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Abstract

We consider two-loop renormalization of high-dimensional operators in QCD and the
relevant Higgs EFT amplitudes. Efficient unitarity-IBP strategy is used to compute the
two-loop minimal form factors of length-3 operators up to dimension sixteen. From the
ultraviolet divergences of form factor results, we extract the renormalization matrices
and compute anomalous dimensions. We also obtain the analytic finite remainder func-
tions which exhibit several universal transcendentality structures. The form factors we
compute are equivalent to Higgs plus three-gluon amplitudes that capture high-order
top mass corrections in Higgs effective field theory.
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1. INTRODUCTION CONTENTS

1 Introduction

Gauge invariant operators play important roles in QFT. For example, they correspond to com-
posite states such as color-singlet hadrons in QCD and also appear as effective interaction
vertices in effective field theories (EFT). At classical level, an important problem is to find
a set of independent basis for the operators of a certain canonical dimension. At quantum
level, the operators receive quantum loop corrections and it is important to perform renor-
malization, where the canonical dimensions are modified by anomalous dimensions. Further
problems include computing scattering amplitudes in EFTs where the operators need to be
taken into account as well.

In this report, we will address all these problems by considering gauge invariant local
operators which are composed of field strength Fµν and covariant derivatives Dµ. The field
strength carries a color index as Fµν = F a

µνT a, where T a are the adjoint generators of gauge
group and satisfy

[T a, T b] = i f abc T c . (1)

The covariant derivative acts in the standard way as

Dµ ?= ∂µ ?+i g[Aµ,?] , [Dµ, Dν] ?= i g[Fµν,?] . (2)

A gauge invariant scalar operator can be written in the following general form:

O(x)∼ c(a1, ..., an)X (η
µν)
�

Dµ11
...Dµ1m1

Fν1ρ1

�a1 · · ·
�

Dµn1
...Dµnmn

Fνnρn

�an(x) , (3)

where c(a1, ..., an) are color factors (e.g. given in terms of Tr(..T ai ..T a j ..)). All Lorentz indices
{µi ,νi ,ρi} are contracted in pairs by metric ηµν contained in the function X (η). These oper-
ators form composite color-singlet states in QCD, and they are also related to the Higgs EFT,
which is obtained in the gluon fusion process by integrating the heavy top quark [1–4].

To study the aforementioned problems associated to these operators, a useful observable
to consider is the form factor defined as (see e.g. [5] for an introduction):

FO,n(1, . . . , n; q)≡
∫

dD xe−iq·x〈1 . . . n|O(x)|0〉 , (4)

where pi are momenta for on-shell states and q =
∑

i pi is an off-shell momentum associated
to the operator. The form factors allow to apply modern on-shell amplitude techniques to
study “off-shell" operators, for both constructing (classical) operator bases and for computing
high-loop quantum corrections. In the remaining sections, we would like to report some recent
progress on these problems, mainly based on [6,7].

2 Operator basis

The operators at a given canonical dimension in general are not independent with each other,
because they can be related to each other through equations of motion (EoM) or Bianchi
identities (BI):

EoM : DµFµν = 0 , BI : DµFνρ + DνFρµ + DρFµν = 0 . (5)

Our goal in this section is to find a set of independent operators in the sense that there are no
above relations among the operators.

For simplicity, we will focus on length-2 and length-3 operators, in which there are only 2
and 3 Fµν fields respectively, plus arbitrary insertion of covariant derivatives. Two operators
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2. OPERATOR BASIS CONTENTS

operator Dµ Fµν
kinematics pµ pµεν − pνεµ

(a) D-dimensional dictionary

operator Dα̇α fαβ f̄α̇β̇
spinor λ̃α̇λα λαλβ −λ̃α̇λ̃β̇

(b) Four-dimensional dictionary

Table 1: Dictionary between operators and form factors in both D and 4 dimensions.

will be set equivalent if their difference can be written in terms of high length operators. For
example, one can show that D12...F34D12...F34 and 1

2∂
2
1

�

D2...F34D2...F34

�

are equivalent up to
length-3 operators. Given this criterion, there is only one independent length-2 operator at
each even dimension: (∂ )∆0−4tr(FµνFµν).

For constructing the basis of length-3 operators, one can introduce two primitive operators:

OP1 = Tr(D1F23D4F23F14) =
1
2

f abc(D1F23)
a(D4F23)

b(F14)
c ,

OP2 = Tr(F12F13F23) =
1
2

f abc(F a
12F b

13F c
23) ,

(6)

where for short notations, we use integer numbers to represent Lorentz indices and also often
abbreviate Di Dj .... as Di j..., for example, Fµ1µ2 Dµ1

Dµ5
Fµ3µ4 Dµ2

Dµ5 Fµ3µ4
→ F12D15F34D25F34.

The “primitive" is in the following sense that: all higher dimensional operators can be con-
structed by inserting pairs of covariant derivatives {Dµ, Dµ} in primitive operators. (Note that
for the length-2 case there is a single primitive operator tr(FµνFµν).)

As a concrete example, let us consider operators of dimension-10, which will serve as major
examples in the following discussion. One can construct basis operators by inserting DD pair
in the primitive operators (6). There are five inequivalent ways of adding DD pairs which
provide 5 independent length-3 operators:

Example: Dim-10 basis (Form I)

O′′10;1 = Tr(D12F34D15F34F25), O′′10;2 = Tr(D12F34D5F34D1F25), O′′10;3 = Tr(D2F34D15F34D1F25),

O′′10;4 = Tr(D12F34D1F35D2F45), O′′10;5 = Tr(D12F34D12F35F45) , (7)

where O′′10;1 to O′′10;3 are obtained by adding a single DD pair to OP1, and O′′10;4,O′′10;5 are
obtained by inserting two DD pairs to OP2.

For the convenience of loop computations, it is important to simplify the operator basis
such that they can manifest certain symmetry properties. This can be achieved by considering
the so-called minimal tree-level form factors, for which the number of external gluons is equal
to the length of the operator. In particular, one can establish a dictionary from an operator to
its tree-level minimal form factor [8–10]:

OL ⇔ FOL ,L(1, . . . , L) , (8)

where each D and F in the operator are mapped to the kinematics in form factor via Table 1.
With the help of minimal form factors, we can decompose operators according to the color

structure and helicity structure. There are two color factors for length-3 minimal form factors:

f abc = Tr(T aT bT c)− Tr(T aT c T b) , dabc = Tr(T aT bT c) + Tr(T aT c T b) , (9)

and the corresponding operators associated to these two factors will be said in f -sector and
d-sector respectively. Furthermore, the minimal form factors have two helicity sectors:

α-sector : F (0),min
O 6= 0 only for (−,−,+), (+,+,−),

β-sector : F (0),min
O 6= 0 only for (−,−,−), (+,+,+).

(10)
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3. LOOP COMPUTATION VIA UNITARITY-IBP CONTENTS

We summarize the operators in different sectors according the form factor structure as

Operator F (0)(−,−,+) F (0)(−,−,−) color factor
Oα; f ∝ A1 0 f abc

Oα;d ∝ A1 0 dabc

Oβ; f 0 ∝ A2 f abc

Oβ;d 0 ∝ A2 dabc

(11)

where the two helicity sectors are associated to two spinor factors:

A1 = 〈12〉3[13][23] , A2 = 〈12〉〈13〉〈23〉 . (12)

As examples, let us consider again the dim-10 operators. Firstly, by properly (anti)symmetrizing
the set of basis (7), one can write the operators in different color sectors as

Example: Dim-10 basis (Form II)

O′10;1 =
1
2

f abc(D12F34)
a(D15F34)

b(F25)
c , O′10;2 = f abc(D12F34)

a(D5F34)
b(D1F25)

c ,

O′10;3 = dabc(D12F34)
a(D5F34)

b(D1F25)
c , (13)

O′10;4 =
1
2

f abc(D12F34)
a(D1F35)

b(D2F45)
c , O′10;5 =

1
2

f abc(D12F34)
a(D12F35)

b(F45)
c .

Furthermore, by investigating the spinor factors of minimal form factors, the operators can
be put in different helicity sectors via certain linear combinations. We summarize the final
dimension-10 length-3 basis operators that will be used for loop computation as

Example: Dim-10 basis (Form III)

Basis operator F (0)(−,−,+) F (0)(−,−,−) color factor
O10;α; f ;1 =

1
2∂

2OP1 −
1
12∂

4OP2
1
2 s123A1 0 f abc

O10;α; f ;2 =O′10;1 −O′10;5
1
2 s12A1 0 f abc

O10;α;d;1 =O′10;3
1
2(s13 − s23)A1 0 dabc

O10;β; f ;1 =
1
12∂

4OP2 0 1
4 s2

123A2 f abc

O10;β; f ;2 =O′10;5 0 1
4(s

2
12 + s2

23 + s2
13)A2 f abc

(14)

3 Loop computation via unitarity-IBP

To compute the loop form factors for the basis operators, we apply the unitarity-IBP strategy
that combines unitarity cut [11–13] and integration by parts (IBP) methods [14, 15] (using
public packages e.g. [16–19]). The work flow of our strategy can be illustrated as follows:

F (l)
�

�

�

cut
=
∏

(Tree blocks) = Cut integrand
IBP with cuts
−−−−−−−−−−→

∑

i

ci

�

Ii

�

�

cut
�

. (15)

This strategy has been used to study form factors and Higgs amplitudes in [6,7,20,21] and for
pure gluon amplitudes in [22, 23]. Similar strategy has been used in the numerical unitarity
approach [24,25], and the idea of applying cuts to simplify IBP has also been used in e.g. [26–
29].

The complete set of two-loop master integrals for minimal length-3 form factors are given
in Fig. 1. The two-loop color-ordered form factors, associated with color factor tr(T a1 T a2 T a3)
via color decomposition, can be written as a sum of master integrals Ii as

F (2)O =
�

c1 I1 + c2 I2 + c3 I3 + c4 I4 +
�

c5 I5 + c6 I6

�

+
�

c7 I7 + c8 I8

�

+ c9 I9

�

+ cyc.perm. , (16)
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Figure 1: Master integrals for the planar two-loop minimal form factors.
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Figure 2: Complete set of unitarity cuts for the planar two-loop form factors.

where master integrals Ii correspond to the topology and labeling given in Fig. 1. The master
coefficients ci are what to be computed. The spanning set of cuts used to fix all coefficients
are given in Fig. 2. Note that the two-loop minimal form factors of length-3 operators have
no sub-leading-color contribution, thus the set of planar cuts are enough to fix the full results.
More details can be found in [6].

4 Results and analysis

The master integrals in Fig. 1 are known in terms of 2d harmonic polylogarithms [30, 31].
Together with IBP coefficients, the form factors can be written in explicit functional form,
from which one can extract the wanted physical information.

The bare form factors contain divergences and can be schematically expanded as:

Loop form factor= (Universal IR div.)+ (UV div.)+ (Finite part) , (17)

where the infrared (IR) divergences depend only on the configuration of external on-shell
states, while the UV divergences are related to the operator and coupling renormalization.

Operator renormalization

In dimensional regularization, both IR and UV divergences are regularized by ε = (4− D)/2,
and it may seem non-trivial to disentangle the two divergences. Fortunately, this problem can
be easily solved, thanks to the universal structure of IR divergences. In particular, the two-loop
IR can be obtained by the Catani form [32], which is determined by the one-loop form factor
together with some universal functions independent of operartors.

After subtracting IR divergences, the obtained UV divergences can be eliminated by per-
forming operator renormalization. The renormalization constant Z in general takes a matrix
form as:

OR,i = Z j
i OB, j , (18)

since different operators in the same basis can generally mix with each other under renormal-
ization. From the renormalization constant, one can further define the dilation operator as

D= −
d log Z
d logµ

. (19)
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4. RESULTS AND ANALYSIS CONTENTS

Finally, the eigenvalues of the dilatation operator give the anomalous dimensions.
We consider again the dimension-10 operators in (14). Separated in f and d sectors, the

renormalization matrices at one loop are

Z (1)O10, f
=

Nc

ε













−11
3 0 0 0 0

0 7
6 0 0 0

0 −3
5

71
30 0 0

0 0 0 1
2 0

0 0 0 −1 17
6













, Z (1)O10;d
=

Nc

ε

13
6

, (20)

where we have included the length-2 operator in the f -sector and the basis is chosen as
{∂ 6tr(F2),O10;α; f ;1,O10;α; f ;2,O10;β; f ;1,O10;β; f ;2}. For the two-loop renormalization matrices,
the 1/ε2 part is determined by one-loop results, and the intrinsic new information is contained
in the 1/ε part, given as

Z (2)O10, f

�

�

�

1
ε -part.

=
N2

c

ε













−34
3 0 0 0 0
−1

3
269
72 0 5

2 0
−209

900 − 5579
18000

712
125

1493
1200

5
36

−1 0 0 25
12 0

−19
36

139
2400

499
800 −143

288
2195
288













, Z (2)O10;d

�

�

�

1
ε -part.

=
575
144

N2
c

ε
.

(21)
From them it is straightforward to compute the dilation operator as well as anomalous dimen-
sions, see [6] for more detail and further results up to dimension 16. (See also some previous
one-loop results on high dimensional operators in [33–36].)

Finite remainder

The finite remainder parts of the form factors capture important information for the Higgs-
plus-three-gluon amplitudes. The two-loop form factor with the leading operator Tr(FµνFµν)
was computed in [37], and the results with high dimension operators correspond to Higgs
amplitudes with high order of top mass corrections [6,7,20,21] and can be used to improved
the precision for the cross section of Higgs plus a jet production. Below we briefly discuss
some interested features of their analytic structure.

One can decompose the two-loop remainder functions according to their trancendentality
degree as:

R(2)O =
4
∑

n=0

R(2)O

�

�

�

deg-n
, (22)

where the maximal transcendentality degree is 4 at two loops. Here “transcendental degree”
is a mathematical notation characterizing the algebraic complexity of functions and numbers.
For example, the degree of rational functions is zero, π or log(x) has degree 1, and the Rie-
mann zeta value ζn or polylogrithm Lin(x) has degree n.

The maximally transcendental part turns out to be universally given by the function (see
also [20,21,38–40]):

R(2)O

�

�

�

deg-4
=−

3
2

Li4(u) +
3
4

Li4
�

−
uv
w

�

−
3
4

log(w)
h

Li3
�

−
u
v

�

+ Li3
�

−
v
u

�i

+
log2(u)

32

�

log2(u) + log2(v) + log2(w)− 4 log(v) log(w)
�

+
ζ2

8

�

5 log2(u)− 2 log(v) log(w)
�

−
1
4
ζ4 + perms(u, v, w) , (23)
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where the scalar ratios

u=
s12

s123
, v =

s23

s123
, w=

s13

s123
. (24)

This suggests that the two-loop minimal form factors of general length-3 operators obey the
maximal transcendentality principle [41–43].

Moreover, lower degree parts also present universal structures. The degree-3 part are
determined by the function T3(u, v, w) given as

T3(u, v, w) :=
�

− Li3
�

−
u
w

�

+ log(u)Li2
� v

1− u

�

−
1
2

log(u) log(1− u) log

�

w2

1− u

�

+
1
2

Li3
�

−
uv
w

�

+
1
2

log(u) log(v) log(w) +
1
12

log3(w) + (u↔ v)
�

+ Li3(1− v)− Li3(u) +
1
2

log2(v) log
�

1− v
u

�

− ζ2 log
�uv

w

�

, (25)

together with simple π2 log and ζ3. Building blocks of degree-2 part are T2(u, v):

T2(u, v) :=Li2(1− u) + Li2(1− v) + log(u) log(v)− ζ2 , (26)

together with log2 and π2. When expanding the remainders in these deg-3 and deg-2 building
blocks, the coefficients in front of them are just rational functions of u, v, w. Similar transcen-
dental functions have appeared in the N = 4 form factors [38,44,45].

5 Conclusion

We construct the operator basis for high dimensional QCD operators which are also related
to Higgs EFT amplitudes. The efficient on-shell unitarity-IBP method is applied to compute
the loop form factors associated with these operators. Based on the loop form factor results,
the two-loop renormalization are performed for operators up to dimension 16, and the finite
remainder functions are also obtained. We can summarize the main steps and results in the
following graph:

Operators
in YM

EoM
−−−→

BI

Operator basis
in D-dim

Unitarity-IBP
=========⇒

Loop
form factors

→
�

UV
renormalization

Remainders

Although our discussion has mostly focused on the length-3 operators, we would like to stress
that similar methods can be generalized to deal with more general high length operators. Since
our method works in full D dimensions in dimensional regularization, the strategy can be also
used to study the so-called evanescent operators. We hope to report these studies in the near
future [46].
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