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Abstract

Local integrals of motion play a central role in the understanding of many-
body localization in many-body quantum systems in one dimension subject
to a random external potential, but the question of how these local integrals
of motion change in a deterministic quasiperiodic potential is one that has
received significantly less attention. Here we develop a powerful new imple-
mentation of the continuous unitary transform formalism and use this method
to directly compute both the effective Hamiltonian and the local integrals of
motion for many-body quantum systems subject to a quasiperiodic potential.
We show that the effective interactions between local integrals of motion re-
tain a strong fingerprint of the underlying quasiperiodic potential, exhibiting
sharp features at distances associated with the incommensurate wavelength
used to generate the potential. Furthermore, the local integrals of motion
themselves may be expressed in terms of an operator expansion which allows
us to estimate the critical strength of quasiperiodic potential required to lead
to a localization/delocalization transition, by means of a finite size scaling
analysis.
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1 Introduction

The study of quenched random disorder in non-interacting quantum systems dates back
to the seminal work of Anderson [1] who first understood how diffusion could eventu-
ally break down in the presence of strong enough randomness, leading to localization of
the single-particle wavefunctions. It was later realized [2] that this localization transition
occurs in three dimensional systems, while lower dimensional non-interacting quantum
systems are always localized for any small disorder. The complex interplay of quantum
many-body interactions and random disorder was studied thereafter [3], but has been the
subject of renewed attention over the last decade since the theoretical prediction of local-
ization at finite temperatures in interacting systems [4], followed by rapid experimental
verification [5–7] and further theoretical progress, summarized in Refs. [8–11]. Now known
as many-body localization (MBL), this is primarily a dynamical effect whereby highly ex-
cited eigenstates may spontaneously fail to thermalize due to disorder, and is typically
understood in terms of the existence of an extensive number of locally conserved quan-
tities known as integrals of motion [12–15] (LIOMs, or l-bits) which prevent the system
from thermalizing, in contrast to ergodic systems which conserve only global quantities
such as the total energy or number of particles. The breakdown of MBL is understood in
terms of resonances, i.e. spatially separated sites with on-site energies which differ by less
than the hopping amplitude, facilitating transport in the system. Proliferation of these
resonances can lead to so-called avalanche effects, which can lead to transport throughout
the entire system and consequently destroy localization [16, 17]. Understanding the role
of these resonances and their distribution within a given system is crucial in order to
understand the stability of disorder-induced localization.

While many-body localization in systems subject to a random external potential is
by now largely understood in terms of LIOMs, in some cases rigorously [18], there is
no corresponding rigorous understanding of MBL phenomena in systems with quasiperi-
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odic potentials of the sort routinely realised in current experiments, despite the fact that
both experimental [19–22] and numerical evidence exists for MBL phenomena in such sys-
tems [23–27]. Quasiperiodic potentials may be loosely understood as intermediate between
periodic and random potentials, and are characterised by a set of discrete but non-periodic
Fourier components. First studied contemporaneously with Anderson localization [28] and
further investigated in the decades since [29], they exhibit many crucial differences with
respect to random disorder as the potential is strongly correlated in real space. This dra-
matically changes the spatial structure of resonances already in single-particle models [30],
enhancing the probability of encountering resonances between spatially separated sites,
and could have important implications for the stability of many-body localized phases of
matter in quasicrystalline materials [31]. Furthermore rare-region Griffiths effects [32],
which are responsible for much of the exotic phenomenology of MBL systems on both
sides of the transition and possibly also for the critical behavior [33–37], are absent in
quasiperiodic systems. This points towards a qualitatively different physics at play in the
quasiperiodic MBL problem, an issue which is still far from being fully understood. Re-
cently there have been several studies presenting contrasting results for the nature of the
MBL transition in quasiperiodic systems, with the level statistics obtained from exact diag-
onalization [27] giving a rather different result for the transition point and critical exponent
than renormalization group calculations [38] and studies based around the construction of
LIOMs using time-averaged local observables [39], as first proposed in Ref. [40].

In this work we explicitly construct the LIOMs for a model of interacting one dimen-
sional fermions in a quasiperiodic potential and use them to gain insight on the nature
of the MBL phase and its possible transition towards delocalization. To this extent we
develop a new computational implementation of the established flow equation method,
leveraging the high degree of parallelization possible with modern computer hardware and
tensor algebra operations. We show that this tensor flow equation leads to a significant
improvement upon previous implementations [41,42] in both accuracy, thanks to the inclu-
sion of additional running couplings in the flow parametrization, and transparency. Using
this new method we compute explicitly the LIOM interactions and real-space support,
showing how they contain clear fingerprints of the quasiperiodic structure of the potential
in the form of local dips or peaks at distances given by the associated asymptotic num-
bers. Furthermore we show that the richer structure of the tensor flow equation and of its
LIOM description allows us to build up a diagnostic for the MBL phase transition, so far
out of reach for previous implementations of the method, that we estimate here for the
quasiperiodic problem using finite-size scaling. We end by discussing our results in the
contexts of other recent related works [38,39,43].

2 Model

We start from a one-dimensional fermionic Hamiltonian of the form:

H =
∑
i

hi : ni : +J
∑
i

(: c†ici+1 : +H.c.) + ∆0

∑
i

: nini+1 : (1)

where the on-site terms hi are drawn from a quasiperiodic potential given by hi =
W cos(2πi/φ + θ) where φ is some irrational number, θ is a random phase and W is
the amplitude of the quasiperiodic potential (i.e. plays the role of ‘disorder strength’),
with nearest-neighbour hopping J and interactions ∆0. For convenience, we shall refer to
the choice of phase θ as a ‘disorder realization’ and to averages over different values of θ
as ‘disorder averaging’, though it should be noted that quasiperiodic potentials are not
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true disorder as they are entirely deterministic and there is no randomness. The notation
: ... : signifies vacuum normal-ordering, which is necessary to enforce a consistent ordering
of operators - see Appendix A for details.

In the absence of interactions, i.e. ∆0 = 0, Eq. 1 reduces to the well known Aubry-
André (or Aubry-André-Harper) model [28, 29, 44], which despite being a single-particle
system exhibits a great deal of non-trivial physics. This model undergoes a localiza-
tion transition at a quasiperiodic potential strength of Wc/J = 2, which can be shown
analytically through the self-duality of the Hamiltonian. This is unlike non-interacting
one-dimensional systems subject to a random external potential, which are always Ander-
son localized and do not exhibit a delocalization transition. Above this critical value of
Wc/J , the single-particle wavefunctions decay exponentially in space, but with quasiperi-
odic revivals due to the structure of the underlying potential. Precisely at the critical
point, the single particle spectrum is fractal in nature, and takes the form of a Cantor
set [45]. The Aubry-André model does not have a mobility edge, and although variations
exist which do exhibit single-particle mobility edges [46, 47], we will not consider those
modifications in the present work.

The interacting Aubry-André model is comparatively less understood, although it has
received some attention in recent years motivated by the MBL problem [23–27,31,38]. In
the limit of weak interactions, the bosonic Aubry-André model in one dimension has been
shown to exhibit an inverted mobility edge, with the high-energy excitations appearing
exponentially localized while the low-energy excitations remain extended [48]. The low-
energy properties of bosonic versions of the interacting Aubry-André model have been
studied recently in both one [49] and two [50,51] spatial dimensions and shown to exhibit
unusual fractal properties. Interacting quasiperiodic spin chains in one dimension have
been studied using tensor network techniques [52] to simulate their non-equilibrium dy-
namics, and recently with exact diagonalization [39] in order to construct time-averaged
local integrals of motion. Fermionic Aubry-André models have also been studied in the
context of many-body localization using quantum quench spectroscopy to identify mobility
edges [53]. Here we will focus on the one-dimensional fermionic model (which maps onto
the spin model via a Jordan-Wigner transform), however the method we outline in the
following section is not unique to fermions and may also be applied to interacting bosons
with only minor modifications.

3 Method

Here we will first review the use of continuous unitary transforms, also known as flow equa-
tion methods, before detailing the new implementation we use in the present manuscript
which we find offers many practical advantages over previous implementations, while still
sharing the same underlying philosophy.

3.1 Brief Review of Continuous Unitary Transforms

The use of continuous unitary transforms to diagonalize Hamiltonians has a long and varied
history. The technique was originally proposed in condensed matter physics by Wegner [54]
under the name ‘flow equations’ (later popularized by Kehrein [55] and coworkers [56–60]),
independently in high-energy physics by Glazek and Wilson under the name ‘similarity
transform’ [61,62], and also in mathematics under the names ‘isospectral flow’ and ‘double
bracket flow’ [63–65]. Since then the method has also been generalized to time-dependent
systems in a variety of forms [56,66–69] including driven and dissipative scenarios, however
here we will focus on Hamiltonians with no explicit time dependence.
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The core of the method is the idea of using a series of infinitesimal unitary transfor-
mations to diagonalise a particular system of interest. This is spiritually similar to the
well-known Schrieffer-Wolff [70, 71] transform, where a Hamiltonian may be diagonalized
to leading order by careful choice of a suitable unitary transformation:

H̃ = eSHe−S = H− [H, S] + ..., (2)

and choosing the generator S such that [H, S] is equal to the off-diagonal terms of the
Hamiltonian which we wish to remove. In general, this procedure will also generate new
higher-order terms which must then be removed by further transforms, or treated in some
other perturbative manner. Here, rather than making a single ‘large’ unitary transform,
we instead make a series of infinitesimal transforms, each of which can be made arbitrarily
accurate:

H(l + dl) = eη(l)dlH(l)e−η(l)dl = H(l) + dl [η(l),H(l)]. (3)

where l is a fictitious ‘flow time’ which parameterises the transform, and η(l) is some scale-
dependent anti-Hermitian generator chosen to diagonalize the specific problem of interest
in the l→∞ limit. In the spirit of renormalization group techniques, the transformation
of the Hamiltonian can be written in terms of a single so-called flow equation:

dH(l)

dl
= [η(l),H(l)] (4)

such that the eventual ‘fixed point’ of the flow is a diagonal Hamiltonian, with [η(l →
∞),H(l→∞)] = 0. The properties of the final fixed-point Hamiltonian are controlled by
the generator η(l), which we can freely choose to be any anti-Hermitian operator such that
the overall transform is unitary. The choice of generator is far from unique and various
options exist in the literature which result in a diagonal fixed-point Hamiltonian [72, 73],
however a common choice is the so-called ‘Wegner generator’:

η(l) = [H0(l), V (l)] (5)

where H0 represents the diagonal terms in the Hamiltonian and V = H−H0 contains the
off-diagonal terms which we want to vanish in the l→∞ limit. The Wegner generator is
suitable for most problems as it a robust choice that can be stably numerically integrated,
although it has the significant disadvantage for sparse models (i.e. those with nearest-
neighbour couplings only) that it does not preserve the sparsity of the initial Hamiltonian,
and in the early stages of the flow it typically generates long-range off-diagonal couplings
which must be kept track of until they later decay to zero. Other choices of generator exist
which do preserve the sparsity of nearest-neighbour models [72], however they are typically
much less numerically stable [74], and so we do not consider them here. One interesting
frontier is the development of adaptive generators, following an intriguing proposal for
adaptive Schrieffer-Wolff transforms [75], however this is still an active area of development
and in the present work we focus on the established Wegner generator.

Flow equations in disordered systems have been the subject of increasing attention
over the last few years with a variety of implementations including non-interacting systems
with long-range couplings [74,76], numerically exact studies of interacting systems [77,78],
analytical treatments proposing efficient generators [72] and approximate methods for
interacting systems [41, 42, 79] which made use of a truncation in operator space to limit
the number of running couplings to a computationally tractable number even for large
systems, enabling studies of MBL phenomenology not only in one-dimension, but also in
coupled chains and even in two spatial dimensions.
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Here we will build on the latter approach, employing a truncation in operator space
together with an entirely new implementation more suited to the efficient linear algebra
capabilities of modern computer hardware and extending the truncation to include new
higher-order terms which, as we shall show, dramatically increases the accuracy of the
method and enables us to do away with some of the complexities required in earlier works.
Moreover, this new implementation allows us to compute new quantities which were out
of the reach of previous implementations, including the identification of a delocalization
transition in a quasiperiodic many-body system.

3.2 Tensor Flow Equations

To illustrate the new implementation, which we call the Tensor Flow Equation (TFE)
technique, here we start from a very general normal-ordered (fermionic) Hamiltonian with
quadratic and quartic terms:

H =
∑
ij

H(2)
ij +

∑
kqlm

H(4)
kqlm (6)

=
∑
ij

H
(2)
ij : c†icj : +

∑
kqlm

H
(4)
kqlm : c†kcqc

†
l cm : (7)

For simplicity we will assume this Hamiltonian to describe a one-dimensional chain of
length L, however this procedure can easily be generalized to two-dimensional models, as
with previous implementations of flow equations [41]. In all of the following, the bracketed
superscripts indicate how many fermionic operators are associated with a term. The
couplings in this Hamiltonian may be short- or long-ranged, and may be homogeneous
or disordered, therefore this form incorporates a large range of systems of interest2. This
Hamiltonian can be represented schematically with the following diagram:

H =

i j

H(2) +

k q l m

H(4)

where H(2) is a rank-2 tensor representing the quadratic part of the Hamiltonian, H(4)

is a rank-4 tensor representing the quartic part of the Hamiltonian, the ‘out’ arrows
signify fermionic creation operators (c†i ), and the ‘in’ arrows signify fermionic annihilation
operators (cj). By construction, the end result of our procedure will be a Hamiltonian
which is diagonal in terms of the fermionic number operators and will take the form:

H̃ =
∑
i

H̃
(2)
ii ñi +

∑
ij

H̃
(4)
iijjñiñj + ... (8)

H̃ =

i i

H̃(2) +

i i j j

H̃(4)

where the tilde notation indicates that all quantities are given in the diagonal basis and
the ellipsis indicates possible higher-order terms which we shall discuss later. For flow

2While the Hamiltonian used here is very general, one must however take care that the generator of
the unitary transform is non-zero: for translationally invariant systems, the Wegner generator which we
use in this manuscript vanishes and the unitary transform we employ here reduces to the identity. In such
cases, one must use a different generator or work in momentum space rather than real space.
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equations, the key ingredient is the calculation of commutation relations between different
parts of the Hamiltonian. For example, the canonical Wegner generator is given by:

η = [H0, V ] =
[
H(2), V (2)

]
+
[
H(4), V (2)

]
+
[
H(2), V (4)

]
+ ... (9)

where V represents the off-diagonal part of the Hamiltonian, which we can choose freely.
Let’s take these three commutators individually:

i)
[
H(2), V (2)

]
=
∑
ijk

(
H(2)
ik V

(2)
kj − V

(2)
ik H

(2)
kj

)
(10)

which is just a series of matrix contractions which can be represented schematically by

i k

H(2)

k j

V (2) −

i k

V (2)

k j

H(2)

where the line joining the two legs marked k represents a sum over this index, i.e. a
matrix/tensor contraction. These tensor contractions can be efficiently computed numer-
ically by most standard linear algebra packages, and can be effectively parallelised over
multiple cores - if the arrays fit in memory, then graphical processing units (GPUs) are
ideal for this, as modern GPUs typically have 103− 104 cores, compared to even a cluster
computer which may have only ∼ 102 cores per node, and this can result in a significant
speed increase - see Appendix C for benchmarks demonstrating this.

We can follow the same procedure for the higher order terms, where the commutator
(see Appendix A) can be written as:

ii)
[
H(4), V (2)

]
=
∑
ijkql

(
H(4)
ljkqV

(2)
il +H(4)

ijlqV
(2)
kl +H(4)

ilkqV
(2)
lj +H(4)

ijklV
(2)
lq

)
(11)

This can be represented graphically as the sum of all possible two-point tensor con-
tractions where each index is from a different tensor:

l

j k q

H(4)

i

l

V (2) +

i j

l

q

H(4)

k

l

V (2) +

i

l

k q

H(4)

l

j

V (2) +

i j k

l

H(4)

l

q

V (2)

where the contracted indices are summed over. This reproduces the same results
as obtained in Appendix A using a lengthier algebraic procedure. After evaluating the
contractions, this can be written graphically as:

j k q i

H(4)
ljkqV

(2)
il

+

i j q k

H(4)
ijlqV

(2)
kl

+

i k q j

H(4)
ilkqV

(2)
lj

+

i j k q

H(4)
iljkV

(2)
lq

where here we use the Einstein summation convention such that any repeated indices
are summed over. By swapping the order of indices and keeping in mind fermionic anti-
commutation relations for normal-ordered operators, we can collect together the terms
with the correct ± prefactors.
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i j k q

−H(4)
ljkqV

(2)
il −H

(4)
ijlqV

(2)
kl +H(4)

ilkqV
(2)
lj +H(4)

iljkV
(2)
lq

Here we can start to see why the tensor notation is useful - the contractions and the
signs can be read off from the graphical notation. This also enables us to generalise the
above method easily to bosons, without having to work out Wick’s Theorem explicitly
in full to compute the products of normal-ordered operators (see Appendix A), as the
commutation relations are automatically taken into account when re-ordering the indices.
By the same token, this graphical notation allows straightforward systematic extension to
even higher order terms, as commutators involving six or more fermionic operators can be
broken down into sums of elementary two-point contractions and dealt with as above.

Similarly, the third part of Eq. 3 can be written as:

iii)
[
H(2), V (4)

]
=

i j k q

V
(4)
ljkqH

(2)
il + V

(4)
ijlqH

(2)
kl − V

(4)
ilkqH

(2)
lj − V

(4)
iljkH

(2)
lq

In the end this leads to an anti-Hermitian generator of the form:

η =

i j

η(2) +

k q l m

η(4)

We can then compute the flow of the Hamiltonian order-by-order using the standard
flow equation for H:

dH
dl

= [η,H] =
[
η(2),H(2)

]
+
[
η(4),H(2)

]
+
[
η(2),H(4)

]
+ ... (12)

which we can evaluate in exactly the same way as we computed η above, using tensor con-
tractions. The ellipsis (...) represent terms containing more than four fermionic operators
which will be generated by the flow. The lowest order neglected term will be obtained by
contracting H(4) with η(4) to generate a new term H(6), which should then be added back
into the ansatz for the running Hamiltonian, which will then in turn lead to another new
term H(8), and so on. The source term for the lowest order neglected term, H(6) comes
from [η(4),H(4)] = [[H(4), V (2)] + [H(2), V (4)],H(4)], therefore it is at most quadratic in the
microscopic interaction strength. For weak interactions, each of the newly generated terms
will be smaller than the previous order. In the following, we shall assume that we work
with sufficiently weak interactions that all newly-generated terms above fourth order are
negligible; we will later on examine the validity of this assumption.

At this point, we proceed to numerically solve Eq. 12 directly. In contrast to previ-
ous work using flow equations to study disordered many-body systems [41], here we do
not analytically write down explicit equations of motion for the coupling constants, but
instead generate the flow of the couplings numerically using the above tensor contraction
procedure. This has the significant advantage that it avoids a great deal of algebraic
complexity and is far more systematic and transparent, allowing us to more easily in-
corporate higher-order terms and even extend this formalism further than in the present
work, something which was extremely challenging in our previous formulation of a flow
equation technique [41].
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3.3 Numerical Procedure

Here we outline the specific steps required to diagonalize a Hamiltonian using the above
method. In this work we will always work in real space as we are primarily interested in
(quasi)-disordered systems, but it should be noted that this procedure may be used for
momentum-space Hamiltonians as well, which may provide advantages for systems where
the momentum is a well-defined quantum number.

1. Construct the Hamiltonian H order-by-order as an L × L matrix plus an L × L ×
L× L tensor, i.e. storing L2 + L4 floating point numbers in memory. This memory
storage could be lowered significantly by using symmetries, e.g. Jij = Jji but most
linear algebra packages require the full tensor to be constructed before they can be
efficiently multiplied, which requires a lot of CPU time to rebuild at every flow time
step. If sufficient memory is available, it is faster to store the full matrices/tensors
rather than a reduced representation of them. This is an area where there is scope
for technical improvement which may facilitate the study of larger system sizes.

2. Compute the generator η = [H0, V ] order-by-order using efficient linear algebra
packages to do the tensor contractions specified above, also storing η as L2 + L4

floating point numbers in memory.

3. Compute the right hand side (RHS) of the flow equation [η,H] by performing the
tensor contractions specified above.

4. Use a suitable numerical integration routine to integrate from H(l) → H(l + dl)
with the RHS as constructed above. Here we make use of the SciPy package [80],
employing the ode routine with a Runge-Kutta 4th order algorithm and an adaptive
step size. When storing the transform, we use a logarithmic grid in flow time, since
most of the fastest changes occur at the very start of the flow and the flow-time
dynamics slow significantly as l becomes large. This logarithmic grid allows us to
more efficiently store the full transform in memory, if necessary, as we focus on
storing the greatest number of points in the region where the couplings vary quickly.

5. Repeat until all off-diagonal elements decay (l → ∞ limit). In practice, we numer-
ically integrate to some large finite value of l. At each step we set any couplings
smaller than some threshold ε to zero, and typically we use ε = 10−3. When all
couplings - or at least the majority of them - decay below this threshold, we stop
the transform at some finite (usually large) value of l. We have checked and using
a smaller cutoff does not lead to noticeably different results, but do however come
at greatly increased computational cost - see Appendix B. The use of very small
thresholds is only advised if extremely high precision is required, for example com-
puting level statistics where the spacings become exponentially small in the system
size.

6. Note: if we want to store the full unitary transform (e.g. in case we want to reverse
the transform later, which is required for computing local integrals of motion and
non-equilibrium dynamics), we have to store q × (L2 + L4) floating point numbers,
where q is the total number of flow time steps - for large system sizes, this leads to
very large memory requirements, and becomes the primary computational limiting
factor of this method. This is not a factor if we only wish to diagonalize the Hamil-
tonian and do not need to store the reverse transform, as in this case we need only
store the Hamiltonian itself at each stage (L2 + L4 floating point numbers), which
is typically much more manageable.
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3.4 Error Estimation: Invariants of the Flow

As the flow equation method involves a truncation in operator space to a polynomial –
rather than exponential – number of Hamiltonian coefficients, it is necessarily an approx-
imate method. For small systems, we can compare the results with numerically exact
methods (as shown in Appendix B), however the value of this technique lies in its ability
to reach larger system sizes than exact methods can access. It is therefore necessary that
we develop some form of self-consistent error estimate which can give us confidence that
the results can be relied upon even when comparison with exact numerics is not possible.

We can achieve this goal using so-called invariants of the flow. These invariants are
quantities which are unchanged under the action of a unitary transform, and therefore by
comparing them at the start and end of the flow (i.e. computing the invariants of the l = 0
initial Hamiltonian and the l→∞ final Hamiltonian) we can get a measure of whether the
transform has been applied accurately or whether the neglected terms lead to a violation
of the unitarity and hence the introduction of an error.

Here we follow the procedure laid out in previous works [41, 42, 72] and make use of
the second invariant of the flow, defined as:

I2(l) =
1

2L
Tr
[
H(l)2

]
(13)

for a system of size L. We are interested in whether this quantity changes throughout the
flow, and so we define the following quantity of interest:

δI2 =

∣∣∣∣I2(l = 0)− I2(l→∞)

I2(l = 0)

∣∣∣∣ (14)

If δI2 = 0, the the transform is exact and perfectly unitary. If, on the other hand, we
find that δI2 > 0, this means that terms not included in our ansatz for the running
Hamiltonian have at some point during the flow become significant, and we have ‘lost’
some information by not including them, leading to a deviation from unitarity and thus
an error in the final result. In practice, for any finite value of the microscopic interaction
strength ∆0 > 0, we will find a non-zero value of δI2, and as such the reliability of our
results rests upon this value being sufficiently small. We will show results for this in the
next section.

4 Numerical Results

For all of the following, we consider the Hamiltonian given in Eq. 1 with hopping amplitude
J = 1, nearest-neighbour interactions ∆0 = 0.1 and simulate systems of size L = 36, aver-
aged over Ns = 128 disorder realizations. Throughout this work we will use open boundary
conditions. We consider three different quasiperiodic potentials hi = W cos(2πi/φ + θ)
each generated by a different choice of incommensurate ratio φ corresponding to the golden
(φ = (1+

√
5)/2), silver (φ = 1+

√
2) and bronze ratios (φ = (3+

√
13)/2). These metallic

means can all be generated from the recurrence relation an = man−1 + an−2, where m is
an integer, by computing the ratio an/an−1 in the limit of n → ∞. For m = 1 this gives
the golden ratio, and the series an is given by the Fibonacci numbers Fn, while for m = 2
one obtains the silver ratio and for m = 3 the bronze ratio. This sequence of metallic
means can be continued indefinitely to larger integer values of m.

Under the action of the Wegner generator, the initially short-ranged Hamiltonian will
acquire long-range hopping and interaction terms over the course of the flow (the former
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of which will decay to zero in the l→∞ limit), and as such we make the following ansatz
for the scale-dependent running Hamiltonian:

H(l) =
∑
i

hi(l) : ni : +
∑
ij

Jij(l) : c†icj : +
1

2

∑
ij

∆ij(l) : ninj : +
∑
ijkq

Γijkq(l) : c†icjc
†
kcq :

(15)

where, as before, we assume that for sufficiently weak interactions any newly generated
higher-order terms are negligible, and in the final term we have at least i 6= j or k 6= q
such that this term is not diagonal in terms of fermionic number operators. We split this
running Hamiltonian into diagonal and off-diagonal components, given by:

H(l) = H0(l) + V (l) (16)

H0(l) =
∑
i

hi(l) : ni : +
1

2

∑
ij

∆ij(l) : ninj : (17)

V (l) =
∑
ij

Jij(l) : c†icj : +
∑
ijkq

Γijkq(l) : c†icjc
†
kcq : (18)

We emphasize that as compared to previous implementations of the flow-equation method [41,
42,69,74] we have now introduced an off-diagonal interaction term, encoded in the tensor
Γijkq(l). While this will eventually decay to zero at long flow times its presence throughout
the flow will play an important role, as we are going to discuss in the following.

The end result of our diagonalization procedure will be a Hamiltonian of the form:

H̃ =
∑
i

h̃iñi +
1

2

∑
i 6=j

∆̃ijñiñj + ... (19)

where the ... refers to neglected higher order terms, and the tilde means all quantities are
given in the l→∞ basis.

Sample flows of the coefficients hi, Jij ,∆ij and Γijkq are shown in Fig. 1 for a small
system to illustrate how these quantities vary throughout the flow. In particular, the
variation of all quantities with flow time l is smooth and well-controlled, with the dynamics
occurring in two stages: the first stage is at the early flow times where the coefficients
all change rapidly, before settling in to a second stage characterized by a slow asymptotic
approach to the diagonal Hamiltonian, which by analogy with renormalization group we
also refer to as the ‘fixed-point Hamiltonian’. In particular, note that during the first stage
of the flow, off-diagonal coefficients which are initially zero (e.g. long-range hopping terms)
generically become non-zero, but decay back to zero during the course of the flow. The
reason for these two distinct stages of the flow is that the initial Hamiltonian contains only
nearest-neighbour couplings, and this represents something of an ‘unstable fixed point’ for
the flow equation procedure. The first stage of the process is a rapid flow away from this
unstable fixed point, which involves the generation of new couplings, before the second
stage of the flow takes over to drive the system to the final diagonal fixed point.

One particularly important point to note before moving on is that several of the inter-
action terms ∆ij in Fig. 1b) increase dramatically in the early stages of the flow, before
eventually decaying back to much smaller values as the flow time l increases. This rapid
increase for small values of l is what led to problems with divergent terms encountered
in previous works [41, 42] when attempting to access delocalized phases at small disorder
strengths and/or large interaction strengths. In the present formalism, the inclusion of
the off-diagonal quartic terms (denoted Γijkq in Eq. 15) facilitates this later decay of the
density-density interaction coefficients, contrary to what was possible with previous im-
plementations of this technique. In effect, retaining these terms allows them to act like a
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Figure 1: Sample flows of the coefficients in Eq. 15 for a small system of size L = 4,
with J = 1 as the unit of energy, quasi-disorder strength W/J = 1 and nearest-neighbour
interaction strength ∆/J = 0.1, with incommensurate ratio φ = (1 +

√
5)/2 (the golden

ratio) and phase θ = 0. Panel (a) shows the flow of the quadratic terms, H(2)
ij (l), with the

on-site terms hi(l) indicated by the solid lines with circular markers and the off-diagonal
terms Jij(l) indicated by dashed lines with square markers. Panel (b) shows the flow of

the quartic terms H(4)
ijkq, again with diagonal terms (i = j, k = q) shown as solid lines

and off-diagonal terms shown as dashed lines. For reference, by comparison with exact
diagonalization the relative error in the many-body eigenvalues of this final Hamiltonian
is 4.6× 10−4.

‘reservoir’ for some of the information contained in the initial Hamiltonian, allowing them
to become non-zero during the early stages of the flow to ‘store’ some of this information,
before eventually decaying at later stages due to the structure of the generator which
guarantees that off-diagonal terms must vanish in the l→∞ limit.

Now that we have seen an example of the flow equation method in action for a small
system where we can visualize the behaviour of the couplings, we will move to much larger
systems and will investigate two main quantities of interest:

1. The form of the interactions ∆̃ in the fixed-point Hamiltonian; in random systems,
these decay exponentially with distance, however their real-space form in quasiperi-
odic systems has not been studied.

2. The real-space support of the LIOM density operators ñi; in the diagonal basis,
these operators act on a single lattice site, however we can also express them in the
initial microscopic basis to extract their real-space support and see how ‘local’ the
LIOMs really are.

Before presenting these results, however, we will briefly introduce our error estimation
measures in order to quantify the accuracy of our methods.

4.1 Flow Invariant

First, we will briefly confirm the accuracy of the method by checking the conservation
of the flow invariant for the system sizes we will consider in this section. As shown in
previous works [41, 42, 72], for our system the second invariant of the flow introduced in
the previous section can be expressed as:

I2(l = 0,∞) =
∑
i

h2i (l) +
∑
ij

(
1

2
J2
ij(l) + ∆2

ij(l)

)
(20)

where here we use the fact that the off-diagonal quartic terms Γijkq are zero at the start
(l = 0) and end (l→∞) of the flow, the two flow times we are interested in, and therefore
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Figure 2: Conservation of the flow invariant, as defined in Eq. 14. Here we take the
median value of δI2, over Ns ∈ [50, 2048] samples, and the error bars show the median
absolute deviation. The deviation from unitarity is extremely small for all values of W/J ,
but particularly in the localized phase. Deep in the delocalized phase (W/J � 2), there
is a slow upwards drift of δI2 with increasing system size.

we do not need to consider their inclusion in the above formula. We compute δI2, as
defined in Eq. 14, for a variety of system sizes L and quasiperiodic potential strengths
W/J . The results are shown in Fig. 2, averaged over disorder realizations. Here we use
the median rather than the mean, as the median is less sensitive to rare individual disorder
realizations which require an abnormally long flow time to converge.

We find that the flow invariant is well conserved for all system sizes and quasi-disorder
strengths, with the largest deviations occurring when W/J is small. In this limit, very
large flow times are required to fully diagonalize the problem; loosely speaking, the longer
the flow runs for, the larger the fourth-order terms in the Hamiltonian become, and corre-
spondingly the larger the neglected terms of sixth-order and higher will also be. In other
words, deep in the delocalized phase where W/J ≤ 1 we may expect the approximate form
of the running Hamiltonian to no longer be sufficient, and we see the consequences of this
manifest as a deviation from unitary, i.e. a larger value of δI2. At intermediate and large
values of W/J , however, we see that the flow invariant for all system sizes is conserved
to a high degree of accuracy, with deviations on the order of less than 1% for W/J ≥ 2.
Furthermore, the flow invariant in this regime does not display significant variation with
system size, again providing a strong indication that our method does not lose accuracy
as L increases.

We provide further benchmarks and comparisons with exact diagonalization in Ap-
pendix B. Having established the accuracy of the numerical technique, we will now turn
to the physics of many-body localization in quasiperiodic systems.

4.2 LIOM Interactions

We first investigate the form of the LIOM interactions which appear in the fixed-point
Hamiltonian, ∆̃ij . In particular we will examine how these interactions retain a fingerprint
of the underlying quasiperiodic potential, contrast these results with the LIOM interac-
tions obtained from a random potential, and show how the deterministic distribution of
resonances in the quasiperiodic potentials lead to dramatically different results from the
case of purely random disorder.

In Fig. 3 we plot the real-space decay of the LIOM interactions, where we averaged
over distances r = |i− j| and the [...] notation signifies the median (typical) value across
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Figure 3: Comparison of the fixed-point Hamiltonian interaction terms for a variety of
different potentials: (a) a quasiperiodic potential generated using φ = (1 +

√
5)/2 (the

golden ratio), (b) with φ = 1 +
√

2 (the silver ratio), (c) with φ = (3 +
√

13)/2 (the bronze
ratio), and (d) a random potential, as defined in the text. All three quasiperiodic potentials
exhibit approximately exponential decay, but with sharp dips at distances r = |i − j|
corresponding to numbers from their respective series expansions (grey and blue dashed
lines, detailed in the main text). These dips are absent entirely in the case of a random
potential, illustrating the how the different structure of the resonances in quasiperiodic
systems leads to qualitatively different behaviour from random disorder.

Ns = 128 disorder realizations. Panels (a), (b) and (c) refer respectively to the golden
(φ = (1 +

√
5)/2), silver (φ = 1 +

√
2) and bronze ratio (φ = (3 +

√
13)/2), while for

comparison we plot in panel (d) the results for the random disorder case. The overall form
of the fixed-point interactions is consistent with the exponential decay seen in the random
case [41, 42, 81, 82], however there is some additional structure on top of this exponential
decay which does not vanish when the number of samples Ns is increased; moreover, the
same features are present for all disorder strengths and for all system sizes we have tested
(L ∈ [8, 64]).

In particular we see that the LIOM interactions show dips at specific values of the
distance r. For the golden ratio case in panel (a) we have checked that these dips are
located at distances given by the Fibonacci numbers, r = Fn, as shown by the dashed
lines. It is known from earlier work [31] that for quasiperiodic potentials generated using
the golden ratio, single-particle resonances are enhanced at distances r = Fn where Fn is
a Fibonacci number. Curiously, the role of these resonances in the many-body problem
appears to be the suppression of the LIOM interactions at these particular distances. This
observation seems to be in contrast with the suggestion of Ref. [31] where single-particle
resonances at distances r = Fn are shown to be enhanced by the quasiperiodic potential,
leading to delocalization - naively, one would expect this to manifest as an increase of the
LIOM interactions at distances r = Fn, rather than the decrease that we observe here.
We have checked carefully (see Appendix B) and verified that this effect is not due to
convergence errors, and we shall show in Sec. 4.4 that the single-particle component of
the LIOMs indeed behaves as indicated by Ref. [31], but that this suppression at r = Fn
again appears (albeit weakly) in the interaction terms of the LIOM operator expansion.
Alternatively, it may be that at distances r = Fn±1, the LIOM interactions are enhanced
by these resonances, leading to the appearance of a dip at r = Fn.

The structure of local dips appear also for the other metallic means we considered as

14



SciPost Physics Submission

0 20
r = |i− j|

−4

−2

lo
g 1

0[
∆̃
ij

]
W/J = 1.00

(a)

0 20
r = |i− j|

−10

−5

W/J = 2.00
(b)

0 20
r = |i− j|

−15

−10

−5
W/J = 3.00(c)

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
W/J

0.5

1.0

lo
g 1

0
ξ

(d)

golden

silver

bronze

random

box

Figure 4: (a-c) Comparison of different potentials at fixed disorder strength. In each
case, all three quasiperiodic potentials behave almost indistinguishably (except for the
features discussed in Sec. 4.2), the random phase potential (black dashed line) is typically
more localized than the quasperiodic potentials, and the random box potential (purple
dashed line) exhibits clear differences for W/J < 2 and W/J > 2. (d) Localization length
computed from each of the different potentials: all follow a qualitatively similar pattern,
with the results from the quasiperiodic potential obtained using the bronze ratio displaying
a marginally more localized behaviour than the other two quasiperiodic potentials, and
the random box system being more localized than all quasiperiodic potentials at small
W/J but less localized at large W/J .

shown in panels (b) and (c). Analogously to the Fibonacci series, the silver ratio can be
approximated by successive ratios of the Pell numbers Pn = 1, 2, 5, 12, 29..., and similarly
we see that in Fig. 3b) the fixed-point interactions are suppressed at distances r = Pn (gray
lines). Curiously, we also see additional dips at distances equal to half the Pell-Lucas num-
bers, given by 2, 6, 14, 34... and so on. This arises from the fact that the Pell numbers and
Pell-Lucas numbers can be combined to give the closest rational approximations to

√
2:

the numerators of the approximations are given by the Pell-Lucas numbers, and the de-
nominators given by the Pell numbers, such that the sequence begins 1/1, 3/2, 7/5, 17/2...
with each successive fraction giving a closer approximation to

√
2. Due to the close con-

nection between the silver ratio and
√

2, sites with distances r corresponding to these
numbers also exhibit a high degree of spatial correlation, resulting in the additional dips
seen in Fig. 3b) (blue lines). As with previous metallic means, also the bronze ratio can be
approximated by a series of numbers with the recurrence relation an = man−1+an−2, here
with m = 3, which gives rise to the sequence 1, 3, 10, 33, 109.... While the rapid increase of
this series would suggest that the resonances which arise due to the bronze ratio are typ-
ically further apart than for the gold and silver ratios, and that consequently the bronze
ratio may lead to more strongly localized behaviour for small systems, in Fig.3b) we in
fact see additional dips at distances unrelated to these numbers. Presumably these are
linked to other good rational approximations for the bronze ratio, however we have been
unable to verify which approximation they correspond to. Nonetheless, this illustrates the
point that the structure of resonances in quasiperiodic potentials is extremely complex.

Finally, in Fig. 3(d) we show the fixed-point couplings ∆̃ij for a random potential, with
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on-site energies hi = W cos(2πi/φ+θi) where we again set φ = (1+
√

5)/2 but crucially in
this case we choose the phase to be random on each site, θi ∈ [−π, π]. We choose this form
in order to keep the overall distribution of on-site terms the same between random and
quasiperiodic potentials. The dips seen in the quasiperiodic cases are entirely absent here,
and instead we observe a precise exponential decay. This confirms that the ‘dips’ seen
previously are entirely due to the deterministic structure of resonances in quasiperiodic
potentials, and that for randomly-distributed resonances these features do not appear.
we have also checked with a more conventional box distribution of on-site energies (with
hi ∈ [−W,W ], see Fig. 4) and found the same qualitative behaviour. It is also interesting to
note that the results obtained for the LIOM interactions bear some similarity with recent
strong-disorder renormalization group results on quantum spin chains [83]. In that case
it was shown that for quasiperiodic potentials generated by metallic means the couplings
would flow to a self-similar binary sequence given by the respective numbers.

As shown in Fig. 4, the fixed-point interactions in the random case are typically more
localized than the quasiperiodic systems, which all have an almost identical real-space
decay profile. This is due to the spatially correlated nature of the quasiperiodic potentials,
which enhances the probability to find resonances between nearby sites, leading to less
localized behaviour. In Fig. 4 we also show results for the random potential generated
using a box distribution. Here we find that for W/J > 2, it seems that Griffiths effects
play a significant role, leading to the random box potential exhibiting slightly less localized
behaviour, however for W/J < 2 the spatial correlations of the quasiperiodic potentials win
out, leading to the quasiperiodic potentials being less localized. Taken together, the results
of studying these different potentials suggest that careful real-space tuning of the resonant
sites could be employed to enhance the stability of many-body localization in quasiperiodic
potentials without resorting to the commonly studied case of random box disorder, which
brings with it rare-region effects which may lead to enhanced delocalization.

4.3 Localization Length

As the decay of the fixed-point interactions is approximately exponential in all cases,
up to some modulations due to the specific quasiperiodic potential used, we can fit this
exponential decay profile to extract a localization length, defined via[

∆̃ij

]
med
∝ exp

(
−2
|i− j|
ξ

)
(21)

where ξ is the localization length, and the 2 in the exponent is from the convention
established in studies of Anderson localization, see e.g. Ref. [84]. Although this fitting
procedure is somewhat approximate, as it ignores the large deviations in ∆̃ij seen when
r = |i− j| corresponds to distances typical of single-particle resonances, it is nonetheless
instructive.

The results are shown in Fig. 4d) for all three quasiperiodic potentials considered in
this work, and the case of random disorder for comparison. We show results for the
random potential generated using the cosine-like distribution with a random phase, as in
the previous section, and for comparison we also show the results from a random potential
generated using a box distribution. We can see that the potentials generated using the
golden and silver ratios are very similar, while the potential generated from the bronze ratio
is slightly more localized for all values of W/J . This confirms the conjecture mentioned
in Sec. 4.2 that the more widely separated resonances generated by this potential may
lead to more localized behaviour than for the other quasiperiodic potentials studied here,
however this effect is very weak. Interestingly, the localization length obtained from the
random box disorder is smaller than the localization length computed for any of the

16



SciPost Physics Submission

10 20 30
−10

−5

0
lo

g 1
0[
α

(L
/2

)
j

]
(a)

golden ratio

10 20 30
−10

−5

0(b)

silver ratio

10 20 30
j

−10

−5

0

lo
g 1

0[
α

(L
/2

)
j

]

(c)

bronze ratio

10 20 30
j

−10

−5

0(d)

random

W/J = 1.00

W/J = 1.20

W/J = 1.40

W/J = 1.60

W/J = 1.80

W/J = 2.00

W/J = 2.20

W/J = 2.40

W/J = 2.60

W/J = 2.80

W/J = 3.00

Figure 5: Real space support of a LIOM in the centre of a chain of length L = 36,
averaged over Ns = 128 disorder realizations. Similarly to Fig. 3, the panels show (a)
a quasiperiodic potential generated using φ = (1 +

√
5)/2 (the golden ratio), (b) with

φ = 1 +
√

2 (the silver ratio), (c) with φ = (3 +
√

13)/2 (the bronze ratio), and (d) a
random phase potential, as defined in the text. The grey and blue dashed lines show the
same distances r as indicated in Fig. 3, here measured with respect to the central site on
which the LIOM is defined.

quasiperiodic potentials at small W/J , but is larger than the localization lengths obtained
for the quasiperiodic potentials at large W/J . This illustrates the very different roles
of resonances in both types of potential. For small W/J , the deterministic resonances
generated by quasiperiodic potentials dominate, and they lead to delocalization - this
can already be seen in the non-interacting Aubry-André model, where the proliferation
of these resonances leads to a delocalized phase for W/J < 2 which does not exist in the
Anderson model. On the other hand, at large W/J the near-resonant sites generated by
the quasiperiodic potential are in general too far apart in energy to lead to a proliferation
of resonances, and so instead we see that the effects of rare resonant regions in the case
of the random box potential win out and lead to less localized behaviour in this regime.

4.4 Real-space support of LIOMs

We can also directly compute the real-space support of the local integrals of motion which
characterize the fixed point Hamiltonian. Again, the diagonal Hamiltonian is given by:

H̃ =
∑
i

h̃i : ñi : +
1

2

∑
ij

∆̃ij : ñiñj : . (22)

We can start from the LIOMs in the diagonal basis, given by the local operators ñi, and
applying the inverse of the unitary transform used to diagonalise the Hamiltonian we can
express these operators in the original microscopic basis:

ñi =
∑
j

α
(i)
j : nj : +

∑
j 6=k

β
(i)
jk : c†jck : +

∑
j 6=k

γ
(i)
jk : njnk : +

∑
j 6=k∨l 6=m

ξ
(i)
jklm : c†jckc

†
l cm : ...

(23)

which we can obtain by numerically solving the equation of motion dni(l)/dl = [η(l), ni(l)]

backwards from l→∞ to l = 0, with the initial condition α
(i)
j (l→∞) = δij and all other
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couplings are zero. This requires that we store the full generator at every stage of the
flow, η(l), which may consume a large amount of memory for large system sizes3. In
contrast to previous work, the inclusion of higher-order off-diagonal terms in the running
Hamiltonian (Eq. 15) allows us to include higher-order terms in the above ansatz for the
density operator.

By looking at the prefactors, we can get some idea of how ‘local’ these LIOMs really

are. We show the results for the lowest-order coefficients α
(i)
j in Fig. 5 for a LIOM on the

central lattice site (i = L/2) and for quasiperiodic potentials given by the golden ratio,
silver ratio, bronze ratio and finally for a random potential. Interestingly, the coefficients

α
(i)
j also exhibit non-monotonic features at distances associated with enhanced resonances,

as in Fig. 3, however in this case these distances are associated with local peaks rather
than dips. This is in agreement with the results of Ref. [31] who showed that resonances
are enhanced at these distances: these enhanced resonances manifest here as peaks in the
real-space support of the LIOMs. Interestingly, this same structure can be seen in the
real-space behaviour of the eigenstates of the non-interacting Aubry-André model (not
shown), suggesting that the quadratic component of the LIOMs inherits this structure
from the single-particle eigenstates. As before, this structure is entirely absent in the case
of a random potential, shown in Fig. 5d), where the LIOM support decays exponentially
with no visible non-monotonic features.

We can also look at the coefficient of the 2-body interaction term in Eq. 23, γ
(i)
jk . We

show this in Fig. 6, averaged over distance r = |j − k| similarly to the plots of ∆̃ij in
Fig. 3. The behaviour is very similar to that of the fixed-point interaction coefficients,
displaying an approximately exponential decay that becomes steeper at strong (quasi)-
disorder strengths. There are hints of some weak additional structure on top of the
exponential decay, as seen in previous quantities, however any such features are far weaker
than those visible in the fixed point interaction coefficients ∆̃ij discussed previously. Again,
this structure is absent in the case of the random phase potential, suggesting that its origin
is in the deterministic structure of resonances in quasiperiodic systems.

5 Evidence for a delocalization phase transition

Having established that we can compute LIOMs in the real-space basis, we can now use
the form of these LIOMs to get some insight as to whether there exists a delocalization
transition. Although the LIOMs studied in this work are very different to the ones obtained
in Ref. [39] (there obtained using exact diagonalization to compute the non-equilibrium
dynamics and extract time-averaged local quantities, and here computed by reversing
the unitary transform which directly diagonalizes the Hamiltonian - see Ref. [40] for a
discussion of this point) the key elements of the analysis can nonetheless be retained.

Following Ref. [39], we define two ratios, f2 and f4, which are the relative weights of

3In principle, one could recompute η(l) = [H0, V ] on the fly starting from H(l → ∞) and avoid having
to store the full transform, however as the new initial conditions for all off-diagonal couplings are all zero,
this equation is numerically unstable.
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Figure 6: Decay of the 2-body interaction term γ
(i)
jk in Eq. 23 for the central site i = L/2

of a system with size L = 36, averaged over distance r = |j − k|. As in Fig. 3, panel (a)
shows results for φ = (1 +

√
5)/2 (the golden ratio), (b) with φ = 1 +

√
2 (the silver ratio),

(c) with φ = (3 +
√

13)/2 (the bronze ratio), and (d) a random potential with on site
energies generated using a random phase on each site. Unlike the interaction terms in the
effective Hamiltonian H̃, the 2-body terms here do not have a clear structure on top of the
exponential decay, though there are weak features at the same distances as highlighted in
Fig. 3 (dashed lines).

the quadratic and quartic terms in the LIOM operator expansion.

f2 =

∑
j |α

(i)
j |2 +

∑
jk |β

(i)
jk |2

||n||2 (24)

f4 =

∑
jk |∆

(i)
jk |2 +

∑
jkpq |ξ

(i)
jkpq|2

||n||2 (25)

with ||n||2 =
∑

j |α
(i)
j |2 +

∑
jk |β

(i)
jk |2 +

∑
jk |∆

(i)
jk |2 +

∑
jkpq |ξ

(i)
jkpq|2, e.g. f2 is the sum of the

squares of the quadratic terms divided by the sum of the squares of all terms, and f4 is the
same but for the quartic terms instead. These quantities tell us about the relative weight
of the quadratic and quartic terms in the operator expansion, which is related to the role of
2-body collisions and the growth of entanglement. The ability to explicitly compute these
n-body terms allows us to avoid issues with other observables, such as entanglement or
transport dynamics, which may strongly reflect the underlying single-particle critical point
at Wc/J = 2. Here instead, we are able to explicitly calculate true many-body effects.
This is a significant advancement over earlier applications of the flow equation method to
disordered systems [41] where only the quadratic terms in Eq. 23 were considered, and the
following analysis was not possible.

In Fig. 7 we show both f2 and f4 versus disorder strength W/J for a variety of different
system sizes, averaged over Ns ∈ [50, 2048] disorder realizations depending on system size.
Of particular note is that both f2 and f4 display a strong variation with system size for
small W/J values that extends up to the largest system sizes we consider here, although
this variation slows significantly for the largest systems we simulate, which give virtually
identical results. This implies that large system sizes are required in order to obtain
accurate behaviour in the delocalized phase, which is in line with previous suggestions that
large system sizes and/or simulation times are required to accurately estimate the MBL
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Figure 7: Relative weights of the quadratic (f2) and quartic (f4) terms in the LIOM
operator expansion. Panels (a) and (c) show the raw data, including the error bars marking
the standard error used as input to the pyfssa package. Note that the data for the largest
system sizes, L = 48 and L = 64, are almost on top of one another, suggesting that these
system sizes may be large enough to observe the behaviour in the thermodynamic limit.
Panels (b) and (d) show the rescaled data, exhibiting good collapse in the region close to
Wc/J ≈ 2.4.

transition point [85], and illustrates a key advantage of our approach, namely that it allows
accurate simulations of large system sizes and provides direct access to the fixed-point
Hamiltonian and the local integrals of motion without requiring the dynamical evolution
or time-averaging procedure used in other works.

Following the standard procedure for phase transitions, we can make use of a finite size
scaling argument to collapse all of the data onto a single curve and extract a crossing point
which corresponds to the transition. As in Ref. [39] we find good collapse of data using
the scaling form Φ(L,W −Wc) = Φ(L1/ν |W −Wc|/Wc where Wc is the critical disorder
strength and ν is the critical exponent, which we interpret as evidence that the system
undergoes a delocalization transition at a critical value of quasiperiodic potential strength
Wc/J . We use the Python package pyfssa to compute the data collapse and extract these
parameters [86,87].

In Fig. 7, we show the result of the scaling analysis which (approximately) collapses the
data onto a single curve and locates a transition point. The scaling of both f2 and f4 give
results consistent within their error bars, suggesting that the transition in the interacting
system has moved to a larger critical disorder strength than in the non-interacting system,
as expected from previous work. The uncertainty in the critical value of Wc/J resulting
from the data collapse [shown in Fig. 7b) and d)]is smaller than the spacing between data
points, indicating that the resolution of our dataset is the dominant source of uncertainty.
The values of Wc/J and ν are both consistent with the results reported in Refs. [38, 39],
although our lower interaction strength consequently leads to a lower value of Wc/J .
Interestingly, our results support the claim [38, 39] that the critical exponent ν is well
above the Luck bound ν ≥ 1 [88] and also fulfills the Harris criterion [89], ν ≥ 2/d, thus
implying that the quasiperiodic MBL transition is perturbatively stable to the addition of
weak randomness.

The central limitation of our results is the quantity of available data for the finite-size
scaling, due to the time taken to diagonalize large systems using this method, and in par-
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ticularly the slow approach to convergence in systems with near-degenerate single-particle
eigenvalues (see Appendix B for details on this point), something which is almost guar-
anteed in large systems with quasiperiodic potential landscapes due to the deterministic
structure of resonances which distinguishes quasiperiodic systems. Future developments in
increasing the efficiency of the linear algebra operations, and in particular deploying these
calculations on clusters of GPUs rather than CPUs, could allow for faster, more accurate
data collected on even larger system sizes, which may result in an improved estimate of the
critical point which we have tentatively identified in the present work, and may enable a
more in-depth study of how this critical point moves with increasing interaction strength.

In the late stages of completion of this work, we became aware of a recent preprint
(Ref. [43]) which conducted a careful finite-size scaling analysis of the MBL transition in a
quasiperiodic system and concluded that, for system sizes accessible to ED, the best data
collapse was achieved with the assumption of a Berezinskii-Kosterlitz-Thouless (BKT)
scaling form, as also seen in recent numerical studies on random systems. This result
is a surprise in a quasiperiodic system, as the rare ergodic seed regions which lead to
avalanaches and a BKT-like transition are not currently known to exist in deterministic
potentials, and is in contrast with Refs. [27, 38, 39]. The slow drift of critical disorder
strength with increasing system size interpreted in Ref. [43] as evidence of a BKT-like
transition provides further support for the idea that finite-size effects are much weaker in
quasiperiodic potentials - in this respect, further studies on large systems will need to be
done in order to ascertain whether the most accurate scaling form is the logarithmic drift
of system size indicative of a BKT transition, or a more generic system-size-dependent
critical disorder which is also shown in Ref. [43] to result in a good collapse of the data.
In the present work, we interpret the weak dependence on system size for increasingly
large systems as a reflection the slow growth of the number of single-particle resonances at
distances r = Fn (where Fn is the nth Fibonacci number for φ equal to the golden ratio)
with system size. Here we have assumed the same scaling form as Ref. [39] and found
broadly consistent results, however it would be interesting to revisit this assumption in
light of the recent results of Ref. [43]. We further suggest a connection to the work of
Ref. [52] who found that the localization transition seen in the non-equilibrium dynamics
was strongly affected by the choice of potential: based on our results which indicate the
importance of the single-particle resonances, we conjecture that the choice of quasiperiodic
potential may strongly affect the non-equilibrium dynamics of finite-size systems due to
the different distribution of resonances in different quasiperiodic potentials.

6 Conclusion

In this manuscript we have studied localization phenomena in a many-body quantum sys-
tem subject to a quasiperiodic potential, using a new computational implementation of a
diagonalization method based around continuous unitary transforms. We have shown that
this method represents a significant improvement in accuracy over previous implementa-
tions of a truncated flow equation approach, and that the many advances incorporated in
this new method allows us to access physics that was out of reach of previous approaches,
in particular an estimate of the MBL transition point in a many-body system subject to
a quasiperiodic potential via explicit calculation of the local integrals of motion which
characterize the system. We have also shown that quasiperiodic potentials result in effec-
tive Hamiltonians which contain a strong ‘fingerprint’ of the structure of the underlying
potential, in stark contrast to systems with random disorder which display no such clear
feature.
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By explicit construction of the local integrals of motion which characterize the MBL
phase, we have been able to study their real-space support, gain insight as to how the
struction of the LIOMs reflects the underlying potential, and have also used the fraction of
quadratic and quartic components of the LIOM operator expansion to tentatively identify
a phase transition between localized and ergodic phases. By numerically simulating these
quantities for large system sizes, we find critical exponents which are consistent with both
large-scale renormalization group studies [38] and recent exact numerics which constructed
the LIOMs in a different manner [39]. In particular, we find a critical exponent ν > 2/d,
where d is the spatial dimension, implying the perturbative stability of the quasiperiodic
MBL transition to weak randomness [89]. Our results for the largest system sizes we have
studied are almost identical: as finite-size effects are known to be weaker in quasiperiodic
potentials than in true disordered systems, this suggests that we are able to simulate
system sizes large enough that our results are an accurate reflection of the thermodynamic
limit, and that finite-size effects play only a small role here.

As with all approaches based around diagonalizing a static Hamiltonian, it is impor-
tant to note that this is not unequivocal evidence for a true phase transition. The MBL
transition is a dynamical phenomenon which occurs when highly excited eigenstates spon-
taneously fail to thermalize: here we have studied the local integrals of motion which
characterize the diagonal Hamiltonian, both in terms of their real-space structure and
their effective interactions, however the precise localization properties of any particular
initial state will depend on its decomposition in terms of these LIOMs. In other words,
a key future goal for this method will be its extension to also transform arbitrary initial
states in order to express them explicitly in terms of the LIOMs computed here, in a
manner which is efficient and computationally tractable.

In this work we have focused on static properties of the local integrals of motion
and the corresponding fixed-point Hamiltonian H̃, however the method presented can
be readily extended to compute the non-equilibrium dynamics following a quench, as in
previous works using the flow equation method [41,42,74], enabling the study of operator
spreading [74] via a decomposition of a local operator similar to that used here (Eq. 23). It
is also possible to compute correlation functions using this method [74], which provides an
alternative way to define a localization length. The applications of this method go beyond
localization in one-dimensional quasiperiodic systems. We have shown in the present
manuscript that our results are valid on both sides of the localization transition, in contrast
to previous truncated flow equation implementations, and as such this method is also well-
suited for the study of more conventional MBL transitions in random systems. As the
incorporation of higher-order terms in the ansatz of Eq. 15 is now possible in a systematic
manner, it may also be possible to study more strongly interacting systems with high
accuracy simply by including more terms in Eq. 15. As all flow equation methods based on
Wegner-type generators result in the generation of new long-range couplings throughout
the flow, there is essentially no performance cost to including long-range terms in the
initial Hamiltonian, meaning that this method is also extremely well-suited to the study
of localization in systems with long-range couplings, e.g. building on the results of Ref. [42].
The lack of explicit dependence on the geometry of the system similarly means that an
L = 64 chain, for example, can be diagonalized with essentially the same complexity as an
L = 8×8 two-dimensional system, facilitating the construction of local integrals of motion
in two-dimensional systems. The method is not restricted to fermions either, and can be
generalized to bosonic systems simply by taking into account bosonic rather than fermionic
commutation relations: this may allow an advantage over tensor network based methods
where the size of the local bosonic Hilbert space features explicitly in the construction
of matrix product state wavefunctions, which can quickly become prohibitive for weakly-
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interacting systems where large local occupations are possible. Here, by contrast, the
dimension of the local Hilbert space does not enter explicitly in the diagonalization nor
the construction of the LIOMs.

The biggest computational advantage of this method, however, is the significant speed
increase that can be obtained from using graphical processing units (GPUs) rather than
the more conventional CPUs used in the majority of current numerical works in condensed
matter physics. As we demonstrate in Appendix C, for large systems even a modest GPU
can result in a significant speed increase. In the present manuscript, we have taken only
the first steps in this direction: we expect that the use of this method on cutting-edge GPU
hardware will enable its extension into parameter regimes which are currently inaccessible
to all other theoretical methods. For completeness, and to motivate others to adopt flow
equation methods, we also present a small sample code in Appendix D illustrating the
application of this technique to a non-interacting system.
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A Consistent ordering of operators

In the main text, we have assumed a consistent order of fermionic operators in the Hamil-
tonian, however we did not go into detail about how this is achieved. In general swapping
the order of two fermionic operators can result in the generation of new terms, e.g.:

c†icjc
†
kcq = c†i (c

†
kcj + δjk)cq = c†ic

†
kcjcq + δjkc

†
icq (26)

Therefore if this term arose when evaluating dH/dl, one could arrange the operators in

the form c†icjc
†
kcq and conclude that this term renormalizes the quartic terms only, or one

could rearrange the operators into the form c†ic
†
kcjcq + δjkc

†
icq and conclude that this term

renormalized both quartic and quadratic parts of the Hamiltonian. While not necessarily
inconsistent, this arbitrariness complicates the computation of high-order commutators.
The key ingredient in avoiding this ambiguity is known as normal-ordering, which enforces
a consistent ordering of the operators in each term. A detailed description of normal
ordering in the context of unitary flow methods is given in Refs. [55, 90], and we briefly
summarize the main points here. While this prescription is often thought of as simply
subtracting the expectation value from an operator, the fundamental idea is rather more
sophisticated. For fermions, it consists of expressing a fermionic anticommutation relation
as:

{c†i , cj} = Gij + G̃ji (27)
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where we define the contractions used in normal-ordering as:

Gij = 〈c†icj〉 (28)

G̃ji = 〈cjc†i 〉 (29)

and the expectation values are computed in some reference state, which is typically the
ground state of the corresponding non-interacting model, but can also be a more complex
mixed state described by some density matrix. To calculate the commutation relations of
normal-ordered strings of operators, we use the following theorem [55]:

: O1(A) :: O2(A
′) :=: exp

(∑
kl

Gkl
∂2

∂A′l∂Ak

)
O1(A)O2(A

′) : (30)

where A and A′ are the set of labelled operators in the expression O1 and O2 which in
our case are just strings of fermionic operators. We can evaluate this by expanding the
exponential - for simple expressions, the expansion can be exact, as all derivatives are zero
above some order greater than the number of operators in O1 or O2.

The precise choice of reference state in which the contractions are computed depends
on the calculation in question: in Refs. [41, 42], we used a uniformly half-filled product
state with 〈ni〉 = 0.5∀i to approximate an arbitrary state of high energy density, although
in the framework of that calculation the precise state we chose made little difference:
incorporation of normal ordering corrections was only necessary in order to prevent di-
vergent interacting terms at small disorder strengths, as in Refs. [41, 42] the main role of
normal-ordering corrections was to terminate the flow early if interaction terms began to
diverge. Here, however, due to the more sophisticated form of running Hamiltonian which
we employ, these divergences are no longer an issue, and we are free to choose a simpler
form of normal ordering, which we have verified the accuracy of via a series of numerical
checks B. Here we use vacuum normal ordering, commonly thought of as ‘moving all dag-
ger operators to the left’ in any composite string of fermionic operators. Vacuum normal
ordering implies that Gij = 0 and G̃ji = δij , such that we still have the general identity
Gij + G̃ji = δij that satisfies fermionic anticommutation relations.

A.1 Example: Quadratic terms

: c†αcβ :: c†γcδ : =:

(
1 +Gαδ

∂2

∂c†α∂cδ
+ G̃βγ

∂2

∂cβ∂c
†
γ

+GαδG̃βγ
∂4

∂c†α∂cδ∂cβ∂c
†
γ

)
c†αcβc

†
γcδ :

(31)

=: c†αcβc
†
γcδ : +Gαδ : cβc

†
γ : +G̃βγ : c†αcδ : +GαδG̃βγ (32)

So the commutation relation is given by:

[: c†αcβ :, : c†γcδ :] = −(Gαδ + G̃αδ) : cβc
†
γ : +(G̃βγ +Gγβ) : c†αcδ : +(GαδG̃βγ −GγβG̃δα)

(33)

= δβγ : c†αcδ : −δαδ : c†γcβ : +(GαδG̃βγ −GγβG̃δα) (34)

which, after applying the vacuum normal-ordering identity Gij = 0, reduces back to the
same result as one would obtain without normal-ordering.
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Figure 8: Median relative error ε in the many-body eigenenergies obtained from the flow
equation method for L = 12 and three different microscopic interaction strengths ∆0,
using φ = (1 +

√
5)/2 (the golden ratio) and averaged over Ns = 2048 random values of

the phase θ, computed with respect to the results obtained from exact diagonalization.
The error bars represent the median average deviation over different random values of
the phase θ. The dashed lines represent the result of the older implementation used in
Refs [41, 42]: as this is much larger than the error in the newer method, we show in the
inset the results for the newer method only, on a log scale. We see that the relative error
is roughly flat with respect to disorder, but rises as the interaction strength increases. We
therefore conclude that the truncation in the running Hamiltonian (Eq. 15) is the main
source of error in this procedure, as expected, but that crucially there is no runaway error
in the delocalized phase as seen in the older flow equation implementation (dashed lines).

A.2 Example: Higher-order terms

The higher-order terms proceed in essentially the same way, giving:

[: c†αcβc
†
γcδ :, : c†µcν :] = − (Gαν + G̃να) : c†µcβc

†
γcδ : −(Gγν + G̃νγ) : c†αcβc

†
µcδ :

+ (G̃βµ +Gµβ) : c†αcνc
†
γcδ : +(G̃δµ +Gµδ) : c†αcβc

†
γcν :

+ (GανG̃βµ −GµβG̃να) : c†γcδ : +(GανG̃δµ −GµδG̃να) : c†γcβ :

+ (GγνG̃βµ −GµβG̃νγ) : c†αcδ : +(GγνG̃δµ −GµδG̃νγ) : c†αcβ :
(35)

After applying vacuum normal-ordering identities for the contractions, this results in:

[: c†αcβc
†
γcδ :, : c†µcν :] = − δαν : c†µcβc

†
γcδ : −δγν : c†αcβc

†
µcδ : +δβµ : c†αcνc

†
γcδ : +δδµ : c†αcβc

†
γcν :

which is exactly the same result as obtained from the (much simpler) graphical notation
introduced in Sec. 3.2. Even higher order terms may be computed in similar ways, though
we do not go into further detail here.

B Checks

B.1 Comparison with ED

As a first check of our method, for small systems we benchmarked the many-body eigen-
values obtained using the flow equation (FE) approach against numerically exact diago-
nalization (ED) using the QuSpin library [91, 92]. Here we present some of these results
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for small systems in order to demonstrate the accuracy of our method. In the diago-
nal l → ∞ basis, the many-body eigenstates are simply product states of LIOMs, e.g.
|ψ〉 = |0001, 0010, 0011...〉, and can be straightforwardly constructed by applying the
Hamiltonian H̃ to all 2L possible product states. Note that this is a very demanding
check of our method, as it involves all many-body eigenstates, not simply the half-filled
states or those in the middle of the excitation spectrum. Once the eigenvalues En are
obtained, the relative error is defined as:

ε =
1

2L

∑
n

∣∣∣∣EEDn − EFEn
EEDn

∣∣∣∣ (36)

where the superscripts ED and FE refer to the eigenvalues obtained with exact diago-
nalization and flow equation methods respectively. The results are shown in Fig. 8 for
system size L = 12 and three different interaction strengths, each in a quasiperiodic po-
tential generated using the golden ratio and averaged over Ns = 2048 values of random
phase θ. Surprisingly, the relative error remains approximately flat for all values of W/J
considered, but instead varies more strongly with the microscopic interaction strength
used. This reflects the fact that larger values of ∆0 will lead to the generation of larger
terms of higher-order than those contained in our ansatz for the running Hamiltonian
(Eq. 15), and so this approximation becomes less accurate as the interaction strength in-
creases. Nonetheless, the approximately constant error is a strong indication that there is
no runaway error in the delocalized phase as seen in previous work [41,42], and the small
absolute value of ε implies that the method is controlled on both sides of the delocalization
transition. We note that the relative error computed for the same system using the older
method of Refs. [41,42] (dashed lines in Fig. 8) is much larger the results shown above for
all except the largest values of W/J , in the localized phase.

B.2 Convergence checks

To evaluate the performance of diagonalization methods based on continuous unitary
transforms, one key metric is the how quickly the transform converges. For the Wegner
generator used in the present manuscript, the convergence is determined by how widely-
separated the single-particle eigenvalues are, with more widely separated eigenvalues lead-
ing to faster convergence, which implies that in general the convergence will be faster for
larger quasi-disorder amplitudes - see Refs. [41, 42, 55, 74] for further discussion of this
point. We first examine the convergence properties of the non-interacting Aubry-André
model before looking at the convergence of the interacting system given in Eq. 1.

To give some idea of the flow times required in order to obtain the eigenvalues to a given
accuracy, in Fig. 9a) we show the relative error ε of the on-site terms of a non-interacting
system, computed with respect to the exact single-particle eigenvalues obtained by directly
diagonalizing the matrix, while in Fig. 9b) we show the fraction F of off-diagonal matrix
elements which are above the cutoff of 10−3.

Here we use a system size L = 64 and three different quasi-disorder strengths, with
each quasi-disorder potential representing a single random realization obtained using the
golden ratio. We integrated to a maximum flow time lmax = 103, but stop the flow early
if all off-diagonal elements have decayed below the cutoff (as seen for W/J = 3). For all
values of W/J the error exhibits a sharp decrease at the beginning of the flow, with larger
values of W/J typically decaying more quickly, before exhibiting a slow exponential decay
towards zero in the later states of the flow. For quasi-disorder realizations with near-
degenerate eigenvalues, this flow can be extremely slow and require very large flow times
in order to obtain convergence to a high accuracy. We note that the late-time convergence
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Figure 9: (a) Mean relative error in the diagonal matrix elements of the non-interacting
Aubry-André model throughout the flow, computed with respect to the exact single-
particle eigenvalues for a system of size L = 64 for φ = (1 +

√
5)/2 (the golden ratio),

a single value of the phase (θ = 0). Note that although the data for small values of
W/J may appear flat on this scale, they are in fact decaying exponentially with a shallow
gradient. (b) Fraction of off-diagonal couplings at each stage in the flow which are above
the threshold cutoff of 10−3. There is an initial increase as new couplings are generated
in the first few flow time steps, followed by a sharp decrease at small flow times, and then
a slow decay towards zero.

is slowest around the critical point of the non-interacting system W/J = 2 where the
spectrum is fractal in nature [45] and therefore the eigenvalues are very close together. As
we are primarily interested in the range W/J > 2, in the main text we used a maximum
flow time of lmax = 150, which we found to be a good compromise between speed and
accuracy, with a typical error in the single-particle eigenvalues of around ε . 10−2. Beyond
this point we see diminishing returns by going to larger flow times, and in any case relative
error in the presence of interactions is primarily limited by the truncated form of Eq. 15
and the strength of the microscopic interactions rather than the maximum flow time, so
we do not find larger flow times to lead to a meaningful increase in accuracy.

We now turn to the convergence of the interaction terms. By comparison with the
findings of Ref. [31] who noted that single-particle resonances are enhanced in quasiperi-
odic systems generated using the golden mean at distances corresponding to the Fibonacci
numbers Fn, one might ask whether the ‘dips’ seen in the fixed-point couplings ∆̃ij dis-
cussed in Sec. 4.2 could be due to convergence errors, i.e. the associated hopping terms Jij
may not have decayed sufficiently under the action of the transform, leading to an incor-
rect result for ∆̃ij at these distances. In Fig. 10 we show that this is not the case, and that
on the contrary we do not see these dips until all couplings have sufficiently decayed, here
for approximately ε ≤ 10−2 of their initial value. For still smaller cutoffs there are some
quantitative changes, however these features persist. In the results presented in the main
manuscript, we use a flow time such that the majority of couplings have decayed below
ε = 10−3: we do not insist that all couplings decay below this threshold, as in this case
our simulations become limited by unusual realizations of the quasperiodic potential where
near-degeneracies can cause a small number of couplings to flow extremely slowly. Loosely
speaking, requiring all off-diagonal elements to decay by another order of magnitude re-
quires a flow time (and therefore computation time) which is itself an order of magnitude
larger, and this quickly becomes prohibitive once we go beyond ε = 10−3. While it may
be the case that additional effects not taken into account in the present calculation, e.g.
higher-order terms or an alternative form of normal-ordering, could modify our results,
the features seen in the fixed-point couplings ∆̃ seem robust and it is hard to anticipate
any modifications that would destroy them.
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Figure 10: Convergence of the interaction terms in the running Hamiltonian, ∆̃ij , shown
for a system of size L = 16, φ = (1 +

√
5)/2 (the golden ratio), one single value of the

phase (θ = 0), and several different values of the cutoff ε. In each case, the flow is run
until all off-diagonal elements have decayed to below the cutoff value. We see that for
large cutoffs the ∆̃ij terms decay approximately exponentially with distance, but when
smaller cutoffs are used, the characteristic ‘dips’ at distances r = Fn appear, where the Fn
are the Fibonacci numbers. This confirm that these features are not convergence errors.

B.3 Comparison with previous implementations of flow equations

An earlier implementation of continuous unitary transforms for the study of MBL phe-
nomena was developed in Refs. [41, 42] using a more approximate form of the running
Hamiltonian which allowed us to analytically obtain flow equations for the running cou-
plings, but which by construction did not allow for the generation of off-diagonal quartic
terms during the flow - we refer the reader to Refs. [41, 42] for further details regard-
ing this earlier implementation. The numerous and varied improvements presented in
this manuscript lead to a significant improvement over the older method, which we shall
demonstrate here.

In Fig. 11 we show the results for the fixed-point couplings ∆̃ij obtained using both
the old and new flow equation implementations, both for the same system size of L = 36
and averaged over Ns = 128 realizations of the quasiperiodic potential generated using the
golden ratio, as in Fig. 3a). There is a clear difference between the results, particularly at
short distances. Due to the inclusion of higher-order off-diagonal terms, the short-range
behaviour is captured much more accurately by the new implementation: in the previous
implementation, the short-range couplings can exhibit divergences at small values of the
quasiperiodic potential amplitude (i.e. in the delocalized phase). The new implementation
does not exhibit the same problem, and this change in the short-range behaviour leads to a
noticeably faster decay of the couplings, corresponding to a ‘more local’ unitary transform.
Nonetheless, at longer distances many of the main features present in the results obtained
using the new method are also present in the older implementation, notably the ‘dips’ at
distances r = Fn where the Fn are the Fibonacci numbers.

C CPU/GPU Speed Comparison

All comparisons in this Appendix were performed on a standard laptop, a Dell G5 5590
with a 6-core (12-thread) Intel Core i7 9750-H CPU with 16Gb RAM and a 6Gb NVIDIA
GTX1660 Ti GPU. Even with modest hardware, the speed increase from making use of the
high degree of parallelization possible with a GPU can be significant. These comparisons
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Figure 11: Comparison of the truncated flow equation method from Refs. [41, 74] com-
pared with the method presented in this manuscript. Here we reproduce the results from
Fig. 3a) [solid lines], and compare with the same quantity computed using the older flow
equation implementation [dashed lines]. We can clearly see that while the broad features
are the same, the new method leads to significantly modified short-range behaviour, and
consequently far more localized fixed-point interactions ∆̃ij .

made use of the PyTorch library [93] and the torchdiffeq package [94,95] to facilitate the
straightforward use of sophisticated integration routines on a GPU: to facilitate a like-for-
like comparison, precisely the same code was run on the CPU by setting device=‘cpu’

in the PyTorch settings. This is in contrast to the code used in the main part of this
manuscript which used custom-coded tensor contraction routines using Numba’s just-in-
time (JIT) compilation feature to achieve the fastest possible performance [96]. Here we
use a flow time lmax large enough that all couplings have decayed below the threshold of
ε/J = 10−3, and all code uses single-precision floats. We used a quasiperiodic potential
generated using the golden ratio, and fixed the phase to be θ = 0 for all simulations. The
diagonalization for each system size was run several times (except for L = 24, for which
we conducted only one run due to the long time required on the CPU) and then we took
the average value of the total time taken: error bars showing the standard deviation over
different runs are smaller than the plot markers. These benchmarks show the time taken
to fully diagonalize the Hamiltonian and to transform a single local operator from the
initial basis to the final diagonal basis. The time shown is the full execution time of the
script, measured using the dateTime module.

As shown in Fig. 12, the relative speed of the GPU over the CPU increases sharply
with system size, with simulations for L = 24 which took approximately 2 hours on the
CPU taking around 15 minutes on the GPU. We expect this trend to continue to larger
system sizes, with GPUs exhibiting a clear performance advantage for the diagonalization
of large many-body systems, and perhaps enabling further studies of MBL phenomena
in two-dimensional models where diagonalization with a CPU would be unfeasible. The
limiting factor in the utility of GPUs is their relatively small memory, which becomes an
issue if one wishes to store the full unitary transform (typically O(103×L4) floating point
numbers, which can rapidly reach 102 Gb or more in size) in order to be able to reverse
the transform from the diagonal basis back into the initial microscopic basis: to achieve
this on large system sizes, it may be necessary to develop more sophisticated algorithms
which can run on GPU clusters and take advantage of their shared memory, or develop a
more efficient way of passing the unitary transform data from the GPU to the CPU during
the initial diagonalization, and quickly re-loading it back to the GPU when applying the
reverse transform.
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Figure 12: Comparison of time taken to diagonalize a system of size L for CPU (blue) and
GPU (orange). As the system size increases, the relative speed-up possible with a GPU
increases significantly.

D Sample Code for Non-interacting Systems

As a simple, non-optimized example to demonstrate the applicability of this method, here
we provide a sample Python code for diagonalising a non-interacting system using this
technique. Here we prioritize readability over speed, and so the following is adapted from
the code used in the main manuscript to be a short, self-contained example with most of
the sophisticated features stripped out.

First we import the required modules [80,97,98] and set the Hamiltonian parameters:

1 import numpy as np

2 from scipy.integrate import odeint

3 import matplotlib.pyplot as plt

4

5 dis_type = ’QP’ # Specify potential: ‘random ’ or ‘QP’

6 n = 4 # System size

7 d = 2. # Quasi -disorder strength

8 J = 1. # Nearest -neighbour hopping strength

9

10 np.random.seed() # Re-seed random number generator

11

12 # Generate list of flow time steps to store

13 dl_list = np.linspace (0,10,100, endpoint=True)

For the purposes of this example, we chose an lmax that should be sufficiently large to
ensure convergence to the diagonal Hamiltonian, however the code used to obtain our
main results we simply set a large value of lmax and stop the flow once all off-diagonal
couplings have decayed below some threshold value which we choose to be small.

Next, we initialize the Hamiltonian by defining matrices for the on-site terms H0 and
the off-diagonal terms V :

1 # Non -interacting matrices

2 H0 = np.zeros ((n,n),dtype=np.float64)

3 if dis_type == ’random ’:

4 for i in range(n):

5 # Initialise Hamiltonian with random on -site terms

6 H0[i,i] = np.random.uniform(-d,d)

7 elif dis_type == ’QP’:

8 phase = np.random.uniform(-np.pi ,np.pi) # Random phase

9 phi = (1.+np.sqrt (5.))/2. # Golden ratio

10 for i in range(n):
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11 # Initialise Hamiltonian with quasiperiodic on -site terms

12 H0[i,i] = d*np.cos (2*np.pi*(1./ phi)*i + phase)

13

14 # Initialise V0 with nearest -neighbour hopping along leading diagonals

15 V0 = np.diag(J*np.ones(n-1,dtype=np.float64) ,1)

16 V0 += np.diag(J*np.ones(n-1,dtype=np.float64) ,-1)

Now we can define a function to compute the commutator of two matrices, [A,B] =
AB−BA. Here we use NumPy’s einsum routine as its inner workings are quite transparent
due to the explicit labelling of indices, however tensordot is also a good (and often faster)
choice, and the best performance can be found by using Numba or Cython to write compiled
code which can be efficiently parallelized4:

1 # Function to contract square matrices (matrix multiplication)

2 def comm(A,B):

3 return np.einsum(’ik,kj->ij’,A,B) - np.einsum(’ik,kj->ij’,B,A)

We can also define a function to compute the generator η = [H0, V ] and then the right
hand side of the flow equation dH/dl = [η,H]:

1 # Function to compute the RHS of the flow equation

2 def nonint_ode(H,l):

3 n= int(np.sqrt(len(H)))

4 H = H.reshape(n,n)

5 H0 = np.diag(np.diag(H))

6 V0 = H - H0

7 eta = comm(H0 ,V0)

8 sol = comm(eta ,H)

9

10 return sol.reshape(n**2)

And finally we pass this function to the integrator odeint and integrate the differential
equation for the Hamiltonian up to our chosen lmax value5. Note that odeint does not
accept matrix inputs, so we first flatten the n× n matrix into a list of length n2.

1 sol = odeint(nonint_ode ,(H0+V0).reshape(n**2),dl_list)

Now we have solved the problem and diagonalized the Hamiltonian. We can compare
the results with the exact solution, which here can be computed straightforwardly using
NumPy’s eigenvalue function:

1 eig=np.sort(np.diag(sol[-1]. reshape(n,n)))

2 print(’Flow eigenvalues ’, eig)

3 print(’NumPy eigenvalues ’, np.sort(np.linalg.eigvalsh(H0+V0)))

This will produce an output of the form:

1 Flow eigenvalues [ -2.5166549 -0.77736477 1.47945136 2.30950246]

2 NumPy eigenvalues [ -2.51665497 -0.77736477 1.47945126 2.30950263]

Note that by the nature of (quasi)-random systems, the result will be different each time
the code is run. Depending on the system size and the precise potential generated, a
longer flow time may be required in order for the results to properly converge. We can
also plot the flow of the Hamiltonian parameters to visualize how they behave during the
diagonalization process:

1 sol=sol.reshape(len(sol),n,n)

2 for i in range(n):

4We note that it is not so straightforward to run Cython-compiled code on a GPU, and as such we
opted to focus on writing code which was largely CPU/GPU-agnostic using Numba.

5We use odeint here as it results in very simple code: for the results in the main text, we used ode

with the dopri5 integrator.
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Figure 13: A sample flow of a non-interacting Hamiltonian with L = 4, W/J = 2 and
J = 1 using the code described in Appendix. D.

3 # Plot the flow of the on -site terms as a solid line with circular

markers

4 plt.plot(dl_list , sol[:, i,i],linewidth=2,marker=’o’,markersize =3)

5 for j in range(i):

6 # Plot the flow of the off -diagonal terms as a dashed line with

cross markers

7 plt.plot(dl_list , sol[:, i,j],’--’,linewidth=2,marker=’x’,

markersize =5)

8 plt.xlabel(r’$l$’)

9 plt.ylabel(r’$H_{ij}$’)

10 plt.show()

11 plt.close()

This should produce an output similar to that shown in Fig. 13. We invite the interested
reader to experiment with this sample code, testing different potentials and system sizes
to gain a feel for how this procedure works.
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[22] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schnei-
der and I. Bloch, Probing slow relaxation and many-body localization in
two-dimensional quasiperiodic systems, Phys. Rev. X 7, 041047 (2017),
doi:10.1103/PhysRevX.7.041047.

[23] S. Iyer, V. Oganesyan, G. Refael and D. A. Huse, Many-body lo-
calization in a quasiperiodic system, Phys. Rev. B 87, 134202 (2013),
doi:10.1103/PhysRevB.87.134202.

[24] M. Lee, T. R. Look, S. P. Lim and D. N. Sheng, Many-body localization in
spin chain systems with quasiperiodic fields, Phys. Rev. B 96, 075146 (2017),
doi:10.1103/PhysRevB.96.075146.

[25] A. Chandran and C. R. Laumann, Localization and symmetry breaking in
the quantum quasiperiodic ising glass, Phys. Rev. X 7, 031061 (2017),
doi:10.1103/PhysRevX.7.031061.

[26] S. Nag and A. Garg, Many-body mobility edges in a one-dimensional system of inter-
acting fermions, Phys. Rev. B 96, 060203 (2017), doi:10.1103/PhysRevB.96.060203.

[27] V. Khemani, D. N. Sheng and D. A. Huse, Two universality classes for
the many-body localization transition, Phys. Rev. Lett. 119, 075702 (2017),
doi:10.1103/PhysRevLett.119.075702.

[28] P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field,
Proceedings of the Physical Society. Section A 68(10), 874 (1955), doi:10.1088/0370-
1298/68/10/304.
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