†ψ̂ψ̂† acting on |ΨN
0 〉, i.e., the creation of an electron that

leads to the formation of electron-hole pairs followed by recombination and electron removal.

However, our goal is to calculate the spectral function, which requires the knowledge of the

1-GF only. In this case the order of the creation of the particle and the creation of the

electron-hole pair is not important. As we will show in the next subsection the exact 1-GF

can be recuperated from Ge+h
3 with the time ordering given in Eq. (11). We note that,

alternatively, one could choose two different time orderings for the removal and addition

processes. The difference between the two approaches is only that with one time ordering

we can write a single Dyson-like equation for Ge+h
3 while with two time orderings we would

need two Dyson-like equations, one for Gh
3 and Ge

3 each.

B. Obtaining G1 from Ge+h3

As mentioned in the previous subsection, our goal is to calculate the spectral function

which is defined in terms of G1. We therefore require an equation that yields G1 from Ge+h
3 .

As explained in Appendix B such a relation can be obtained by contracting the position-spin

variables of the field operators that correspond to electron-hole pairs followed by integration

over the contracted variables, i.e.,

Ge
1(x1, x1′ , ω) =

1

N2

∫∫
dx2dx3G

e
3(x1, x2, x3, x1′ , x3, x2, ω)

Gh
1(x1, x1′ , ω) =

1

(N − 1)2

∫∫
dx2dx3G

h
3(x1, x2, x3, x1′ , x3, x2, ω) (17)

where the integrals include a summation over the spin and Ge
1 (Gh

1) refers to the addition

(removal) part of G1.
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C. Dyson equation

As for the 1-GF, the definition of the 3-GF in Eq. (1) is not useful for practical calcula-

tions since its evaluation requires the knowledge of the N -body ground state wave function.

Similarly, the expression of Ge+h
3 in Eq. (12) involves the N -body ground state wave function

as well as excited-state wave functions of the corresponding N + 1 and N − 1 electron sys-

tems. It is therefore convenient to introduce an effective potential that links Ge+h
3 to Ge+h

03 ,

i.e., the noninteracting Ge+h
3 . Therefore, in the same spirit as for the 1-GF, we introduce a

self-energy Σ3 that is defined by the following Dyson equation

Ge+h
3 (x1, x2, x3, x1′ , x2′ , x3′ , ω) = Ge+h

03 (x1, x2, x3, x1′ , x2′ , x3′ , ω)

+Ge+h
03 (x1, x2, x6, x4′ , x5′ , x3′ , ω)Σ3(x4′ , x5′ , x6′ , x4, x5, x6, ω)Ge+h

3 (x4, x5, x3, x1′ , x2′ , x6′ , ω).

(18)

Here, and in the rest of the paper, integration over repeated indices are implied. As

mentioned before, one could also define two self-energies and, hence, have two Dyson equa-

tions, one for Ge
3 and one for Gh

3 . Indeed, in the case of the 1-GF it was found that the

separate calculation of its addition and removal parts can in some cases lead to improved

results [27–29]. Here we focus on a unified description of removal and addition processes

since it has the advantage of yielding the full spectral function from a single calculation. It

is also the most common approach for the calculation of the 1-GF. We note that we can

invert the Dyson equation in Eq. (18) to obtain

[Ge+h
3 ]−1(x1, x2, x3, x1′ , x2′ , x3′ , ω) = [Ge+h

03 ]−1(x1, x2, x3, x1′ , x2′ , x3′ , ω)−Σ3(x1, x2, x3, x1′ , x2′ , x3′ , ω).

(19)

We refer the reader to appendix C for the details.

Any non-interacting n-body Green’s function can be written in terms of non-interacting

1-GFs for which an analytic expression is well known. In particular, the full noninteracting

3-GF can be written according to [30]

G03(1, 2, 3, 1
′, 2′, 3′) = G01(1, 1

′)G01(2, 2
′)G01(3, 3

′) +G01(1, 2
′)G01(2, 3

′)G01(3, 1
′)

+G01(1, 3
′)G01(2, 1

′)G01(3, 2
′)−G01(1, 1

′)G01(2, 3
′)G01(3, 2

′)

−G01(1, 2
′)G01(2, 1

′)G01(3, 3
′)−G01(1, 3

′)G01(2, 2
′)G01(3, 1

′), (20)
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where G01 is the non-interacting 1-GF. Taking into account the choice for the time differences

in Eq. (11) and performing a Fourier transform with respect to τ given in Eq. (3) we obtain

the following expression for Ge+h
03

Ge+h
03 (x1, x2, x3, x1′ , x2′ , x3′ ;ω) =

∫
dω′dω′′

(2πi)2
G01(x1, x1′ ;ω + ω′ − ω′′)G01(x2, x2′ ;ω

′′)G01(x3, x3′ ;ω
′)

+G01(x1, x2′ ;ω)G01(x2, x3′)G01(x3, x1′) +G01(x1, x3′)G01(x2, x1′ ;ω)G01(x3, x2′)

−G01(x1, x1′ ;ω)G01(x2, x3′)G01(x3, x2′)−
∫
dω′dω′′

(2πi)2
G01(x1, x2′ ;ω + ω′ − ω′′)G01(x2, x1′ ;ω

′′)G01(x3, x3′ ;ω
′)

−G01(x1, x3′)G01(x2, x2′ ;ω)G01(x3, x1′) (21)

where G01 is defined as [31, 32]

G01(x1, x1′ ;ω) =
∑
n

φn(x1)φ
∗
n(x1′)

ω − εn + iηsign(εn − µ)
(22)

G01(x1, x1′) = G01(x1, x1′ , τ → 0−) = iγ(x1, x1′) = i
∑
v

φv(x1)φ
∗
v(x1′), (23)

in which µ is the chemical potential, φn and εn are single-particle wave functions and energies,

respectively, v corresponds to valence states and γ is the one-body reduced density matrix.

In Eq. (21) one can recognize two types of contributions on the right-hand side. The first

type contains a product of three noninteracting 1-GFs of which only one depends on the

frequency. From Eqs. (22) and (23) we then observe that these contributions correspond to

quasi-particles since their poles correspond to a single eigenenergy. The second type contains

two convolutions. Let us work out one of these contributions. We obtain∫
dω′dω′′

(2πi)2
G01(x1, x1′ ;ω + ω′ − ω′′)G01(x2, x2′ ;ω

′′)G01(x3, x3′ ;ω
′) =

−
∑
v

∑
c,c′

φc(x1)φ
∗
c(x1′)φc′(x2)φ

∗
c′(x2′)φv(x3)φ

∗
v(x3′)

ω − εc − (εc′ − εv) + iη

−
∑
v,v′

∑
c

φv(x1)φ
∗
v(x1′)φv′(x2)φ

∗
v′(x2′)φc(x3)φ

∗
c(x3′)

ω − εv + (εc − εv′)− iη
, (24)

where v(c) corresponds to valence (conduction) states. From the above expression it becomes

clear that the poles of this contribution correspond to satellites since they are the sum of

an eigenenergy and an eigenenergy difference of a conduction and valence state. This shows

that Ge+h
3 already contains satellites in the non-interacting limit. Therefore, even with only

a static 3-SE the corresponding spectral function will, in general, include satellites. The
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main task of a static 3-SE is to modify the position (and spectral weight) of the poles,

both due to quasiparticles and satellites, and bring them closer to the exact removal and

addition energies. For these reasons we will focus in the following on a static 3-SE. The

Dyson equation thus becomes

[Ge+h
3static]

−1(ω) = [Ge+h
03 ]−1(ω)− Σ3(ω = 0), (25)

where we omitted the spin-position dependence for notational convenience.

D. The 3-body spectral function

Since the spectral representation of Ge+h
3 (ω) given in Eq. (12) is similar to the one of

G1 it is convenient to introduce a 3-body spectral function for Ge+h
3 (ω) that is similar to

the spectral function corresponding to G1. We can thus define the spectral function A3(ω)

corresponding to Ge+h
3 (ω) according to

A3(ω) =
1

π
sign(µ− ω)ImG3(ω). (26)

in which µ is the chemical potential and where, for notational convenience, the spin-position

arguments are omitted. It can be verified that Ge+h
3 (ω) can be retrieved from A3(ω) accord-

ing to

Ge+h
3 (ω) =

∫ µ

−∞
dω′

A3(ω
′)

ω − ω′ − iη
+

∫ +∞

µ

dω′
A3(ω

′)

ω − ω′ + iη
, (27)

By comparing the above expression to Eq. (12) we see that A3(ω) can be written as

A3(x1, x2, x3, x1′ , x2′ , x3′ ;ω) =
∑
n

Xn(x1, x2, x3′)X
∗
n(x1′ , x2′ , x3)δ(ω − (EN+1

n − EN
0 ))

+
∑
n

Zn(x1, x2, x3′)Z
∗
n(x1′ , x2′ , x3)δ(ω − (EN

0 − EN−1
n )), (28)

It is easy to show that A3(ω), as is the spectral function corresponding to G1, is a hermitian

and positive define matrix.

E. the 3-GF in a general basis

For practical applications it is convenient to express Ge+h
3 in a basis set. We can write

the field operator in a general one-electron basis set {φi} according to

ψ̂(x) =
∑
i

ĉiφi(x) ψ̂†(x) =
∑
i

ĉ†iφ
∗
i (x) (29)

11



where ĉi and ĉ†i are the annihilation and creation operator respectively, with the usual anti-

commutation relations.

It is then straightforward to show that Eq. (12) can be rewritten as

Ge+h
3 (x1, x2, x3, x1′ , x2′ , x3′ ;ω) =

∑
ijlmok

Ge+h
3(ijl;mok)(ω)φi(x1)φj(x2)φi(x3′)φi(x1′)φi(x2′)φi(x3),

(30)

where Ge+h
3(ijl;mok)(ω) is Ge+h

3 (ω) expressed in the basis {φi} according to

Ge+h
3(ijl;mok)(ω) =

∑
n

Xijl
n X† mokn

ω − (EN+1
n − EN

0 ) + iη
+
∑
n

Zijln Z† mokn

ω − (EN
0 − EN−1

n )− iη
, (31)

in which

Xijl
n = 〈ΨN

0 |ĉ
†
l ĉj ĉi|Ψ

N+1
n 〉 X† mokn = 〈ΨN+1

n |c†mĉ†oĉk |̂ΨN
0 〉

Zijln = 〈ΨN−1
n |ĉ†l ĉj ĉi|Ψ

N
0 〉 Z† mokn = 〈ΨN

0 |c†mĉ†oĉk |̂ΨN−1
n 〉. (32)

Finally, we note that when expressed in a basis set Eq. (17) becomes

Ge
1(im)(ω) =

1

N2

∑
jk

Ge
3(ijj;mkk)(ω) (33)

Gh
1(im)(ω) =

1

(N − 1)2

∑
jk

Gh
3(ijj;mkk)(ω). (34)

III. SYMMETRIC HUBBARD DIMER

In order to illustrate the theory discussed in the previous section we consider the symmet-

ric Hubbard dimer. It consists of two degenerate sites each containing one orbital; moreover

only electrons on the same site interact with each other. This model is exactly solvable and,

therefore, allows us to test the accuracy of various approximations in both the weakly and

strongly correlated regimes. We will study the symmetric Hubbard dimer at 1/4 and 1/2

filling.

A. The Hamiltonian

The Hamiltonian corresponding to the symmetric Hubbard dimer is given by

H = −t
∑

i 6=j=1,2

∑
σ

c†iσ ĉjσ +
U

2

∑
i=1,2

∑
σσ′

c†iσc
†
iσ′ ĉiσ′ ĉiσ + ε0

∑
i=1,2

∑
σ

niσ, (35)

12



in which −t, U and ε0 represent the hopping kinetic energy, the (spin-independent) on-site

interaction and the orbital energy, respectively, and niσ = c†iσ ĉiσ is the number operator.

We made explicit the spin σ in the above equation. We note that the amount of electron

correlation in the system is proportional to the ratio U/t. The eigenenergies and eigenfunc-

tions of the above Hamiltonian can be found analytically. In appendix D we report the

eigenvalues and eigenfunctions for the cases of one, two and three electrons. The details of

the calculations can be found in, e.g., Refs. [33 and 34].

Without loss of generality, we can make use of the following simplifications when evalu-

ating Ge+h
3 for the Hubbard dimer: 1) the electron involved in the neutral excitation does

not change its spin, and 2) the electron or hole that is added to the system is different from

the one involved in the neutral excitation.

B. 1/4 filling

In the study of the one-electron case, we focus our attention only on the addition part of

the spectral function because its removal part is straightforward since there is no correlation

and, therefore, no satellites. Moreover, the removal part of Ge+h
3 , as defined in Eq. (12),

vanishes. This is due to the fact that, when the only electron present in the system is

removed, there are no electrons left to create the neutral excitations.

In Appendix E we show how the electron-electron-hole Green’s function in the diagonal

basis is given by the following expression

Ge
3(ω) = diag(G′3(ω), G′3(ω), G′′3(ω), G′′′3 (ω), G′v3 (ω)); (36)

where

G′3(ω) =
1

ω − (ε0 + t) + iη

G′′3(ω) =
1

ω − (ε0 + U + t) + iη

G′′′3 (ω) =
1

ω − (ε0 + U+c
2

+ t) + iη

G′v3 (ω) =
1

ω − (ε0 + U−c
2

+ t) + iη
, (37)

with c =
√

16t2 + U2. We observe that Ge
3 contains four distinct poles for U > 0. We

emphasize that the on-site interaction U only influences the position of the poles but not

13



the corresponding amplitudes. Thanks to this feature satellite amplitudes do not vanish in

the non-interacting limit. The non-interacting Ge
3 hence reads

Ge
03(ω) = diag(G′03(ω), G′03(ω), G′′03(ω), G′′′03(ω), G′v03(ω)); (38)

with

G′03(ω) = G′′03(ω) =
1

ω − (ε0 + t) + iη

G′′′03(ω) =
1

ω − (ε0 + 3t) + iη

G′v03(ω) =
1

ω − (ε0 − t) + iη
. (39)

We see that at U = 0 two the poles present at U > 0 merge and only three distinct poles

remain. Since the energy levels for the Hubbard dimer at 1/4 filling are equal to ε0 − t and

ε0 + t (see Appendix D) we can therefore conclude that G′′′03 corresponds to a satellite since

its pole is equal to the sum of ε0 + t, i.e., the energy of the antibonding level, and 2t, i.e.,

the energy of a neutral excitation.

Since both Ge
3 and Ge

03 are diagonal also the 3-SE is diagonal, as can be seen from Eq. (19).

Moreover, each diagonal element of both Ge
3 and Ge

03 contains a single pole. Therefore the

exact 3-SE is static and has the following simple expression

Σ3 = diag(0; 0;U ;
U + c

2
− 2t;

U − c
2

+ 2t). (40)

To illustrate the difference with standard approaches using the 1-GF, we also report the

addition part of G1 and the corresponding 1-SE. In the bonding/anti-bonding basis Ge
1 is

diagonal and it is given by

Ge
1(ω) = diag(G′1(ω), G′′1(ω), G′′′1 (ω)) (41)

where

G′1(ω) =
1

ω − (ε0 + t) + iη

G′′1(ω) =
1

2

(
1

ω − (ε0 + t) + iη
+

1

ω − (ε0 + U + t) + iη

)
G′′′1 (ω) =

1
a2

(A− 1)2

ω − (ε0 + U−c
2

+ t) + iη
+

1
b2

(B − 1)2

ω − (ε0 + U+c
2

+ t) + iη
. (42)
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FIG. 1. Hubbard dimer at 1/4 filling: addition part of the spectral function in the non-interacting

limit U = 0. Comparison between the exact 1-GF (black solid line) and the exact 3-GF (red dashed

line). The peak at ω = 4, which is present only in the three-body case, is a satellite. The spectra

refer to ε0 = 1.

with a =
√
2

c−U

√
16t2 + (c− U)2, A = 4t

U−c , b =
√
2

c+U

√
16t2 + (c+ U)2 and B = 4t

U+c
. We

observe that Ge
1 has four poles, i.e., the same amount as Ge

3 as it should. As a consequence,

and in contrast to Ge
3, some of the terms on the diagonal of Ge

1 contain more than one pole.

When the interaction is switched off (U = 0), the diagonal components of the 1-GF become

G′0(ω) = G′′0(ω) =
1

ω − (ε0 + t) + iη

G′′′0 (ω) =
1

ω − (ε0 − t) + iη
. (43)

Thus only two distinct poles remain both corresponding to quasi-particles. It can be verified

that at U = 0 the pole in the second term on the right-hand side of Eq. (42) is equal to ε0+3t

which corresponds to the position of the satellite. However, at U = 0 the corresponding

spectral weight vanishes since B−1 = 0. Therefore, there is no trace of this satellite in G01.

From the Dyson equation Σ = G−10 −G−11 it is easy to verify that the self-energy is frequency

dependent [33]. We conclude that the exact 1-SE is a more complicated expression than the
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FIG. 2. Hubbard dimer at 1/4 filling: addition part of the spectral function in the weak interaction

case U/t = 1 at various levels of theory: exact 1-GF (black solid line); GW approximation (blue

dotted line); static 1-GF (green dashed line). We also report the spectral function of the exact

3-GF (red dashed line). (a) zoom of the satellite. The spectra refer to ε0 = 1.

exact 3-SE.

In Fig. 1 we show a comparison between the spectral functions corresponding to the non-

interacting Green’s functions Ge
01 and Ge

03. One can see that, in the non-interacting limit, the

satellite is present with a nonvanishing spectral weight only in the spectral function obtained

from the Ge
03. This was to be expected from the discussion above. The non-interacting 1-GF

is retrieved from Ge
03 by using Eq. (33).

In Fig. 2 we compare the spectral functions obtained with Σ3(ω = 0) and Σ1(ω = 0),

i.e., the exact static approximations to the 3-SE and the 1-SE, respectively, for U/t = 1.

In the former case we used Eq. (33) to retrieve Ge
1 from Ge

3. For completeness, we also

included the corresponding 3-body spectral function in the figure. At 1/4 filling the spectral

function obtained from Σ3(ω = 0) is exact. Instead, the spectral function corresponding to

Σ1(ω = 0) misses the (small) satellite peak, as was expected, and greatly underestimates the

largest quasiparticle energy. We also report the spectral function obtained from a dynamical
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FIG. 3. Hubbard dimer at 1/4 filling: addition part of the spectral function in the strong inter-

action case U/t = 4 at various levels of theory: exact 1-GF (black solid line); GW approximation

(blue dotted line); static 1-GF (green dashed line). We also report the spectral function of the

exact 3-GF (red dashed line). The peak on the right is a satellite. The spectra refer to ε0 = 1.

1-SE, namely the popular GW approximation to the 1-SE. The analytical result for the GW

approximation can be found in Ref. [33]. We see that ΣGW
1 yields a very good spectral

function at 1/4 filling and weak interaction.

When we increase the interaction strength to U/t = 4 (see Fig. 3) we observe that the

spectral weight of the satellite in the 1-body spectral function has also increased. Instead,

in the 3-body spectral function the spectral weight of the satellite is not influenced by the

interaction strength, only its position depends on it. Again, after application of Eq. (33) we

retrieve Ge
1 from Ge

3 which, as mentioned before, leads to the exact spectral function in the

case of 1/4 filling. From the spectral function obtained from Σ1(ω = 0) we observe that the

underestimation of the highest-energy quasiparticle peak is even larger than was the case at

weak interaction strength. Moreover, it overestimates the lowest-lying quasiparticle peak.

Finally, at strong correlation the energies of the quasiparticles and the satellite in the GW

spectral functions are either substantially overestimated or underestimated. Moreover, the
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quasiparticle peak just above ω = 2 is split into two peaks due to a spurious pole in the GW

Green’s function.

From the above we conclude that the 1-SE has a more difficult task than the 3-SE, since

it has to create a satellite which is not present in the G01, whereas it is already present in

G03. This is an important point, because we can hope that simple approximations to Σ3 can

still produce accurate spectral functions. For example, in the Hubbard dimer at 1/4 filling,

the static approximation (25) is exact for the 3-GF. Instead, with a static 1-SE, it is not

possible to obtain a nonvanishing satellite amplitude.

C. 1/2 filling

We now study the Ge+h
3 for the Hubbard dimer at 1/2 filling. We start by considering

the process of electron addition and removal separately since in this way both Gh
3 and Ge

3

can be written in a simple diagonal form. Later we will write the diagonal expression of the

total Ge+h
3 . The details of the calculations are given in appendix F.

In the diagonal basis, we obtain the following expressions for the removal and addition

parts,

Gh
3(ω) = diag(0, 1, 0, 1)

1

ω − (ε0 + t+ U−c
2

)− iη
+ diag(1, 0, 1, 0)

1

ω − (ε0 − t+ U−c
2

)− iη
,

(44)

Ge
3(ω) = diag(0, λ1, 0, λ1)

1

ω − (ε0 + t+ c+U
2

) + iη
+ diag(λ2, 0, λ2, 0)

1

ω − (ε0 − t+ c+U
2

) + iη
,

(45)

where

λ1 = 1 +
(A+ 1)2

a2
λ2 = 1 +

(A− 1)2

a2
. (46)

We observe that the on-site interaction U only influences the positions of the poles of Gh
3

but not their amplitudes. Instead, for Ge
3 the interaction strength affects both the poles and

their amplitudes. In the non-interacting limit these expressions become

Gh
03(ω) = diag(0, 1, 0, 1)

1

ω − (ε0 − t)− iη
+ diag(1, 0, 1, 0)

1

ω − (ε0 − 3t)− iη
, (47)

Ge
03(ω) = diag(0, 1, 0, 1)

1

ω − (ε0 + 3t) + iη
+ diag(2, 0, 2, 0)

1

ω − (ε0 + t) + iη
, (48)
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As was the case at 1/4 filling, G03 contains satellites, i.e., the terms corresponding to the poles

at ε0 ± 3t, with non-vanishing amplitudes. As mentioned before, we could treat separately

the addition and removal parts of Ge+h
3 . However, this would mean that we have to solve

two Dyson-like equations, one for Ge
3 and Gh

3 .

In order to use a single Dyson equation, i.e., Eq. (18), we need the total Ge+h
3 . The

expression for Ge+h
3 in its diagonal basis is given by

Ge+h
3 (ω) = diag(ξ1, ξ2, ξ3, ξ4, ξ1, ξ2, ξ3, ξ4), (49)

where

ξ1,2 =
1

2

1

ω − (ε0 + t+ U−c
2

)− iη
+

1

2

λ1

ω − (ε0 + t+ U+c
2

) + iη

∓

√
1

4

1

(ω−(ε0+t+ U−c
2

)−iη)2
+

1

4

λ21
(ω−(ε0+t+ U+c

2
)+iη)2

− 1/2 + A/a2 + 4A2/a4

(ω−(ε0+t+ U+c
2

)+iη)(ω−(ε0+t+ U−c
2

)−iη)

ξ3,4 =
1

2

1

ω − (ε0 − t+ U−c
2

)− iη
+

1

2

λ2

ω − (ε0 − t+ U+c
2

) + iη

∓

√
1

4

1

(ω−(ε0−t+ U−c
2

)−iη)2
+

1

4

λ22
(ω−(ε0−t+ U+c

2
)+iη)2

− 1/2− A/a2 + 4A2/a4

(ω−(ε0−t+ U+c
2

)+iη)(ω−(ε0−t+ U−c
2

)−iη)
.

(50)

We note that it is not the sum of Equations (44) and (45), because Ge
3 and Gh

3 are diagonal

in a different basis. We thus find four distinct eigenvalues, each one with multiplicity 2 since

the matrix is block diagonal with respect to the spin of the added particle (electron or hole).

Despite the complexity of the eigenvalues in Eq. (50), in the non-interacting limit Ge+h
3

becomes very simple, i.e.,

Ge+h
03 (ω) = diag(ξ01 , ξ

0
2 , ξ

0
3 , ξ

0
4 , ξ

0
1 , ξ

0
2 , ξ

0
3 , ξ

0
4), (51)

where

ξ01 =
1

ω − (ε0 − t)− iη

ξ02 =
1

ω − (ε0 + 3t) + iη

ξ03 =
1

ω − (ε0 − 3t)− iη

ξ04 =
2

ω − (ε0 + t) + iη
,

(52)
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which shows that, as expected, the satellite amplitudes are non-zero also in the non-

interacting case.

From eqs. (49) and (51) we can find an analytical expression for the 3-SE by using

Eq. (19). However, we will not report the explicit expression of the 3-SE here because it

would take up too much space. The main difference with the exact 3-SE of the Hubbard

dimer at 1/4 filling is that at 1/2 filling the 3-SE is frequency dependent. Therefore, this

case is a good test to check the accuracy of the static approximation given in Eq. (25).

For comparison, we also report G1 which, in the bonding/anti-bonding basis, reads

G1(ω) = diag(G′1(ω), G′1(ω), G′′1(ω), G′′1(ω)) (53)

where

G′1(ω) =
1

a2

[
(1 + A)2

ω − (ε0 + U+c
2

+ t) + iη
+

(1− A)2

ω − (ε0 + U−c
2

+ t)− iη

]

G′′2(ω) =
1

a2

[
(1− A)2

ω − (ε0 + U+c
2
− t) + iη

+
(1 + A)2

ω − (ε0 + U−c
2
− t)− iη

]
. (54)

This matrix is block diagonal in the spin.

In Figures 4 and 5 we compare the exact spectral function for the Hubbard dimer at

1/2 filling for U/t = 1 and U/t = 4, respectively, to the spectral functions obtained with

the following three approximations: 1) the calculation of Ge+h
3 using the exact static ap-

proximation for the 3-SE according to Eq. (25) (Σ3(ω = 0)) followed by the application

of eqs. (33) and (34), 2) the calculation of the 1-GF using the exact static approximation of

the 1-SE (Σ1(ω = 0)) and 3) the GW approximation [33]. At weak interaction (Figure 4)

the quasiparticle peaks are very well described by all the approximations considered. On

the contrary, the agreement with the exact result for the satellites are very good only with

the static approximation to the exact 3-SE proposed in this paper. The GW approximation

overestimates the energy difference with the nearest quasiparticle energy, while in the spec-

tral function obtained from static approximation to the 1-SE the satellite amplitudes are

not present at all. At strong interaction (Figure 5) the quasiparticle energies are still well

described by the two static approximations, although the gap between the two quasiparticle

energies is slightly overestimated. Instead, the GW approximation significantly underesti-

mates this gap. The satellites are only well described by the static approximation to the

3-SE, as they are absent in the spectral function obtained from the static approximation to
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FIG. 4. Hubbard dimer at 1/2 filling: spectral function in the weak interaction case U/t = 1 at

various levels of theory: exact result (black solid line); static 3-GF (red dashed line); GW approx-

imation (blue dotted line); static 1-GF (green dashed line). The outer peaks are the satellites. (a)

zoom of the removal satellite; (b) zoom of the addition satellite. The spectra refer to ε0 = −U/2

which guarantees the particle-hole symmetry.

the 1-SE, while the GW approximation completely fails to reproduce the positions of the

satellites and severely underestimates its amplitudes.

IV. CONCLUSIONS AND OUTLOOK

We have given a proof of principle that the three-body Green’s function is a promising

quantity to describe photoemission spectra, especially for correlated systems in which satel-

lites play an important role. In particular, we have shown that Ge+h
3 which is the sum of

the electron-hole-hole and electron-electron-hole parts of the three-body Green’s function,

contains all the necessary information to describe the spectral function. Indeed, we have

shown explicitly how one can retrieve the one-body Green’s function G1 from Ge+h
3 . We

have demonstrated that an important advantage of Ge+h
3 with respect to G1 is that its non-

interacting counterpart Ge+h
03 already contains information about satellites. Therefore, even
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FIG. 5. Hubbard dimer at 1/2 filling: spectral function in the strong interaction limit U/t = 4 at

various levels of theory: exact result (black solid line); static 3-GF (red dashed line); GW approx-

imation (blue dotted line); static 1-GF (green dashed line). The outer peaks are the satellites. (a)

zoom of the removal satellite; (b) zoom of the addition satellite. The spectra refer to ε0 = −U/2

which guarantees the particle-hole symmetry.

when the corresponding three-body self-energy, which relates Ge+h
03 to Ge+h

3 , is chosen to be

static the spectral function still contains satellite structures. This should be compared to

the spectral function obtained through a static one-body self-energy in which such struc-

tures are completely absent. An advantage of a static self-energy is that the self-consistent

solution of the Dyson equation can be readily implemented. We have illustrated the above

principles by studying the spectral function of the symmetric Hubbard dimer at 1/4 and 1/2

filling. For this model system the static approximation to the exact three-body self-energy

yields excellent results even at strong correlation.

Our next goal is to derive a general static expression for the three-body self-energy that

can be applied to real systems, for example by evaluating the equation of motion of Ge+h
3

to obtain a closed set of equations. Finally, we note that, due to its three-body nature,

the calculation of Ge+h
3 could be a computational challenge for real materials. However,
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one-body Green’s functions of molecules and solids are being calculated for almost 40 years

now [35, 36], while two-body Green’s functions, or related quantities, of real systems are

being calculated for more than 20 years now [37–39]. Moreover, those calculations are nowa-

days routinely performed for systems containing many electrons. Therefore, we think that

it is timely to explore the numerical calculation of three-body Green’s functions. Moreover,

the three-body Green’s functions could be used to simulate other types of excitations, e.g.,

trions [40], or to compute time- and angle-resolved photoemission spectra of systems with

excitons in which at least three particles (the electron-hole pair (exciton) already present in

the system and the additional particle added to the system) are involved [41].

Appendix A: DERIVATION OF THE SPECTRAL REPRESENTATION OF G3

Here we derive Eq. (2) starting from the definition of G3 given by Eq. (1). We follow a

similar procedure that Csanak et al. [32] used to find the e-h/h-e part of the two-particle

Green’s function. We start by considering two different time orderings which we will discuss

in the following,

Case 1: t1, t2, t3′ > t3, t1′ , t2′

We set t1, t2, t3′ > t3, t1′ , t2′ without fixing the order of t1, t2 and t3′ , and of t3, t1′ and t2′ .

Then, for this time order we have

Ge
3(1, 2, 3, 1

′, 2′, 3′) = −i〈ΨN
0 |T [ψ̂H(1)ψ̂H(2)ψ̂†H(3′)]T [ψ̂H(3)ψ̂†H(2′)ψ̂†H(1′)]|ΨN

0 〉

= −i
∑
n

〈ΨN
0 |T [ψ̂H(1)ψ̂H(2)ψ̂†H(3′)]|ΨN+1

n 〉〈ΨN+1
n |T [ψ̂H(3)ψ̂†H(2′)ψ̂†H(1′)]|ΨN

0 〉

= −i
∑
n

χn(1, 2, 3′)χ̃n(3, 2′, 1′) = i
∑
n

χn(1, 2, 3′)χ̃n(1′, 2′, 3), (A1)

where we used the closure relation in Fock space. The electron-electron-hole amplitudes

have been defined as

χn(1, 2, 3′) = 〈ΨN
0 |T [ψ̂H(1)ψ̂H(2)ψ̂†H(3′)]|ΨN+1

n 〉

χ̃n(1′, 2′, 3) = 〈ΨN+1
n |T [ψ̂†H(1′)ψ̂†H(2′)ψ̂H(3)]|ΨN

0 〉. (A2)
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Making explicit the times in the Heisenberg representation of the field operators, these

amplitudes can be rewritten as

χn(1, 2, 3′) = exp[i/3(t1 + t2 + t3′)(E
N
0 − EN+1

n )]Xn(x1, x2, x3′ ; τ12, τ23′)

χ̃n(1′, 2′, 3) = exp[−i/3(t1′ + t2′ + t3)(E
N
0 − EN+1

n )]X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3) (A3)

where X and X̃ are defined in eqs. (5) and (7). Using Eq. (A1), this yields

Ge
3(1, 2, 3, 1

′, 2′, 3′) = i
∑
n

exp[iτ(EN
0 −EN+1

n )]Xn(x1, x2, x3′ ; τ12, τ23′)X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)

(A4)

where we defined

τ =
1

3
(t1 + t2 + t3′)−

1

3
(t3 + t1′ + t2′) τij = ti − tj. (A5)

The important point is that Eq. (A4) depends on τ only through an exponential factor in

which it multiplies the electron addition energies. As a consequence, the Fourier transform

of Ge
3(τ) has poles at these energies, the calculation of which are, along with the corre-

sponding amplitudes, the main objective of this work. The only other time ordering that

yields a G3(τ) of which the time τ is completely factorable from the matrix elements is

t3, t1′ , t2′ > t1, t2, t3′ . We will discuss it in the following subsection.

Case 2: t3, t1′ , t2′ > t1, t2, t3′

For this order of the times we obtain

Gh
3(1, 2, 3, 1′, 2′, 3′) = i〈ΨN

0 |T [ψ̂H(3)ψ̂†H(2′)ψ̂†H(1′)]T [ψ̂H(1)ψ̂H(2)ψ̂†H(3′)]|ΨN
0 〉

= i
∑
n

〈ΨN
0 |T [ψ̂H(3)ψ̂†H(2′)ψ̂†H(1′)]|ΨN−1

n 〉〈ΨN−1
n |T [ψ̂H(1)ψ̂H(2)ψ̂†H(3′)]|ΨN

0 〉

= i
∑
n

ζ̃n(3, 2′, 1′)ζn(1, 2, 3′) = −i
∑
n

ζ̃n(1′, 2′, 3)ζn(1, 2, 3′). (A6)

where again we used the completeness of the Fock space. The hole-hole-electron amplitudes

have been defined as

ζn(1, 2, 3′) = 〈ΨN−1
n |T [ψ̂H(1)ψ̂H(2)ψ̂†H(3′)]|ΨN

0 〉

ζ̃n(1′, 2′, 3′) = 〈ΨN
0 |T [ψ̂†H(1′)ψ̂†H(2′)ψ̂H(3)]|ΨN−1

n 〉. (A7)
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As before, we make explicit the times in the Heisenberg representation of the field operators,

arriving at

ζn(1, 2, 3′) = exp[−i/3(t1 + t2 + t3′)(E
N
0 − EN−1

n )]Zn(x1, x2, x3′ ; τ12, τ23′)

ζ̃n(1′, 2′, 3) = exp[i/3(t1′ + t2′ + t3)(E
N
0 − EN−1

n )]Z̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3) (A8)

where Z and Z̃ are defined in eqs. (6) and (8). Using (A6), this yields

Gh
3(1, 2, 3, 1′, 2′, 3′) = −i

∑
n

exp[−iτ(EN
0 −EN−1

n )]Z̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)Zn(x1, x2, x3′ ; τ12, τ23′),

(A9)

In this case the time difference τ multiplies electron removal energies and, therefore, the

Fourier transform of Gh
3(τ) has poles at these energies. By a similar analysis one can show

that the other time orderings do not have factorizable exponential in terms of τ .

Therefore, we can write G3 as follows

G3(1, 2, 3, 1
′, 2′, 3′) = Ge

3(1, 2, 3, 1
′, 2′, 3′)θ(τ + F (τ12, τ3′1, τ1′2′ , τ31′))

+Gh
3(1, 2, 3, 1′, 2′, 3′)θ(−τ + F (τ1′2′ , τ31′ , τ12, τ3′1)) + other orderings (A10)

where the time orderings of the two cases described above are ensured by the Heaviside

functions, and F is defined in Eq. (4). The term other orderings refers to all the other

possible time permutations present in the initial definition of G3 given in Eq. (1). Since it is

impossible to factorize an exponential of the form exp[±iτ(EN
0 −EN±1

n )] in any of the terms

in other orderings , when we perform the Fourier transform respect to τ all these terms are

nonsingular at frequencies equal to electron removal or addition energies.

For this reason, we define the first two terms on the right-hand side of Eq. (A10) as the

electron-electron-hole/hole-hole-electron Green’s function Ge+h
3 ,

Ge+h
3 (1, 2, 3, 1′, 2′, 3′) = i

∑
n

Xn(x1, x2, x3′ ; τ12, τ23′)X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)

× exp[iτ(EN
0 − EN+1

n )]θ(τ + F (τ12, τ3′1, τ1′2′ , τ31′))

− i
∑
n

Z̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)Zn(x1, x2, x3′ ; τ12, τ23′)

× exp[−iτ(EN
0 − EN−1

n )]θ(−τ + F (τ1′2′ , τ31′ , τ12, τ3′1)). (A11)
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which is equal to Eq. (2). The spectral representation of G3 is obtained by Fourier trans-

forming with respect to τ which yields

Ge+h
3 (x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ2,3′ , τ1′2′ , τ2′3, ω) = Ge

3(x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ2,3′ , τ1′2′ , τ2′3, ω)

+Gh
3(x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ2,3′ , τ1′2′ , τ2′3, ω) (A12)

where

Ge
3(x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ2,3′ , τ1′2′ , τ2′3, ω)

=−
∑
n

e−i[ω−(E
N+1
n −EN

0 )]F (τ12,τ3′1,τ1′2′ ,τ31′ )
Xn(x1, x2, x3′ ; τ12, τ23′)X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)

ω − (EN+1
n − EN

0 ) + iη

(A13)

and

Gh
3(x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ2,3′ , τ1′2′ , τ2′3, ω)

=−
∑
n

e−i[ω−(E
N
0 −E

N−1
n )]F (τ1′2′ ,τ31′ ,τ12,τ3′1)

Z̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)Zn(x1, x2, x3′ ; τ12, τ23′)

ω − (EN
0 − EN−1

n )− iη
.

(A14)

which is equal to Eq. (10).

Finally, we emphasize that it is possible to perform a similar derivation for other time or-

derings, except those corresponding to three electrons or three holes, i.e., t1, t2, t3 > t1′ , t2′ , t3′

and t1, t2, t3 < t1′ , t2′ , t3′ . For each choice we can obtain an equation that is similar to

Eq. (A10), i.e., only two terms are singular at the electron removal and addition energies.

Therefore, the final result is independent of this choice.

Appendix B: Recovering G1 from G3

To recoverG1 fromG3 we have to contract the spin-position variables in the field operators

corresponding to the neutral excitation and integrate over the remaining two variables. We
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thus obtain∫
dx2dx3dx2′dx3′δ(x2 − x3′)δ(x3 − x2′)Ge+h

3 (x1, x2, x3, x1′ , x2′ , x3′ ;ω) =

=

∫
dx2dx3G

e+h
3 (x1, x2, x3, x1′ , x3, x2;ω)

=

∫
dx2dx3

∑
n

[
〈ΨN

0 |ψ̂†(x2)ψ̂(x2)ψ̂(x1)|ΨN+1
n 〉〈ΨN+1

n |ψ̂†(x1′)ψ̂†(x3)ψ̂(x3)|ΨN
0 〉

ω − (EN+1
n − EN

0 ) + iη

+
〈ΨN

0 |ψ̂†(x1′)ψ̂†(x3)ψ̂(x3)|ΨN−1
n 〉〈ΨN−1

n |ψ̂†(x2)ψ̂(x2)ψ̂(x1)|ΨN
0 〉

ω − (EN
0 − EN−1

n )− iη

]

=
∑
n

[
N2 〈ΨN

0 |ψ̂(x1)|ΨN+1
n 〉〈ΨN+1

n |ψ̂†(x1′)|ΨN
0 〉

ω − (EN+1
n − EN

0 ) + iη
+ (N − 1)2

〈ΨN
0 |ψ̂†(x1′)|ΨN−1

n 〉〈ΨN−1
n |ψ̂(x1)|ΨN

0 〉
ω − (EN

0 − EN−1
n )− iη

]
= N2Ge

1(x1, x1′ ;ω) + (N − 1)2Gh
1(x1, x1′ ;ω) (B1)

where e(h) refers to the addition(removal) part of the 1-GF and where we used that∫
dxψ̂†(x)ψ̂(x)|ΨN

n 〉 = N |ΨN
n 〉, (B2)

From the relation Ge+h
3 = Ge

3 +Gh
3 one can then easily obtain Eqs. (17).

Appendix C: Inversion of the Dyson equation

In order to obtain Eq. (19) from the Dyson equation (18) we define the inverse of the

three-body Green’s function Ge+h
3 according to

Ge+h
3 (x1, x2, x3, x1′ , x2′ , x3′ ;ω)[Ge+h

3 ]−1(x1′ , x2′ , x6′ , x4, x5, x3;ω) = δ(x1 − x4)δ(x2 − x5)δ(x3′ − x6′)

(C1)

[Ge+h
3 ]−1(x4′ , x5′ , x3′ , x1, x2, x6;ω)Ge+h

3 (x1, x2, x3, x1′ , x2′ , x3′ ;ω) = δ(x1′ − x4′)δ(x2′ − x5′)δ(x3 − x6).

(C2)

where repeated variables are integrated over. Applying [Ge+h
3 ]−1(x1′ , x2′ , x9′ , x7, x8, x3;ω) on

the right and [Ge+h
03 ]−1(x7′ , x8′ , x3′ , x1, x2, x9) on the left in Eq. (18) and integrating over the

coordinate x1, x2, x3, x1′ , x2′ , x3′ we obtain Eq. (19)

Appendix D: Eigenvalues and eigenvectors of the symmetric Hubbard dimer

To keep the paper self-contained we report here the results obtained in Refs. [33] for the

eigensystem of the Hamiltonian in Eq. (35). These results will be used in Appendices E
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and F. The eigenstates of the system are linear combinations of Slater determinants, which

are denoted by the kets |1 2〉, with occupations of the sites 1, 2 given by 0, ↑, ↓, ↑↓. In

Tables I to III we report the eigenvalues and the coefficients of the eigenvectors for the

symmetric Hubbard dimer for N = 1, 2, 3 respectively.

Ei | ↑ 0〉 | ↓ 0〉 |0 ↑〉 |0 ↓〉

ε0 − t 0 1/
√

2 0 1/
√

2

ε0 − t 1/
√

2 0 1/
√

2 0

ε0 + t 0 1/
√

2 0 −1/
√

2

ε0 + t 1/
√

2 0 −1/
√

2 0

TABLE I. Eigenvalues and coefficients of the symmetric Hubbard dimer for N = 1

Ei | ↑ ↓〉 | ↓ ↑〉 | ↑ ↑〉 | ↓ ↓〉 | ↑↓ 0〉 |0 ↑↓〉

2ε0 + (U − c)/2 −A
a

A
a 0 0 1/a 1/a

2ε0 + (U + c)/2 −B
b

B
b 0 0 1/b 1/b

2ε0 + U 0 0 0 0 −1/
√

2 1/
√

2

2ε0 0 0 0 1 0 0

2ε0 0 0 1 0 0 0

2ε0 1/
√

2 1/
√

2 0 0 0 0

TABLE II. Eigenvalues and coefficients of the symmetric Hubbard dimer for N = 2

Ei | ↑ ↑↓〉 | ↓ ↑↓〉 | ↑↓ ↑〉 | ↑↓ ↓〉

3ε0+U-t 0 −1/
√

2 0 1/
√

2

3ε0+U-t −1/
√

2 0 1/
√

2 0

3ε0+U+t 0 1/
√

2 0 1/
√

2

3ε0+U+t 1/
√

2 0 1/
√

2 0

TABLE III. Eigenvalues and coefficients of the symmetric Hubbard dimer for N = 3

28



Appendix E: Diagonal Ge+h3 for Hubbard dimer at 1/4 filling

In this section we resolve Ge
3 (addition part) for the symmetric Hubbard dimer filled with

only one electron. We consider the ground state to be the symmetric combination of spin

up states, i.e., |ψN=1
0 〉 = 1/

√
2(| ↑ 0〉+ |0 ↑〉). In order to build the addition part of G3, it

is convenient to list all non-vanishing contributions for ĉ†mĉ
†
oĉk|ψN=1

0 〉 (see Eq. (32)). They

are given by

1) ĉ†1↑ĉ
†
2↑ĉ2↑|ψN=1

0 〉 = −ĉ†2↑ĉ
†
1↑ĉ1↑|ψN=1

0 〉 = 1√
2
| ↑; ↑〉

2) ĉ†2↓ĉ
†
1↑ĉ1↑|ψN=1

0 〉 = ĉ†2↓ĉ
†
1↑ĉ2↑|ψN=1

0 〉 = − 1√
2
| ↑; ↓〉

3) ĉ†1↓ĉ
†
2↑ĉ1↑|ψN=1

0 〉 = ĉ†1↓ĉ
†
2↑ĉ2↑|ψN=1

0 〉 = 1√
2
| ↓; ↑〉

4) ĉ†1↓ĉ
†
1↑ĉ1↑|ψN=1

0 〉 = ĉ†1↓ĉ
†
1↑ĉ2↑|ψN=1

0 〉 = − 1√
2
| ↑↓; 0〉

5) ĉ†2↓ĉ
†
2↑ĉ1↑|ψN=1

0 〉 = ĉ†2↓ĉ
†
2↑ĉ2↑|ψN=1

0 〉 = − 1√
2
|0; ↑↓〉,

where we considered that the electron added to the system is different from the electron

involved in the neutral excitation and that there is no spin flip in the neutral excitation.

Note that these simplifications are valid also for the case at one-half filling. Using these

states in Eq. (31), together with ground-state energy of the N-electron system, and the

eigenstates and eigenvalues of the (N + 1)-electron system given in Table II we arrive at the

following matrix form for Ge
3,

Ge
3(ijl;mok) =


G′3 01×4 −G′3 01×4

04×1 G3,4×4 04×1 G3,4×4

−G′3 01×4 G′3 01×4

04×1 G3,4×4 04×1 G3,4×4

 , (E1)

with

G′3 =
1

ω − (ε0 + t) + iη
(E2)
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and

G3,4×4 =
1

2

J2×2 02×2

02×2 02×2

 1

ω − (ε0 + t) + iη
+

1

2

02×2 02×2

02×2 J2×2

 1

ω − (ε0 + U + t) + iη

+
1

b2

B2I2×2 −BI2×2
−BI2×2 I2×2

 1

ω − (ε0 + U+c
2

+ t) + iη

+
1

a2

A2I2×2 −AI2×2
−AI2×2 I2×2

 1

ω − (ε0 + U−c
2

+ t) + iη
, (E3)

where A and B are defined just below Eq. (42), and

I2×2 =

1 1

1 1

 ; J2×2 =

 1 −1

−1 1

 . (E4)

Diagonalization of matrix (E1) produces five non-zero eigenvalues, which are reported in

Eq. (36).

Appendix F: Diagonal Ge+h3 for Hubbard dimer at 1/2 filling

To obtain the exact expression for the addition part of Ge+h
3 we start by calculating

all the non-zero combinations of ĉ†mĉ
†
oĉk|ψN=2

0 〉. From Table II we learn that the ground

state is |ψN=2
0 〉 = A

a
(| ↓; ↑〉 − | ↑; ↓〉) + 1

a
(|0; ↑↓〉+ | ↑↓; 0〉). We thus obtain the following

non-vanishing contributions,

1) ĉ†1↓ĉ
†
2↑ĉ2↑|ψN=2

0 〉 = 1
a
| ↓; ↑↓〉

2) ĉ†2↓ĉ
†
1↑ĉ1↑|ψN=2

0 〉 = 1
a
| ↑↓; ↓〉

3) ĉ†2↓ĉ
†
2↑ĉ2↑|ψN=2

0 〉 = A
a
| ↓; ↑↓〉

4) ĉ†1↓ĉ
†
1↑ĉ1↑|ψN=2

0 〉 = A
a
| ↑↓; ↓〉

5) ĉ†2↓ĉ
†
2↑ĉ1↑|ψN=2

0 〉 = − 1
a
| ↓; ↑↓〉

6) ĉ†1↓ĉ
†
1↑ĉ2↑|ψN=2

0 〉 = − 1
a
| ↑↓; ↓〉

7) ĉ†1↓ĉ
†
2↑ĉ1↑|ψN=2

0 〉 = −A
a
| ↓; ↑↓〉

8) ĉ†2↓ĉ
†
1↑ĉ2↑|ψN=2

0 〉 = −A
a
| ↑↓; ↓〉
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9) ĉ†2↓ĉ
†
1↓ĉ1↓|ψN=2

0 〉 = A
a
| ↓; ↑↓〉+ 1

a
| ↑↓; ↓〉

10) ĉ†1↓ĉ
†
2↓ĉ2↓|ψN=2

0 〉 = A
a
| ↑↓; ↓〉+ 1

a
| ↓; ↑↓〉

11) ĉ†1↑ĉ
†
2↓ĉ2↓|ψN=2

0 〉 = 1
a
| ↑; ↑↓〉

12) ĉ†2↑ĉ
†
1↓ĉ1↓|ψN=2

0 〉 = 1
a
| ↑↓; ↑〉

13) ĉ†2↑ĉ
†
2↓ĉ2↓|ψN=2

0 〉 = A
a
| ↑; ↑↓〉

14) ĉ†1↑ĉ
†
1↓ĉ1↓|ψN=2

0 〉 = A
a
| ↑↓; ↑〉

15) ĉ†2↑ĉ
†
2↓ĉ1↓|ψN=2

0 〉 = − 1
a
| ↑; ↑↓〉

16) ĉ†1↑ĉ
†
1↓ĉ2↓|ψN=2

0 〉 = − 1
a
| ↑↓; ↑〉

17) ĉ†1↑ĉ
†
2↓ĉ1↓|ψN=2

0 〉 = −A
a
| ↑; ↑↓〉

18) ĉ†2↑ĉ
†
1↓ĉ2↓|ψN=2

0 〉 = −A
a
| ↑↓; ↑〉

19) ĉ†2↑ĉ
†
1↑ĉ1↑|ψN=2

0 〉 = A
a
| ↑; ↑↓〉+ 1

a
| ↑↓; ↑〉

20) ĉ†1↑ĉ
†
2↑ĉ2↑|ψN=2

0 〉 = A
a
| ↑↓; ↑〉+ 1

a
| ↑; ↑↓〉

We notice that all the states in which we add an electron with spin down have as result a

state with two spin-down and one spin-up electrons. Instead, if we add an electron with spin

up the resulting state has one spin-down and two spin-up electrons. Therefore, the first ten

states listed above are orthogonal to the three-electron states (see Table III) with one spin-

down and two-spin up electrons. Similarly, the last ten states listed above are orthogonal to

the three-electron states with one spin-up and two spin-down electrons. Therefore, Ge
3 can

be written as a block-diagonal 20 × 20 matrix with two equal 10 × 10 blocks (one for each

spin channel of the added electron). The Ge
3 in the site basis for one of these 10× 10 blocks
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reads

Ge
3(ijl;mok) =

=
1

2a2



1 1 A A −1 −1 −A −A D D

1 1 A A −1 −1 −A −A D D

A A A2 A2 −A −A −A2 −A2 AD AD

A A A2 A2 −A −A −A2 −A2 AD AD

−1 −1 −A −A 1 1 A A −D −D

−1 −1 −A −A 1 1 A A −D −D

−A −A −A2 −A2 A A A2 A2 −AD −AD

−A −A −A2 −A2 A A A2 A2 −AD −AD

D D AD AD −D −D −AD −AD D2 D2

D D AD AD −D −D −AD −AD D2 D2



1

ω − (ε0 + t+ c+U
2

) + iη

+
1

2a2



1 −1 A −A −1 1 −A A C −C

−1 1 −A A 1 −1 A −A −C C

A −A A2 −A2 −A A −A2 A2 AC −AC

−A A −A2 A2 A −A A2 −A2 −AC AC

−1 1 −A A 1 −1 A −A −C C

1 −1 A −A −1 1 −A A C −C

−A A −A2 A2 A −A A2 −A2 −AC AC

A −A A2 −A2 −A A −A2 A2 AC −AC

C −C AC −AC −C C −AC AC C2 −C2

−C C −AC AC C −C AC −AC −C2 C2



1

ω − (ε0 − t+ c+U
2

) + iη

(F1)

where we defined C = A − 1 and D = A + 1. Both matrices on the right-hand side of

Eq. (F1) have only one non-zero eigenvalue, namely

λ1 = 1 +
1

a2
D2; λ2 = 1 +

1

a2
C2, (F2)

for the first and second matrices, respectively. Ge
3 can therefore be written as the following

diagonal matrix

Ge
3(ω) = diag(0, λ1, 0, λ1)

1

ω − (ε0 + t+ c+U
2

) + iη
+ diag(λ2, 0, λ2, 0)

1

ω − (ε0 − t+ c+U
2

) + iη
.

(F3)
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Let us now considerGh
3 for which we find 16 different non-zero combinations of c†l cjci|ψN=2

0 〉,

1) ĉ†2↑ĉ2↑ĉ1↓|ψN=2
0 〉 = A

a
|0; ↑〉

2) ĉ†1↑ĉ1↑ĉ2↓|ψN=2
0 〉 = A

a
| ↑; 0〉

3) ĉ†2↑ĉ2↑ĉ2↓|ψN=2
0 〉 = − 1

a
|0; ↑〉

4) ĉ†1↑ĉ1↑ĉ1↓|ψN=2
0 〉 = − 1

a
| ↑; 0〉

5) ĉ†2↑ĉ1↑ĉ1↓|ψN=2
0 〉 = − 1

a
|0; ↑〉

6) ĉ†1↑ĉ2↑ĉ2↓|ψN=2
0 〉 = − 1

a
| ↑; 0〉

7) ĉ†2↑ĉ1↑ĉ2↓|ψN=2
0 〉 = A

a
|0; ↑〉

8) ĉ†1↑ĉ2↑ĉ1↓|ψN=2
0 〉 = A

a
| ↑; 0〉

9) ĉ†1↓ĉ1↓ĉ2↓|ψN=2
0 〉 = 0

10) ĉ†2↓ĉ2↓ĉ1↓|ψN=2
0 〉 = 0

11) ĉ†2↓ĉ2↓ĉ1↑|ψN=2
0 〉 = −A

a
|0; ↓〉

12) ĉ†1↓ĉ1↓ĉ2↑|ψN=2
0 〉 = −A

a
| ↓; 0〉

13) ĉ†2↓ĉ2↓ĉ2↑|ψN=2
0 〉 = 1

a
|0; ↓〉

14) ĉ†1↓ĉ1↓ĉ1↑|ψN=2
0 〉 = 1

a
| ↓; 0〉

15) ĉ†2↓ĉ1↓ĉ1↑|ψN=2
0 〉 = 1

a
|0; ↓〉

16) ĉ†1↓ĉ2↓ĉ2↑|ψN=2
0 〉 = 1

a
| ↓; 0〉

17) ĉ†2↓ĉ1↓ĉ2↑|ψN=2
0 〉 = −A

a
|0; ↓〉

18) ĉ†1↓ĉ2↓ĉ1↑|ψN=2
0 〉 = −A

a
| ↓; 0〉

19) ĉ†1↑ĉ1↑ĉ2↑|ψN=2
0 〉 = 0

20) ĉ†2↑ĉ2↑ĉ1↑|ψN=2
0 〉 = 0
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As was the case for Ge
3 also Gh

3 is block diagonal, with two equal 8 × 8 blocks. The Gh
3 in

the site basis for the one of these 8× 8 block reads

Gh
3(ijl;mok) =

=
1

2a2



A2 A2 −A −A −A −A A2 A2

A2 A2 −A −A −A −A A2 A2

−A −A 1 1 1 1 −A −A

−A −A 1 1 1 1 −A −A

−A −A 1 1 1 1 −A −A

−A −A 1 1 1 1 −A −A

A2 A2 −A −A −A −A A2 A2

A2 A2 −A −A −A −A A2 A2



1

ω − (ε0 + t+ U−c
2

)− iη

+
1

2a2



A2 −A2 −A A −A A A2 −A2

−A2 A2 A −A A −A −A2 A2

−A A 1 −1 1 −1 −A A

A −A −1 1 −1 1 A −A

−A A 1 −1 1 −1 −A A

A −A −1 1 −1 1 A −A

A2 −A2 −A A −A A A2 −A2

−A2 A2 A −A A −A −A2 A2



1

ω − (ε0 − t+ U−c
2

)− iη

(F4)

The two matrices on the right-hand side of Eq. (F4) have only one non-zero eigenvalue of

value, which has value one. Therefore, the final expression for Gh
3(ω) in its diagonal basis

can be written as

Gh
3(ω) = diag(0, 1, 0, 1)

1

ω − (ε0 + t+ U−c
2

)− iη
+ diag(1, 0, 1, 0)

1

ω − (ε0 − t+ U−c
2

)− iη
.

(F5)

So far, we have treated Ge
3 and Gh

3 separately. However, they are not diagonal in the

same basis. The full electron-hole 3-GF Ge+h
3 in the site basis is obtained by summing

Equations (F1) and (F4). The diagonal Ge+h
3 is given in Eq. (49).
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