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Abstract

The interplay of non-Fermi liquid and superconductivity born out of strong dynamical
interactions is at the heart of the physics of unconventional superconductivity. As a solv-
able platform of the strongly correlated superconductors, we study the pairing insta-
bilities of the Yukawa-Sachdev-Ye-Kitaev (Yukawa-SYK) model, which describes spin-1/2
fermions coupled to bosons by the random, all-to-all, spin independent and dependent
Yukawa interactions. In contrast to the previously studied models, the random Yukawa
couplings are sampled from a collection of Gaussian ensembles whose variances follow
a continuous distribution rather than being fixed to a constant. By tuning the analytic
behavior of the distribution, we could control the fermion incoherence to systematically
examine various normal states ranging from the Fermi liquid to non-Fermi liquids that
are different from the conformal solution of the SYK model with a constant variance. Us-
ing the linearized Eliashberg theory, we show that the onset of the unconventional spin
triplet pairing is preferred with the spin dependent interactions while all pairing chan-
nels show instabilities with the spin independent interactions. Although the interactions
strongly damp the fermions in the non-Fermi liquid, the same interactions also dress the
bosons to strengthen the tendency to pair the incoherent fermions. As a consequence,
the onset temperature T, of the pairing is enhanced in the non-Fermi liquid compared
to the case of the Fermi liquid.

Contents

1 Introduction 2
2 Model 3
3 Schwinger-Dyson Equations 5
4 Normal State Analysis 6
5 Pairing Instabilities of Fermi and Non-Fermi Liquids 8
6 Conclusion 10
A Derivation of the Effective Action 11
References 14




33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

SciPost Physics Submission

1 Introduction

Understanding unconventional superconductivity of strongly correlated electrons is a long
standing goal of modern condensed matter physics [1-10]. It is generally believed that dy-
namical interactions mediated by collective charge or spin fluctuations are responsible for the
Cooper pairing in the correlated superconductors [11,12]. Major challenges of the problem
come from the emergence of non-Fermi liquid normal states due to the same dynamical in-
teractions [13-18]. Since both superconductivity and non-Fermi liquid are stabilized by the
same physical origin, systematic investigations of two competing effects are necessary [ 19-22].
However, strongly coupled nature of the problem makes it difficult to draw concrete theoretical
conclusion as no small parameter exists to control the theory perturbatively.

In this work, we circumvent such difficulty by examining a variant of the Sachdev-Ye-Kitaev
(SYK) model [23-27], so called the Yukawa-SYK model [28-31], which is exactly solvable and
supports non-Fermi liquid ground states. While the previously studied models use the fixed
variance of the random coupling, we introduce a continuous distribution of variances. The
model consists of N number of fermions (c;—; __y) strongly coupled to M number of bosons
(¢pr=1,..,m) via the random all-to-all Yukawa couplings (g;; «):

N M
Hiy = Zzgi]‘,kci’aaiﬁcjﬁ¢k, (D

i,j=1k=1

where o¢ is the Pauli matrix acting on the spin space a, 8 =T, |, and the summation is assumed
for the repeated Greek indices. Physically, the scalar bosons b represent the collective charge
(or spin) fluctuations of the fermion bilinear Zl i CiaCia (or Z cl N aﬁ ]ﬂ). The recurring
theme of the SYK model and its variants is that the disorder averagmg over the random cou-
pling constants (g;; ) suppresses almost all quantum fluctuations except one or few families
of the Feynmann diagrams in the large M and N limits [23, 24, 32]. With those handful num-
ber of the diagrams, we can solve the model self-consistently and identify the leading pairing
instabilities without any perturbative approximations.

It is important to note that the Yukawa-SYK model is defined by not only the Hamiltonian
but also the statistical properties of the random couplings (g;; ). Most of previous studies on
various families of the SYK model focused on the random couplings with zero mean (g;; ; = 0)

and constant variance ((g;;)? = A) [26-31,31,33-38]. However, we can also consider the

random couplings whose variances obey a well-defined distribution, i.e., (g;; x)? = A4 has the
k dependence such that the set of the variances {A;} forms a continuous distribution p(A)
in the large M limit. Pioneering work on the low-rank SYK models [39], which are equiva-
lent to the Yukawa-SYK models with the extensive (M /N ~ (O(1)) number of nondynamical
massive bosons, first notices the significance of the distribution p(A); depending on the sin-
gular behavior of the distribution p(A) near the maximum variance A, the low-rank SYK
models show rich variety of the low energy states ranging from the Fermi liquid to non-Fermi
liquids [39,40]. By tuning the distribution p(A), we can systematically control the fermion in-
coherence and push the system toward the non-Fermi liquid. Therefore the current variant of
the Yukawa-SYK model is an excellent solvable platform to examine the interplay of non-Fermi
liquid and superconductivity with the distribution p(A) as a theoretical handle to control the
incoherence of fermions.

While the flourishing papers discussed the SYK superconductivity, they focused on the
fast scrambling conformal solution of the SYK model (and its variants) with a fixed constant
variance [28, 29, 34-38]. The pairing instabilities of the Fermi liquid and the nonconformal
non-Fermi liquid states of the low-rank SYK models are not examined yet [39]. Since the
variance distribution p(A) opens up a new direction of the controllability for the “non-Fermi-
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liquidness”, we would like to understand whether the strong interaction, which makes the
fermions more incoherent but the bosons to glue the fermions stronger, is an ally or a foe of
the Cooper pair formation. The enhanced transition temperatures T, of the non-Fermi liquid
state (Figure 3) demonstrate that the highly incoherent fermions can prefer the pairing more
than the well-defined quasiparticles of the Fermi liquid due to the significant enhancement
of the bosonic glue in the Yukawa-SYK model. Furthermore, to understand the distinct con-
tributions of the collective charge and spin fluctuations to the pairing, we examine both the
spin singlet and triplet pairing instabilities with the linearized Schwinger-Dyson equations.
The unconventional dynamical pairing between the equal-spin fermions at distinct times, i.e.,
(c;(f)c}r(O) + cI(T)cI(O)) # 0, is found to occur.

The remaining part of the paper is organized as follows. In Sec. 2, we introduce the
Yukawa-SYK model and its effective action in terms of the Green functions and self-energies.
Sec. 3 discusses the Schwinger-Dyson equations, which are the saddle point equations of the
effective action. We first consider the high temperature normal state solutions in Sec. 4, which
demonstrate how the distribution of variances can result in both the Fermi liquid and non-
Fermi liquids. Then, in Sec. 5, we discuss the leading pairing instabilities of the Fermi liquid
and the non-Fermi liquid normal states by solving the linearized Schwinger-Dyson equations.
At last, we summarize and conclude our work in Sec. 6.

2 Model

We consider spin-1/2 fermions (c) coupled to real scalar fields (¢) by all-to-all random Yukawa
couplings (g), S =S+ S5y +S4:

ot
S. = dt ¢l —c¢ 2
C o ~ ladT a
B M 2
1 d
S¢:§f dT Z¢k(_ﬁ+m2)¢k (3)
0 k=1
1 B N M
_ - SRS e Sy
Sg= N JO drt izlégl],kciaoaﬁcjﬁ¢k. 4)

We use the natural unit 1 = kg = 1 so that 3 = 1/T is the inverse temperature. Since S. and
S, are invariant under spin rotation, it is sufficient to investigate two cases: a =0 and a = 3.

The real symmetric Yukawa couplings g;;x = &jix € R are sampled from the Gaussian
orthogonal ensemble (GOE) for each k, i.e., g;; x follows the Gaussian distribution with zero
mean g;; ; = 0 and variance g;; 1 &y/j i = ArOp (64146 js + 6;0 i) for A > 0. Assuming that
the model is self-averaging, we can derive the effective action from the disorder average of the
partition function Z:

s, 5. A )2
e S), =e Sg = exp Z —4]\];2 (Aij,k +A11’k) , (5)
ij,k

where A;; ; = foﬁ dr cfaa‘;ﬁ cjp¢i (see Appendix A for the derivation). Note that the pairing

correlations among fermions (Aij’k)Z ~ (cg-acga,)(cjﬁcjﬁ/) are generated because the random

Yukawa couplings are averaged over GOE [36].
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With the bilocal fields

NI - :
D7, 7) = - > Adi(T)9il(7), (6)
k=1
1<
Gaa(7,7) = 5 D el (T)eia(0), @)
i=1
1 N
Faw(7,7) = = > Ciar (7 eial(7), ®)
i=1
1< '
Fas(1,7) = 2 > i (el (7). ©

i=1

we can rewrite the interacting part of the effective action S, defined in Eq. (5):

B
N
S, = % J dtdt’' D(7/, T)[GU/U(T/, 7)0g,Gpp(T, 70,
0

—F (7, T)O'gprp/(T, T’)(a“)g,g,] (10)

where y = M/N ~ O(1) is the ratio between the number of bosons and fermions. Note
that D(t,7") is the bilocal field that becomes the sum of the bosonic propagators weighted by
the variances A, at the saddle point of the action. By introducing the Lagrange multipliers
%, %, @, and II, we can relate the dynamics of the fermions and bosons with the bilocal
fields G, F, F*, and D, respectively (see Appendix A). Physically, the bilocal fields become the
fermionic (G, F,F*) and bosonic (D) Green functions, and the Lagrange multipliers become
the corresponding fermion (2, ®",®) and boson (II) self-energies, at the saddle point of the
action.

In this model, the bosonic part of the action S, ¢ =S¢ +Sn (see Appendix A for the definition
of the bosonic self-energy action Sp;) needs special attention because the bosons may condense
at low temperatures. After the Fourier transformations, we split §¢ into the normal [Eq. (11)]
and condensed parts [Eq. (12)]:

M oo
§¢ :Z (VTZI+m2_lkn(ivn))|¢k(ivn)|2 (11)
+ 5 2, (m* = A,11(0)) (6:(0))°, (12)
k=1

where v, = 27tn/f3 are the bosonic Matsubara frequencies. The bosons are condensed when
the quadratic potential for some bosonic modes is no longer convex. As the zero frequency
modes ¢7(0) with A; = A, = max[{A;}] first become unstable when m? — A.,,,,11(0) = 0,
they are condensed at T < Tgpc [39]. Then

1

¢ BN

PRGN (13)

k:Ar=Amax

can be treated as a classical degree of freedom. By integrating out the fermions and remaining
uncondensed bosons, we can obtain the large N effective action S.g in terms of the bilocal
fields and the Lagrange multiplier fields (see Appendix A).
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Figure 1: Model distributions of the variances p,(A) for the Yukawa-SYK model.
Depending on the sign of 7, the class I (n > 0) and class II (n < 0) distributions
show qualitatively different behavior at A = A .,

3 Schwinger-Dyson Equations

In the large M and N limits, the saddle point of S. precisely describes the low-energy dy-
namics of the Yukawa-SYK model. Hence, we derive the Schwinger-Dyson equations from the
condition 6S.¢ = 0.

The normal (G) and anomalous (F) Green functions for the fermions are

Gliw,) = | iw,0° — S(iw,) — 8(iw,)[iw,0 + 2(—iwn)T:|_ld>+(icon):|_1, (14)
F(iw,) = Giw,)®(iw,)[iw,o® + 5(—iew,) ], (15)

where the spin indices are suppressed for notational convenience.
We assume that the set of variances {A} forms a well-defined distribution p(A) in the
large M limit:

1< 1+n
py(A) = M;m—m = 1y Gl = 20" (16)

which is regular at A = A, for n > 0 (class I) but diverges algebraically as A — A, for
—1 <1 <0 (class I) (Figure 1) [39]. Then the bosonic propagator is

Ama 2p, (M)A
v2+m2— ATI(iv,)

D(iv) = P A B0 + f
Y 0

= glmaxap Ono +Dy(ivy,). (17

The first part of Eq. (17) comes from the condensed bosons, and the latter part Dy/(iv,,) is from
the uncondensed bosons. ¢ # 0 if m? — A,,,,11(0) = 0, and ¢ = 0 otherwise. The low-energy
properties of Dy (iv,) depend on the analytic behavior of p, (1) near A, because the bosonic
modes with A ~ A, have light effective mass m? — AII(iv,) at small frequencies v,,.
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143 With M,N — oo, the self-energies for the fermions and bosons satisfy the Schwinger-
144 Dyson equations:

S(iw,) = % > D(iv,)0G (i + i0,)0, (18)
mez
B(iw,) = _% m%p(i ) F (v, +iw,) (o), (19)

M(iv,) = —% S [Gliw,)0 Gy, +i7,)07]

mezZ

—tr[F+(icom)0aF(iwm +ivn)(0a)T:|, (20)

145 where the spin indices for G, F, X, and ® are suppressed for simpler notation, and “tr" is the
146 trace over the spin indices. After we plug in Egs. (14) and (15) to Egs. (18 — 20), we can get a
147 set of nonlinear equations for the normal and anomalous fermionic self-energies >(iw,) and
s ®(iw,). Since the fermions would not be paired at high temperatures, our analysis starts from
149 the normal state with F(iw,) = ®(iw,) =0.

0 4 Normal State Analysis

151 Without the pairing among fermions, Eq. (14) gives the fermion Green function

. . 1

o= B (i, Y

152 where %, (iw,) = Xy4(iw,). For both a = 0,3 in S,, the fermion Green function is spin-
153 diagonal (Gy; = G|y = 0) and independent of spin polarization (Gy = Gyp). Therefore we
15« write Go(iw,) = G1(iw,) = G|(iw,) and Zy(iw,) = X1(iw,) = Z|(iw,), where

Eo(iwn) = & > D(ivy)Golivy + i)

n'ez

A
max A0 (A)dA
Y Py .
=A — |G
max (QP + BA o JO m2 — XH(O)) o(iw,)

A
mx Ap, (A)dA
+lzf . p;’ —— Go(ivy +iw,)
ﬁ n'#£0 0 Vn, +m _A.H(l Vn/)
= Amax® Golin) + L > Dy (i )Go(i vy + o)
n’#0
= z:C(lc‘)n) + 2:N(ia)n): (22)

155 and the effective condensate ¢ = ¢ + yDy(0)/B Apax- Then the fermion Green function

iGo(iw,) = 2 (23)
J(iwy) +5gn(J ((wp)) VI ((wn)? + 4Amax P

156 solves the Schwinger-Dyson equation with J(iw,) = w, + iXy(iw,) [39].
157 With our model distribution p,(24) in Eq. (16), the propagator for the uncondensed bosons
158 Dy(ivy) is

A
. _ Amax ™ dA Apn(l)
Duliv) =50 o JO Amax 1= ATI(iv,)/(v2 + m?2) o
= DO(in,)f, (DO (i v )MI(iv,)), 2%
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F(DO (iv, ) (ivy,))

0.0

-10 10

Figure 2: The propagator for uncondensed bosons for v = A, = m = 1,
D(iv,) =DO(iv,) fn(D(O)(ivn)H(ivn)). (a) The positive, monotonic function f,, has
larger value for smaller 7, i.e., f,(x) < f,(x)if n > n’. (b) The class II bosonic
propagator (n < 0) is larger than the class I propagator (n > 0) for all frequency
range. Since the distribution p, .4(4) is mostly concentrated around A ~ Ay, there
is high chance to sample strong Yukawa coupling g;; ;- Hence, the bosonic propaga-
tor is more strongly enhanced by the interactions between fermions and bosons.

150 where DO(iy,) = lmax/(vﬁ +m?), and

24+n—(1+n)F1(1,1;3+n;x)
2+n)(1—x)

fn(x)= (26)

160 The function f, is positive and monotonic, and f, (x) < f,,(x) for a given x if n > 1’ [Figure
161 2 (a)]. Note that the distribution p, (1) shows larger value near A = A.,,, when 7 is smaller,
162 1.e., Pp(A ~ Apay) < Py(A ~ Apay) when 1 > 7', Since D(iv,) is the bosonic propagator
163 weighted by the variance A, [Eq. (6)], it is enhanced when there is higher chance to sample
16« the Yukawa couplings g;; i with large variance A;.
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The asymptotic expansion of the hypergeometric function ,F;(a, b; ¢c; x) gives

_1,  mA4m) oy
()= » + (it 7])(1 x)+ ... 27)
N 1/m+c,(1—x)7, n>0 28)
cy(1—x)7, —1<n<0

near x = 1 with ¢, = n(1+ n)/sinn(1 + n). By self-consistently solving the Schwinger-
Dyson equations, we can check that the bosonic self-energy II(iv,) is a decreasing function
of positive v,,. Thus, v, ~ 0 implies x ~ 1. So the asymptotic expansion well approximates
low frequency behavior of D(iv,). Note that the zero frequency bosons are condensed when
X = ApaxI1(0)/m? = 1. While f,(1) = 1/n is finite for n > 0 (class 1), f,,(x) diverges alge-
braically as x — 1~ for —1 < 1 < 0 (class II). Therefore, the propagator for the uncondensed
bosons Dy(iv,) exhibits qualitatively distinct nature for different signs of 7.

In the absence of the pairing F = & = 0, the same Schwinger-Dyson equations are solved in
the context of the low-rank SYK models, which can be obtained from the Yukawa-SYK models
by integrating out the massive bosons. Since the asymptotic expansion of our bosonic prop-
agator, Eq. (28), coincides with the bosonic propagator in Ref. [39], thermodynamics of the
Yukawa-SYK models are equal to that of the low-rank SYK models. Especially, the heat capacity

Cy~ il n>0 (29)
Vo lrin, —1<n<o0

demonstrates non-Fermi liquid property of the class I Yukawa-SYK model [39]. While the class
I (n > 0) shows conventional linear temperature dependence, the class II (-1 < 1 < 0) ex-
hibits anomalously large heat capacity at low temperatures because of algebraically diverging
p(A) > oc0asA— A

max-

5 Pairing Instabilities of Fermi and Non-Fermi Liquids

We are interested in pairing instabilities of fermions in the presence of the singlet (a = 0)
and the triplet (a = 3) Yuakawa interactions [Eq. (4)]. Hence, we consider not only singlet
pairing but also triplet pairings. Let us expand the anomalous part of the Green function and
the self-energy in the singlet (u = 0) and the triplet channels (u=1,2,3):

3
Fliw,) = ZF“(iwn)iUZU“, (30)
u=0
3
B(iw,) = Y ¥ (iw,)io o™, (31)
u=0
Then Eq. (19) becomes
(i) = =L > UD(Iv)FH (i v + i), (32)
/5 meZ
where { = 1 if 0% and 020" commutes and { = —1 if 0 and 020" anticommutes. Hence,

¢ =1 for all pairing channels (u = 0,1, 2,3) in case of the singlet Yukawa coupling (a = 0).
However, { =1 for u = 1,2 and { = —1 for u = 0,3 in case of the triplet Yukawa coupling
(a=23).
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0.00 -0.5 0.0 0.5

n

Figure 3: Phase diagram of the Yukawa-SYK model with y = A, = m = 1. The
phase boundary demonstrates the leading pairing instabilities of the normal state.
The singlet Yukawa coupling has the instabilities in all pairing channels at the same
temperatures. However, the triplet Yukawa coupling shows the pairing instabilities
only in the spin-preserving triplet channels. Both the singlet and triplet couplings
have the same transition temperature T, for a given 7) that determines the distribution
of the variances p,(4).

At the critical temperatures T,, we consider a continuous phase transition to a paired state.
Near T,, the anomalous part of the self-energy ®(iw,,) and the Green function F(iw,) must be
very small. Hence, we linearize the Schwinger-Dyson equations to estimate T, and identify the
leading pairing instability. Then we can approximate the anomalous Green function F(iw,,)
with the normal state Green function Gy(iw,) near T,:

F“(iwn) = _GO(lwn)q>u(lwn)GO(_lwn) (33)
PH(iw,)

— (i . 2FU( = —
(1Golien)y @t i) = = o))’

(34)

In the second line, we used the odd parity of Gy(iw,) = —Go(—iw,). Then we get the lin-
earized Schwinger-Dyson equations for the paring channels:

> rDlon =ion) gu,, ). (35)

mezZ (wm + iZO(iwm))z

P(iw,) = %

Since the bosonic propagator is in the numerator while the fermionic self-energy is in the
denominator of Eq. (35), strong Yukawa couplings lead to two competing effects: enhance-
ment of the bosonic propagator D, which is the pairing glue of fermions, and decoherence of
fermions due to large fermionic self-energy X.

Using the bosonic propagator and fermionic self-energy of the normal state, we can calcu-
late the transition temperature T, from the condition that the linearized equation, Eq. (35),
has the nontrivial solution. Figure 3 shows the phase diagram of the Yukawa-SYK model for
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the various distribution parameter 1. The phase boundary implies the leading pairing insta-
bilities of the model. While the non-Fermi liquid states with 1 < 0 (class II) are known to
have large fermionic self-energy Xy (iw,) ~ |w,|'™" (compared to the free Green function
Gpree(i®w,)™' ~ w,) due to the uncondensed bosons [39], their transition temperatures are
greater than those of the Fermi liquid states with 1) > 0. Our result implies that the enhance-
ment of the pairing glue D(iv,) (Figure 2) plays more important role for the pairing than the
decoherence of fermions in the Yukawa-SYK model.

While the singlet coupling (a = 0) yields the same linearized equations for both singlet
(u = 0) and triplet pairing channels (u = 1, 2, 3), the triplet Yukawa coupling (a = 3) turns out
to have the attractive pairing channels only for the spin-preserving triplet pairing (u = 1,2).
Note that the spin-preserving triplet pairings are

N

FI(7) = D (e (0)e(0) ¢ ()e] (), (36)
j=1
JN | |

F(r)=>" i(c](7)c],(0)+ ] ()c], (0)). (37)

Due to the Pauli exclusion principle, these pairings must be vanishing in the static limit T — O.
Only the dynamical pairing among fermions at distinct times can be finite. Therefore, the
leading pairing instabilities of the triplet Yukawa coupling (a = 3) correspond to dynamical
pairing of fermions. Such feature is distinguished from the conventional pairing in the BCS
theory. Apart from the nature of the paired states, the transition temperature T, for both the
singlet and triplet Yukawa-SYK models are the same for a given value of 1. Hence, the phase
diagrams for the singlet and triplet couplings are the same although the nature of the paired
states is different.

6 Conclusion
In summary, we present a solvable strongly coupled theory of spin-half fermions c;, interact-

ing with scalar bosons ¢ by the all-to-all random Yukawa couplings g;; x. For each boson ¢,
the Yukawa coupling constant g;; . is sampled from the Gaussian orthogonal ensemble of zero

mean, g;;, = 0, and finite variance, (g;;x)> = Ar. With the large number of fermions and
bosons, we assume that the theory is self-averaging and the set of the variances {A;} forms
a continuous distribution p(A) (Figure 1). Important aspect of the theory is the systematic
controllability of the fermionic incoherence with the distribution p(A) responsible for the sta-
tistical nature of the Yukawa interaction g;; ;. The model can realize both the Fermi liquid
normal state when p(A) is regular at the maximum variance A,,,, and the non-Fermi liquid
normal state when p(A) diverges algebraically at A,,,,. These Fermi and non-Fermi liquid nor-
mal states correspond to the low-energy states of the class I and class II low-rank SYK models
in Ref. [39].

Starting from these normal states, we examined the leading pairing instabilities in both
spin singlet and triplet channels by solving the linearized Schwinger-Dyson equations. The
spin independent Yukawa interactions g;;, k(cT Cirdr+ cT ¢j|®1), which model the charge fluc-
tuations of correlated metals, show the palrmg 1nstab1ht1es from both spin singlet and spin
triplet channels. However, the spin dependent Yukawa interactions g;;, k(clT Cit¢r — ¢ i¢k)
which represent the spin fluctuations, yield the leading pairing instabilities from the spin triplet
channels F12(7) ~ (cTT (T)C; (0) :ECI(T)CI(O)). Although both the spin independent and depen-
dent Yukawa interactions result in the same normal states, the resulting pairing instabilities
are not the same. Furthermore, it is interesting to note that the critical temperature for the

10
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pairing state arising from the non-Fermi liquid is higher than that of the Fermi liquid (Figure 3).
Although conventional wisdom may expect that the pairing would be eventually suppressed
due to incoherence of the fermions, our theory demonstrates an example that the enhance-
ment of the boson propagator, which glues the fermion pair, dominates the effect of the large
fermion self energy, which shortens each dressed fermion’s life time. In this theory, there is
no ad hoc parameter to control the relative contributions of the boson propagator and fermion
self energy to the pairing instabilities. The control knob of our theory p(A) influences both
the enhancement of the pairing glue and the incoherence of the fermions, revealing a concrete
physical meaning of the distribution p(A).

Since the Yukawa-SYK model is zero dimensional, the natural follow up question is the
extension of our work to higher dimensions. If a quantum dot which consists of the large
number of bosons and fermions realizes the paired state of the Yukawa-SYK model, we can
consider an array of the coupled quantum dots as a higher dimensional generalization of our
theory. Then, the leading spin triplet pairing instabilities from the spin dependent Yukawa
interactions raise an interesting question: can the array of the coupled Yukawa-SYK quantum
dots realize any unconventional (topological) superconductor? Furthermore, our analysis is
based on the linearized Schwinger-Dyson equations. To examine the thermodynamic proper-
ties of the strongly interacting paired states below T,, it would be interesting to explore the
solutions of the full nonlinear Schwinger-Dyson equations.
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A Derivation of the Effective Action

We derive the effective action by averaging over the random Yukawa couplings, g;; . Assuming
that the model is self-averaging, we construct the large N effective action from the disorder
average of the partition function Z instead of the free energy logZ. In the language of the
replica field theory, we are assuming that the replica diagonal terms dominate the low-energy
physics while the replica non-diagonal terms are suppressed by O(1/N).

e_S/1 = Sg

M
l_[[ dgii’k e_(gii,k)2/47Lk_(gii,k/ZN)(Aii,k+Al-ri!k):|
vV 47'ka

X [ dgl]’k _(gl] k) /2}\,]( (gl] k/N)( ij, k+AU k)}

i<j LY/ Zﬁlk
M N . 2 N PN
l—[ [ l—[ (Ax/4N?) Aii’k+A¥l.k) ]|:l_[e(lk/4N2)(Aij,k+A;j,k) }

k=1 i#j

i=1
N M
=exp | D>, %( ik +A1'.j,k)2 (38)

l]:

k=1

—_

o
Il

—_
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B ¥ _a . . 1.
276 where A;j = fo dtc;, 0 CiP ¢«. The summation is assumed for the repeated Greek indices.
277 Therefore

5 =— J a4 0219100 [l (e (el (e ()
i,j= 1k 1J0

+c;ra(r)cj/5(T)cl:'ra,(’r’)cjﬂ/(f')]

M b 1 i /
:EJO drdr [M;Ak¢k(7)¢k(’f )}

N N
1O I+,
x [NZ (D (T )] ohp | 7 2T Ieip(D) | Tl

i=1 j=1

1< 1
—{NZC (T (x )} Oap NZ ¢jp (T )ejp(T) | o

i=1
_ M d d /D / / a / a
=5 Tvdt'D(t ,T)[Gﬂ/a(’r ,T)aaﬁGﬁa/(T,T )aa,ﬁ,
0
—F (7, )08 Fyp (7,7 ) (0 |
M
=5 f dtdt'D(7’, T)tr[G(T/, 17)0%G(7,7)o? —F* (7, 1)0%F(r, T/)(O'a)T:I (39)
0

278 where “tr” is the trace over the spin indices. To impose the relationship between the bilocal
279 fields and the fermions and bosons, we introduce the Lagrange multipliers:

p M
Snp= %J dvdv’ TI(t,7") [MD(T’,T)—Zxk(pk(»;)qgk(ff)], (40)
0 k=1
B N
Sy = _J d7d7’ e (T, 7') [NGa/a(T', T) —chii;(f)cm/(fl)] , (41)
0 i=1

B
Sq):—%J deT/q>aa/(T,T/)|:NF+ (v/,1)— ZC (T)Cla/(T )]
0

+@f (7,7") |:NFa/a(T/, T)— Z Cia(T)Cia/(T/)] , (42)

i=1

280 Let us define the Fourier transformations
1 .
(1) = —= D L cigliw,)e ", (43)
\/ﬁ nez
(D) = —= S Gyliv,)e T, (44)

\/_ nEZ

281 Where w, =(2n+1)n/B and v, = 2nmn/f are the fermionic and bosonic Matsubara frequen-
282 cies, respectively. Since the model is time-translation invariant, the bilocal fields are functions
283 of T —1’. The consistent definition of the Fourier transformations for the bilocal fields is

G (T,7) = Goer(t — 7 ZGW (i) o™=, (45)

nEZ
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Then our modified action § = §C + §¢ +5 » including the Lagrange multipliers in the Fourier
space is

N oo
5. == > > flliwy) [Goliw,) ™ = Sliw,)] filiew,), (46)
A; ;: ’ M
ZZ(vz/c +m? = 413 v,)) [ i (vl + Z(m2—xkn(0))(¢k(0))2 (47)
k=1n= k 1
5 =5 Y TS0, Gliw)]+ 5 3 D(iv){tin,)
nez nez
+g étr[G(iwm)aaG(iwm +1v,)09]—tr [ (iw,)0F(iw, +iv,)(0) ]}, (48)

where “Tr” is the trace over the indices for the four-component spinor

filion) =[eqlion) cylion) ch—ioy c(-io] 49)

and
Golion)t = | Gnt 10 (iwnfu)ao] (50)
Stion=| ) i) Y

By integrating out the fermions and bosons, we obtain the effective action Sy = Sy + S,
in terms of the bilocal fields, where

oo M oo
So=—N Y Trlog[Go(iw,) ™ —S(iw)]+ D > log(v3/c? +m? — 4 T1(iv,))
n=0 k=1n=1
+ > —1og(m —AkH(O))+—( 2 Amax1(0)) . (53)
klk<lmax

¢ is the magnitude of the condensed bosons defined in Eq. (13).
When the set of the variances {A;} form a well-defined distribution

M
1
p()= 1 > 5(A—2y). (54)
k=1
in the large M limit, we can rewrite Sq¢ as

Seff - 5 ZTl’lOg go(lwn) _S(lwn)]

nEZ
+—ZJ maxd)\p()\)log(vz/c + m? AH(lvn)) ﬂé\[( 2—)»MXH(O))(,O
n#0J 0
——ZTr[S(lcon) Gliwy)] +—ZD(wn){H(wn)
nez nez
+g Z tr[Gliwy )0 Gliwy, +iv,)0 ] —tr[F*(iw,)0Fiw, +i1v,)(0)"]} (55
meZ
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