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Abstract

In this sequel (to [Phys. Rev. Res. 3, 023044(2021)], arXiv:2006.10072), we study
randomly driven (1+1) dimensional conformal field theories (CFTs), a family of quantum
many-body systems with soluble non-equilibrium quantum dynamics. The sequence of
driving Hamiltonians is drawn from an independent and identically distributed random
ensemble. At each driving step, the deformed Hamiltonian only involves the energy-
momentum density spatially modulated at a single wavelength and therefore induces a
Möbius transformation on the complex coordinates. The non-equilibrium dynamics is
then determined by the corresponding sequence of Möbius transformations, from which the
Lyapunov exponent λL is defined. We use Furstenberg’s theorem to classify the dynamical
phases and show that except for a few exceptional points that do not satisfy Furstenberg’s
criteria, the random drivings always lead to a heating phase with the total energy growing
exponentially in the number of driving steps n and the subsystem entanglement entropy
growing linearly in n with a slope proportional to central charge c and the Lyapunov
exponent λL. On the contrary, the subsystem entanglement entropy at an exceptional
point could grow as

√
n while the total energy remains to grow exponentially. In addition,

we show that the distributions of the operator evolution and the energy density peaks are
also useful characterizations to distinguish the heating phase from the exceptional points:
the heating phase has both distributions to be continuous, while the exceptional points
could support finite convex combinations of Dirac measures depending on their specific
type. In the end, we compare the field theory results with the lattice model calculations
for both the entanglement and energy evolution and find remarkably good agreement.
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1 Introduction

Our understanding of quantum phases of matter has been deeply enriched thanks to the recent
studies on the time-dependent driven many-body systems. Novel phases that have no equilib-
rium analog have been proposed and partly realized experimentally, such as Floquet topological
phases [1–14] and time crystals [15–22]. Non-equilibrium phenomena, including localization-
thermalization transitions, prethermalization, dynamical localization, dynamical Casimir effect,
are analyzed using models with periodic drivings [23–36].

We are interested in the low energy physics of a critical quantum system that can be
described by conformal field theory (CFT) at (1 + 1)-dimension [37, 38], where the conformal
invariance is particularly helpful in tracing the non-equilibrium dynamics. In Part 1 of this series
[39], a general framework has been established for drivings with a single wavelength modulation
on the CFT Hamilton, under which the Heisenberg evolution of local operators, as well as the
energy and entanglement evolution, are captured by a sequence of Möbius transformation. The
Part 1 has focused on periodic and quasi-periodic drivings and found rich non-equilibrium
dynamical phase diagrams. However, in experiments, it is inevitable to have the noise during
the driving, and therefore it is desirable to understand the fate of a driven quantum many-body
system with randomness, which is the main theme of this paper.

Let us recall the general setup discussed in the Part 1, the driving Hamiltonian has the
following form

H =

∫ L

0

dx

2π

(
f(x)T (x) + g(x)T (x)

)
, (1)

where f(x) and g(x) are two independent smooth real functions, dubbed deformation functions,
and L is the length of the system. Here T (x) and T (x) are the chiral and anti-chiral energy-
momentum density, namely, T +T is the energy density and T −T the momentum density. The
ordinary homogeneous CFT Hamiltonian, denoted as H0, corresponds to f(x) = g(x) = 1. For
general deformation function (f, g), the operator evolution under the deformed Hamiltonian
(1) can be characterized by a conformal transformation [39–44]:

Operator evolution ⇐⇒ Conformal maps . (2)

Furthermore, when the modulation only involves a single wavelength (i.e. SL2 deformation
such as the sine-square deformation), the conformal transformation reduces to a Möbius trans-
formation [40–42,45–49]. In summary, for the Hamiltonian given in the form of (1), we have

Operator evolution under general deformations⇐⇒ Circle maps,

Operator evolution under SL2 deformations⇐⇒ Möbius maps.
(3)

One can also consider non-unitary time-dependent driving, such as imaginary time evolution
or using non-Hermitian driving Hamiltonians, to generate operator evolution that is described
by a more general conformal map.

With the driving Hamiltonians specified, let us introduce the driving protocol. For simplic-
ity, the initial state |Ψ0〉 is chosen to be the ground state of the homogeneous Hamiltonian H0.
In the j-th step, we drive the system with a sequence of deformed Hamiltonian {Hj}j=1...n with
certain (fj, gj) for a time period Tj. The resulting state after n steps is

|Ψn〉 = Un · · ·U2 · U1|Ψ0〉, with Uj = e−iHjTj . (4)

3



H(t)

· · ·
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Figure 1: Schematic illustration of a random driving with randomly chosen driving Hamil-
tonians and random time durations. Here we consider the one parameter family of driving
Hamiltonians, and the y axis corresponds to the values of this parameter.

For the periodic and quasi-periodic drivings discussed in the Part 1 [39], the sequences of uni-
taries {Uj}j=1,..,n are deterministic. They share some common features in the heating phases:
(1) The entanglement entropy grows linearly in time, and the total energy grows exponentially
in time; (2) There are emergent spatial (stable and unstable) fixed points for the operator evo-
lution, which results in the quantum entanglement pumps as well as the formation of energy-
momentum peaks in space. Although the studies in this series are based on SL2 deformed
Hamiltonian, both features persist in the general deformation [43]. In this part 2, we are in-
terested in a random sequence. 1 More concretely, each Uj is drawn independently from the
ensemble {(uk, pk)}k=1,··· ,m, where uk = e−iHkTk is the unitary matrix and pk is the correspond-
ing probability, with

∑
k pk = 1. A typical setup of randomly driven CFTs is schematically

illustrated in Fig. 1, where both the time duration and the driving Hamiltonians can be chosen
in a random way. Our goal in this paper is to determine the dynamical phases based on the
protocols of the random driving.

1.1 Random drivings and Furstenberg’s theorem

In this work and [39], we consider the driving Hamiltonians with modulations of single wave-
length, i.e. we choose the following deformation function f(x) in (1) of the form

f(x) = σ0 + σ+ cos
2πqx

L
+ σ− sin

2πqx

L
, q ∈ Z+, (5)

with σ0, σ+, σ− ∈ R, and similarly for the anti-chiral deformation function g(x). With this
deformation, one can find that the driving Hamiltonian only contains three Virasoro generators
{L0, L±q}, which generate the finite-dimensional SL2 algebra, thus the name of SL2 deformation.
Then for each driving step, the operator evolution of the primary field O on the z-Riemann
surface is determined by

U †nO(z, z)Un =

(
∂z′

∂z

)h(
∂z′

∂z

)h
O
(
z′, z′

)
, (6)

where Un = e−iHnTn , and h (h) are the conformal dimensions of operator O. The coordinate

(z, z) arise from a conformal map z = e
2πq
L
w that maps the w = τ + ix-cylinder to a q-sheet

z-Riemann surface, as shown in Fig. 2.

1Some initial numerical studies on the effects of randomness as a perturbation were done in Ref. [42], where
it was found that the randomness can destroy the non-heating phase and result in a heating phase with linear
growth of entanglement entropy and exponential growth of total energy. In this current work, we will give a
more systematic and rigorous study of the randomly driven CFT.
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Figure 2: Conformal map z = e
2πqw
L from the w-cylinder/strip to the q-sheet z-Riemann surface.

For the coordinate w = τ + ix, x = L and x = 0 are either identified or imposed with conformal
boundary conditions for a cylinder or strip, respectively.

For the SL2 deformation in (5), the operator evolution in (6) has a very simple form of
Möbius transformation, with

z′ =

(
α β
β∗ α∗

)
· z =

αz + β

β∗z + α∗
=: M(z), (7)

where α, β ∈ C, |α|2 − |β|2 = 1. That is, the matrix M as defined above is a SU(1, 1) matrix,
which is isomorphic to SL(2,R). The parameters α and β in (7) are functions of both the
deformed function fj(x) in the driving Hamiltonian Hj and the driving time Tj. Therefore, for
the random sequence of unitary operators {Uj} in (4), we have a random sequence of SU(1, 1)
matrices {Mj}. The time evolution of operators in the randomly driven CFT is determined by
the random product of SU(1, 1) matrices

Πn = M1 ·M2 · · ·Mn−1 ·Mn. (8)

Then the phase diagram is determined by the behavior of norm growth in the random products
of matrices, which is characterized by the so-called Lyapunov exponent defined as follows

λL := lim
n→∞

1

n
E (log ||Mn · · ·M1||) , (9)

where E(·) represents averaging over the ensamble, 2 and || · || is a matrix norm.3 Now we have
reduced a physical problem of diagnosing dynamical phases to a mathematical problem which
is the main theme of Furstenberg’s theorem [50]4.

Theorem 1.1 (Furstenberg’s theorem). Let {Mj, j > 1} be independent and identically dis-
tributed (i.i.d.) random variables with a probability measure µ, taking values in SL(n,R). Let
Gµ be the smallest closed subgroup of SL(n,R) containing the support of the distribution of Mj,
and assume that E(log ||Mj||) < ∞. In addition, assume that Gµ is not compact, and there

2We will sometimes use · · · and E(· · · ) interchangeably to denote the ensemble average.
3The specific choice of norm ‖· · ·‖ is not essential for our purpose. We will choose Frobenius norm in this

paper, i.e., ‖M‖F :=
(∑

i,j |Mij |2
)1/2

.
4For reviews, see also Ref. [51, 52].
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exists no Gµ-invariant finite set of unit vectors in Rn. Then there exists a positive constant λL
(i.e., Lyapunov exponent) such that with probability one

λL = lim
n→∞

1

n
log ||Mn · · ·M1|| > 0. (10)

In our randomly driven CFTs, since the driving time within each driving step is finite, the
condition E(log ||Mj||) < ∞ is always satisfied for each individual Mj ∈ SU(1, 1) ∼= SL(2,R).
Then to ensure a positive Lyapunov exponent from Furstenberg’s theorem, Gµ ∈ SL(n,R)
should satisfy the two conditions stated in the theorem, which we will call Furstenberg’s criteria
hereafter:

1. Non-compactness.

This condition is natural: a positive Lyapunov exponent implies an unbounded growth
of the matrix norm. Therefore, Gµ has to be non-compact.

2. No Gµ-invariant finite set of unit vectors in R2.

Translating to the CFT context, our transformation matrix Mj belongs to SU(1, 1) which
is isomorphic to the SL(2,R) that fits into the Furstenberg’s theorem. The isomorphism is
established by Cayley transformation (see appendix A for more details), and a unit vector
in R2 corresponds to a complex number of modulus 1. Therefore, the second criterion
is equivalent to saying that there is no finite subset F ∈ ∂D such that M(F) = F for
all M ∈ Gµ. Here D = {z ∈ C, |z| 6 1} is the unit disk, and ∂D = {z ∈ C, |z| = 1}
is the boundary of the unit disk. The SU(1, 1) matrix M acts on F ⊂ ∂D as a Möbius
transformation, i.e., for z ∈ F , M(z) is defined in Eq.(7).

This condition is also known as strong irreducibility.5

Here are several remarks regarding Furstenberg’s theorem and its application to randomly
driven CFTs:

1. Furstenberg’s theorem gives a sufficient but not necessary condition. When the criteria
in Furstenberg’s theorem are not satisfied, it does not guarantee λL = 0 and one needs
to check the Lyapunov exponent λL explicitly.

2. The Lyapunov exponent defined in (9) is an ensemble average over random products of
matrices. Furstenberg’s theorem gives a stronger result in the sense that (10) holds for
each random sequence with probability 1.

It turns out that most choices of random drivings satisfy Furstenberg’s criteria and ensure
λL > 0. The exceptional random drivings that violate Furstenberg’s criteria only have zero
measure in the parameter space, and the behaviors of λL have to be checked explicitly case

5It is noted that this condition is stronger than irreducibility. More concretely, given a subset S of SL(d,R),
we say that S is irreducible if there does not exist a proper linear subspace V of Rd such that M(V ) = V for
any M ∈ S. S is strongly irreducible if there does not exist a finite union of proper linear subspace of Rd, V1,
V2, · · · ,Vk such that M(V1 ∪ V2 · · · ∪ Vk) = V1 ∪ V2 · · · ∪ Vk for any M ∈ S.
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λS λE νO νE
Heating phase > 0 > 0 continuous continuous

type I = 0 > 0 δ δ
type II = 0 > 0 δ δ

type III (sub-type 1) > 0 > 0 δ continuous
type III (sub-type 3) > 0 > 0 continuous δ
type III (sub-type 4) > 0 > 0 δ continuous
type III (sub-type 5) > 0 > 0 continuous δ

type III (sub-type 2) s > u > 0 > 0 δ continuous
type III (sub-type 2) s < u > 0 > 0 continuous δ
type III (sub-type 2) s = u = 0 > 0 continuous continuous

Table 1: Features in the heating phase and at different types of exceptional points. The growth
rates λS and λE are for entanglement entropy (linearly) and energy (exponentially) as defined in
(13). νO and νE denote the distributions of the operator evolution and the energy-momentum
density peaks. s and u in sub-type-2 of type III exceptional points represent the strength of
the stable and unstable fixed points (that coincide in real space) respectively. δ represents a
finite convex combination of Dirac measures (i.e.,

∑
j pj δ(x− xj) with pj > 0 and

∑
j pj = 1).

For all the three cases with λS = 0, the entanglement entropy grows in time as
√
n.

by case. Depending on whether Furstenberg’s criteria are satisfied, we categorize the possible
phases in a randomly driven CFT as follows{

Heating phase : Furstenberg’s criteria are satisfied,

Exceptional point : Furstenberg’s criteria are violated.
(11)

We emphasize that certain types of exceptional points also have a positive Lyapunov exponent.
They distinguish themselves from the heating phase by other physical quantities such as the
energy-momentum density and the spatial distribution of Heisenberg operators. In other words,
the Lyapunov exponent does not provide a complete characterization of the heating phase, and
it is necessary to examine other observables as we will show in the following sections.

1.2 Summary of main results

In this work, we classify and characterize random drivings drawn from independent and iden-
tically distributed random ensembles of CFTs with SL2 deformations. In general, there are
heating phases and different types of exceptional points, with the features of the time evolution
of various physical observables summarized in Table. 1. The results are briefed as follows

1. Phase diagrams:

The heating phases are where Furstenberg’s criteria are satisfied, and there are three
types of exceptional points when the criteria are failed. All types of exceptional points
are distinguished from the heating phase by their behaviors in the time evolution of certain
physical observables (See Table. 1). In general, the exceptional points have measure zero
in the parameter space, and the phase diagram is dominated by the heating phase. See,
e.g., the phase diagram in Fig. 3.
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2. Entanglement and energy growth:

In the heating phase where Furstenberg’s criteria are satisfied, the ensemble-averaged
entanglement entropy and total energy grows in time as6

E(SA(n)) ∼ λS · c
3

n, E(E(n)) ∼ gE ·
c

l
· e2λE ·n, as n→∞ (12)

where n denotes the number of driving steps, and the subsystem A is chosen as a ‘unit
cell’ A = [kl + δ, (k + 1)l + δ] where k ∈ Z, l = L/q is the wavelength of deformation,
and δ ∈ [0, l) is arbitrarily chosen and will not affect the result. λS and λE are two
positive real numbers characterising the growth rate of entanglement entropy (linearly)
and energy (exponentially). The prefactor gE for the energy growth is a dimensionless
coefficient that depends on the details of the driving. Expression (12) can also be viewed
as the definition of the growing rates of the ensemble-averaged entanglement entropy and
energy:

λS := lim
n→∞

1

n
· 3

c
· E(SA(n)), λE := lim

n→∞

1

n
· 1

2
· logE(E(n)), (13)

which will be used in characterizing different types of exceptional points. In particular,
in the heating phase, we can prove that

λS = λL, (14)

where λL is the Lyapunov exponent in (9) for products of transform matrices, which
according to Furstenberg’s theorem is actually a fixed number that every sequence in the
ensemble converges to with probability 1 in the long time limit. That is to say, we can
strengthen the first result in (12) to

SA(n) ∼ c

3
· λL · n, as n→∞. (15)

with probability 1. For the energy growth, it is found that in general λE > λL in a
randomly driven CFT. This is different from the features in periodically/quasi-periodically
CFTs where λE = λS = λL. [39]

Interestingly, at type I, II, and sub-type-2 (when the strengths of the coincident stable
and unstable fixed points are the same) of type III exceptional points, the Lyapunov
exponent is zero, and so is λS as defined in (13). In these three cases, we find that

E(SA(n)) ∼ gS · c
√
n, E(E(n)) ∼ gE ·

c

l
· e2λE ·n, as n→∞ (16)

That is, although the total energy still grows exponentially in time, the entanglement
entropy grows as a square root of time. Here gS and gE are dimensionless coefficients
that depend on the details of the driving. We provide a physical picture of why the
entanglement entropy grows slower than linear: The ‘Einstein-Podolsky-Rosen (EPR)
pairs’ that carry the quantum entanglement are pumped in and out of the subsystem

6When we talk about the evolution time, usually we use the number of driving steps n instead of the real
time t. It is understood that t = n · E(T ), where E(T ) stands for the ensemble average of driving time in a
single driving step.

8



during the random driving, which results in a partial cancellation of the entanglement
entropy. This partial cancellation makes the entanglement entropy grow slower than
linear. In particular, by choosing the entanglement cuts appropriately, there could be a
complete cancellation of entanglement entropy growth, and thus the entanglement entropy
may oscillate in time without any growing.

For other sub-types in type III exceptional points, the time evolution of entanglement
entropy and total energy are still described by (12). In contrast to the heating phase, we
have λE = λS = λL for sub-type 1, 3, 4, and 5 exceptional points.

To verify the field theory calculation, we also provide lattice simulation using a free-
fermion lattice model at the critical point and find remarkable agreement in the entan-
glement and energy evolution.

3. Distributions of operator evolution and energy-momentum density peaks:

The distributions of operator evolution and energy-momentum density peaks provide two
finer characterizations of the spatial features of a randomly driven CFT. More explicitly, in
the context of this paper, the operator evolution is equivalent to the underlying conformal
map. In randomly driven CFTs, these conformal maps develop fixed points that are stable
or unstable. The stable points capture the locations that an operator at a random initial
position will be sent to in the long time limit. We use νO to denote the distribution of
stable points and refer as the “distribution of operator evolution”. On the other hand,
the unstable fixed points are where the energy-momentum density peaks will be. We use
νE to denote the distribution of unstable fixed points and refer as the “distribution of
energy-momentum density peaks”.

In the heating phase, both νO and νE are continuous. However, there is a subtle and
important difference: the stable fixed points for a given random sequence converge in
the long time limit. Therefore the distribution νO is solely due to the ensemble average.
However, for the unstable fixed points, the locations fluctuate within a random sequence.
Therefore the distribution νE is a consequence of both time and ensemble average. Nev-
ertheless, the two distributions, νO and νE are closely related in the heating phase.

At the exceptional points, the distributions of operator evolution and energy-momentum
density peaks exhibit different features. At type I and type II exceptional points, we
find that within each wavelength of deformation both νO and νE are a finite convex
combination of Dirac measures in the long time limit. More concretely, νO = νE =
1
2
(δ(x − x0) + δ(x − x1)) for the chiral (or anti-chiral) components, where x0 and x1

denote two emergent fixed points (within each wavelength of deformation) in the operator
evolution. Here is a schematic illustration to show the difference for νO at type I/II
exceptional points and in the heating phase

· · ·
νO

kl (k + 1)l

Type I/II exceptional points

x

· · · · · ·
νO

kl (k + 1)l

Heating phase

x

· · · (17)
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where the chiral and anti-chiral components of νO are colored in red and blue respectively.
The distribution νE is similar. We also remark that the distribution of operator evolution
and energy-momentum peaks at type I/II exceptional points may look similar to those
in the heating phase of periodically/quasi-periodically driven CFTs. However, here is a
subtle difference: in periodically/quasi-periodically CFTs, there is a single stable fixed
point for the (chiral) operator evolution within each wavelength, i.e., νO = δ(x− x•). At
type I/II exceptional points, the stable and unstable fixed points will switch with each
other during the random driving, which yields νO = νE = 1

2
(δ(x− x0) + δ(x− x1)).

For type III exceptional points, there are five different sub-types (see Table 1). Four sub-
types of the five (sub-type 1,3,4,5) have both λS > 0 and λE > 0, i.e., the entanglement
entropy grows linearly in time and the energy grows exponentially in time. In these
four sub-types, either νO or νE has a Dirac measure δ(x − x∗) within each wavelength
of deformation, where x∗ corresponds to the common stable (or unstable) fixed point in
the random driving. For the residual sub-type (sub-type 2), its feature depends on the
relative strengths of the stable and unstable fixed points which coincide with each other
in space. Interestingly, when the relative strengths of the two coincident fixed points
are the same, the entanglement entropy grows in time as

√
n, and both νO and νE are

continuous. When the relative strengths are different, either νO or νE is continuous and
the other is a Dirac measure.

Based on the above features on entanglement/energy evolution and the distributions of
operator evolution νO and peaks of energy-momentum density νE, we can distinguish the
heating phase from all types of exceptional points, as seen in Table 1.

There are two additional remarks:

1. In the heating phase, as we approach the exceptional point and the trivial point (where
there is effectively no driving) respectively, we observe different scaling behaviors of the
Lyapunov exponents. This difference can be intuitively visualized by studying the group
walking of the random products of SU(1, 1) matrices. It is observed that the group
walking near the exceptional point and near the trivial point exhibit qualitatively different
features. This interesting relation deserves a future study.

2. There is a one-to-one correspondence between the physical properties in randomly driven
CFTs and related mathematical theorems on random matrix products. For example,
the distribution of operator evolution νO in the heating phase corresponds to the µ-
invariant measure in Theorem 2.5. The distribution of operator evolution νO at type I/II
exceptional points correspond to the common invariant measure in Theorem A.6.

Here is an outline for the rest of this paper: In Section 2, we study in detail various proper-
ties of a randomly driven CFT in both the heating phase and at different types of exceptional
points based on the field theory approach. The properties we examine include the time evolu-
tion of entanglement entropy and total energy, the distribution of operator evolution, and the
distribution of energy-momentum density peaks. In Section 3, we compare the lattice simu-
lations and the CFT calculations on both the entanglement and energy evolution. Then we
conclude and discuss some future problems in Section 4, including the possible generalization
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of randomly driven CFTs, and the accidental exceptional points as recently studied in mathe-
matical literature [53]. There are also two appendices. In Appendix A, we provide some details
on the basics of Furstenberg’s theorem as well as the properties of exceptional points. We also
present some further details on the entanglement/energy evolution as well as group walking in
a randomly driven CFT in Appendix B.

2 Randomly driven CFTs

2.1 Preliminaries

In this subsection, we introduce the general formulas for the time evolution of entanglement
entropy and energy in SL2 deformed CFTs, which will be used to characterize different dy-
namical phases in a randomly driven CFT. Some related details can also be found in our prior
work [39].

Let us first classify the types of driving Hamiltonians and their distinct effects on the
operator evolution. For the deformations in (1) and (5), one can find that depending on the
sign of the quadratic Casimir c(2) := −(σ0)2 + (σ+)2 + (σ−)2, there are in total three types of
SL2 deformed driving Hamiltonians:

c(2) < 0 : elliptic type,

c(2) = 0 : parabolic type,

c(2) > 0 : hyperbolic type.

(18)

Different types of driving Hamiltonians will give different types of Möbius transformations in
the operator evolution. More explicitly, by evolving the system for time T , one can obtain
different types of SU(1, 1) matrices M in (7), with the following matrix elements: [47,39]

1. Elliptic (c(2) < 0): |Tr(M)| < 2

α = cos

(
πCT
l

)
+ i

σ0

C
sin

(
πCT
l

)
, β = i

σ+ + iσ−

C
sin

(
πCT
l

)
. (19)

2. Parabolic (c(2) = 0): |Tr(M)| = 2

α = 1 + i
σ0πT

l
, β = i

(σ+ + iσ−)πT

l
. (20)

3. Hyperbolic (c(2) > 0): |Tr(M)| > 2

α = cosh

(
πCT
l

)
+ i

σ0

C
sinh

(
πCT
l

)
, β = i

σ+ + iσ−

C
sinh

(
πCT
l

)
. (21)

Here, l := L/q is the wavelength of the deformation in (5) and C :=
√
| − (σ0)2 + (σ+)2 + (σ−)2|.

For a finite driving time T < ∞, |Tr(M)| < ∞ and the condition E(log ||M ||) < ∞ in
Furstenberg’s theorem is always satisfied. As reviewed in appendix A, on the unit circle
∂D := {z ∈ C, |z| = 1}, the elliptic, parabolic, and hyperbolic matrix has 0, 1, and 2 fixed
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points, respectively. Here the fixed points of M ∈ SU(1, 1) on the unit circle ∂D are defined
by M(z) = z for z ∈ ∂D. Note the one-to-one correspondence between the types of driving
Hamiltonians and types of SU(1, 1) matrices (Möbius transformations):

Driving with hyperbolic/parabolic/elliptic Hamiltonians for a finite time

⇔ SU(1, 1) matrices of hyperbolic/parabolic/elliptic types.
(22)

As introduced in Section 1.1, the operator evolution after n steps of random drivings can
be represented by:

U †1 · U
†
2 · · ·U †n O(z, z) Un · · ·U2 · U1 =

(
∂zn
∂z

)h(
∂zn
∂z

)h
O
(
zn, zn

)
, (23)

where each step of driving is associated to a matrix Mj ∈ SU(1, 1) (See (7)). Let us denote the
random products of SU(1, 1) matrices as

Πn = M1 ·M2 · · ·Mn−1 ·Mn =

(
αn βn
β∗n α∗n

)
, (24)

where α, β ∈ C and |αn|2 − |βn|2 = 1. Then in the operator evolution in (23), zn is related to
z through the Möbius transformation

zn = Πn(z).

Once we know the operator evolution, one can obtain the time evolution of correlation functions
and deduce the entanglement entropy. The entanglement entropy SA(n) of a subsystem with
arbitrary length has a complicated expression. However, when we choose the subsystem A to
have length l, where l = L/q is the wavelength of the deformation in (5), then SA(n) has a
simple form. For example, for A = [(k − 1/2)l, (k + 1/2)l], where k ∈ Z, the time-dependent
entanglement entropy is (See Appendix B.1)

SA(n)− SA(0) =
c

3

(
log
∣∣αn − βn∣∣+ log

∣∣α′n − β′n∣∣), (25)

where c is the central charge, and the first (second) term comes from the contribution of the
chiral (anti-chiral) component. See appendix B.1 for the general choice of A = [kl+δ, (k+1)l+δ]
with arbitrary shift δ ∈ [0, l].

Furthermore, the time evolution of the stress-energy tensor (a quasi-primary operator) is
governed by

U †1 · U
†
2 · · ·U †n T (z)Un · · ·U2 · U1 =

(
∂z′

∂z

)2

T (z′) +
c

12
Sch(z′, z), (26)

where the last term represents the Schwarzian derivative. Then one can obtain the time-
dependent energy-momentum density as

1

2π
〈T (x, n)〉 = − q

2πc

12L2
+

πc

12L2
· (q2 − 1) · 1

|αne
2πix
l + βn|4

, where l = L/q. (27)

12



For the anti-chiral component 1
2π
〈T (x, n)〉, the expression is the same as above by replacing

αn(βn) → α′n(β′n) and e
2πix
l → e−

2πix
l . If the driven CFT is in a heating phase (λL > 0), or

more generally the norm of Πn grows to infinity as n → ∞, then based on (27) one can find
that the energy-momentum density is peaked at

xpeak =
l

2πi
log

(
−βn
αn

)
mod l, where |αn|, |βn| � 1. (28)

For x away from xpeak, the energy-momentum density will be suppressed. In the random
driving, we are interested in the ensemble-averaged distribution of these energy-momenum
density peaks xpeak, which is denoted as νE. It is emphasized that νE is not the distribution of
the energy-momentum density 〈T (x, n)〉 itself.

The total energy of the system E(n) = 1
2π

∫ L
0
〈T (x, n)+T (x, n)〉dx has the following explicit

expression:

E(n) = −q
2πc

6L
+

πc

12L
(q2 − 1) · (|αn|2 + |βn|2 + |α′n|2 + |β′n|2). (29)

Note both the entanglement entropy (25) and the total energy (29) are solely determined by
the SU(1, 1) matrix Πn (8). In the random driving, the quantities we frequently use are the
expectation value E(SA(n)) and E(E(n)), where the average is performed over the ensemble.
It is also convenient to consider the limit L → ∞ and consider the energy in one ‘unit cell’
E(n) = 1

2π

∫ l
0
〈T (x, n) + T (x, n)〉dx, which has the expression

E(n) =
πc

12 l
(|αn|2 + |βn|2 + |α′n|2 + |β′n|2), L→∞. (30)

Later in Section 3, we will make a comparison of the CFT calculation and the numerical
simulation on a lattice system. In the lattice simulation, to approximate the field theory
calculation, it is required that l = L/q � a where a is the lattice constant. To have an efficient
simulation (which means we consider the total number of lattice sites as small as possible) on
the lattice, we choose q = 1 and consider open boundary conditions. On the lattice, it is also
convenient to only deform the Hamiltonian density, by choosing f(x) = g(x) in (1). In this
case, one can find the time evolution of the entanglement entropy as follows: [40]

SA(n)− SA(0) =
c

3
log
∣∣αn − βn∣∣, where A = [0, L/2]. (31)

The expectation value of the chiral energy-momentum density becomes: [42]

1

2π
〈T (x, n)〉 = − πc

12L2
+

πc

16L2
· 1

|αne
2πx
L + βn|4

. (32)

The anti-chiral part 〈T (x, n)〉/2π has the same expression as above by replacing ei
2πx
L with

e−i
2πx
L . Then one can obtain the total energy of the system as

E(n) =
πc

8L
(|αn|2 + |βn|2)− πc

6L
. (33)

If there are no drivings, (29) and (33) reduce to E = − πc
6L

and − πc
24L

, which correspond to
the Casimir energies of the CFT of length L with periodic and open boundary conditions
respectively.
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2.2 Phase diagram

We determine the phase diagram of a randomly driven CFT in two steps: (1) Use Furstenberg’s
criteria and (11) to distinguish the heating phase and the exceptional points; (2) If the driven
CFT happens to be at the exceptional point, we then further identify the specific type of each
exceptional point.

2.2.1 Furstenberg’s criteria

Recall that in Section 1.1, the Furstenberg’s criteria are briefly summarized as

1. Gµ is non-compact;

2. Gµ is strongly irreducible.

where Gµ is the smallest closed subgroup of SU(1, 1) that is generated by the random matrices
{Mj}, and µ denotes the probability measure of {Mj}.

Let us begin with the first criterion. Our setup of random driven CFTs always has at least
two non-commuting driving Hamiltonians. The corresponding unitary evolution and SU(1, 1)
matrices in (7) are also non-commuting for generic parameters.7 Then the first Furstenberg’s
criterion is always satisfied based on the following theorem [54,55]:

Theorem 2.1. Let MA, MB ∈ SU(1, 1) be two non-commuting matrices, then the subgroup Gµ

generated by {MA,MB} must be non-compact.

Therefore, we only need to examine the second criterion. In principle, we have to exclude
the existence of any invariant finite subset F ⊂ ∂D. Note that the subgroup generated by the
driving Hamiltonians is always non-compact, the second criterion is simplified to the following
one [51,55]:

Theorem 2.2. For a non-compact subgroup Gµ ⊂ SU(1, 1), Furstenberg’s second criterion is
equivalent to: there is no finite set F ⊂ ∂D with cardinality 1 or 2 such that M(F) = F for all
M ∈ Gµ.

Namely, for non-compact subgroups, we do not have to examine finite sets with more than
two elements.

2.2.2 Classification of exceptional points

For simplicity, let us start with two Hamiltonians HA and HB that generate two non-commuting
transformation matrices MA and MB and discuss the more general case with multiple Hamil-
tonians later. Following Theorem 2.2, we can show that all kinds of random drivings satisfy
the second criterion except for three cases [54]

7There might be special choice of driving times T0 and T1, where the unitary evolution operators e−iH0T0

and e−iH1T1 commute while H0 and H1 do not commute. When this happens, it means that either there is no
driving effectively or the driving reduces to a single quantum quench. Both are trivial for the purpose of this
work and will not be included in our discussion. As an example, see the ‘trivial point’ in Fig. 3.
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1. Type I: MA and MB are reflection matrices. Here M ∈ SU(1, 1) is called a reflection
matrix if M is traceless, i.e. Tr(M) = 0.8 One important property of the reflection
matrix M is M2 = −I, where I is the identity matrix.

2. Type II: One of MA and MB is hyperbolic, and the other is reflection. The reflec-
tion matrix permutes the two fixed points of the hyperbolic matrix, in the sense that
M(eiθ0(1)) = eiθ1(0) where eiθ0 and eiθ1 are the two fixed points of the hyperbolic matrix
and M is the reflection matrix.

3. Type III: MA and MB are both non-elliptic and share one common fixed point.

Here we only list the main properties of these exceptional points that appears in the randomly
driven CFTs. We refer readers to Appendix A.2 for detailed and rigorous proof. Mathematical
study of this problem can be found in Ref. [54].

A few comments are followed. Apparently, a reflection matrix must be elliptic while the
product of two non-commuting reflection matrices must be hyperbolic, thus Typy I still satisfies
the first Furstenberg’s criterion (non-compactness). The elliptic matrix (19) that appears in
the random driven CFTs becomes a reflection matrix if and only if the time period T satisfies
the quantization condition T = (n + 1

2
) lC where n ∈ Z. In addition, one can show that (see

Appendix A.3) each type I exceptional point with subgroup Gµ ⊂ SU(1, 1) can be mapped to a
type II exceptional point with the same Gµ, and vice versa. Thus, they are equivalent in terms
of the subgroup Gµ. But their physical behaviors (such as the detailed features of entanglement
entropy evolution) can have some quantitative difference since the driving protocol depends on
the time order of the drivings.

By Theorem 2.2, each of these exceptional points has an invariant finite set F ∈ ∂D that
has one or two elements. Let us list them below [54]:

1. F = {eiθ0 , eiθ1} ⊂ ∂D, where eiθ0 and eiθ1 are the two fixed points of the hyperbolic
matrix MC = MAMB, where MA and MB are two non-commuting reflection matrices.

2. F = {eiθ0 , eiθ1} ⊂ ∂D, where eiθ0 and eiθ1 are the two fixed points of the hyperbolic
matrix in {MA, MB}.

3. F = {eiθ0} ⊂ ∂D, where eiθ0 is the unique common fixed point of the non-elliptic matrices
MA and MB.

Later in Section 2.4, we will discuss the physical meaning of F : they determine the distributions
of operator evolution and energy-momentum density peaks.

Now we consider the random driving with N (N > 2) driving Hamiltonians. Any two of
the corresponding N matrices (Mj ∈ SU(1, 1) with j = 1, · · · , N) do not commute with each
other. There are still three types of exceptional points where Furstenberg’s second criterion is
not satisfied:

8A reflection matrix M in this context has eigenvalues ±i instead of ±1 which is the usual definition for
reflection, therefore the name of ‘reflection’ may be a slight misnomer. However, since M and iM gives the
same Möbius transformations, we will use this terminology.
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1. Type I: All of the N driving Hamiltonians are elliptic. The corresponding SU(1, 1) ma-
trices are all reflection matrices. If N = 2, there is no constraint on these two reflection
matrices. If N > 2, these N matrices are constrained as follows. Pick any two non-
commuting reflection matrices, say, MA and MB. Then all the reflection matrices Mj

(j = 1, · · · , N) are required to permute the two fixed points of the hyperbolic matrix
MC = MAMB.

2. Type II: One of the N driving Hamiltonians is hyperbolic and the others are elliptic. All
the elliptic matrices are reflection matrices, which are required to permute the two fixed
points of the hyperbolic matrix.

3. Type III: All of the N driving Hamiltonians are non-elliptic (i.e., either parabolic or
hyperbolic). The corresponding SU(1, 1) matrices share only one common fixed point.9

Similar to the case of N = 2, one can find that for N > 2, type I and type II exceptional points
are equivalent to each other. That is, for each type I exceptional point where Gµ ∈ SU(1, 1) is
generated by {M1, · · · ,MN}, one can map it to a type II exceptional point with the same Gµ,
and vice versa.

We emphasize again that violation of Furstenberg’s second criterion does not imply a van-
ishing Lyapunov exponent λL. In other words, Furstenberg’s criteria are sufficient but not
necessary conditions to ensure a positive Lyapunov exponent. We have to check the behavior
of λL at the exceptional points explicitly.

2.2.3 Example of phase diagram

In this work, we will mainly consider the following two examples of random driving protocols:

1. Protocol 1 : There are only two driving Hamiltonians H0 and H1, with the fixed driving
time T0 and T1 respectively.10 During the driving process, we pick H0 and H1 randomly
with probabilities p0 > 0 and p1 > 0, where p0 + p1 = 1.

2. Protocol 2 : There are more than two driving Hamiltonians. The driving Hamiltonians are
randomly chosen from {Hj} with a certain probability distribution. Here Hj is character-
ized by the real parameters {σ0

j , σ
+
j , σ

−
j } in (5). The driving time Tj for each Hamiltonian

Hj is fixed, here j ∈ J with J an index set that can be finite or infinite.

The protocol 1 is designed to demonstrate the simplest N = 2 case, while in protocol 2, we will
include a continuous family of Hamiltonians as shown momentarily.

The randomness is only in the driving Hamiltonians and the the phase diagram is in the
dimensionless parameter space spanned by {Tj/l}. There are certainly other possible protocols
one can consider, such as introducing randomness in both the driving Hamiltonians Hj and the
driving time Tj (See Fig. 1). We will see that our choice here is already able to capture all the
interesting cases including the heating phase and all types of exceptional points introduced in
the previous subsection.

9It is noted that if two parabolic matrices share a common fixed point, this means these two matrices
commute with each other. Here we are interested in the non-commuting case, and therefore we do not include
this trivial case.

10For simplicity, one of the Hamiltonian will be chosen in the original undeformed form, hence the label H0.
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Figure 3: Phase diagram of a randomly driven CFT with two arbitrarily chosen non-commuting
elliptic Hamiltonians H0 and H1. The phase diagram is periodic in T0/l0,eff and T1/l1,eff. The
randomly driven CFT is in the heating phase everywhere in 0 < T0/l0,eff, T1/l1,eff < 1 except at
the exceptional point where T0/l0,eff = T1/l1,eff = 1/2.

In the rest of this subsection, we give explicit examples to illustrate the two protocols
introduced above, and describe the corresponding phase diagrams. We will mainly focus on
the elliptic driving Hamiltonians and the type I exceptional point in this subsection. Other
Hamiltonian types and exceptional points can be found in Section 2.5 and Appendix B.2, where
it is found that the type II exceptional points can form a line rather than an isolated point in
the parameter space.

Let us give some general statements about the phase diagrams without specifying the de-
tailed form of the Hamiltonian. In protocol 1, we consider two non-commuting elliptic Hamil-
tonians H0 and H1 with driving time T0 and T1, which generates elliptic Möbius transfor-
mation (19) with C0 and C1. The phase diagram must be periodic in πC0T0/l and πC1T1/l.
Therefore, we only need to consider the parameter regime 0 < T0/l0,eff, T1/l1,eff < 1, where
l0(1),eff := l/C0(1) is the effective length of the deformed CFT. The type I exceptional point is
at T0/l0,eff = T1/l1,eff = 1/2, where the two Möbius transformation matrices become reflection.
The heating phase occupies the rest of the phase diagram.11 See Fig. 3 for a sketch of the
structure of the phase diagram. Later in Section 2.4, we will further show that this type I
exceptional point has a zero Lyapunov exponent.

The above discussion can be generalized to protocol 2 with N > 2 elliptic driving Hamil-
tonians. When T0/l0,eff = · · · = TN−1/lN−1,eff = 1/2, the corresponding Möbius transformation
matrices become reflection. However, it needs to satisfy one more condition to be a type I
exceptional point, i.e., all the reflection matrices must permute the two fixed points of the
hyperbolic matrix which is obtained by multiplying two arbitrary reflection matrices.

Now, let us specify some concrete Hamiltonians to illustrate the above general picture
with some numerical results. The random Hamiltonian will be drawn from the following one-
parameter family by choosing random θ:

Hθ =

∫ L

0

(
1− tanh(2θ) · cos

2πqx

L

)
T00(x)dx, q ∈ Z+, θ > 0. (34)

11There is also a trivial point at T0/l0,eff = T1/l1,eff = 1, where the corresponding SU(1, 1) matrices are
identities (up to a global minus sign) and there is effectively no driving.
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(a) Distribution of λL (or λS) (b) Distribution of λE/2

Figure 4: Distribution of Lyapunov exponents λL (left), or equivalently λS which characterize
the entanglement entropy growth, and λE (right) which characterize the total energy growth
(see (13)), as a function of T0/l0,eff and T1/l1,eff. We choose two random driving Hamiltonians
Hθ0=0 and Hθ1=0.2 in (34) with probabilities 1/2 and 1/2 respectively. We perform ensemble
average over Nsample = 103 (Nsample = 2 × 104) in the calculation of λL (λE). The type I
exceptional point is located at T0/l0,eff = T1/l1,eff = 1/2. See also the schematic plot of phase
diagram in Fig. 3.

Hθ=0 is the uniform CFT Hamiltonian and Hθ=∞ is the sine-square deformed Hamiltonian [56–
70]. Denoting the driving time with Hθ as Tθ, then the corresponding Möbius transformation
M(Hθ, Tθ) has the form in (7) with

α = cos

(
πTθ
lθ,eff

)
+ i cosh(2θ) · sin

(
πTθ
lθ,eff

)
, β = −i sinh(2θ) · sin

(
πTθ
lθ,eff

)
,

where lθ,eff = l cosh(2θ) is the effective length of the deformed CFT. One can check that the
above SU(1, 1) matrix M(Hθ, Tθ) is always elliptic, except at Tθ = nlθ,eff (n ∈ Z) where M
becomes an identity matrix (up to a global minus sign).

Now we consider the driving protocol 1 by randomly choosing two driving Hamiltonians
H0 = Hθ=0 and H1 = Hθ 6=0 with probabilities 1/2 and 1/2 respectively. A numerical calculation
of the distribution of Lyapunov exponents λL is shown in Fig. 4 (a), where one can observe a
dip at the type I exceptional point at T0/l0,eff = T1/l1,eff = 1/2. We also plot the distribution
of the energy growth rate λE (defined in (13)) in Fig. 4 (b), where there is no dip at the type I
exceptional point. Thus, energy growth is not able to distinguish the type I exceptional point
from the heating phase.

Now let us take a closer look at the distribution of λL, and in particular how the Lyapunov
exponent λL approaches zero near the exceptional point and near the trivial point respectively.
In Fig. 5 (left plot), we consider the driving protocol 1 with only two driving Hamiltonains,
and study the Lyapunov exponent along the line T0/l0,eff = T1/l1,eff =: 1

2
+ ∆T/leff in Fig. 4.

It is found that the Lyapunov exponent is positive everywhere except at the exceptional point
at ∆T/leff = 0 and trivial point at ∆T/leff = 1/2. The Lyapunov exponents λL changes
continuously from λL = 0 at the exceptional point to λL = 0 at the trivial point.
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Figure 5: Lyapunov exponents λL as a function of ∆T/leff := Tθ/lθ,eff − 1/2 with N = 2
(left) and N = ∞ (right) driving Hamiltonians, respectively. For N = 2, we choose the two
driving Hamiltonians as Hθ=0 and Hθ 6=0, with θ = 0.1, 0.15, 0.2, and 0.25, respectively. The
probabilities are p0 = p1 = 1/2. For N = ∞, we choose the Hamiltonians as Hθ with θ
uniformly distributed in [0, θmax], where θmax = 0.1, 0.15, 0.2, and 0.25, respectively. For both
cases, we take the ensemble average over Nsample = 5000.

One can also consider the driving protocol 2 with N = ∞ driving Hamitonians, by taking
θ randomly distributed in [0, θmax] in (34). The infinite dimensional parameter space spanned
by {Tθ/lθ,eff} always has a type I exceptional point at Tθ/lθ,eff = 1/2 for all θ ∈ [0, θmax]. As
shown in Fig. 5 (right plot), similar to the case of N = 2, the Lyapunov exponent is positive
everywhere except at the exceptional point at ∆T/leff := Tθ/lθ,eff−1/2 = 0 and the trivial point
at ∆T/leff = 1/2.

In both plots in Fig. 5, λL is a continuous function of the parameter ∆T/leff. This continuous
property of λL is mathematically proved in Ref. [71]. Also see Theorem A.2 in the appendix.

We further study the scaling behavior of λL near the exceptional point and near the trivial
points for both protocols. As seen in Fig. 6, the scaling behavior of λL near the exceptional point
is different from that near the trivial point. More explicitly, we find λL ∝ (∆T/leff)0.19 near the
exceptional point, and λL ∝ (1/2 − ∆T/leff)2 near the trivial point. This difference indicates
the fine structures of random product of matrices are different near the exceptional point and
near the trivial point. This difference is further revealed by the group walking in the random
product of matrices, which essentially tells us how the matrix elements of Πn = M1 · · ·Mn

evolves in time (see Appendix B.3). As seen in Fig. 28 in the appendix, indeed one can
observe distinct features of group walking near the exceptional point and near the trivial point.
Understanding the relation between the scaling behavior of λL and the features of group walking
is an interesting problem and is left for future study.

As a remark, we also study the scaling behavior of λL near the type II exceptional points in
Appendix B.2. As seen in Fig. 27 in the appendix, It is found that λL ∝ (∆T/leff)0.2, where the
scaling exponent is close to that near the type I exceptional point. This is somehow as expected,
since one can show that type I and type II exceptional points are equivalent as discussed in
Appendix A.3.
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Figure 6: Scaling behavior of λL near the exceptional point at ∆T/leff := Tθ/lθ,eff − 1/2 = 0
(left) and the trivial point at ∆T/leff = 1/2 (right) in Fig. 5. The fitting lines (in red) are
y ∝ x0.19 on the left and y ∝ x2 on the right, respectively. We study both the driving protocols
with N = 2 and N =∞ random Hamiltonians.

2.3 Heating phase

The heating phase refers to the parameter regime that satisfies the Furstenberg’s criteria and
has a positive Lyapunov exponent. In this section, we give the details of two main features
that have been summarized in Table. 1

1. The entanglement entropy grows linearly and the total energy grows exponentially in
time;

2. The distributions of the operator evolution and the averaged energy-momentum density
peaks are continuous in space in the long time driving limit n→∞.12

2.3.1 Entanglement entropy growth with λS = λL

As shown in Fig. 7 for an explicit example, the ensemble-averaged entanglement entropy grows
linearly in the long time limit in heating phase. In general, we show that for a subsystem A
with length l = L/q, (e.g. A = [kl + δ, (k + 1)l + δ] where δ ∈ [0, l) and k ∈ Z), the entropy
formula has a simple form (12)

E(SA(n))− SA(0) =
c

3
· λS · n as n→∞, where λS > 0. (35)

In addition, the growth rate of entanglement λS is equal to the Lyapunov exponent λL

λS = λL . (36)

To prove the above equality, let us first choose the shift δ = −1/2, i.e., the subsystem
A = [kl− l/2, kl+ l/2] where k ∈ Z. Following our notation in (24), let Mj denote the SU(1, 1)

12For heating phase with λL > 0, the long time limit may be understood as n� 1/λL.

20



0 100 200

0

0.1

0.2

0.3

0.4

0 100 200

0

0.1

0.2

0.3

0.4

0 100 200

0

0.1

0.2

0.3

0.4

0 100 200

0

0.1

0.2

0.3

0.4

0 100 200

0

0.1

0.2

0.3

0.4

0 100 200

0

0.1

0.2

0.3

0.4

0 100 200

0

0.1

0.2

0.3

0.4

0 100 200

0

0.1

0.2

0.3

0.4

Figure 7: Ensemble-averaged entanglement entropy evolution in a randomly driven CFT, with
A = [kl − l/2, kl + l/2] where k ∈ Z. We consider the driving protocol 2 by choosing θ
randomly distributed in [0, 0.2] in (34). From left to right (and then top to bottom), we choose
∆T/leff := Tθ/lθ,eff− 1/2 = 0, 0.0005, 0.01, 0.1, 0.25, 0.4, 0.48, and 0.5, respectively. It is noted
that ∆T/leff = 0 corresponds to the type I exceptional point and ∆T/leff = 0.5 corresponds
to the trivial point. In this plot, for comparison we show the time evolution for a fixed time
window, which may be too small to see the linear slope for cases with small growth rate, e.g.
the plot for ∆T/leff = 0.48 is indeed growing when we zoom out the time window. Other
parameters are Nsample = 104, c = 1 and l = 1.

Möbius transformation matrix for each driving step and Πn = M1 · · ·Mn the total one for n
steps. The growth rate λS in (35) can be written as (only the chiral part)

λS = lim
n→∞

1

n
E(log |αn − βn|), (37)

where αn, βn ∈ C are the matrix elements of Πn = M1 · · ·Mn in (24). The proof relies on the
following theorem in the random products of SL(2,R) matrices [51].

Theorem 2.3. Let {Yn;n > 1} be independent and identically distributed (i.i.d.) random
matrices in SL(2,R). If Furstenberg’s criteria are satisfied, then for any vector ~x = (x1, x2)T 6=
0, we have

λL := lim
n→∞

1

n
log ‖Yn · · ·Y1‖ = lim

n→∞

1

n
log ‖Yn · · ·Y1 ~x‖ (38)

with probability 1.

In order to apply this theorem, we introduce an isomorphism between the SU(1, 1) matrix

M and SL(2,R) matrix Y , M = QY Q−1, where Q = 1√
2

(
1 −i
1 i

)
is the Cayley map discussed
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in Appendix A. Then, we define Mi = QYn+1−iQ
−1 and have Πn = Q · Yn · · ·Y1 · Q−1. By

denoting the matrix product as Yn · · ·Y1 =:

(
an bn
cn dn

)
and plugging in the expression of Q, one

can find that |αn − βn| =
√
b2
n + d2

n, which is also what appears on the right-hand side of (38)
if we choose ~x = (0, 1)T . Thus, we have shown

λS = lim
n→∞

1

n
log |αn − βn| = lim

n→∞

1

n
log(b2

n + d2
n)1/2 = lim

n→∞

1

n
log ‖Yn · · ·Y1 ~x‖ = λL. (39)

which proves the result for this special choice of subsystem. By noting that Eq. (38) holds even
without averaging, we actually obtain a stronger result

SA(n)− SA(0) =
c

3
· λL · n, n→∞. (40)

Namely, for a single random sequence, the entanglement entropy almost surely linearly grows
and its growth rate λS is equal to the Lyapunov exponent λL. A sample plot of the entanglement
entropy evolution in a single random sequence in the heating phase can be found in Fig. 24 in
the appendix.

The above proof can be generalized to the subsystem A = [kl+δ, (k+1)l+δ] where δ ∈ [0, l)
and k ∈ Z, of which the entanglement entropy is (see (83) in Appendix B.1)

SA(n)− SA(0) =
c

3

(
log
∣∣αn · e 2πiδ

l + βn
∣∣). (41)

The previous procedures still hold as long as ~x = (0, 1)T is replaced by ~x = (− cos πδ
l
, sin πδ

l
)T .

This proves λS = λL for arbitrary subsystems of length l = L/q.
As a numerical verification of λS = λL, we calculate the ensemble-averaged time evolution

of the entanglement entropy as well as log ‖Πn‖ in the heating phase. For both quantities, it
is found that they grow linearly in n, and the growing rates (which correspond to λS and λL)
are the same. See, e.g., Fig. 25 in the appendix.

Let us conclude this subsection with a remark. There is no necessary relation between
the Lyapunov exponents λL and the growth rate of energy λE in (16). Because the ensemble-
averaged energy is an average over |αn|2 + |βn|2 in Πn. The Lyapunov exponent, however,
is an average over log ||Πn||. It is emphasized that the average does not commute with the
logarithm. Therefore, it is possible that the Lyapunov exponent is zero but the total energy
grows exponentially in time. For example, as we will see later, at the type I and type II
exceptional points, the Lyapunov exponent is zero but the total energy grows exponentially in
time as E(E(n)) ∝ e2λE ·n where λE > 0.

2.3.2 Energy growth with λE > λL

In the heating phase, we find that the ensemble-averaged energy in (30) always grows exponen-
tially in time as

E(E(n))− E(0) ∼ gE ·
c

l
· e2λE ·n, as n→∞. (42)

A sample plot of the energy growth is shown in Fig. 8. To make a comparison for different
driving parameters, we plot all the energy growths within a small time window. It is noted
that for small λE, one needs to take more driving steps to observe the exponential growth.
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Figure 8: Time evolution of the ensemble-averaged energy in (30) in a randomly driven CFT.
The driving protocol and parameters are the same as those in Fig. 7. Here we choose Nsample =
105.

In the heating phases of periodically and quasi-periodically driven CFTs, the growth rates
of entanglement and energy are both equal to the Lyapunov exponent λS = λE = λL. 13

However, this relation does not hold in general in the randomly driven CFT. In general, one
can apply Jensen’s inequality to prove λE > λL.14 By comparing Fig. 8 and Fig. 7, one can
actually find that λE > λS (near the type I exceptional point), which can be seen more clearly
later in Fig. 11. This may be understood based on the continuity of λE and λS. First, we have
proved λE > λS = 0 at the type I exceptional points (see Section 2.4). Second, we can see that
λS and λE are continuous functions of driving parameters near the exceptional point.15 It is
then natural to expect λE > λS to hold near the exceptional points.

2.3.3 Operator evolution and energy-momentum density peak distribution

In this subsection, we examine the fine structures in the heating phase. In particular, we want
to explore the following two aspects:

1. Distributions of operator evolution. The position of an operator, when mapped onto
the q-sheet Riemann surface, moves on the unit circle ∂D randomly under the Möbius

13As a reminder, in periodically and quasi-periodically driven CFTs, λS and λE are defined in (13) without
taking ensemble average, and λL is defined in (10).

14Based on (13) and (29), we have λE = limn→∞
1

2n logE(||Πn||2), where Πn is the random product of SU(1, 1)

matrices in (8). Then by using the Jensen’s inequality, we have log
(∑

j xj

n

)
> 1

n

∑
j log xj , where xj are positive

numbers. It follows that λE > limn→∞
1
nE(log ||Πn||) = λL, where λL is defined in (9).

15That λL (λS) is a continuous function of driving parameters has been proved mathematically [71]. The
continuity of λE is a numerical observation.
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transformation. We are curious (1) whether its position has a well-defined long-time limit,
and (2) what the distribution of the position in the long-time limit νO is. We call them
the distribution of operator evolution.

2. Energy-momentum density. We are curious (1) whether the energy-momentum density
develops peaks as what it does in the periodic and quasi-periodic driving case, and if so,
(2) what the distribution of the energy-momentum density peak νE is.

The two aspects are also closely related. Notice that the Möbius transformation has both stable
fixed points and unstable fixed points. The two aspects are exactly probing the (distribution
of) stable and unstable fixed point respectively [42]. These questions, especially ones about
operator evolution, can be studied with the concept called the invariant measure on ∂D with
respect to G ⊂ SU(1, 1), which is the probability distribution on ∂D that is invariant under
SU(1, 1) transformations in G. In the following, we will first introduce the precise definition
of this concept and relevant theorem, then apply them to answer these questions raised above.
Readers can also directly jump to the physics conclusions and refer to the mathematics theorem
when necessary.

Let M(∂D) denote the set of probability measures ν on ∂D. Given M ∈ SU(1, 1) and
ν ∈M(∂D), we define Mν ∈M(∂D) by∫

f(z) d(Mν)(z) =

∫
f(Mz) dν(z), (43)

where z ∈ ∂D, and M acts on z by a Möbius transformation in (7). Moreover, denoting µ as
the probability measure of M ∈ SU(1, 1), we define the convolution µ ∗ ν ∈M(∂D) by∫

∂D
f(z) d(µ ∗ ν)(z) =

∫
SU(1,1)

∫
∂D
f(Mz) dµ(M) dν(z). (44)

In particular, if µ ∗ ν = ν, then ν is called µ-invariant measure.16 The µ-invariant measure in
the heating phase of randomly driven CFT has the following property: [51]

Lemma 2.4. Let µ be the probability distribution of SU(1, 1). If Furstenberg’s criteria are
satisfied, then the µ-invariant measure on ∂D is unique and continuous.

Now let us consider the distribution of operator evolution both in a single random sequence
and in the ensemble average. Its behavior can be understood based on the following theorem:
[51]

Theorem 2.5. Let {Mj, j > 1} be a bounded sequence in SU(1, 1) with a probability measure
µ such that Furstenberg’s criteria are satisfied.

16As the simplest case, in Appendix A.2 (see Theorem A.5), we have summarized the invariant measure for
a single matrix M ∈ SU(1, 1). One can find that only the matrix of elliptic type has a continuous invariant
measure. For more than one matrices, one can also consider the common invariant measure, which is the
intersection of invariant measure for each matrix. As summarized in Theorem A.6, one can find that if these
matrices are non-commuting, then the common invariant measure can only be a discrete measure (which is a
convex combination of the Dirac measure). By definition, the common invariant measure is automatically a
µ-invariant measure. However, the opposite is not true, i.e., a µ-invariant measure is not necessarily a common
invariant measure. In fact, in the heating phase, the µ-invariant measure is always not a common invariant
measure of the matrices in Gµ.
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1. Then there exists z• ∈ ∂D s.t. for any z ∈ D, M1M2 · · ·Mn · z converges to z• as n→∞.

2. If ν is a continuous distribution on ∂D, M1 · · ·Mnν converges weakly to the Dirac measure
δ(z − z•).

3. The distribution of z• is the unique µ-invariant continuous distribution on ∂D.

The property 2 in the above theorem is usually called the contraction property, i.e., a
continuous distribution on ∂D, acted by M1 · · ·Mn · · · , is always contracted to a Dirac measure.
However, the location of this Dirac measure is not predictable.

With the above theorems, let us give mathematically rigorous statements of the properties
of operator evolution in the heating phase of a randomly driven CFT:

1. Operator evolution in a single random sequence: The property 2 in Theorem 2.5 describes
exactly the operator evolution in a single random sequence. That is, although the driving
is random, the operators starting from arbitrary initial positions will flow to a stable
fixed point in the long time driving limit. A sample plot of the operator evolution can be
found in Fig. 22 in Appendix A.4. Recall that the operator evolution is considered in the
Heisenberg picture. In the Shrödinger picture, it means the degrees of freedom, which
carry quantum entanglement, flow away from this fixed point. Therefore, the emergent
stable fixed point in the operator evolution actually corresponds to the location of source
of generating quantum entanglement [39,43]. In other words, during the random driving,
the location where the quantum entanglement is generated becomes stable in the long
time driving limit.

2. Ensemble-averaged operator evolution:

The property 3 in Theorem 2.5 tells us the feature of the ensemble-averaged operator
evolution νO. That is, the ensemble average of the stable fixed points of operator evolution
in the long time driving limit corresponds to the µ-invariant measure as defined near
(44). Based on Lemma 2.4, this distribution νO is continuous. A sample plot of the
ensemble-averaged distribution of operator evolution with different driving parameters in
the heating phase can be found in Fig. 9.

As a remark, one can see some interesting features in the distribution of operator evolution
in Fig. 9. In particular, there are some peak structures near ∆T/leff := Tθ/lθ,eff−1/2 = 0.
The reason is that, as we will see later in Section 2.4.3, the distribution of operator
evolution becomes a convex combination of Dirac measure (which are located at x/l = 0
and 1/2 for the parameters in Fig. 9) at the exceptional point. The peak structure in
Fig. 9 inherits the feature of νO at the exceptional point.

Now let us consider the energy-momentum density peaks:

1. Energy density peaks in a single random sequence:

First, it is noted that in the heating phase, the total energy of the system grows expo-
nentially in time (see Section 2.3.2). This indicates that the energy density always forms
peaks in space in the long time driving limit (This can be understood based on (27)
where αn, βn → ∞). The locations of these peaks are determined by (28) within each
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Figure 9: Distribution of the (chiral) operator evolution νO (green solid lines) within one
wavelength of deformation. The protocol and driving parameters are the same as those in
Fig. 7 and Fig. 8. From left to right, we take ∆T/leff = 0.0005, 0.01, and 0.1 respectively. The
red dashed lines are the distribution of (chiral) energy-momentum density peaks νE. We take
Nsample = 106 in the ensemble average.

wavelength of deformation. Second, different from the operator evolution, it is found that
the locations of these energy density peaks keep changing during the random driving. A
sample plot of the time evolution of locations of energy density peaks can be found in
Appendix A.4. Namely, although the random product of SU(1, 1) matrices has a unique
stable fixed point in the long time driving limit, the position of the unstable fixed point
keeps oscillating.

2. Distribution of the energy density peaks:

An ensemble average of the locations of energy density peaks yields a continuous distri-
bution, as well. Interestingly, for the random driving in Fig. 9, where the deformation
function (see (34)) is symmetric about x = l/2, the distribution of energy density peaks
νE is symmetric with respect to the distribution of operator evolution νO about x = l/2.
We expect there may be a relation between νE and νO. It will be interesting to show
rigorously that the distribution of energy density peaks νE is continuous in the heating
phase of a randomly driven CFT.

2.4 Type I and II exceptional points

Now we study the dynamics at type I and type II exceptional points. There are two salient
features we want to highlight. One is that the entanglement entropy grows as

√
n, while

the total energy still grows exponentially in time. The other is that the ensemble-averaged
distributions of both the operator evolution νO and the energy-momentum density νE are finite
convex combinations of Dirac measures, which is different from the heating phase where the
corresponding distributions are continuous.

As we have commented before, there is an equivalence between type I and type II exceptional
points, in the sense of subgroup isomorphism (see Appendix A.3 for details). Therefore, we
will mainly focus on the properties of type I exceptional points. The features of time evolution
at type II exceptional points can be discussed similarly and some details are in Appendix B.2.
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For simplicity, we only consider the protocol 1 with two driving Hamiltonians. The protocol 2
shares qualitatively the same features. The fact that the driving Hamiltonians generate only
reflection matrices at the type I exceptional point makes it possible to compute all quantities
analytically.

2.4.1 Sub-linear entanglement entropy growth

In this subsection, we will analytically show that the entanglement entropy grows as
√
n and

thus has a vanishing growth rate. Without loss of generality, we only consider the entanglement
entropy growth that is caused by the chiral deformation. We will then show that the Lyapunov
exponent is also zero so that the relation λS = λL still holds in this case.

Let us first derive the general formula of the product of random reflection matrices, which
will be useful not only for computing entanglement but also other quantities. Let M ′

A and
M ′

B denote the two non-commuting reflection matrices that are generated by the two driving
Hamiltonians. It is convenient to diagonalize one of them by an M ∈ SU(1, 1), i.e., MA =
MM ′

AM
−1 and MB = MM ′

BM
−1 with

MA =

(
i cosh(ϕ) eiφ sinh(ϕ)
e−iφ sinh(ϕ) −i cosh(ϕ)

)
, MB =

(
i 0
0 −i

)
. (45)

where ϕ, φ ∈ R and a possible global minus sign is neglected. We also require ϕ 6= 0 in order
to ensure that MA and MB are non-commuting. The random product of M ′

A and M ′
B reduces

to that of MA and MB. Namely, the matrix product for n steps of random driving becomes

Πn = M−1 ·M1M2 · · ·Mn ·M

where Mj’s are drawn from {MA,MB} randomly. Since we are only interested in the limit
n → ∞, we can safely ignore M (which has a finite norm) without changing the results
qualitatively.

We assume the number of driving steps n to be even n = 2k, and the case of odd n can be
analyzed similarly. Let Mr,s denote the product of 2k matrices where the number of MA and
MB is k − r + s and k + s − r respectively, with 0 6 r, s 6 k. The property M2

A = M2
B = −I

allows for a simple expression

Mr,s = (−1)k
(

cosh((k − r − s)ϕ) ieiφ sinh((k − r − s)ϕ)
−ie−iφ sinh((k − r − s)ϕ) cosh((k − r − s)ϕ)

)
, (46)

regardless of the positions of MA and MB’s. We also need to determine the total probability
pr,s for such terms. For simplicity, we assume pA = pB = 1/2 and have

pr,s =
1

2n
·
(
k
r

)
·
(
k
s

)
=

1

2n
· k!

(k − r)! r!
· k!

(k − s)! s!
, (47)

One can check the normalization
∑k

r,s=0 pr,s = 1.

Now, we apply the above general formula to compute the entanglement entropy and Lya-
punov exponent. The entanglement entropy (31) in this case becomes

E
(
SA(n)

)
− SA(0) =

c

6

k∑
r,s=0

pr,s · log
(

cosh
[
2(k− r− s)ϕ

]
+ sinφ · sinh

[
2(k− r− s)ϕ

])
, (48)
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which can be evaluated numerically and the results are shown by the dotted lines in Fig. 10.
One can see a clear

√
n growth in the long time limit.

Let us confirm this numerical observation by an analytical derivation. The increment of the
entanglement entropy after two more steps is

E
(
SA(n+ 2)

)
− E

(
SA(n)

)
=
c

6
· 1

4

k∑
r,s=0

pr,s · log

(
1 +

1− sin2 φ

2
· cosh(4ϕ)− 1

[f(k − r − s)]2

)
(49)

where we have defined f(x) := cosh(2xϕ) + sinφ · sinh(2xϕ). For the special case 1− sin2 φ =
0, the averaged entanglement entropy will simply oscillate in time with period 2, as will be
discussed in detail in Section 2.4.5. In the general case 1 − sin2 φ 6= 0, we analyze the large-ϕ
limit to derive an analytical expression. The result turns out to be a good approximation even
when ϕ is small. In this case, the entanglement entropy growth is dominated by the terms with
k − r − s = 0, the total probability of which is

k=n/2∑
r,s;r+s=k

pr,s =
1

2n

(
n
n/2

)
.

Then in the large-ϕ limit, the entanglement entropy growth in (49) can be approximated by

E
(
SA(n+ 2)

)
− E

(
SA(n)

)
≈ κ

2n

(
n
n/2

)
,

where

κ =
c

24
log
[
1 +

1

2
(1− sin2 φ) · (cosh(4ϕ)− 1)

]
.

In the long time driving limit n→∞, one can use the Stirling’s approximation. In particular,
if n = 4m with m ∈ Z, the result can be simplified to

E
(
SA(n+ 2)

)
− E

(
SA(n)

)
≈ κ

2m+1/3
=

κ

21/3
· 1√

n
. (50)

We then extrapolate the above expression to general n and do an “integral” to have

E
(
SA(n)

)
− SA(0) ≈ κ

21/3

√
n, n� 1 (51)

In Fig. 10, we compare the analytical result (51) and the exact one (48). One can find good
agreement even for small ϕ. In Section 2.4.3, we will provide a more general derivation of
this
√
n growth by utilizing the distribution of operator evolution, which justifies this growth

behavior for arbitrarily small ϕ > 0.
Numerically, we also checked the general choice of pA and pB (where pA + pB = 1) in the

driving protocol 1, as well as protocol 2 with infinitely many driving Hamiltonians at the type
I exceptional point. It is found that the averaged entanglement entropy always grows as

√
n in

the long time limit.

Following the definition, we can find that the entanglement growth rate vanishes in this case

λS ∝ lim
n→∞

√
n

n
= 0.
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Figure 10: Growth of the averaged entanglement entropy at the type I exceptional points. The
dotted data are exact results in (48) with φ = 0 and c = 1, and the red solid lines correspond to
the approximated analytical results in (51). From top to bottom, the parameters are ϕ = 10,
8, 6, and 4, respectively.

It is then natural to ask whether the Lyapunov exponent λL vanishes as well. Plugging (46)
into the definition of the Lyapunov exponents (9), we have

λL = lim
n→∞

1

2n

k∑
r,s=0

pr,s · log (2 cosh[2(k − r − s)ϕ]) (52)

where we have used the Frobenius norm. By comparing (52) and (48), one can find that their
summands are exactly the same by choosing sinφ = 0 in (48). Since we have shown that
E
(
SA(n)

)
∝
√
n for sinφ 6= ±1, it automatically tells us

λL ∝ lim
n→∞

√
n

n
= 0.

In the heating phase where Furstenberg’s criteria are satisfied, we have shown that λL = λS > 0.
Here we show that the relation λL = λS still holds at the type I exceptional points except that
both vanish here.

2.4.2 Energy evolution

Although the entanglement entropy grows sublinearly as
√
n and the Lyanpunov exponent

vanishes as well, we will show that the total energy still grows exponentially in time. Without
loss of generality, we only consider the chiral part of the energy.

By plugging the matrix product (46) into the general formula (30), the ensemble-averaged
energy evolution is

E
(
E(n)

)
=

πc

12 l

k∑
r,s=0

pr,s · cosh
[
2(k − r − s)ϕ

]
, n = 2k ∈ 2Z, (53)
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4
log[cosh(ϕ)]

in (55) with ϕ = 2θ at the type I exceptional point where ∆T/leff = 0.

where the probabilities pr,s are given in (47). Similar to the analysis on entanglement, we check
the increment of energy after another two more steps of random driving, and find that the
chiral energy is exactly amplified by a factor

E
(
E(n+ 2)

)
= E

(
E(n)

)
·
[

cosh(ϕ)
]2
. (54)

Furthermore, the total energy at odd n is the same as that at even n, i.e., E(E(n + 1)) =
E(E(n+ 2)) for n ∈ 2Z. Thus, the energy growth exponentially with the rate

λE =
1

2
log [cosh(ϕ)] . (55)

Since ϕ 6= 0, we always have λE > 0. Fig. 11 shows the exact value of λE at the type I
exceptional point, which is smoothly connected to the λE in the heating phase. See also Fig. 21
for the comparison of CFT and lattice model calculations for the total energy evolution at the
type I exceptional point.

2.4.3 Operator evolution and energy-momentum density peak distribution

In this subsection, we discuss the operator evolution and energy-momentum density and show
their distinct features compared with the heating phase. We will see that the position of the
operator switches between two different points instead of converging to a stable fixed point
in the long time. The energy momentum density peak appears also at these two points with
probability 1/2 and 1/2.

Suppose the number of driving steps is even n = 2k, then a typical product of random
matrices Mr,s and its probability pr,s are given by (46) and (47). Unless r+ s− k = 0, different
Mr,s’s share the same fixed points z0 = ieiφ and z1 = −ie−iφ, and ieiφ (−ieiφ) is the stable
one if (k − r − s)ϕ > 0 (< 0). Solving the distribution of operator evolution at time n = 2k
amounts to understanding how a generic point on the unit circle flows after being applied by
Mr,s once. Depending on the value of (k − r − s)ϕ, there are three cases:
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1. (k − r − s)ϕ� 0, then Mr,s is able to map any point to z0

2. (k − r − s)ϕ� 0, then any point flows to z1

3. (k − r − s)ϕ ∼ 1, applying Mr,s once is unable to move the points by large amount.

The first two cases are equally likely to happen because the numbers of Mr,s with positive and
negative k − r − s are the same, while the last one has a less probability. Their probabilities
depend on the value of ϕ:

• Large-ϕ limit. In this case, the third case happens only if r + s = k. As discussed in
Section 2.4.1, the probability of having r + s = k is approximately 1

21/3
√
n
. Therefore, in

the large ϕ limit, the distribution of operator evolution at a large but finite n is

νO(n) =
1

2

(
1− 1

21/3
√
n

)
δ(z − z0) +

1

2

(
1− 1

21/3
√
n

)
δ(z − z1) + · · · , n� 1, (56)

where + · · · represents a continuous function that is suppressed by 1/
√
n.

• Small-ϕ. In this case, Mr,s needs a large enough |k − r − s|ϕ to be able to map all the
points on the unit circle to its stable fixed point. The probability that this is not satisfied
is asymptotically ϕc

ϕ
√
n

in the large-n limit, where ϕc is an O(1) constant whose detailed
value is not important. Therefore, the distribution of operator evolution becomes

νO(n) =
1

2

(
1− ϕc

ϕ
√
n

)
δ(z − z0) +

1

2

(
1− ϕc

ϕ
√
n

)
δ(z − z1) + · · · , n� 1. (57)

where + · · · is a continuous function suppressed by 1/
√
n. As we can see, the weight of

the Dirac measures becomes smaller than that in the large-ϕ limit.

In both cases, the distribution of operator evolution approaches an equal weight combination
of Dirac measures in the long-time limit

νO =
1

2
δ(z − z0) +

1

2
δ(z − z1). (58)

Mathematically, νO is called the common invariant measure of the random matrices in Gµ that
is generated by the non-commuting reflection matrices (see Theorem A.6 in the appendix).

Fig. 12 shows a concrete example. The left and middle plots are the operator evolution
with ϕ = 5 and ϕ = 1 driven for the same time. One can see that the distribution is indeed a
combination of two Dirac measures, and the one with larger ϕ has larger weight. We further
check how the the weight of the Dirac measures deviate from 1/2 and confirm the 1/

√
n for

both small and large ϕ. The results are shown in the right plot.
The discussion on the behavior of the energy density peak is similar, except that it is related

to the unstable fixed point instead of the stable one. Noticing that, at type I exceptional point,
the stable and unstable fixed points are interchanged during the random driving, therefore the
distribution of the energy density peaks should be the same as that of the operator evolution

νE = νO . (59)
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Figure 12: Distribution of operator evolution at type I exceptional point with ϕ = 5 (left) and
ϕ = 1 (middle) in (46). The initial positions of operator are uniformly distributed on the line.
We choose φ = π/2 in both cases. The driving steps are n = 43 (red dashed line) and n = 44

(green solid line). Right: The scaling behavior of 1/2 − νO(x/l = 1/2) for ϕ = 1, 2, 3, 4, 5
(solid lines from top to bottom). The red dashed line is the analytical result in (56).

This is different from the heating phase, where νE 6= νO in general, as seen in Fig. 9. In the real
space, the above result means that there are on average two energy density peaks at x0 and x1

within each wavelength of deformation, which are related to z0 and z1 on ∂D by z0(1) = ei
2π
l
x0(1) .

We conclude this subsection with a remark. The behavior of operator evolution is also re-
lated to the group walking as discussed in Appendix B.3. Fig. 28 shows that, at the exceptional
point, the group walking of ρn (which determines the operator evolution) only hits two points
on ∂D, which correspond to the two peaks in Fig. 12. This is different from the heating phase
where the group walking of ρn can hit many different possible points on ∂D.

2.4.4 Physical picture of entanglement and energy growth

The above analysis on the operator evolution also provides an intuitive way to understand
and a shortcut to deriving the

√
n growth of the entanglement entropy. In this subsection,

we give a general discussion on how it works. The additional input information we need is
that the entanglement entropy comes from the excitation accumulated at the energy density
peaks [42, 43]. Then we apply the same idea to analyze the energy growth and explain why it
grows much faster.

The stable and unstable fixed points are interchanged in the driving process. As long as
ensemble-averaged quantities are concerned, it is not necessary to distinguish them and we
simply call them fixed points.

– General discussion:
Suppose the system has been driven for a long enough time. As we have discussed in the

previous subsection, there are three configurations of the distribution of operator evolution or
equivalently the (chiral) energy density peaks: (a) the peak being at the left fixed point, (b)
the peak being at the right fixed point, (c) no energy-momentum density peaks. Each of them
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is depicted below, where the solid blue line represents the energy density.

· · ·
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E(x)
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2

)l (k + 1
2

)l

(c)

x

· · ·

(60)
The first two happens with an equal probability. In the long time limit n→∞, the probabilities
of these three configurations are

p(a) −
1

2
= p(b) −

1

2
∼ O

(
1√
n

)
, p(c) ∼ O

(
1√
n

)
. (61)

Now let us analyze how these energy peaks move and how the entanglement entropy SA
grows accordingly after another two steps of random driving. We choose our subsystem to be
A = [(k − 1/2)l, (k + 1/2)l], which includes two fixed points that can be interchanged in the
evolution. If the system is in the configuration (a), there are two possibilities. One is shown in
(a.1), where new EPR pairs are generated at the right fixed point (the dotted peak) with one
member staying in the subsystem A and the other one moving and out of the subsystem. This
process increases SA. The other one is shown in (a.2), where non-local EPR pairs are pumped
back to the subsystem A, which reduces SA. The above two processes happen when the dotted
peak corresponds to a stable or unstable fixed point. Therefore, they have an equal probability
and cancel each other completely.

· · ·

E(x)

••

process (a.1)

x

· · · · · ·

E(x)

• •

process (a.2)

x

· · · (62)

As a result, the entanglement entropy growth only comes from the configuration (c), for
which there are also two possibilities, shown in (c.1) and (c.2) below. Interestingly, both of
them increase the entanglement entropy because there are no previously splitted EPR pairs
and either driving generates new EPR pairs.

· · ·

E(x)

••

process (c.1)

x

· · · · · ·

E(x)

••

process (c.2)

x

· · · (63)

Let κ denote the amount of entanglement growth due to processes (c.1) and (c.2). Recall that
the probability of configuration (c) is p(c) in (61), we have

E(∆SA(n)) := E(SA(n+ 2))− E(SA(n)) = κ · p(c) ∝
κ√
n
, (64)
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Then one can do the integral and obtain

E(SA(n)) ∝ κ ·
√
n. (65)

This explains the
√
n growth of entanglement from a general perspective.

Different from the entanglement, the energy growth in process (a.1) and (a.2) does not
cancel, and thus is expected to be much faster. The growth behavior has to be analyzed case
by case.

– Concrete example and calculation:
As an illustration, let us apply the above general picture to the concrete example discussed

in Section 2.4.1 and Section 2.4.2. For simplicity, we set φ = π and take the large-ϕ limit.
As we have introduced before, the system is driven by HA and HB with equal probabilities.

The corresponding SU(1, 1) matrices are MA and MB defined in (45). Assume that the system
is already randomly driven by n = 2k steps and the product of random matrices is given by
Mr,s defined in (46). The three configurations (a), (b) and (c) in (60) exactly correspond to
the three cases k − r − s > 0, < 0 and = 0 respectively. We want to analyze how different
configurations evolve in the next two steps.

Let us first analyze the configuration (a) or equivalently k − r − s > 0. After another
two steps of random driving, the time evolution is given by Mr,s(MAMB) or Mr,s(MBMA).17

They exactly correspond to process (a.1) and (a.2) and each occurs with a probability 1/4.
Accordingly, the change of entanglement entropy and energy (of a unit cell) areprocess (a.1) : ∆SA ≈

c

3
· ϕ, ∆E =

πc

12l
(En(r, s) cosh(2ϕ) + fn(r, s))

process (a.2) : ∆SA ≈ −
c

3
· ϕ, ∆E =

πc

12l
(En(r, s) cosh(2ϕ) + fn(r, s))

where En(r, s) = cosh(2mϕ), fn(r, s) = sinh(2mϕ) sinh(2ϕ) and m = k−r−s and k = n/2. By
summing over different processes, the change of entanglement entropy cancel each other while
the energy growth does not. The same result hold for the configuration (b) as well.

Now let us consider the configuration (c) or equivalently k − r − s = 0. The non-trivial
evolution in two steps is also given by Mr,s(MAMB) and Mr,s(MBMA) with the same probability
1/4, which correspond to the process (c.1) and (c.2). In this situation, the change of entropy
and energy are process (a.1) : ∆SA ≈

c

3
· ϕ, ∆E =

πc

12l
cosh(2ϕ)

process (a.2) : ∆SA ≈
c

3
· ϕ, ∆E =

πc

12l
cosh(2ϕ)

and both of them grows after summing over all the processes.
The probabilities of the three configurations are just what we have used in obtaining the

distribution of operator evolution (56). We can then sum over all the contributions and have

E(SA(n+ 2))− E(SA(n)) ≈ c

6
· ϕ · 1

21/3
√
n
,

E(E(n+ 2))− E(E(n)) =E(E(n)) · cosh2(ϕ),

(66)

17The other two possibilities are Mr,sM
2
A and Mr,sM

2
B , which lead to trivial evolution.
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the integral of which further leads to

E(SA(n))− SA(0) ≈ c · ϕ
6
· 1

21/3
·
√
n, E(E(n)) =

πc

12l
· [cosh(ϕ)]n . (67)

This confirms our general discussion and the analysis in previous sections.

2.4.5 Cases with oscillating entanglement entropy

The entanglement entropy growth in (51) holds for most choices of entanglement cuts. There
are also special choices of entanglement cuts, with which the entanglement entropy simply
oscillates in time.

The case that we discussed in Section 2.4.1 provides a concrete example. When we choose
sinφ = ±1, one can check that the entanglement entropy does not grow at all after every two
steps

E
(
SA(n+ 2)

)
− E

(
SA(n)

)
= 0.

More explicitly, we have

E
(
SA(2k)

)
− SA(0) = 0, E

(
SA(2k − 1)

)
− SA(0) = ±c · ϕ

6
, k ∈ Z+, (68)

where ± correspond to sinφ = ±1 respectively, and c is the central charge. See the first plot in
Fig. 7 for an illustration. It is emphasized that this oscillating behavior can also be observed
in lattice systems. See Fig. 19 for the comparison of CFT and lattice model calculations.

The reason behind such oscillation is the following. Physically, these special choices corre-
spond to cutting through two chiral (or anti-chiral) energy density peaks. Then the degrees
of freedom that carry quantum entanglement can flow towards and accumulate at the entan-
glement cuts. Intuitively, one can consider this process as dragging non-local EPR pairs to
the entanglement cuts, which reduces the entanglement between the subsystem and its com-
plement. Because of such processes, one can find that after every two steps of random driving,
the growth and decrease of entanglement entropy exactly cancel with each other. This results
in a period-2 oscillating behavior of entanglement entropy in (68).

2.5 Type III exceptional points

As defined in Section 2.2.2, at type III exceptional points, the SU(1, 1) matrices corresponding
to different driving Hamiltonians share only one common fixed point. This makes analytical
calculation difficult, and thus we investigate the time evolution behavior at type III exceptional
points only numerically.

In the following, we will first list different sub-types of type III fixed points, and then study
the corresponding entanglement/energy evolution and related features case by case.

2.5.1 Sub-types of type III exceptional points

At type III exceptional points, all the driving Hamiltonians are non-elliptic, so are the corre-
sponding SU(1, 1) matrices. Let us consider the protocol 1 with two driving Hamiltonians HA

and HB. There are five different sub-types of type III exceptional points:
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1. sub-type 1: Both Hamiltonians are hyperbolic. The stable fixed point of one hyperbolic
matrix coincides with the stable fixed point of the other hyperbolic matrix. Their unstable
fixed points are different.

2. sub-type 2: Both Hamiltonians are hyperbolic. The stable fixed point of one hyperbolic
matrix coincides with the unstable fixed point of the other hyperbolic matrix. The other
two fixed points do not coincide.

3. sub-type 3: Both Hamiltonians are hyperbolic. The unstable fixed point of one hyperbolic
matrix coincides with the unstable fixed point of the other hyperbolic matrix. Their stable
fixed points do not coincide.

4. sub-type 4: One Hamiltonian is hyperbolic and the other is parabolic. The stable fixed
point of the hyperbolic matrix coincides with the unique clockwise (or counter-clockwise)
fixed point of the parabolic matrix. 18

5. sub-type 5: One Hamiltonian is hyperbolic and the other is parabolic. The unstable fixed
point of the hyperbolic matrix coincides with the unique clockwise (or counter-clockwise)
fixed point of the parabolic matrix.

For more than two driving Hamiltonians, the corresponding type III exceptional points
can be understood based on the above sub-types. For example, if we consider N hyperbolic
Hamiltonians, and all the stable fixed points of m Hamiltonians coincide with all the unstable
fixed points of the other N −m Hamiltonians (and there are no other coincident fixed points),
then the time evolution features will be similar to sub-type 2 exceptional point.

As summarized in table 1, these different sub-types of type III exceptional fixed points may
have different time evolution features. We give detailed discussions on these features in the rest
of this section.

2.5.2 Operator evolution and energy-momentum density peak distribution

Since there are common invariant measures at the type III exceptional point (see Theorem
A.6), it is expected that the distributions of operator evolution and energy-momentum density
peaks may have discrete measures in the long time driving limit n→∞. The main results are
summarized as follows, with the concrete examples discussed later.

1. sub-type 1: The distribution of operator evolution is a Dirac measure, and the distribution
of energy-momentum density peaks is continuous.

2. sub-type 2: The distributions of the operator evolution and the energy-momentum density
depend on the relative strength of the stable and unstable fixed points that coincide with

18Different from the fixed points of a hyperbolic matrix, which are either attractive or repelling, the fixed
point of a parabolic matrix has a chirality. That is, the operator that is not initially located at the unique fixed
point (see (76)) will flow to the fixed point in a clockwise or counter-clockwise manner.
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Figure 13: Distribution of the (chiral) operator evolution νO (green solid lines) and the distribu-
tion of (chiral) energy density peaks νE (red dashed lines) within one wavelength of deformation.
In all the plots, we consider the random driving with two Hamiltonians HA and HB with prob-
abilities 1/2 and 1/2. For HA we choose σ0

A = σ−A = 0, σ+
A = 1 in (5). For HB, we choose (a)

σ0
B = −σ−B = 1/2, σ+

B = 1, (b) σ0
B = σ−B = 1/2, σ+

B = 1, (c) σ0
B = −1, σ+

B = 0, σ−B = 1, and (d)
σ0
B = 1, σ+

B = 0, σ−B = 1 in (5). These choices correspond to sub-type-1, -3, -4, and -5 of type
III exceptional points. The driving times are TA/l = TB/l = 1/50. We take Nsample = 106 in
the numerical calculation.

each other. 19 If the stable (unstable) fixed point is stronger than the unstable (stable)
fixed point, then the distribution of operator evolution (energy-momentum density peaks)
is a Dirac measure, and the distribution of energy-momentum density peaks (operator
evolution) is continuous. If the strengths of the coincide stable and unstable fixed points
are the same, then the distributions of both operator evolution and energy-momentum
density peaks are continuous.

3. sub-type 3: The distribution of operator evolution is continuous, and the distribution of
energy-momentum density peaks is a Dirac measure.

4. sub-type 4: The distribution of operator evolution is is a Dirac measure, and the distri-
bution of energy-momentum density peaks is continuous.

5. sub-type 5: The distribution of operator evolution is continuous, and the distribution of
energy-momentum density peaks is a Dirac measure.

In short, it is found that at sub-type 1, 3, 4, and 5 exceptional points, either the distribution
of operator evolution or the distribution of energy-momentum density peaks is a Dirac measure,
and the other is continuous (see Fig. 13). One way to understand it is the following. For
example, at the sub-type 1 exceptional point, since the stable fixed points of both hyperbolic
Hamiltonians coincide, and the operators must flow to this coincident stable fixed point in the
long time limit. Therefore, the operator evolution has a Dirac measure distribution at this

19Here the strength of the stable (unstable) fixed point characterizes how much an operator is attracted
to (or repelled from) the fixed point in a single driving step. More precisely, the strength is determined by
|∂f(x)/∂x| · T at the stable (unstable) fixed point x = x• (x◦), where f(x) is the deformation function in (5),
and T is the driving time. For a given driving Hamiltonian with stable (or unstable) fixed points, the time of
driving T determines strength of the fixed points). See the concrete examples in Fig. 14.
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Figure 14: Distribution of the (chiral) operator evolution (green solid lines) and the (chiral)
energy density peaks (red dashed lines) at sub-type-2 of type III exceptional point. We use
protocol 1 with two Hamiltonians HA and HB with probabilities 1/2 and 1/2. The two Hamil-
tonians HA and HB are defined with σ0

A = σ−A = 0, σ+
A = 1 and σ0

B = −σ−B = 1/2, σ+
B = −1

(see (5) for definitions) The time durations of driving are TA/l = 1/40 and (a) TB/l = 1/30,
(b) TB/l = 1/40, (c) TB/l = 1/50. We take Nsample = 106 in the numerical calculation.

stable fixed point (x/l = 1/4 in Fig. 13 (a)). On the other hand, the locations of the energy-
momentum density peaks are determined by the unstable fixed points. They are continuously
distributed because the two unstable fixed points do not coincide. The other three plots in
Fig. 13 can be understood similarly.

The feature of sub-type 2 exceptional point is more interesting. The distributions of operator
evolution and energy-momentum density peaks depend on the relative strength of the coincident
stable and unstable fixed points. As shown in Fig. 14, we choose the parameters such that
the stable fixed point of HA (xA,• = l/4 mod l) is coincident with the unstable fixed point
(xB,◦ = l/4 mod l) of HB, and |∂vA(x)/∂x| at xA,• equals |∂vB(x)/∂x| at xB,◦. The relative
strength of the fixed points is determined by the driving time TA and TB. For TA < TB,
the strength of the unstable fixed point is stronger. Then one can find that the distribution
of energy density peaks is a Dirac measure δ(x − xA,•) at xA,• = xB,◦. On the other hand,
the distribution of operator evolution is continuous because the operator evolution cannot be
stabilized at any point. For TA > TB, the result can be similarly understood, except that now
the distribution of operator evolution is a Dirac measure and the energy-momentum density
peaks are continuously distributed. For TA = TB, i.e., the strength of the coincident stable
and unstable fixed points are the same, it is observed that the distributions of both operator
evolution and energy-momentum density peaks are continuous, because neither the operator
evolution nor the energy-momentum density peaks can be stabilized in this case.

2.5.3 Entanglement and energy evolution in different sub-types

For the sub-type 1, 3, 4, and 5 fixed points, it is found that the entanglement entropy grows
linearly in time and the total energy grows exponentially in time, as shown in Fig. 15. In
particular, one can observe that

λS = λL = λE, (69)

where λS and λE are the growth rate of the entanglement entropy and the total energy. This
is different from the heating phase where λS = λL and λE ≥ λS (See, e.g., Fig. 11, and Fig. 25
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Figure 15: Averaged entanglement entropy evolution 3E(SA(n)) (green solid lines) and the
total energy evolution 1

2
logE(E(n)) (red dashed lines), and E(log ||Πn||) (blue dotted lines) at

sub-type 1, 3, 4, and 5 exceptional points (from left to right). The subsystem A is chosen as
[(k − 1/2)l, (k + 1/2)l] where k ∈ Z. The slopes of the above mentioned three lines correspond
to λS, λE, and λL respectively. The driving protocol as well as the driving parameters are the
same as those in Fig. 13, but with Nsample = 103 here.

in the appendix).
At the sub-type 2 exceptional point, there are in general two kinds of behaviors in the

entanglement/energy evolution, as shown in Fig. 16:

1. If the strength of the coincident stable and unstable fixed points are different, then the
entanglement entropy grows linearly in time and the total energy grows exponentially in
time [See Fig. 16 (left)]. Similar to the heating phase, in general we have λE ≥ λS.

2. If the strength of the coincident stable and unstable fixed points are the same, then the en-
tanglement entropy grows as square root of time and the total energy grows exponentially
in time [See Fig. 16 (middle, right)].

It is noted that for the second case above, the features of entanglement/energy evolution are
the same as that at the type I and type II exceptional points. The common structure of these
three types of exceptional points is that the coincident stable and unstable fixed points have
the same strength.20 As discussed in Section 2.4.4, the physical picture is that such structure
will cause the cancellation of entanglement entropy growth during the random driving, which
results in a sub-linear entanglement entropy growth.

3 Comparison of lattice model calculations and CFT cal-

culations

In this section, we compare the numerics on a lattice model and the CFT calculations for
both the entanglement entropy and the total energy evolution. In particular, we make the

20It is reminded that there are two pairs of coincident stable/unstable fixed points at type I/II exceptional
points, but only one pair of coincident stable/unstable fixed points at type III exceptional points.
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Figure 16: Left: Ensemble-averaged entanglement entropy evolution 3 · E(SA(n)) (green solid
lines), the energy evolution 1

2
logE(E(n)) (red dashed lines), and E(log ||Πn||) (blue dotted lines)

at sub-type 2 exceptional point. Middle: Ensemble-averaged entanglement entropy evolution.
The purple dashed lines are fitting with y ∝ x1/2. Right: Ensemble-averaged energy evolution.
The purple dashed lines are fitting with y ∝ eλx. The driving protocol and driving Hamiltonians
are the same as Fig. 14. We choose T0/l = 1/40 and T1/l = 1/30 (left). In the middle and
right plots, we chose T0/l = T1/l = 1/40, 1/50, and 1/60 (from top to bottom). In all the plots
we do ensemble average over Nsample = 104.

comparison for an arbitrary random sequence. If the comparison agrees well for an arbitrary
random sequence, then the ensemble average must also agree. 21

The lattice model we consider is a free fermion lattice, which has finite sites L with open
boundary conditions. Corresponding to (1), we can deform the Hamiltonian in space, and
use these deformed Hamiltonians to drive the system in time. We prepare the initial state
as the ground state of the homogeneous Hamiltonian H0 with half filling and open boundary
conditions, where

H0 =
1

2

L−1∑
j=1

c†jcj+1 + h.c. (70)

Here cj are fermionic operator satisfying the anticommutation relations {cj, ck} = {c†j, c
†
k} = 0,

and {cj, c†k} = δjk. The deformed Hamiltonian, with inhomogeneous Hamiltonian density in
space, has the form

H1(θ) =
1

2

L−1∑
j=1

fj(θ)c
†
jcj+1 + h.c. (71)

where for simplicity we consider the 1-parameter family of deformed Hamiltonians by choosing
the deformation function fj(θ) = 1− tanh(2θ) · cos 2πj

L
. This deformation is the lattice version

of the deformation in (34) by choosing q = 1 with open boundary conditions. As a remark,
the reason we choose q = 1 in (71) is to maximize the wavelength of deformation and do the
numerics in an efficient way. One can certainly choose a larger q ∈ Z+. In this case, one needs
to take a larger L to make a good comparison with the CFT calculation. For later use, one can

21One reason we mainly focus on the time evolution in a single random sequence is that it takes a long time
to perform ensemble average for a lattice system with a large system size. Nevertheless, in Fig. 19 and Fig. 21,
we show the ensemble-averaged results both at the type I exceptional point and in the heating phase, but with
a smaller system size. The agreement is still remarkable.
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Figure 17: Comparison of the entanglement entropy (left) and the total energy evolution (right)
at the type I exceptional point in lattice simulations and CFT calculations with L = 800. We
consider a single randomly generated driving sequence. The two driving Hamiltonians are H0

and Hθ=0.05 with probability p = 1/2 and 1/2. The driving times are T0/L = Tθ/Leff(θ) = 1/2.

define the effective length of the system as Leff(θ) = L cosh(2θ), which characterizes the total
time that the quasi-particle needs to travel from one end to the other end of the system. [41]

In the following calculations, we will consider the driving protocol 1 as introduced in Sec-
tion 2.2.3. That is, we drive the lattice system randomly with H0(θ = 0) and H1(θ), with fixed
time interval T0 and T1, respectively. The probabilities are chosen as p0 = p1 = 1/2. The
phase diagram of this driven system corresponds to Fig. 3 (by replacing leff with Leff), where
one can observe both heating phases and the type I exceptional point. We will compare the
entanglement/energy evolution both at the exceptional point and in the heating phase in the
following subsections.

3.1 Time evolution of entanglement entropy

The entanglement entropy evolution of the free fermion lattice model can be calculated based
on the Peschel’s method [72]. One can refer to the appendix in Ref. [40] for the details of
calculation of the entanglement entropy and correlation functions in the time-dependent driven
free fermion system. Here we choose the subsystem as A = [0, L/2]. The corresponding CFT
result of the entanglement entropy evolution can be found in (31).

The entanglement entropy evolution for a single randomly generated driving sequence is
compared at the type I exceptional point in Fig. 17 , and in the heating phase off the exceptional
point in Fig. 18 . One can find that the lattice calculations agree with the CFT calculations
very well. We also checked other randomly generated driving sequences, and the agreement is
also remarkable, as expected.

As discussed in Section 2.4.5, there is an interesting case at the type I exceptional point
when the entanglement cuts coincide with the fixed points of operator evolution. This case can
be realized in the lattice system in (70) and (71), by choosing T0/L = Tθ/Leff(θ) = 1/2 and
A = [0, L/2]. In this case, the ensemble-averaged entanglement entropy will oscillate instead of
increasing in time with

E
(
SA(2k)

)
− SA(0) =0, E

(
SA(2k − 1)

)
− SA(0) =

c · θ
3
, k ∈ Z+, (72)
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Figure 18: Comparison of lattice simulations and CFT results for the entanglement entropy
evolution in the heating phase with a single random sequence. Here we choose the same random
sequence as Fig. 17. We take L = 1600 and T0/L− 1/2 = T (θ)/Leff(θ)− 1/2 which equals (a)
0.1, (b) 0.2, (c) 0.3, and (d) 0.4.

where θ is the deformation parameter in (71). Interestingly, this oscillating behavior can be
observed in lattice systems, as seen in Fig. 19. As a remark, this oscillating behavior can not last
for an arbitrarily long time in the lattice system, because the system is keeping absorbing energy
(with energy growing exponentially fast). As discussed in detail in Ref. [42], the agreement
between the CFT and lattice calculations will finally break when the higher energy modes
(which can no longer be described by CFT) in the lattice system are involved.

In the heating phase, the ensemble-averaged entanglement entropy is shown in Fig. 19,
where the numerical calculations agree with the CFT calculations. One can observe that the
entanglement entropy grows linearly in time (up to oscillating features).

3.2 Time evolution of total energy

We also compare the time evolution of the total energy between the lattice systems and
the CFT calculation. In the lattice system, the energy evolution is computed by evaluat-
ing 〈ψ(t)|H0|ψ(t)〉, where |ψ(t)〉 is the time dependent wavefunction. In the CFT calculation,
the energy evolution is evaluated through (33).

We compare the energy evolution both at the type I exceptional point in Fig. 17 (right
plot), and in the heating phase in Fig. 20, for an arbitrarily generated random sequence. One
can find that the agreement is remarkable.

We also compare the ensemble-averaged total energy evolution. For example, for the type I
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Figure 19: Comparison of lattice simulations and the analytical results/CFT results for the
ensemble-averaged entanglement entropy evolution at the type I exceptional point (left) and
in the heating phase (right). Left: T0/L − 1/2 = T (θ)/Leff(θ) − 1/2 = 0, Nsample = 104,
and L = 400. The red solid line is the analytical CFT result in (72). Right: T0/L − 1/2 =
T (θ)/Leff(θ)− 1/2 = 0.1 (top) and 0.3 (bottom), Nsample = 5000, and L = 200.

exceptional point, it is predicted that total energy still grows exponentially in time n. For con-
creteness, for the CFT with open boundary conditions, with the same approach in Section 2.4.2,
one can obtain the analytical result of the energy evolution as follows:

E
(
E(2k − 1)

)
= E

(
E(2k)

)
=
πc

8L
[cosh(2θ)]2k − πc

6L
, where k ∈ Z+, (73)

where θ is the deformation parameter in (71). The comparison of the lattice calculations and the
above exact result can be found in Fig. 21 (left plot), and the agreement is remarkable. Similar
to the entanglement entropy evolution, as we take a longer driving time, here the agreement
between the CFT and lattice calculations will finally break down when the higher energy modes
(which are no longer described by CFT) in the lattice system are involved. [42]

In the heating phase, the comparison of ensemble-averaged total energy evolution can be
found in Fig. 21, where the agreement is also remarkable.

4 Conclusion and discussion

In this work, we have systematically studied the randomly driven CFT in (1+1) dimensions with
SL2 deformations and given a complete classification and characterization of all possible types
of random drivings where the driving Hamiltonians are independent and identically distributed
(i.i.d). The heating phase and (different types of) exceptional points can be determined by
examining whether Furstenberg’s criteria are satisfied or not. In general, the exceptional points
only have zero measure in the parameter space. We characterize the heating phase and different
types of exceptional points by the time evolution of entanglement entropy and energy, and
the distributions of operator evolution and energy-momentum density peaks, with the main
features summarized in Table 1 and Section 1.2. Although we are mainly interested in the
physical phenomena, we hope to emphasize that some physical properties in the randomly driven
CFT can be rigorously proved or discussed based on Furstenberg’s theorems and the related
mathematics. For example, the linear growth of entanglement entropy and the continuous
distribution of operator evolution in the heating phase can be rigorously proven, etc. We also
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Figure 20: Comparison of lattice simulations and CFT results for the total energy evolution in
the heating phase with a single random sequence. Here we choose the same random sequence
and driving parameters as Fig. 18.

study the entanglement/energy evolution in lattice models, and the results agree with the CFT
calculations remarkably well.

Now, we give several comments and discussions in order:

1. Comparison of periodically, quasi-periodically and randomly driven CFTs

In this work and the prior one [39], the general features of periodically, quasi-periodically
and randomly driven CFTs with SL2 deformations have been systematically studied. The
possible phase diagrams under different drivings can be summarized as follows:

Driven CFTs Heating phase Non-heating phase Critical

Periodic
√ √ √

Random
√
∗ × ×

Fibonacci
√

×
√

(74)

where ∗ indicates the presence of exceptional points. It is emphasized that the quasi-
periodic driving in (74) is only for the Fibonacci sequence. There are certainly other
types of quasi-periodic drivings, where one may observe both heating phases and non-
heating phases with phase transitions. [73] In short, it is possible to have non-heating
phases, where the entanglement/energy does not grow in time, in both periodically and
quasi-periodically driven CFTs. On the contrary, there is no non-heating phase in the
randomly driven CFTs, since the total energy still grows exponentially in time even at
the exceptional points.
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Figure 21: Comparison of lattice simulations and the analytical results/CFT results for the
averaged entanglement entropy evolution at the type I exceptional point (left) and in the
heating phase (right). The driving parameters are the same as Fig. 19.

2. Accidental exceptional points in randomly driven CFTs

In this work, we are mainly interested in the ensemble average of the time evolution
of related physical quantities in a randomly driven CFT. Most recently in [53], it was
found that if one considers a single trajectory of random driving that depends on an
additional parameter, there almost surely exist the accidental exceptional points. More
explicit, the accidental exceptional points are searched by tuning the additional parameter
while keeping the random sequence unchanged. Then for each sequence, there can be a
certain parameter where the Lyapunov exponent reaches zero. See Appendix A.5 for the
observation of accidental exceptional points in a randomly driven CFT. We emphasize
that the locations of these accidental exceptional points are sequence dependent and
therefore unpredictable, and hence the name ‘accidental’. From this point of view, the
exceptional points studied in our work are intrinsic, as their locations in the parameter
space can be predicted.

3. Random drivings beyond SL2 deformation

Recently in Refs. [43, 44], the periodically driven CFT with SL2 deformations has been
generalized to the case with arbitrarily smooth deformation, where the underlying alge-
bra is the infinite-dimensional Virasoro algebra. It is still an open question on the fate
of quasi-periodically/randomly driven CFTs with general deformations. For example, in
the random drivings, it is apparent that Furstenberg’s theorem will no longer be appli-
cable with the general deformations. Mathematically, we need a generalized version of
Furstenberg’s theorem. That is, instead of considering random sequences of Möbius trans-
formations, one needs to consider random sequences of circle maps. See, e.g., Refs. [74,75]
for examples of the mathematical studies of random circle maps. If there is a general-
ized version of Furstenberg’s theorem, it is interesting to further ask whether there exist
generalized “exceptional points” and study the properties at these points.

A closely related setup on the general random driving in (1 + 1)d CFTs was recently
studied in Ref. [76], where the initial state is chosen to be a short-range entangled gapped
state (which is approximated by a regularized conformally invariant boundary state), and
the entanglement evolution is dominated by the “EPR” pairs emitted from the initial
state. The effect of random driving is to introduce fluctuations on the linear growth of
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the entanglement entropy, which was found to be related to the Kardar-Parisi-Zhang class
fluctuations. It will be interesting to investigate the net effect of a general random driving
by considering a CFT ground state as the initial state and study the generic features in
the entanglement and energy evolution, etc.

4. Ensemble averaged CFTs

It was recently found that a simple model of gravity in two dimensions (JT gravity) is
dual to a random ensemble of quantum mechanical systems [77]. One may wonder if
something similar happens in higher dimensions, such as the ensemble average of random
CFTs. Recent studies along this direction include the ensemble average of free CFTs over
the moduli space [78, 79]. What we do in randomly driven CFT is to perform random
averaging for the unitaries in the non-equilibrium dynamics, which are not replaceable
by a single quantum quench. We believe the gravity dual of such randomly driven CFTs
will be interesting and deserves a future study.22

5. Other related works on time-dependent driven CFTs

There are certainly other setups of time-dependent driven CFTs besides the one con-
sidered in this work. For example, instead of considering bulk driving, one can consider
boundary driving as in [80–83]. Interestingly, in the setup of moving mirrors in CFTs, the
non-equilibrium dynamics can also be studied based on conformal maps as well [82, 83].
We look forward a connection between our setup and the moving-mirror setup.

Moreover, there is a recent setup on periodically driven perturbed CFTs, where the time-
dependent perturbation is relevant [84]. In this case, the driven system is no longer at
the critical point (which is different from our setup where the system is always critical so
that an exact solution in the whole parameter space exists). Although determining the
phase diagram is a challenging problem in this setup, one can still approach the stable
region and investigate related physical properties when the driving frequency is large.
Furthermore, it is also interesting to compare our setup to the Floquet setups as studied
in AdS4/CFT3 in [85,86]. It will be interesting to ask what is the randomly driven version
of the above stories.

We also want to mention the recent work [87], where the deformed Hamiltonians are used
for the preparation of “a part of an infinite system” on a finite-size quantum simulator. In
particular, the deformed Hamiltonian can effectively “cool” the bulk to zero temperature.
In a forthcoming work, we will show such cooling effect can be exactly studied in (1 + 1)d
CFTs.
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A Basics of Furstenberg’s theorem in randomly driven

CFTs

In this appendix, we introduce some basics of Furstenberg’s theorem and its application in
randomly driven CFTs. There are many useful review materials on Furstenberg’s theorem and
their applications, e.g. [51] and [52].

A.1 Preliminaries

Fursbenberg’s theorem (see Section 1.1) on random products of SL(n,R) matrices can be applied
to randomly driven CFTs, because SU(1, 1) is isomorphic to SL(2,R). A quick way to see the
isomorphism is through the following 1-to-1 map from SL(2,R) to SU(1, 1)(

a b
c d

)
7→
(
α β
β∗ α∗

)
=

(
(a+d)+i(b−c)

2
(a−d)−i(b+c)

2
(a−d)+i(b+c)

2
(a+d)−i(b−c)

2

)
= Q

(
a b
c d

)
Q−1, (75)

where a, b, c, d ∈ R with ad− bc = 1 and consequently |α|2−|β|2 = 1. Here Q = 1√
2

(
1 −i
1 i

)
is

a unitary matrix and geometrically corresponds to the Cayley transform: SL(2,R) group acts
on upper half plane H = {z = x + iy, x, y ∈ R, y > 0} via the linear fractional transformation
(in this case, the Möbius transformation) z 7→ az+b

cz+d
while SU(1, 1) group acts on the unit

disk D = {w ∈ C, |w| < 1} via the linear fractional transformation w 7→ αw+β
β∗w+α∗ . These

two group actions are related via the Cayley transform Q : w = z−i
z+i

that maps the upper
half plane H to the unit disk D. It is also straightforward to extend the group actions to
the boundaries ∂H and ∂D. In the random products of SL(2,R) matrices, one usually needs
to consider the action of g ∈ SL(2,R) on the unit vector ~x = (x1, x2)T ∈ RP1, with the

expression g~x =

(
a b
c d

)(
x1

x2

)
=

(
ax1 + bx2

cx1 + dx2

)
. One can first map the unit vector to the

real axis as π(~x) = x1/x2 if x2 6= 0, and π(~x) = ∞ if x2 = 0. Then g~x can be mapped
to the action of g ∈ SL(2,R) on the boundaries ∂H := {z = x + iy, x, y,∈ R, y = 0} as
g · z = π (g · π−1(z)) = az+b

cz+d
, which is the Möbius transformation introduced above.

It is known there are three types of SU(1, 1) matrices as follows. Let M ∈ SU(1, 1) be
different from ±I. Then M is elliptic if Tr(M) ∈ (−2, 2), parabolic if Tr(M) = ±2, and
hyperbolic if Tr(M) ∈ (−∞,−2) ∪ (2,∞). If M(z) = z, we will say z is the fixed point of M .
On the unit circle ∂D where ∂D := {z ∈ C, |z| = 1}, there is one fixed point for the parabolic
matrix, and two fixed points for the hyperbolic matrix. For the elliptic matrix, the two fixed
points are not on the unit circle ∂D. The distribution of fixed points for different types of
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SU(1, 1) matrices can be visualized as follows:

γ2

γ1

elliptic

γ1 = γ2

parabolic

γ2

γ1

hyperbolic
(76)

For example, if M ∈ SU(1, 1) is hyperbolic, then one has M(γ1,2) = γ1,2, where γ1,2 ∈ ∂D. In
addition, one fixed point is stable and the other is unstable. Suppose γ1 is stable and γ2 is
unstable, then for arbitrary z ∈ ∂D and z 6= γ2, one has limn→∞M

n(z)→ γ1.
Moreover, if M ∈ SU(1, 1) is elliptic, there exists V ∈ SU(1, 1), so that there exists a

similarity transformation M = V UV −1, where U = diag(eiθ, e−iθ) is diagonal and unitary. If
M is hyperbolic, there exist V ∈ SU(1, 1) so that M = V Px,φ=0V

−1, where

Px,φ =

(
cosh(x) eiφ sinh(x)

e−iφ sinh(x) cosh(x)

)
, with x, φ ∈ R. (77)

Note that Px,φPy,φ = Px+y,φ, and Px,φ = V Px,φ=0V
−1, where V = diag(ei

φ
2 , e−i

φ
2 ).

In the following, we introduce some basic properties of the random products of SL(2,R) (and
therefore SU(1, 1)) matrices. We begin with the seminal result of Furstenberg and Kesten [88].

Theorem A.1. Let Y1, · · · , Yn be i.i.d. matrices in SL(2,R). There exist real numbers λ+ and
λ− such that

lim
n→∞

1

n
log ||Yn · · ·Y1|| = λ+ and lim

n→∞

1

n
log ||(Yn · · ·Y1)−1||−1 = λ− (78)

with probability 1.

The numbers λ+ and λ− are called extremal Lyapunov exponents. For arbitrary M ∈
SL(2,R), since ||M || > 1 > ||M−1||−1, then we have λ+ > 0 > λ−. The extremal Lyapunov
exponents λ+ and λ− may be viewed as functions of the data M1, · · · ,Mm; p1, · · · , pm where
Mi ∈ SL(2,R) and pi are probabilities with p1 + · · · + pm = 1. The probability vectors
(p1, · · · , pm) can vary in the open simplex

∆m = {(p1, · · · , pm) : p1 > 0, · · · , pm > 0, p1 + · · · pm = 1}.

Then we have the following theorem [71]

Theorem A.2. The extremal Lyapunov exponents λ± depend continuously on (M1, · · · ,Mm;
p1, · · · , pm) ∈ SL(2,R)m ×∆m at all points.

Based on the above theorem, one can prove rigorously that the distribution of Lyapunov
exponents in, e.g., Fig. 5, is continuous.
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Next, in Furstenberg’s theorem (see Theorem 1.1), one needs to consider the strongly ir-
reducible property, essentially, how the randomly chosen matrices act on the vectors in Rd.
Denote the projective space P (Rd) or RPd−1 as the set of directions (or unit vectors) in Rd.
Then given a subgroup Gµ ⊂ SL(d,R), we say that Gµ is strongly irreducible if there does not
exist a finite set V ∈ RPd−1 such that M(V ) = V for any M ∈ Gµ. In our randomly driven
CFTs, the time evolution of operators is governed by SU(1, 1) matrices rather than SL(2,R)
matrices. In this case, the strongly irreducible condition can be rephrased in terms of how
M ∈ SU(1, 1) acts on the points in ∂D, as described in Section 1.1.

Now, we provide a supplementary discussion on the invariant measure. As discussed in
Section 2.3.3, the invariant measures correspond to the distribution of operator evolution in
the long time limit. In fact, the invariant measure is directly related to the Lyapunov exponent
through the following theorem.

Theorem A.3. Let {Mn, n > 1} be a sequence of i.i.d. matrices in SL(2,R) with the distribu-
tion µ. Suppose that Furstenberg’s criteria are satisfied, and if v is the µ-invariant distribution
on RP1, then the Lyapunov exponent can be expressed as:

γ =

∫ ∫
log
||Mx||
||x||

dµ(M) dν(~x). (79)

In addition, from Theorem 2.5, it is known that if Furstenberg’s criteria are satisfied, then
the operator evolution converges to a Dirac measure in a single random sequence. On the
contrary, the convergence of the distribution of operator evolution to a Dirac measure only
implies the norm growth (not necessarily in an exponential fashion) : [51]

Lemma A.4. Let ν ∈M(∂D) be continuous, and let Πn = M1 · · ·Mn be a sequence in SU(1, 1)
such that Πnν → δ(z − z∗) where z∗ ∈ ∂D. Then limn→∞ ||Πn|| → ∞.

In the main text, we use Furstenberg’s theorem and related theorems to rigorously prove
some physical properties in the heating phase, as summarized below:

1. Theorem 1.1 → Provide the criteria to determine the heating phase and exceptional
points.

2. Theorem 2.3 → The entanglement entropy grows linearly in time as E(SA(n)) ≈ λL·c
3
n.

3. Theorem 2.5 → The operator position approaches a certain stable fixed point in the long
time limit in a single random driving sequence.

4. Theorem 2.5 and Lemma 2.4→ The ensemble-averaged distribution of operator evolution
must be continuous in space.

5. Theorem A.2→ The Lyapunov exponents (and therefore the growth rate of entanglement
entropy) are continuously distributed in the parameter space.
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A.2 Common invariant measures at the exceptional points

In this appendix, we study the common invariant measures at different types of exceptional
points. Let us first consider the simplest case, i.e., the invariant measure of a single M ∈
SU(1, 1). Given M ∈ SU(1, 1) and a probability measure ν on ∂D, we say that ν is M -
invariant if and only if M(ν) = ν. For example, if M ∈ SU(1, 1) is hyperbolic, then ν =
{λδ(z − eiθ0) + (1− λ)δ(z − eiθ1)

∣∣λ ∈ [0, 1]}, where eiθ0 and eiθ1 are the two fixed points of M .
In the following theorem, we list the invariant measures for different types of SU(1, 1)

matrices. The proof can be found in Ref. [54].

Theorem A.5. Let M ∈ SU(1, 1), then

1. If M is hyperbolic, the invariant measures are precisely the convex combinations of the
point masses at the two fixed points of M . That is, the M-invariant measure is ν =
{λδ(z − eiθ0) + (1 − λ)δ(z − eiθ1)

∣∣λ ∈ [0, 1]}, where eiθ0 and eiθ1 are the two fixed points
of M .

2. If M is parabolic, the unique invariant measure is the point mass at M ’s unique fixed
point. That is, the M-invariant measure is ν = δ(z − eiθ0), where eiθ0 is the unique fixed
point of M .

3. If M is elliptic and the eigenvalues of M are not roots of unity, then M has a unique
invariant measure described as follows. If (1, reiϕ)T with r < 1 is an eigenvector of M ,
the invariant measure is Pr(θ,−ϕ) dθ

2π
where Pr is the Poisson kernel. 23

4. If M is elliptic and the eigenvalues of M are roots of unity, let n be the smallest integer
so that Mn = I or −I. Let θ0 = 0, θ1, · · · , θn−1 be a reordering of {ϕ|ϕ = M j(1), j =
0, 1, · · · , n− 1} so that 0 = θ0 < θ1 < · · · < θn−1 < 2π. Let ω be an arbitrary probability
measure on [θ0, θ1). Then ν = 1

n

∑n−1
j=0 M

j(ω) is M-invariant.

Based on the above theorem, one can further consider the common invariant measure of MA

and MB, i.e., I(MA) ∩ I(MB), where I(M) denotes the M -invariant measure as introduced
in the above theorem. More concretely, the common invariant measure of MA and MB are
determined as follows. [54]

Theorem A.6. Let MA, MB ∈ SU(1, 1) be distinct and different from ±I. Suppose also
MA 6= −MB. Then the common invariant measure I(MA) ∩ I(MB) 6= ∅ if and only if

1. when MA and MB are both reflection matrices. In this case I(MA) ∩ I(MB) is always
nonempty and has a single element 1

2
δ(z − eiθ0) + 1

2
δ(z − eiθ1), where eiθ0 and eiθ1 are the

two fixed points for MC = MAMB, which is always hyperbolic.

2. when MA is non-elliptic and MB is elliptic, if and only if MA is hyperbolic, MB is a
reflection matrix, and MB permutes the two fixed points of MA. In this case, I(MA) ∩
I(MB) is then {1

2
δ(z − eiθ0) + 1

2
δ(z − eiθ1)} where eiθ0 and eiθ1 are the two fixed points of

MA.

23The Poisson kernel is defined as Pr(θ, ϕ) = 1−r2
1−2r cos(θ−ϕ)+r2 .
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3. when MA and MB are both non-elliptic, if and only if MA and MB have a common fixed
point. More concretely, I(MA)∩I(MB) 6= ∅ is either {δ(z− eiθ0)} if MA and MB have a
single common fixed point eiθ0, or {λδ(z − eθ0) + (1− λ)δ(z − eiθ1)

∣∣λ ∈ [0, 1]} if MA and
MB have a pair of common fixed points eiθ0 and eiθ1. In the later case, both MA and MB

are hyperbolic and they commute with each other.

4. when MA and MB are both elliptic and at least one is not a reflection matrix, if and only
if MA and MB commute.

Based on the above theorem, one can classify different types of exceptional points where
Furstenberg’s criteria are no longer satisfied. See Section 2.2 for details. Furthermore, it
turns out the common invariant measures at type I/II exceptional points correspond to the
distribution of operator evolution and energy density peaks in the long driving limit n → ∞
(See Section 2.4).

A.3 Equivalence between type I and type II exceptional points

In this appendix, we show that type I and type II exceptional points as defined in Section 2.2.1
are equivalent to each other. Let us consider the case that the subgroup Gµ ⊂ SU(1, 1) is
generated by two non-commuting matrices MA and MB. Generalization to the case with more
than two generating matrices is straightforward.

First, we show that for an arbitrary type I exceptional point, there is a corresponding type
II exceptional point. Consider MA and MB as the two non-commuting reflection matrices in a
type I exceptional point. The corresponding generating matrices in type II exceptional point
can be chosen as MC and MA (or MB), where MC = MAMB is always a hyperbolic matrix.
Now we show that MA (or MB) switches the two fixed points of MC , which are denoted as
eiθ1 and eiθ2 , respectively. Here eiθ1,2 are fixed points of MC indicates that MC(eiθ1) = eiθ1 and
MC(eiθ2) = eiθ2 . It is noted that M2

A = M2
B = −I, based on which one can find M−1

C = MBMA,
MAMCM

−1
A = M−1

C , and MBMCM
−1
B = M−1

C . Since eiθ1,2 are also fixed points of M−1
C , then

we have M−1
C (eiθ1) = MAMCM

−1
A (eiθ1) = eiθ1 , based on which we can obtain MC(M−1

A (eiθ1)) =
M−1

A (eiθ1). Since MA is a reflection matrix, which does not have a fixed point, then we can
only have M−1

A (eiθ1) = eiθ2 , or MA(eiθ2) = eiθ1 . Similarly, one has MA(eiθ1) = eiθ2 . That is,
MA switches the two fixed points of the hyperbolic matrix MC . Therefore, the random driving
with generating matrices MC and MA corresponds to the type II fixed point.

Second, we show that for an arbitrary type II exceptional point, there is a correspond-
ing type I exceptional point. For simplicity, let us first choose the hyperbolic matrix of the
form MC = Px,φ=0 in (77), such that the two fixed points correspond to eiθ1,2 = ±1. The
allowed reflection matrix that can permute these two fixed points can only be of the form

MA =

(
i cosh θ ±i sinh θ
∓i sinh θ −i cosh θ

)
. In this case, one can check explicitly that MB := MC ·M−1

A =(
−i cosh(x∓ θ) i sinh(x∓ θ)
−i sinh(x∓ θ) i cosh(x∓ θ)

)
is also a reflection matrix. Next, let us consider the general

hyperbolic matrix M̃C , which can be expressed as M̃C = V Px,φ=0V
−1 = VMCV

−1 according
to (77), where V ∈ SU(1, 1). Then the allowed reflection matrix that permutes the two eigen-

vectors of M̃C are of the form: M̃A = V · MA · V −1. Then one can check that the matrix
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Figure 22: Left (top): Trajectories of operator evolution (ei
2πxn
l ) in a single random driving

sequence. We choose 20 different initial positions homogeneously distributed on the circle. Left

(bottom): The trajectory of energy density peaks ei
2πxpeak

l in a single random sequence. We
choose ∆T/leff = 0.01. The driving protocol and other parameters are the same as those in
Fig. 7. Right: A sample plot of group walking of ρ in a randomly driven CFT. In the long time
driving limit n→∞, ρ will approach a certain stable fixed point on ∂D exponentially fast.

M̃B := M̃C · M̃−1
A are of the form M̃B = V ·MCM

−1
A · V −1 = V ·MB · V −1, which is always

a reflection matrix. 24 In other words, for each type II exceptional point, one can find the
corresponding type I exceptional point that is generated by two reflection matrices.

Therefore, we have shown that type I and type II exceptional points are equivalent to each
other, in the sense that they can be generated by the same subgroup Gµ ⊂ SU(1, 1).

A.4 Invariant measure and operator evolution in the heating phase

In this appendix, we describe the procedures to obtain the invariant measure in the heating
phase. Based on Theorem 2.5 and Lemma 2.4, this invariant measure corresponds to the
distribution of operator evolution in the long time driving limit. Therefore, we just need to
study the distribution of operator evolution as n→∞.

As seen in Fig. 22, one considers operators that are uniformly distributed on the circle with
coordinates e

2πix
l . Then the operators evolve under a random driving. Since Furstenberg’s

criteria are satisfied, the operators will finally flow to a stable fixed point. It is noted that the
location of this stable fixed point is randomly distributed. Based on Theorem 2.5 and Lemma
2.4, one can find the ensemble average of these stable fixed points are continuous, which are the
same as the invariant measure. For example, one can refer to Fig. 9 for an ensemble average of
the stable fixed points of operator evolution.

The stable fixed point of operator evolution reflects the structure of random products of
SU(1, 1) matrices. This is related to property (i) of Theorem 2.5. One can refer to Appendix
B.3 for more details.

As a comparison, we also show the trajectory of the energy density peaks in the random

24If M is reflection matrix, then VMV −1 where V ∈ SU(1, 1) is also a reflection matrix, since Tr(VMV −1) = 0
and (VMV −1)2 = −I.
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Figure 23: Distribution of Lyapunov exponents obtained from ensemble average (black circles)
and in a single random sequence (red solid line) where the random sequence is kept the same
for different driving parameters ∆T/leff. The driving protocol and parameters are the same as
the left plot in Fig. 5, with θ = 0.25.

driving. In contrast to the operator evolution, the locations of the energy density peaks keep
changing (See Fig. 22). Interestingly, the ensemble average of energy density peaks are contin-
uous and seem to be related to the distribution of operator evolution, as seen in Fig. 9.

A.5 Accidental exceptional points

The existence of accidental exceptional points was recently studied in Ref. [53]. In the random
driving, one introduces an additional parameter. That is, by fixing the same random sequence,
one changes the driving parameter continuously. In this case, it is shown in Ref. [53] that there
almost surely exist the accidental exceptional points, where the Lyapunov exponents could drop
to zero.

This phenomenon can be observed in a randomly driven CFT. As seen in Fig. 23, we drive
the CFT randomly with two Hamiltonians H(θ = 0) and H(θ 6= 0) with probabilities 1/2
and 1/2. By fixing the same random sequence, and changing the driving parameter ∆T/leff =
Tθ/lθ,eff− 1/2 continuously, one can observe that the Lyapunov exponents λL may drop to zero
at certain points. It is emphasized that the locations of these accidental exceptional points
are not predicted. In other words, by choosing another random sequence, the distribution of
accidental exceptional points will change accordingly. This is different from the “intrinsic”
exceptional points as discussed in the main text.

B More on entanglement entropy evolution and others

In this appendix, we present more details on the features of entanglement entropy and energy
evolution in the heating phase and at the exceptional points.
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B.1 Entanglement entropy evolution

In this appendix, we give a derivation of the entanglement entropy evolution of subsystem
A = [x1, x2] in a randomly driven CFT.

We start from the two-point correlation function 〈Ψn|O(x1)O(x2)|Ψn〉, where |Ψn〉 is the
wavefunction after n steps of driving and O(x) is a general primary field with conformal di-
mension (h, h). Here O(xi) is defined on the spacetime cylinder. We do the computation in the
imaginary time and thus use the coordinate w = τ + ix. Let us consider a conformal mapping
z = e

2πqw
L = e

2πw
l to map the w-cylinder to the q-sheet z-Riemann surface (see Fig. 2), on

which the operator evolution of O(z1) and O(z2) is determined by Eq.(23). Next, we map the
q-sheet z-Riemann surface to the complex ζ-plane via a conformal mapping ζ = z1/q, and one
can obtain

〈Ψn|O(w1, w1)O(w2, w2)|Ψn〉 =
∏
i=1,2

(
∂ζi
∂wi

)h ∏
i=1,2

(
∂ζ i
∂wi

)h
〈O(ζ1, ζ1)O(ζ2, ζ2)〉ζ (80)

where wj = 0 + ixj. The above equation can be explicitly evaluated in terms of the SU(1, 1)
matrix elements in Πn in (24). It is a product of the holomorphic and anti-holomorphic parts.
For example, the contribution of the holomorphic part in Eq.(80) can be expressed as(

2π

L

)2h

· zh1
(β∗nz1 + α∗n)2h

· zh2
(β∗nz2 + α∗n)2h

·
(
αnz1 + βn
β∗nz1 + α∗n

)( 1
q
−1)h(αnz2 + βn

β∗nz2 + α∗n

)( 1
q
−1)h

·

[(
αnz1 + β

β∗nz1 + α∗n

) 1
q

−
(
αnz2 + β

β∗nz2 + α∗n

) 1
q

]−2h

,

(81)

where zi = e
2πwi
l . The contribution of the anti-holomorphic part can be obtained by replacing

αn → α′n, βn → β′n and zi → zi in the above equation. Noting that z lives on a q-sheet Riemann
surface (see Fig. 2), one should be careful when evaluating Eq.(81), by tracking if zi cross the
branch cuts and move from one layer to another. This is subtle but important especially when
the system is in a heating phase. The relative distance between z1 and z2 will depend on
whether there are energy-momentum density peaks between them [42].

Then the m-th Renyi entropy evolution of subsystem A = [x1, x2] can be obtained based on
Eqs.(80) and (81), by studying the correlation function of twist operators:

S
(m)
A (n) =

1

1−m
log 〈Ψn|Tm(x1)T m(x2)|Ψn〉, (82)

where the twist operators Tm (T m) are primary operators with conformal dimensions h = h =
c

24
(m− 1

m
). The entanglement entropy of subsystem A can be obtained as SA = limm→1 S

(m)
A .

For example, let us take A = [kl+ δ, (k+ 1)l+ δ] where 0 6 δ < l and k ∈ Z. With this choice,
the subsystem A is in

SA(n)− SA(0) =
c

3

(
log
∣∣αn · e 2πiδ

l + βn
∣∣). (83)

For δ = l/2, the above result reduces to (25). For δ = 0, the expression is also very simple,
with SA(n)− SA(0) = c

3

(
log
∣∣αn + βn

∣∣).
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Figure 24: A sample plot of entanglement entropy evolution in the heating phase without
performing ensemble average. The driving protocol and parameters are the same as Fig. 7,
with ∆T/leff = 0.1.

In Section 2.3.1 in the main text, we have proven that in the heating phase of a randomly
driven CFT, for arbitrary choices of δ, the entanglement entropy of subsystem A = [kl +
δ, (k + 1)l + δ] will grow as SA(n) − SA(0) = c

3
· λS · n for n → ∞. In particular, one has

λS = λL. As an illustration, we give a sample plot of the entanglement entropy evolution in a
single random sequence in Fig. 24. The ensemble-averaged time evolution of the entanglement
entropy, logarithmic of norm growth, and the energy of the driven system can be found in
Fig. 25. One can observe that λS = λL and λE 6= λL.

B.2 Phase diagram including type II exceptional points

In this appendix, we give an example of phase diagram that contains type II exceptional points.
These exceptional points form a line in the parameter space.

Let us consider the driving protocol 1 as introduced in Section 2.2.3, i.e., there are two
randomly chosen Hamiltonians H0 and H1. To observe type II exceptional points, we require
one driving Hamiltonian is elliptic (say, H0) and the other is hyperbolic (H1). Denoting the
corresponding SU(1, 1) matrices as M0(T0/l0,eff) and M1(T1/l) respectively, then it is known
that M0 becomes reflection at T0/l0,eff = 1/2. To have type II exceptional points, it is required
that the reflection matrix M0 can permute the two fixed points of M1. Depending on whether
this permutation exist or not, one can find that the phase diagrams will be one of the two cases
as follows:

T1/l

T0/l0,eff

No exceptional line

1/2 10

T1/l

T0/l0,eff

Exceptional line

1/2 10
(84)
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Figure 25: Averaged entanglement entropy evolution 3E(SA(n)) (green solid lines) and the
total energy evolution1

2
logE(E(n)) (red dashed lines), and E(log ||Πn||) (blue dotted lines) in

the heating phase. The slopes of the above mentioned three lines correspond to λS, λE, and
λL respectively. The driving protocol as well as the driving parameters are the same as those
in the left plot of Fig. 5. We choose ∆T/leff = 0.1 (left) and 0.25 (right) respectively, θ = 0.2,
and Nsample = 5× 105 here.

That is, if M0(T0/l0,eff = 1/2) cannot permute the two fixed points of the hyperbolic matrix
M1, then there are only heating phases, as shown in the left of (84). On the other hand, if
M0(T0/l0,eff = 1/2) permutes the two fixed points of the hyperbolic matrix M1, then there are
type II exceptional points which form lines along T0/l0,eff = n + 1/2 where n ∈ Z, as shown
in the right plot of (84). Anywhere away from these lines will be in the heating phases where
Furstenberg’s criteria are satisfied.

As an illustration, we consider a concrete example with type II fixed points in the phase
diagram. For H0, we choose σ+ = σ− = 0 and σ0 = 1 in (5). For H1, we choose σ0 = σ− = 0
and σ+ = 1 in (5). In this case, the hyperbolic SU(1, 1) matrix M1 in (21) has the expression
with α = cosh

(
πT
l

)
and β = i sinh

(
πT
l

)
. We choose H0 and H1 randomly with probabilities

p0 = p1 = 1/2. The distribution of λL can be found in Fig. 26, where one can observe a line
of exceptional points along T0/l0,eff = 1/2. Similar to the type I exceptional points, the type II
exceptional points can be detected by λL (or λS) that characterize the entanglement growth,
but cannot be detected by λE which characterize the total energy growth (See the definition in
(13)), as shown in the right plot of Fig. 26.

Now let us take a further look at the scaling behavior of λL, which equals λS, near the
type II exceptional points. As shown in Fig. 27, by fixing T1/l in Fig. 26, one can find that
λL ∝ (T0/l0,eff − 1/2)α with the fitting parameter α = 0.2. This value is close to the fitting
parameter α = 0.19 near the type I exceptional point in Fig. 6.

Furthermore, as seen in Fig. 27 (right plot), we also check the ensemble-averaged entangle-
ment entropy growth at the type II exceptional point. One can observe that E(SA(n)) grows
as
√
n for large n, which has the same feature as the type I exceptional point. This is as

expected since we have shown that type I and type II exceptional points can be mapped to
each other (See Appendix A.3). More concretely, along the line T0/l0,eff = 1/2 in (84), one has

M0 =

(
i 0
0 −i

)
, and M1 =

(
cosh πT1

l
i sinh πT1

l

−i sinh πT1
l

cosh πT1
l

)
. Now we denote the smallest subgroup

generated by {M0,M1} as Gµ. Then Gµ is also generated by {MA, MB}, where MA := M1M0
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Figure 26: Left: Distribution of Lyapunov exponents λL. We drive the CFT randomly with H0

and H1. For H1, we choose σ0 = σ− = 0 and σ+ = 1 in (5). For H0 we choose σ+ = σ− = 0
and σ0 = 1 in (5). The probabilities are p0 = p1 = 1/2. See also (84) for the schematic plot
of the phase diagram. We take Nsample = 5 × 103. Right: Comparison of λL and λE/2 along
T1/l = 0.07 in the left plot. λE are obtained by taking Nsample = 5× 104.

and MB := M0. One can find that MA and MB are the same as (45) at type I exceptional
points, by identifying ϕ = πT1

l
and setting φ = 0. But it is noted that the detailed features of

entanglement entropy evolution at type I and type II exceptional points can be quantitatively
different, although both grow as

√
n when n is large. This is straightforward to understand

because a random driving with M0 and M1 with probabilities p0 and p1 at type II exceptional
point is not exactly the same as the random driving with MA and MB with certain probabilities
pA and pB at type I exceptional point.

B.3 Group walking

In this appendix, we provide an intuitive way to understand the distribution of operator evo-
lution in the randomly driven CFT.

As introduced in our prior work [39], the group walking in Πn = M1 ·M2 · · ·Mn determines
the time evolution of entanglement/energy. More concretely, we consider another general form
of a SU(1, 1) matrix as 25

M(ρ, ζ) =
1

Nρ

( √
ζ −ρ∗ 1√

ζ

−ρ
√
ζ 1√

ζ

)
, ρ ∈ D, ζ ∈ ∂D, (85)

where Nρ =
√

1− |ρ|2. Here we have defined the unit disk as D := {z ∈ C, |z| < 1}, and the
edge of the disk as ∂D := {z ∈ C, |z| = 1}. For the group walking, we mean the evolution of the
parameters ρ and ζ (or their combinations) in Πn. In this appendix, we are mainly interested
in the group walking of ρ, which is related to Theorem 2.5 and the operator evolution.

In the property (i) of Theorem 2.5, it is stated that if Furstenberg’s criteria are satisfied,
then for any z ∈ D, M1M2 · · ·Mn · z converges to a certain z• ∈ ∂D as n→∞. This property

25More precisely, this parametrization (ρ ∈ D, ζ ∈ ∂D) of matrix Π only covers the SU(1, 1)/Z2, to obtain
the full SU(1, 1) group, one need to let ζ live on the double cover of the boundary circle. However, our physical
quantities are obtained from the Möbius transformation rather than the SU(1, 1) matrix directly, the former is
indeed isomorphic to the Z2 quotient of the latter, namely SU(1, 1)/Z2 and agrees with our parametrization.
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Figure 27: Left: Scaling of λL near the type II exceptional point in Fig. 26. From top to bottom,
we have T1/l = 0.09, 0.08, 0.07, 0.06, and 0.05 (see Fig. 26). The solid red lines are fittings
with y ∝ x0.2. Right: The ensemble-averaged entanglement entropy at the type II exceptional
point with T0/l0,eff = 1/2 and (from top to bottom) T1/l = 0.09, 0.08, 0.07, 0.06, 0.05, and
0.04. The red dashed line is a guiding line with y ∝

√
x.

actually tells us the behavior of group walking in SU(1, 1) matrix Πn in (8). By simply choosing
z = 0, one has

lim
n→∞

M1M2 · · ·Mn · z = lim
n→∞

Πn · z = lim
n→∞

βn
α∗n

=: − lim
n→∞

ρ∗n = z• ∈ ∂D. (86)

That is, in the long time driving limit, βn/α
∗
n will approach a certain stable value, which is

independent of n.
A sample plot of the group walking of ρn can be found in Fig. 28. In the heating phase where

∆T/leff 6= 0, ρn will approach a certain stable point at ∂D.26 For different random sequences,
the locations of these stable points are different. As discussed near Theorem 2.5, the locations
of these random stable fixed points correspond to the locations of operator evolution.

There are several interesting features we want to point out:

1. At the type I exceptional point (where ∆T/leff = 0), ρn will walk to ∂D only at two points,
which are z = 1 and −1 in Fig. 28. This is different from the heating phase where ρn
walks to ∂D randomly with a continuous distribution. The group walking feature at the
exceptional point is related to the ensemble-averaged distribution of operator evolution
νO = 1

2
δ(z − eiθ0) + 1

2
δ(z − eiθ1) [See Eq.(58)]. For the parameter in Fig. 28, one has

eiθ0 = 1 and eiθ1 = −1.

2. At the exceptional point (where ∆T/leff = 0) and the trivial point (where ∆T/leff = 1/2),
although λL = 0 in both cases, the features of group walking are totally different. In the
later case, there is no nontrivial group walking of ρn, i.e., ρn stays at the origin.

3. For the group walking of ρn near the exceptional point and near the trivial point, their
features are different. For example, the trajectories of ρn are approximately large arcs near

26For comparison, we plot the group walking with a finite number of driving steps. For those driving param-
eters with small λL, one needs to consider more driving steps to observe ρn arriving at a certain fixed point at
∂D,
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Figure 28: Trajectory of ρn on the unit disk D with n = 200 steps of random driving. The
driving protocol and parameters are the same as those in Fig. 7. We choose θ randomly
distributed in [0, 0.2]. From left to right (and then top to bottom), we choose ∆T/leff :=
Tθ/lθ,eff − 1/2 = 0, 0.0005, 0.01, 0.1, 0.25, 0.4, 0.48, and 0.5, respectively. The number of
random samples are Nsample = 10.

the exceptional point; while they mainly circle around the origin near the trivial point.
We believe these different features in group walking, which are intuitive, are related to
the different scaling behaviors of λL in Fig. 6.

As a remark, besides the group walking of ρn which are related to the distribution of operator
evolution, one can also consider the group walking of ρnζn in (85). As discussed in [39], the
group walking of ρnζn are related to the distribution of the locations of energy-momentum
density peaks.
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