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Abstract1

The interplay of non-Fermi liquid and superconductivity born out of strong dynamical2

interactions is at the heart of the physics of unconventional superconductivity. As a solv-3

able platform of the strongly correlated superconductors, we study the pairing insta-4

bilities of the Yukawa-Sachdev-Ye-Kitaev (Yukawa-SYK) model, which describes spin-1/25

fermions coupled to bosons by the random, all-to-all, spin-independent and dependent6

Yukawa interactions. In contrast to the previously studied models, the random Yukawa7

couplings are sampled from a collection of Gaussian ensembles whose variances follow a8

continuous distribution rather than being fixed to a constant. By tuning the analytic be-9

haviour of the distribution, we could control the fermion incoherence to systematically10

examine various normal states ranging from the Fermi liquid to non-Fermi liquids that11

are different from the conformal solution of the SYK model with a constant variance.12

Using the linearized Eliashberg theory, we show that the onset of the unconventional13

spin-triplet pairing is preferred with the spin-dependent interactions while all pairing14

channels show instabilities with the spin-independent interactions. Although the inter-15

actions strongly damp the fermions in the non-Fermi liquid, the same interactions also16

dress the bosons to strengthen the tendency to pair the incoherent fermions. As a con-17

sequence, the onset temperature Tc of the pairing is enhanced in the non-Fermi liquid18

compared to the case of the Fermi liquid.19
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1 Introduction34

Understanding unconventional superconductivity of strongly correlated electrons is a long-35

standing goal of modern condensed matter physics [1–10]. It is generally believed that dy-36

namical interactions mediated by collective charge or spin fluctuations are responsible for the37

Cooper pairing in the correlated superconductors [11, 12]. Major challenges of the problem38

come from the emergence of non-Fermi liquid normal states due to the same dynamical in-39

teractions [13–18]. Since both superconductivity and non-Fermi liquid are stabilized by the40

same physical origin, systematic investigations of two competing effects are necessary [19–22].41

However, the strongly coupled nature of the problem makes it difficult to draw a concrete the-42

oretical conclusion as no small parameter exists to control the theory perturbatively.43

In this work, we circumvent such difficulty by examining a variant of the Sachdev-Ye-Kitaev44

(SYK) model [23–27], so-called the Yukawa-SYK model [28–31], which is exactly solvable and45

supports non-Fermi liquid ground states. While the previously studied models use the fixed46

variance of the random coupling, we introduce a continuous distribution of variances. The47

model consists of N number of fermions (ci=1,...,N ) strongly coupled to M number of bosons48

(φk=1,...,M ) via the random all-to-all Yukawa couplings (gi j,k):49

Hint =
N
∑

i, j=1

M
∑

k=1

gi j,kc†
iασ

a
αβ c jβφk, (1)

where σa is the Pauli matrix acting on the spin space α,β =↑,↓, and the summation is as-50

sumed for the repeated Greek indices. Physically, the scalar bosons φk represent the collective51

charge (or spin) fluctuations of the fermion bilinear
∑

i, j c†
iαc jα

�

or
∑

i, j c†
iασ

3
αβ

c jβ

�

. The re-52

curring theme of the SYK model and its variants is that the disorder averaging over the random53

coupling constants (gi j,k) suppresses almost all quantum fluctuations except one or a few fam-54

ilies of the Feynmann diagrams in the large M and N limits [23, 24, 32]. With those handful55

number of diagrams, we can solve the model self-consistently and identify the leading pairing56

instabilities without any perturbative approximations.57

It is important to note that the Yukawa-SYK model is defined by not only the Hamiltonian58

but also the statistical properties of the random couplings (gi j,k). Most of previous studies on59

various families of the SYK model focused on the random couplings with zero mean (gi j,k = 0)60

and constant variance ((gi j,k)2 = λ) [26–31, 31, 33–38]. However, we can also consider the61

random couplings whose variances obey a well-defined distribution, i.e., (gi j,k)2 = λk has the62

k dependence such that the set of the variances {λk} forms a continuous distribution ρ(λ) in63

the large M limit. Pioneering work on the low-rank SYK models [39], which are equivalent64

to the Yukawa-SYK models with the extensive (M/N ∼ O(1)) number of nondynamical mas-65

sive bosons, first notices the significance of the distribution ρ(λ); depending on the singular66

behaviour of the distribution ρ(λ) near the maximum variance λmax, the low-rank SYK mod-67

els show a rich variety of the low energy states ranging from the Fermi liquid to non-Fermi68

liquids [39,40]. By tuning the distribution ρ(λ), we can systematically control the fermion in-69

coherence and push the system toward the non-Fermi liquid. Therefore the current variant of70

the Yukawa-SYK model is an excellent solvable platform to examine the interplay of non-Fermi71

liquid and superconductivity with the distribution ρ(λ) as a theoretical handle to control the72
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incoherence of fermions.73

While the flourishing papers discussed the SYK superconductivity, they focused on the74

fast scrambling conformal solution of the SYK model (and its variants) with a fixed constant75

variance [28, 29, 34–38]. The pairing instabilities of the Fermi liquid and the nonconformal76

non-Fermi liquid states of the low-rank SYK models are not examined yet [39]. Since the77

variance distribution ρ(λ) opens up a new direction of the controllability for the “non-Fermi-78

liquidness”, we would like to understand whether the strong interaction, which makes the79

fermions more incoherent but the bosons to glue the fermions stronger, is an ally or a foe of80

the Cooper pair formation. The enhanced transition temperatures Tc of the non-Fermi liquid81

state (Figure 3) demonstrate that the highly incoherent fermions can prefer the pairing more82

than the well-defined quasiparticles of the Fermi liquid due to the significant enhancement83

of the bosonic glue in the Yukawa-SYK model. Furthermore, to understand the distinct con-84

tributions of the collective charge and spin fluctuations to the pairing, we examine both the85

spin-singlet and triplet pairing instabilities with the linearized Schwinger-Dyson equations.86

The unconventional dynamical pairing between the equal-spin fermions at distinct times, i.e.,87

〈c†
↑(τ)c

†
↑(0)± c†

↓(τ)c
†
↓(0)〉 ̸= 0, is found to occur.88

The remaining part of the paper is organized as follows. In Sec. 2, we introduce the89

Yukawa-SYK model and its effective action in terms of the Green functions and self-energies.90

Sec. 3 discusses the Schwinger-Dyson equations, which are the saddle point equations of the ef-91

fective action. We first consider the high-temperature normal state solutions in Sec. 4, which92

demonstrate how the distribution of variances can result in both the Fermi liquid and non-93

Fermi liquids. Then, in Sec. 5, we discuss the leading pairing instabilities of the Fermi liquid94

and the non-Fermi liquid normal states by solving the linearized Schwinger-Dyson equations.95

At last, we summarize and conclude our work in Sec. 6.96

2 Model97

We consider spin-1/2 fermions (c) coupled to real scalar fields (φ) by all-to-all random Yukawa98

couplings (g), S = Sc + Sφ + Sg :99

Sc =

∫ β

0

dτ
N
∑

i=1

c†
iα

d
dτ

ciα (2)

Sφ =
1
2

∫ β

0

dτ
M
∑

k=1

φk

�

−
d2

dτ2
+m2

�

φk (3)

Sg =
1
N

∫ β

0

dτ
N
∑

i, j=1

M
∑

k=1

gi j,kc†
iασ

a
αβ c jβφk. (4)

We use the natural unit ħh = kB = 1 so that β = 1/T is the inverse temperature. Since Sc and100

Sφ are invariant under spin rotation, it is sufficient to investigate two cases: a = 0 and a = 3.101

The real symmetric Yukawa couplings gi j,k = g ji,k ∈ R are sampled from the Gaussian102

orthogonal ensemble (GOE) for each k, i.e., gi j,k follows the Gaussian distribution with zero103

mean gi j,k = 0 and variance gi j,k gi′ j′,k′ = λkδk,k′(δii′δ j j′ +δi j′δ ji′) for λk > 0. Assuming that104

the model is self-averaging, we can derive the effective action from the disorder average of the105

partition function Z:106

e−Sλ = e−Sg = exp





∑

i j,k

λk

4N2

�

Ai j,k + A†
i j,k

�2



 , (5)
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where Ai j,k =
∫ β

0 dτ c†
iασ

a
αβ

c jβφk (see Appendix A for the derivation). Note that the pairing107

correlations among fermions (Ai j,k)2 ∼ (c
†
iαc†

iα′)(c jβ c jβ ′) are generated because the random108

Yukawa couplings are averaged over GOE [36].109

With the bilocal fields110

D(τ,τ′) =
1
M

M
∑

k=1

λkφk(τ
′)φk(τ), (6)

Gαα′(τ,τ′) =
1
N

N
∑

i=1

c†
iα′(τ

′)ciα(τ), (7)

Fαα′(τ,τ′) =
1
N

N
∑

i=1

ciα′(τ
′)ciα(τ), (8)

F+αα′(τ,τ′) =
1
N

N
∑

i=1

c†
iα′(τ

′)c†
iα(τ), (9)

we can rewrite the interacting part of the effective action Sλ defined in Eq. (5):111

Sλ =
γN
2

∫ β

0

dτ dτ′ D(τ′,τ)
�

Gσ′σ(τ
′,τ)σa

σρGρρ′(τ,τ′)σa
ρ′σ′

− F+σ′σ(τ
′,τ)σa

σρFρρ′(τ,τ′)(σa)Tρ′σ′
�

(10)

where γ = M/N ∼ O(1) is the ratio between the number of bosons and fermions. Note112

that D(τ,τ′) is the bilocal field that becomes the sum of the bosonic propagators weighted by113

the variances λk at the saddle point of the action. By introducing the Lagrange multipliers114

Σ, Φ+, Φ, and Π, we can relate the dynamics of the fermions and bosons with the bilocal115

fields G, F , F+, and D, respectively (see Appendix A). Physically, the bilocal fields become the116

fermionic (G, F, F+) and bosonic (D) Green functions, and the Lagrange multipliers become117

the corresponding fermion (Σ,Φ+,Φ) and boson (Π) self-energies, at the saddle point of the118

action.119

In this model, the bosonic part of the action eSφ = Sφ+SΠ (see Appendix A for the definition120

of the bosonic self-energy action SΠ) needs special attention because the bosons may condense121

at low temperatures. After the Fourier transformations, we split eSφ into the normal [Eq. (11)]122

and condensed parts [Eq. (12)]:123

eSφ =
M
∑

k=1

∞
∑

n=1

�

ν2
n +m2 −λkΠ(iνn)

�

|φk(iνn)|
2 (11)

+
1
2

M
∑

k=1

�

m2 −λkΠ(0)
�

(φk(0))
2 , (12)

where νn = 2πn/β are the bosonic Matsubara frequencies. The bosons are condensed when124

the quadratic potential for some bosonic modes is no longer convex. As the zero frequency125

modes φk̄(0) with λk̄ = λmax = max[{λk}] first become unstable when m2 − λmaxΠ(0) = 0,126

they are condensed at T < TBEC [39]. Then127

ϕ =
1
βN

∑

k:λk=λmax

(φk(0))
2 (13)

can be treated as a classical degree of freedom. By integrating out the fermions and remaining128

uncondensed bosons, we can obtain the large N effective action Seff in terms of the bilocal129

fields and the Lagrange multiplier fields (see Appendix A).130
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Figure 1: Model distributions of the variances ρη(λ) for the Yukawa-SYK model.
Depending on the sign of η, the class I (η > 0) and class II (η < 0) distributions
show qualitatively different behavior at λ= λmax

3 Schwinger-Dyson Equations131

In the large M and N limits, the saddle point of Seff precisely describes the low-energy dy-132

namics of the Yukawa-SYK model. Hence, we derive the Schwinger-Dyson equations from the133

condition δSeff = 0.134

The normal (G) and anomalous (F) Green functions for the fermions are135

G(iωn) =
�

iωnσ
0 −Σ(iωn)−Φ(iωn)

�

iωnσ
0 +Σ(−iωn)

T
�−1
Φ+(iωn)
�−1

, (14)

F(iωn) = G(iωn)Φ(iωn)
�

iωnσ
0 +Σ(−iωn)

T
�−1

, (15)

where the spin indices are suppressed for notational convenience.136

We assume that the set of variances {λk} forms a well-defined distribution ρ(λ) in the137

large M limit:138

ρη(λ) =
1
M

M
∑

k=1

δ(λ−λk) =
1+η

λ
1+η
max

(λmax −λ)η, (16)

which is regular at λ = λmax for η > 0 (class I) but diverges algebraically as λ → λmax for139

−1< η < 0 (class II) (Figure 1) [39]. Then the bosonic propagator is140

D(iνn) =
β

γ
λmaxϕδn,0 +

∫ λmax

0

λρη(λ)dλ

ν2
n +m2 −λΠ(iνn)

≡
β

γ
λmaxϕδn,0 + DN (iνn). (17)

The first part of Eq. (17) comes from the condensed bosons, and the latter part DN (iνn) is from141

the uncondensed bosons. ϕ ̸= 0 if m2 −λmaxΠ(0) = 0, and ϕ = 0 otherwise. The low-energy142

properties of DN (iνn) depend on the analytic behavior of ρη(λ) near λmax because the bosonic143

modes with λ∼ λmax have light effective mass m2 −λΠ(iνn) at small frequencies νn.144
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With M , N → ∞, the self-energies for the fermions and bosons satisfy the Schwinger-145

Dyson equations:146

Σ(iωn) =
γ

β

∑

m∈Z
D(iνm)σ

aG(iνm + iωn)σ
a, (18)

Φ(iωn) = −
γ

β

∑

m∈Z
D(iνm)σ

aF(iνm + iωn)(σ
a)T , (19)

Π(iνn) = −
1
β

∑

m∈Z
tr [G(iωm)σ

aG(iωm + iνn)σ
a]

− tr
�

F+(iωm)σ
aF(iωm + iνn)(σ

a)T
�

, (20)

where the spin indices for G, F , Σ, and Φ are suppressed for simpler notation, and “tr" is the147

trace over the spin indices. After we plug in Eqs. (14) and (15) to Eqs. (18 – 20), we can get a148

set of nonlinear equations for the normal and anomalous fermionic self-energies Σ(iωn) and149

Φ(iωn). Since the fermions would not be paired at high temperatures, our analysis starts from150

the normal state with F(iωn) = Φ(iωn) = 0.151

4 Normal State Analysis152

Without the pairing among fermions, Eq. (14) gives the fermion Green function153

Gα(iωn)≡ Gαα(iωn) =
1

iωn −Σα(iωn)
, (21)

where Σα(iωn) ≡ Σαα(iωn). For both a = 0, 3 in Sg , the fermion Green function is spin-154

diagonal (G↑↓ = G↓↑ = 0) and independent of spin polarization (G↑↑ = G↓↓). Therefore we155

write G0(iωn)≡ G↑(iωn) = G↓(iωn) and Σ0(iωn)≡ Σ↑(iωn) = Σ↓(iωn), where156

Σ0(iωn) =
γ

β

∑

n′∈Z
D(iνn′)G0(iνn′ + iωn)

= λmax

�

ϕ +
γ

βλmax

∫ λmax

0

λρη(λ)dλ

m2 −λΠ(0)

�

G0(iωn)

+
γ

β

∑

n′ ̸=0

∫ λmax

0

λρη(λ)dλ

ν2
n′ +m2 −λΠ(iνn′)

G0(iνn′ + iωn)

≡ λmaxϕ̃ G0(iωn) +
γ

β

∑

n′ ̸=0

DN (iνn′)G0(iνn′ + iωn)

≡ ΣC(iωn) +ΣN (iωn), (22)

and the effective condensate ϕ̃ = ϕ + γDN (0)/βλmax. Then the fermion Green function157

iG0(iωn) =
2

J(iωn) + sgn(J(iωn))
p

J(iωn)2 + 4λmaxϕ̃
(23)

solves the Schwinger-Dyson equation with J(iωn) =ωn + iΣN (iωn) [39].158

With our model distribution ρη(λ) in Eq. (16), the propagator for the uncondensed bosons159

DN (iνn) is160

DN (iνn) =
λmax

ν2
n +m2

∫ λmax

0

dλ
λmax

λρη(λ)

1−λΠ(iνn)/(ν2
n +m2)

(24)

= D(0)(iνn) fη(D
(0)(iνn)Π(iνn)), (25)
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(b)

Figure 2: The propagator for uncondensed bosons for γ = λmax = m = 1,
D(iνn) = D(0)(iνn) fη(D(0)(iνn)Π(iνn)). (a) The positive, monotonic function fη has
larger value for smaller η, i.e., fη(x) < fη′(x) if η > η′. (b) The class II bosonic
propagator (η < 0) is larger than the class I propagator (η > 0) for all frequency
range. Since the distribution ρη<0(λ) is mostly concentrated around λ∼ λmax, there
is high chance to sample strong Yukawa coupling gi j,k. Hence, the bosonic propaga-
tor is more strongly enhanced by the interactions between fermions and bosons.

where D(0)(iνn) = λmax/(ν2
n +m2), and161

fη(x) =
2+η− (1+η)2F1(1,1; 3+η; x)

(2+η)(1− x)
. (26)

The function fη is positive and monotonic, and fη(x) < fη′(x) for a given x if η > η′ [Figure162

2 (a)]. Note that the distribution ρη(λ) shows larger value near λ = λmax when η is smaller,163

i.e., ρη(λ ∼ λmax) < ρη′(λ ∼ λmax) when η > η′. Since D(iνn) is the bosonic propagator164

weighted by the variance λk [Eq. (6)], it is enhanced when there is higher chance to sample165

the Yukawa couplings gi j,k with large variance λk.166
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The asymptotic expansion of the hypergeometric function 2F1(a, b; c; x) gives167

fη(x) =
1
η
+

π(1+η)
sinπ(1+η)

(1− x)η + ... (27)

∼

¨

1/η+ cη(1− x)η, η > 0

cη(1− x)η, −1< η < 0
(28)

near x = 1 with cη = π(1 + η)/ sinπ(1 + η). By self-consistently solving the Schwinger-168

Dyson equations, we can check that the bosonic self-energy Π(iνn) is a decreasing function of169

positive νn. Thus, νn ∼ 0 implies x ∼ 1. So the asymptotic expansion well approximates the170

low-frequency behaviour of D(iνn).171

A qualitatively important distinction between class I (η > 0) and class II (η < 0) is the172

boundedness of the Green function for uncondensed bosons, DN (iνn). While fη(x) ≤ 1/η173

is bounded from above for class I (η > 0), fη(x) diverges algebraically as x → 1− for class174

II (−1 < η < 0). Thus, the boson Green function D(iνn) for the class I model is bounded175

from above if there were no Bose-Einstein condensation. When the boson Green function is176

bounded from above, the bosons can yield limited quantum corrections to the fermion self-177

energy. Hence, the fermion self-energy also becomes bounded from above. Without large178

fermion self-energy, the strong Yukawa interactions with fermions result in large boson self-179

energy which can make the bosons unstable, i.e., the renormalized squared mass of the bosons180

m2
ren = m2 − λΠ(0) ≥ m2 − λmaxΠ(0) can be negative due to the large boson self-energy at181

zero frequency Π(0). To avoid instability of the bosons in class I systems, the zero frequency182

bosons need to be condensed when x = λmaxΠ(0)/m2 = 1. If the bosons are condensed,183

the total boson Green function D(iνn) = (β/γ)λmaxϕδn,0+DN (iν) is no longer bounded from184

above because the Bose condensate ϕ is not bounded from above. Therefore the Bose-Einstein185

condensation is essential to cure the unstable boson problem in the class I model (η > 0).186

On the other hand, the class II model (η < 0) or the model with a fixed variance coupling187

ρ(λ) ∼ δ(λ− λ0) do not show the Bose-Einstein condensation. More detailed mathematical188

discussion about the Bose-Einstein condensation in the Yukawa-SYK model can be found in189

Appendix B.190

In the absence of the pairing F = Φ= 0, the same Schwinger-Dyson equations are solved in191

the context of the low-rank SYK models, which can be obtained from the Yukawa-SYK models192

by integrating out the massive bosons. Since the asymptotic expansion of our bosonic prop-193

agator, Eq. (28), coincides with the bosonic propagator in Ref. [39], thermodynamics of the194

Yukawa-SYK models are equal to that of the low-rank SYK models. Especially, the heat capacity195

CV ∼

¨

T, η > 0

T1+η, −1< η < 0
(29)

demonstrates non-Fermi liquid property of the class II Yukawa-SYK model [39]. While the class196

I (η > 0) shows conventional linear temperature dependence, the class II (−1 < η < 0) ex-197

hibits anomalously large heat capacity at low temperatures because of algebraically diverging198

ρ(λ)→∞ as λ→ λmax.199

Note that these two new classes of the normal states are qualitatively different from the200

quantum critical SYK non-Fermi liquid (SYK-NFL) normal state of the Yukawa-SYK model with201

a fixed variance coupling, ρ(λ)∼ δ(λ−λ0) [28,36,41]. The SYK-NFL state is the fast scram-202

bling conformal solution of the fixed variance model, and its non-Fermi liquid nature originates203

from the strong boson-fermion interactions which dynamically tune the mass of the bosons to204

zero [28]. The scaling property of the fermion Green function G(iωn) for the SYK-NFL state is205

dominated by the fermion self-energy Σ(iωn)∼ isgn(ωn)|ωn|1−2∆ at low frequencies, and the206

8
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Paired State

Non-Fermi Liquid Fermi Liquid

Figure 3: Phase diagram of the Yukawa-SYK model with γ = λmax = m = 1. The
phase boundary demonstrates the leading pairing instabilities of the normal state.
The singlet Yukawa coupling has the instabilities in all pairing channels at the same
temperatures. However, the triplet Yukawa coupling shows the pairing instabilities
only in the spin-preserving triplet channels. Both the singlet and triplet couplings
have the same transition temperature Tc for a givenη that determines the distribution
of the variances ρη(λ).

scaling dimension, which lies between 1
4 <∆ <

1
2 , depends on the ratio between the number207

of bosons (M) and fermions (N), γ= M/N .208

On the contrary, the normal states of our model with the distribution of the variances209

ρ(λ) show different scaling behaviour. Both "Fermi liquid" (η > 0) and "non-Fermi liquid"210

(−1 < η < 0) states show the "impurity-like" behaviour, which has been observed from the211

fixed-variance model at intermediate temperature window [36, 41]. The strong interactions212

do not tune the mass of the boson to zero. Instead, the bosons act as impurity centres that213

scatter fermions. Especially, as we can see from Eq. (23), the impurity-like scattering due to214

the Bose condensate ϕ and the static uncondensed bosons DN (iν0 = 0) lead to the leading215

scaling dimension of the fermions∆= 1
2 , i.e., G(iωn)∼ isgn(ωn), for all γ and η > −1. While216

the impurity-like non-Fermi liquid fixed point is not stable in the fixed-variance models, our217

model supports the impurity-like Fermi liquid and non-Fermi liquid states as stable infrared218

fixed points at low temperatures.219

5 Pairing Instabilities of Fermi and Non-Fermi Liquids220

We are interested in pairing instabilities of fermions in the presence of the singlet (a = 0)221

and the triplet (a = 3) Yuakawa interactions [Eq. (4)]. Hence, we consider not only singlet222

pairing but also triplet pairings. Let us expand the anomalous part of the Green function and223

9



SciPost Physics Submission

the self-energy in the singlet (µ= 0) and the triplet channels (µ= 1, 2,3):224

F(iωn) =
3
∑

µ=0

Fµ(iωn)iσ
2σµ, (30)

Φ(iωn) =
3
∑

µ=0

Φµ(iωn)iσ
2σµ. (31)

Then Eq. (19) becomes225

Φµ(iωn) = −
γ

β

∑

m∈Z
ζD(iνm)F

µ(iνm + iωn), (32)

where ζ = 1 if σa and σ2σµ commutes and ζ = −1 if σa and σ2σµ anticommutes. Hence,226

ζ = 1 for all pairing channels (µ = 0, 1,2, 3) in case of the singlet Yukawa coupling (a = 0).227

However, ζ = 1 for µ = 1,2 and ζ = −1 for µ = 0,3 in case of the triplet Yukawa coupling228

(a = 3).229

At the critical temperatures Tc , we consider a continuous phase transition to a paired state.230

Near Tc , the anomalous part of the self-energy Φ(iωn) and the Green function F(iωn)must be231

very small. Hence, we linearize the Schwinger-Dyson equations to estimate Tc and identify the232

leading pairing instability. Then we can approximate the anomalous Green function F(iωn)233

with the normal state Green function G0(iωn) near Tc:234

Fµ(iωn) = −G0(iωn)Φ
µ(iωn)G0(−iωn) (33)

= −(iG0(iωn))
2Φµ(iωn) = −

Φµ(iωn)

(ωn + iΣ0(iωn))
2 (34)

In the second line, we used the odd parity of G0(iωn) = −G0(−iωn). Then we get the lin-235

earized Schwinger-Dyson equations for the paring channels:236

Φµ(iωn) =
ζ

β

∑

m∈Z

γD(iωm − iωn)

(ωm + iΣ0(iωm))
2Φ

µ(iωm). (35)

Since the bosonic propagator is in the numerator while the fermionic self-energy is in the237

denominator of Eq. (35), strong Yukawa couplings lead to two competing effects: enhance-238

ment of the bosonic propagator D, which is the pairing glue of fermions, and decoherence of239

fermions due to large fermionic self-energy Σ0.240

Using the bosonic propagator and fermionic self-energy of the normal state, we can calcu-241

late the transition temperature Tc from the condition that the linearized equation, Eq. (35),242

has the nontrivial solution. Figure 3 shows the phase diagram of the Yukawa-SYK model for243

the various distribution parameter η. The phase boundary implies the leading pairing insta-244

bilities of the model. While the non-Fermi liquid states with η < 0 (class II) are known to245

have large fermionic self-energy ΣN (iωn) ∼ |ωn|1+η (compared to the free Green function246

Gfree(iωn)−1 ∼ ωn) due to the uncondensed bosons [39], their transition temperatures are247

greater than those of the Fermi liquid states with η > 0. Our result implies that the enhance-248

ment of the pairing glue D(iνn) (Figure 2) plays a more important role in the pairing than the249

decoherence of fermions in the Yukawa-SYK model.250

While the singlet coupling (a = 0) yields the same linearized equations for both singlet251

(µ= 0) and triplet pairing channels (µ= 1, 2,3), the triplet Yukawa coupling (a = 3) turns out252

to have the attractive pairing channels only for the spin-preserving triplet pairing (µ = 1, 2).253

10
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Note that the spin-preserving triplet pairings are254

F1(τ) =
N
∑

j=1

〈c†
j↑(τ)c

†
j↑(0)− c†

j↓(τ)c
†
j↓(0)〉, (36)

F2(τ) =
N
∑

j=1

i〈c†
j↑(τ)c

†
j↑(0) + c†

j↓(τ)c
†
j↓(0)〉. (37)

Due to the Pauli exclusion principle, these pairings must be vanishing in the static limit τ→ 0.255

Only the dynamical pairing among fermions at distinct times can be finite. Therefore, the256

leading pairing instabilities of the triplet Yukawa coupling (a = 3) correspond to the dynamical257

pairing of fermions. Such a feature is distinguished from the conventional pairing in the BCS258

theory. Apart from the nature of the paired states, the transition temperature Tc for both the259

singlet and triplet Yukawa-SYK models are the same for a given value of η. Hence, the phase260

diagrams for the singlet and triplet couplings are the same, although the paired states’ nature261

is different.262

6 Conclusion263

In summary, we present a solvable strongly coupled theory of spin-half fermions ciσ interacting264

with scalar bosons φk by the all-to-all random Yukawa couplings gi j,k. For each boson φk,265

the Yukawa coupling constant gi j,k is sampled from the Gaussian orthogonal ensemble of zero266

mean, gi j,k = 0, and finite variance, (gi j,k)2 = λk. With a large number of fermions and bosons,267

we assume that the theory is self-averaging and the set of the variances {λk} forms a continuous268

distribution ρ(λ) (Figure 1). An important aspect of the theory is the systematic controllability269

of the fermionic incoherence with the distribution ρ(λ) responsible for the statistical nature270

of the Yukawa interaction gi j,k. The model can realize both the Fermi liquid normal state271

when ρ(λ) is regular at the maximum variance λmax and the non-Fermi liquid normal state272

when ρ(λ) diverges algebraically at λmax. These Fermi and non-Fermi liquid normal states273

correspond to the low-energy states of class I and class II low-rank SYK models in Ref. [39].274

Starting from these normal states, we examined the leading pairing instabilities in both275

spin-singlet and triplet channels by solving the linearized Schwinger-Dyson equations. The276

spin independent Yukawa interactions gi j,k(c
†
i↑c j↑φk + c†

i↓c j↓φk), which model the charge fluc-277

tuations of correlated metals, show the pairing instabilities from both spin singlet and spin278

triplet channels. However, the spin dependent Yukawa interactions gi j,k(c
†
i↑c j↑φk − c†

i↓c j↓φk),279

which represent the spin fluctuations, yield the leading pairing instabilities from the spin triplet280

channels F1,2(τ)∼ 〈c†
↑(τ)c

†
↑(0)±c†

↓(τ)c
†
↓(0)〉. Although both the spin-independent and depen-281

dent Yukawa interactions result in the same normal states, the resulting pairing instabilities282

are not the same. Furthermore, it is interesting to note that the critical temperature for the283

pairing state arising from the non-Fermi liquid is higher than that of the Fermi liquid (Figure 3).284

Although conventional wisdom may expect that the pairing would be eventually suppressed285

due to incoherence of the fermions, our theory demonstrates an example that the enhance-286

ment of the boson propagator, which glues the fermion pair, dominates the effect of the large287

fermion self-energy, which shortens each dressed fermion’s lifetime. In this theory, there is no288

ad hoc parameter to control the relative contributions of the boson propagator and fermion289

self-energy to the pairing instabilities. The control knob of our theory ρ(λ) influences both290

the enhancement of the pairing glue and the incoherence of the fermions, revealing a concrete291

physical meaning of the distribution ρ(λ).292

Since the Yukawa-SYK model is zero-dimensional, the natural follow-up question is the293

extension of our work to higher dimensions. If a quantum dot that consists of a large number294
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of bosons and fermions realizes the paired state of the Yukawa-SYK model, we can consider295

an array of the coupled quantum dots as a higher dimensional generalization of our theory.296

Then, the leading spin-triplet pairing instabilities from the spin-dependent Yukawa interac-297

tions raise an interesting question: can the array of the coupled Yukawa-SYK quantum dots298

realize any unconventional (topological) superconductor? Furthermore, our analysis is based299

on the linearized Schwinger-Dyson equations. To examine the thermodynamic properties of300

the strongly interacting paired states below Tc , it would be interesting to explore the solutions301

of the full nonlinear Schwinger-Dyson equations.302
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A Derivation of the Effective Action307

We derive the effective action by averaging over the random Yukawa couplings, gi j,k. Assuming308

that the model is self-averaging, we construct the large N effective action from the disorder309

average of the partition function Z instead of the free energy log Z . In the language of the310

replica field theory, we are assuming that the replica diagonal terms dominate the low-energy311

physics while the replica non-diagonal terms are suppressed by O(1/N).312

e−Sλ = e−Sg

=
M
∏

k=1

� N
∏

i=1

∫

d gii,k
p

4πλk

e−(gii,k)2/4λk−(gii,k/2N)
�

Aii,k+A†
ii,k

�

�

×
�

∏

i< j

∫

d gi j,k
p

2πλk

e−(gi j,k)2/2λk−(gi j,k/N)
�

Ai j,k+A†
i j,k

�

�

=
M
∏

k=1

� N
∏

i=1

e(λk/4N2)
�

Aii,k+A†
ii,k

�2
�� N
∏

i ̸= j

e(λk/4N2)
�

Ai j,k+A†
i j,k

�2
�

= exp





N
∑

i, j=1

M
∑

k=1

λk

4N2

�

Ai j,k + A†
i j,k

�2



 (38)
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where Ai j,k =
∫ β

0 dτ c†
iασ

a
αβ

c jβφk. The summation is assumed for the repeated Greek indices.313

Therefore314

Sλ = −
N
∑

i, j=1

M
∑

k=1

∫ β

0

dτ dτ′
λk

2N2
φk(τ)φk(τ

′)σa
αβσ

a
α′β ′

�

c†
iα(τ)c jβ(τ)c

†
jα′(τ

′)ciβ ′(τ
′)

+c†
iα(τ)c jβ(τ)c

†
iα′(τ

′)c jβ ′(τ
′)
�

=
M
2

∫ β

0

dτ dτ′
�

1
M

M
∑

k=1

λkφk(τ)φk(τ
′)

�

×







�

1
N

N
∑

i=1

c†
iα(τ)ciβ ′(τ

′)

�

σa
αβ





1
N

N
∑

j=1

c†
jα′(τ

′)c jβ(τ)



σa
α′β ′

−

�

1
N

N
∑

i=1

c†
iα(τ)c

†
iα′(τ

′)

�

σa
αβ





1
N

N
∑

j=1

c jβ ′(τ
′)c jβ(τ)



σa
α′β ′







=
M
2

∫ β

0

dτ dτ′D(τ′,τ)
�

Gβ ′α(τ
′,τ)σa

αβGβα′(τ,τ′)σa
α′β ′

−F+α′α(τ
′,τ)σa

αβ Fββ ′(τ,τ′)(σa)Tβ ′α′
�

=
M
2

∫ β

0

dτ dτ′D(τ′,τ) tr
�

G(τ′,τ)σaG(τ,τ′)σa − F+(τ′,τ)σaF(τ,τ′)(σa)T
�

(39)

where “tr” is the trace over the spin indices. To impose the relationship between the bilocal315

fields and the fermions and bosons, we introduce the Lagrange multipliers:316

SΠ =
1
2

∫ β

0

dτ dτ′Π(τ,τ′)

�

M D(τ′,τ)−
M
∑

k=1

λkφk(τ)φk(τ
′)

�

, (40)

SΣ = −
∫ β

0

dτ dτ′Σαα′(τ,τ′)

�

NGα′α(τ
′,τ)−

N
∑

i=1

c†
iα(τ)ciα′(τ

′)

�

, (41)

SΦ = −
1
2

∫ β

0

dτ dτ′Φαα′(τ,τ′)

�

N F+α′α(τ
′,τ)−

N
∑

i=1

c†
iα(τ)c

†
iα′(τ

′)

�

+Φ+αα′(τ,τ′)

�

N Fα′α(τ
′,τ)−

N
∑

i=1

ciα(τ)ciα′(τ
′)

�

, (42)

Let us define the Fourier transformations317

ciα(τ) =
1
p

β

∑

n∈Z
ciα(iωn)e

−iωnτ, (43)

φk(τ) =
1
p

β

∑

n∈Z
φk(iνn)e

−iνnτ, (44)

where ωn = (2n+1)π/β and νn = 2nπ/β are the fermionic and bosonic Matsubara frequen-318

cies, respectively. Since the model is time-translation invariant, the bilocal fields are functions319

of τ−τ′. The consistent definition of the Fourier transformations for the bilocal fields is320

Gαα′(τ,τ′) = Gαα′(τ−τ′) =
1
β

∑

n∈Z
Gαα′(iωn)

−iωn(τ−τ′). (45)
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Then our modified action eS = eSc + eSφ + eSλ including the Lagrange multipliers in the Fourier321

space is322

eSc = −
N
∑

i=1

∞
∑

n=0

f †
i (iωn) ·
�

G0(iωn)
−1 −S(iωn)
�

· fi(iωn), (46)

eSφ =
M
∑

k=1

∞
∑

n=1

�

ν2
n/c

2 +m2 −λkΠ(iνn)
�

|φk(iνn)|
2 +

1
2

M
∑

k=1

�

m2 −λkΠ(0)
�

(φk(0))
2 (47)

eSλ = −
N
2

∑

n∈Z
Tr [S(iωn) · G(iωn)] +

M
2

∑

n∈Z
D(iνn)
¦

Π(iνn)

+
1
β

∑

m∈Z
tr [G(iωm)σ

aG(iωm + iνn)σ
a]− tr
�

F+(iωm)σ
aF(iωm + iνn)(σ

a)T
�

©

, (48)

where “Tr” is the trace over the indices for the four-component spinor323

fi(iωn) =
�

ci↑(iωn) ci↓(iωn) c†
i↑(−iωn) c†

i↓(−iωn)
�T

, (49)

and324

G0(iωn)
−1 =

�

(iωn +µ)σ0 0
0 (iωn −µ)σ0

�

, (50)

S(iωn) =

�

Σ(iωn) Φ(iωn)
Φ+(iωn) −Σ(−iωn)T

�

, (51)

G(iωn) =

�

G(iωn) F(iωn)
F+(iωn) −G(−iωn)T

�

. (52)

By integrating out the fermions and bosons, we obtain the effective action Seff = S0 + eSλ325

in terms of the bilocal fields, where326

S0 = −N
∞
∑

n=0

Tr log
�

G0(iωn)
−1 −S(iωn)
�

+
M
∑

k=1

∞
∑

n=1

log
�

ν2
n/c

2 +m2 −λkΠ(iνn)
�

+
∑

k:λk<λmax

1
2

log
�

m2 −λkΠ(0)
�

+
βN
2

�

m2 −λmaxΠ(0)
�

ϕ. (53)

ϕ is the magnitude of the condensed bosons defined in Eq. (13).327

When the set of the variances {λk} form a well-defined distribution328

ρ(λ) =
1
M

M
∑

k=1

δ(λ−λk). (54)

in the large M limit, we can rewrite Seff as329

Seff = −
N
2

∑

n∈Z
Tr log
�

G0(iωn)
−1 −S(iωn)
�

+
M
2

∑

n̸=0

∫ λmax

0

dλρ(λ) log
�

ν2
n/c

2 +m2 −λΠ(iνn)
�

+
βN
2

�

m2 −λmaxΠ(0)
�

ϕ

−
N
2

∑

n∈Z
Tr [S(iωn) · G(iωn)] +

M
2

∑

n∈Z
D(iνn)
¦

Π(iνn)

+
1
β

∑

m∈Z
tr [G(iωm)σ

aG(iωm + iνn)σ
a]− tr
�

F+(iωm)σ
aF(iωm + iνn)(σ

a)T
�

©

(55)
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B Bose-Einstein Condensation for the η > 0 Model330

In low-dimensional systems, the violent quantum fluctuations often prevent the presence of331

long-range order or the Bose-Einstein condensation (BEC). For example, in the Yukawa-SYK332

model with a fixed variance coupling, i.e., ρ(λ) ∼ δ(λ − λ0), bosons are not condensed al-333

though the strong Yukawa interactions with fermions renormalize their mass to zero [28,36].334

However, the low dimensionality does not always rule out the possibility of BEC. In this ap-335

pendix, we demonstrate that our model with η > 0 (class I) can show the Bose-Einstein con-336

densation in spite of strong quantum fluctuations due to the zero-dimensional nature of the337

all-to-all interactions.338

The Bose-Einstein condensation occurs when the number of excited states is bounded from339

above, i.e., Nexcited < N0, at some temperatures below TBEC. If there were N number of bosons,340

the remaining N − N0 number of bosons are forced to be in the ground state since the Bose341

statistics limits the maximum number of the bosons in the excited states. Then, the macro-342

scopic number (N − N0≫ 1) of bosons are said to be condensed in the ground state.343

For our model, it is difficult to calculate the maximum number of available excited states344

N0 explicitly. Instead, we can demonstrate that the bosons inevitably become unstable (i.e.,345

m2 − λmaxΠ(0) < 0) without the Bose-Einstein condensation when η > 0. If there were346

no BEC (ϕ = 0), we will first show that the boson Green function D(iνn) is bounded from347

above when η > 0. Next, we will prove that the fermion self-energy Σ(iωn) is bounded348

from above because D(iνn) is bounded from above. At last, when the fermion self-energy349

is bounded from above, we can show that the boson self-energy Π(0) at zero frequency is350

bounded from below. The lower bound of Π(0) is a function of temperature, and we will show351

that m2 − λmaxΠ(0) inevitably becomes negative at some finite temperatures because of this352

lower bound. In short, we will prove that BEC must occur in the η > 0 model because "no353

BEC" implies the bounded boson Green function which results in the unstable bosons. Below,354

we mathematically demonstrate this idea.355

When η > 0, we first demonstrate below that the contribution of uncondensed bosons to356

the boson Green function DN (iνn) is bounded from above. From Eq. (25), we find357

DN (iνn)≤ D(0)(0) fη(1) =
λmax

m2
fη(1) =

λmax

ηm2
. (56)

Using l’Hospital’s rule, explicit calculations can show that limx→1 fη(x) = 1/η. Since fη is a358

strictly increasing function of x ∈ (−∞, 1], fη(x) ≤ fη(1) = 1/η. Thus, the above inequality359

holds. Note that if η≤ 0, fη(x) diverges at x = 1.360

Let us suppose that the bosons are not condensed, i.e., ϕ = 0. Then, from Eq. (18),361

|β iΣ0(iωn)|2 =

�

�

�

�

�

∑

n′∈Z
γD(iωn′ − iωn)iG0(iωn′)

�

�

�

�

�

2

≤
∑

n′∈Z
|γD(iωn′ − iωn)iG0(iωn′)|

2 =
∑

n′∈Z
|γD(iωn′ − iωn)|

2 |iG0(iωn′)|
2

≤
�

γλmax

ηm2

�2
∑

n′∈Z
|iG0(iωn′)|2 ≡ S2. (57)

Note that the normal state fermion Green function without the Bose-Einstein condensation has362

the canonical form:363

G0(iωn) =
1

iωn −Σ0(iωn)
. (58)
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Since |iG0(iωn)|2 decays at least as fast as 1/n2, its sum over all Matsubara frequencies must364

be convergent. Hence, S must be a finite nonnegative real number. To be more specific, if365

|Σ0(iωn)| ≫ |ωn| as |ωn| → ∞,
∑

n |iG0(iωn)|2 converges because the square of the Green366

function decays faster than 1/n2. If |Σ0(iωn)| ≪ |ωn| as |ωn| → ∞, then
∑

n |iG0(iωn)|2 is367

also convergent because |iG0(iωn)|2 decays as 1/n2.368

When the fermion self-energy is bounded from above, the boson self-energy at zero fre-369

quency is bounded from below:370

Π(0) =
2
β

∑

n∈Z
(iG0(iωn))

2 =
2
β

∑

n∈Z

1
[ωn + iΣ0(iωn)]2

=
∑

n∈Z

2β
[(2n+ 1)π+ β iΣ0(iωn)]2

≥
∞
∑

n=0

4β
[(2n+ 1)π+ |β iΣ0(iωn)|]2

≥
∞
∑

n=0

4β
[(2n+ 1)π+S]2

=
β

π2
ψ(1)
�

1
2
+

S
2π

�

, (59)

where ψ(1) is the polygamma function of order 1. Thus, m2 −λmaxΠ(0)< 0 if371

T < λmaxψ
(1)(1/2+S/2π)/π2m2. (60)

Since S also depends on temperature T , one can question whether the above inequality372

can be satisfied for some finite temperatures T > 0. To examine the existence of the solution373

of the inequality, let us first investigate the γ = 0 case for given η, m, and λmax. Since S = 0374

when γ= 0,375

Π(0)> (β/π2)ψ(1)(1/2) = (β/π2)(π2/2) = β/2. (61)

Thus, m2 −λmaxΠ(0)< 0 if T < λmax/2m2, i.e., the bosons become unstable at finite temper-376

atures if there were no Bose-Einstein condensation. Suppose iΣ0(iωn) for finite γ > 0 is con-377

tinuously connected to the γ = 0 limit, i.e., if we increase γ from 0, then S also continuously378

increases from zero. By numerically solving the Schwinger-Dyson equations, we confirmed379

that the self-consistent Green functions and self-energies for finite γ > 0 is continuously con-380

nected to the self-consistent solution for γ= 0 (up to γ= 1. This is also previously confirmed381

both numerical calculations and analytical perturbation theory in [39]. Sinceψ(1)(1/2+S/2π)382

is an analytic function of S ≥ 0, the existence of the solution at γ= 0 implies the existence of383

the solution for some finite γ > 0.384

To sum up, the Bose-Einstein condensation is necessary for the η > 0 model to avoid the385

instability of bosons. If the bosons are condensed (ϕ ̸= 0), the bosons can be either critical386

or stable because the total boson Green function D(iνn) = (βλmax/γ)ϕδn,0 + DN (iνn) is no387

longer bounded from above. Then the quantum fluctuations of the bosons can yield arbitrarily388

large fermion self-energy. When the fermion self-energy is sufficiently large, it will not result389

in large boson self-energy which makes bosons unstable. Note that our conclusion is consistent390

with the previous work for the fixed-variance model. Since the boson Green function is not391

bounded from above for the fixed-variance model, the bosons can remain critical without the392

condensation [28]. We would also like to note that the physics of our model is different from393

that of free Bose gas at d = 0 because the bosons are strongly coupled to the massless fermions.394

The intertwined dynamics of the strongly correlated bosons and fermions can result in the Bose395

condensation even at d = 0 under certain conditions.396
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