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Abstract

Materials hosting tilted Dirac/Weyl fermions provide an emergent spacetime structure for
the solid state physics. They admit a geometric description in terms of an effective spacetime
metric. Using this metric that is rooted in the long-distance behavior of the underlying lat-
tice, we formulate the hydrodynamic theory for tilted Dirac/Weyl materials in 2+1 spacetime
dimensions. We find that the mingling of space and time through the off-diagonal compo-
nents of the metric gives rise to: (i) heat and electric currents proportional to the temporal
gradient of temperature, ∂tT and (ii) a non-zero Hall-like conductance σij ∝ ζiζj where ζj
parameterize the tilt in j’th space direction. The finding (i) above that can be demonstrated
in the laboratory, implies that the non-trivial emergent spacetime geometry in these mate-
rials empowers them with a fascinating capability to harness naturally available sources of
∂tT of hot deserts to produce electric current. We further find a tilt-induced non-Drude con-
tribution to conductivity which can be experimentally disentangled from the usual Drude
pole.
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1 Introduction

The motion of electrons in conductors in the absence of external temperature and/or electro-
chemical gradients is purely random thermal motion [1]. Once a spatial temperature gradient
∇T is introduced, the vector character of∇ specifies a preferred direction in the space, and there-
fore electrons flow along ∇T [2]. The purpose of this paper is to propose a class of materials
where a temporal gradient ∂tT alone (i.e. without requiring any spatial gradient) is sufficient to
generate electric and/or heat currents.

To set the stage, suppose that we have an anisotropic material where there is a preferred di-
rection in the space determined by a vector ζ. Such a preferred direction is expected to somehow
organize the random motion of electrons by preferring the orientation set by the vector ζ. In this
paper, we consider a class of anisotropies that can be encoded into a spacetime metric, and the
favored direction ζ determines the entries of the metric that mix space and time. Such a metric
influences the motion of electrons in such a way that space and time coordinates of the motions
mingle. In this way it is natural to expect that a pure temporal gradient of a spatially uniform
temperature T field to drive a current.

How do the new spacetime structures arise in the solid state? The electrons in the solids
are mounted on a lattice and every periodic lattice structure belongs to one of the 230 possible
space groups [3]. Some of these structures provide a low-energy effective theory for the electrons
that is mathematically equivalent to the Dirac theory (e.g. in graphene [4]) or deformations of
the Dirac theory as in certain structures of borophene [5, 6] or the organic compound α−(BEDT-
TTF)2I3 [7–12] or certain deformations of graphene [13]. For the Dirac electrons in solids, the
dispersion relation giving energy ε of the quasiparticles at every momentum ~k will be a Dirac
cone, and enjoys an emergent Lorentz invariance at low energies or equivalently at length scales
much larger than the lattice spacing [4].

In materials hosting a tilted Dirac cone, the cone-shaped dispersion relation is tilted in energy-
momentum space [13, 14]. This tilt is characterized by a set of anisotropy parameters ζ 1. It
turns out that this particular form of anisotropy is very peculiar in the sense that tilting the Dirac
cones is equivalent to attaching vielbein to Dirac fermions, and therefore the tilt parameter ζ can
be nicely encoded into an emergent spacetime structure [15–19]. Therefore, in the same way that
Dirac materials command an emergent Lorentz symmetry arising from an emergent Minkowski
spacetime at long wavelengths, those materials that host a tilted Dirac cone can be assigned an
emergent spacetime structure at long length scales 2 which is given by

ds2 = −v2Fdt2 + (d~r − ζvFdt)
2, (1)

where vF is the velocity scale that defines the emergent spacetime. This upper limits of fermion
velocity plays a role similar to the speed c of light in high energy physics. However, note that vF in
real materials is two or three orders of magnitude smaller than c. In the above relation, ζ is the tilt
of the Dirac cone [19]. As can be seen, the role assumed by ζ in the above equation is significantly
richer than a simple anisotropy of the space alone. In fact, this metric is associated with the long-
distance structure of the underlying (in the case of borophene, the 8pmmn) lattice and does not
depend on whether the particles (excitations) are being studied are fermionic or bosonic [20, 21].

In this paper, we use the hydrodynamic theory as a generic low-energy effective description to
bring up gross novel solid-state transport phenomena that can arise from an emergent metric (1)
that is expected to be independent of many microscopic details. The emergence of hydrodynamic
behavior in solids requires strong electron-electron interaction. As long as Fermi-liquid-like fixed
points are concerned and effective quasiparticles continue to exist, such an emergent spacetime

1Note that we denote vectors with ~r etc, while the tilt parameters are denoted by ζ rather than ~ζ to emphasize that
they are merely parameters of the spacetime, and not necessarily vectors in the new spacetime.

2Of course ”long length scales” means, large compared to lattice scale
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structure is expected to persist. This is simply because the dressed quasiparticles still roam about
on the same underlying lattice structure. Therefore, the necessary conditions for the relevance
of our hydrodynamic theory in the background metric (1) are: (i) the underlying lattice structure
is not changed, (ii) there exists well defined fermionic quasiparticles. One might wonder, how
restrictive are the above conditions. The condition (i) is valid as long as there is not structural
phase transition or the lattice is not melted. To discuss condition (ii), we refer to the example of
graphene. The direct observation of the Dirac cones in graphene – where the Coulomb interactions
are strong enough to lead to hydrodynamic flow – is understood in terms of the renormalization of
the Coulomb interactions. The key element is the lack of back-scattering for Dirac fermions that
generates a ”free Dirac fixed point” where the structure of spacetime is still Minkowski. Similar
conditions hold for 2+1 dimensional tilted Dirac cone systems where the tilt parameter may be
renormalized. Given the anisotropy arising from the tilt ζ, the renormalization may be different
in different directions. The validity of Minkowski spacetime in strongly correlated regime of
graphene [22] leads us to believe that the structure of the spacetime given by (1) is likely to be
preserved even in the hydrodynamic regime where the interactions produce the dominant scattering
rates. For the rest of the paper, we will set vF = 1 and will restore it when needed.

The isometries of the spacetime (1) are appropriate deformations of the Lorentz group [15].
As such, the spacetime defined by Eq. (1) is a deformation of the Minkowski spacetime by a
continuous parameter ζ. The presence of tilt ζ modifies many of the physical properties of the
materials, in particular including their interfaces with superconductors [23, 24]. The above metric
possesses a black hole horizon [25] that stems from spatial variation of the Galilean boost ζ in
Eq. (1). Spatial variation of a parameter similar to ζ can emulate a black-hole horizon in atomic
Bose-Einstein condensates [26], as well as in the polariton super fluids [27,28]. The spin-polarized
currents are also predicted to be associated with black-hole horizon for magnons [29]. Our pro-
posal for a spacetime structure based on tilted Dirac fermions differs from the above systems and
even from the tilted Dirac cone of Majorana fermions [30] in that (i) the tilted Dirac/Weyl systems
required for our purpose are at ambient conditions and normal (non-superconducting) state and
(ii) the quasiparticles of the theory are fermions, namely electrons and holes which carry electric
charges. As such, any effects arising from the emergent structure of the spacetime, will leave
direct signature in almost any electron spectroscopy experiment, including of course the transport
(conductivity) phenomena discussed in this paper.

The hydrodynamic theory employed in this paper as the technical tool to calculate the transport
properties of the electron fluid [31] is a generic theory that has been specialized the tilted Dirac
cone materials where the spacetime is given by metric (1). Hydrodynamic is an effective long-
time and long-distance description of quantum many body systems that focuses on few conserved
collective variables rather than embarking on the formidable task of addressing all the microscopic
degrees of freedom. This powerful theory has many applications in various systems differing in
microscopic details which are, however, described by the same equations. Only gross symmetry
properties have to be properly incorporated into the formulation of hydrodynamic for a system
at hand. Applications of hydrodynamics approach in high energy physics includes quark-gluon
plasma [32, 33], parity violation [34], chiral anomaly [35] and dissipative super fluid [36]. Within
the hydrodynamic approach, one can come up with universal and model-independent predication
such as kinematic viscosity value [37, 38]. The hydrodynamics approach can also be applied to
fluid-gravity correspondence [39] which relate the dynamics of the gravity side to the hydrody-
namic equations where the hydrodynamic fluctuation mode describes the fluctuations of black
holes [40, 41].

In this work, we will be interested in a much simpler version of hydrodynamics in a spacetime
structure in 2 + 1 dimensions subject to the metric (1) that describes electrons in sub-eV energy
scales in solids with tilted Dirac cone. Let us announce our result in advance: In any conductor, the
spatial gradient of temperature can generate heat and electric currents. The mingling of the space
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and time in Eq. (1) will allow the materials with tilted Dirac cone to generate heat and electric
currents from pure temporal gradients.

The roadmap of the paper is as follows: In section 2 following Lucas [22] we formulate the
hydrodynamics for the metric (1) as a natural, but categorically different generalization of the hy-
drodynamic theory of graphene. In section 3, in addition to the usual tensor transport coefficients
of standards solids, we introduce vector transport coefficients required for a consistent treatment
of the hydrodynamics in spacetime (1) where we discuss perfect fluid. It is followed by a treatment
of the viscous fluids in section 4 in this new spacetime. We end the paper with a discussion and
summary of the paper in section 5.

2 Hydrodynamics of tilted Dirac fermions

In this section we develop the hydrodynamics of electrons in a tilted Dirac cone material. For a
planar material in d = 2 space dimensions, there is a two-parameter family of tilt deformations
given by ζ = (ζx, ζy) to the Dirac equation in three dimensional spacetime. These deformations
and the corresponding dispersion relation can be obtained if instead of the conventional Lorentz
metric ηµν one applies the following metric tensor

gµν =

(
−1 + ζ2 −ζj
−ζi δij

)
, (2)

where ζ2 = ζ2x + ζ2y and δ is the 2×2 unit matrix [15, 19]. In this parameterization of the tilt
we adopt the normalization |ζ|< 1 so that spacetime makes sense in admissible coordinates. For
convenience in the following computations, we introduce γ = (1 − ζ2)−1/2. The Greek indices
run over 0,1 and 2 for spacetime coordinates and the Latin indices run over spatial coordinates.

We assume that the electron-electron scattering rate τ−1ee is dominant over any other scattering
rate such as electron-phonon (τ−1e−ph) or electron-impurity scattering rate (τ−1e−imp). This regime
is attainable in graphene that hosts upright Dirac cone [42–45]. This has become possible by
ability to tune the strength of electron-electron interaction via gating that sets the scale of the
Fermi surface. In such a regime, an effective description at large distances (� vF τee) and long
time (� τee) is provided by the hydrodynamic equations given by conservation laws of Noether
currents. Assuming translational invariance and gauge invariance of the underlying microscopic
theory, there are conserved energy-momentum tensor Tµν and an Abelian current vector Jµ. They
constitute nine independent components subject to four constraints ∂µTµν = 0 and ∂µJµ = 0. We
further assume that the spacetime has no torsion. The latter is valid for the emergent spacetime of
tilted Dirac cone materials. Because in this case creation of torsion requires extra efforts.

In order to find unique solutions to hydrodynamics equation, it is assumed that the currents
are determined through four auxiliary local thermodynamical quantities: the temperature T (x),
the chemical potential µ(x), a normalized time-like velocity vector field uµ(x) (i.e. uµuµ = −1)
and their derivatives. The fluid observer moves along with the fluid and measures variables (local
temperature, local mass density etc.) without ambiguities. The 3-velocity uµ is defined relative
to the Eulerian (arbitrary) observer. The fluid velocity vi is defined through vµ = uµ/u0. The
generalized Lorentz factor is defined as Γ ≡ −nµuµ = u0 where nµ = (−1,~0) is the time-like
normal vector to the 2-space. An Eulerian observer attributes this factor to matter moving in the
fluid frame. For instance, given the temperature measured by the fluid observer T , an Eulerian
observer finds TE = ΓT

With respect to an arbitrary vector, any tensor can be decomposed to its transverse and lon-
gitudinal components. We have a freedom to identify uµ with the velocity of energy flow in the
so-called Landau frame uµ ∼ Tµνuν . Moreover, T and µ can be defined so that

uµJ
µ = −n and uµT

µν = −εuν , (3)
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where n is the number density of charge carriers and ε is the energy density. In this frame, the
particle current and the energy-momentum tensor can be decomposed as follows [46, 47]

Jµ = nuµ + jµ, (4)

Tµν = εuµuν + PPµν + tµν , (5)

where P is a scalar (related to pressure p, see the following), jµ,Pµν and tµν are transverse vector
and tensors that satisfy uµjµ = uµPµν = uµt

µν=0. The tensor P is defined as

Pµν = gµν + uµuν , (6)

which is called the projection tensor; it is symmetric and in general has a non-vanishing trace. The
inverse metric is

gµν =

(
−1 −ζi
−ζj δij − ζiζj

)
. (7)

The remaining elements P, jµ and tµν are determined in terms of the derivatives of the hydro-
dynamic variables and yield the constituent equations in the desired order in derivatives. At first
order (in derivatives) hydrodynamics, we find

P = p− ξB∂µuµ,
jµ = −σQTPµν∂ν (µ/T ) + σQPµνFνρuρ,
tµν = −ηPµρPνσ(∂ρuσ + ∂σuρ − gρσ∂αuα),

(8)

where p is pressure in the local rest frame, ξB is the bulk viscosity, σQ is the intrinsic conductivity
and η is the shear viscosity. In the above equations, Fνρ is a tensor in 2+1 dimensions induced
by an external electromagnetic field in the bulk. In passing, we recall that the coefficients in
zero-order hydrodynamics ε, p and n are fixed by T , µ and the equation of state in equilibrium
thermodynamics [48–50]. Moreover, the non-negative parameters ξB , σQ and η (the Wilsonian co-
efficients of the effective hydrodynamic theory) are either measured in experiments or determined
from an underlying microscopic (quantum) theory.

3 Emergent vector transport coefficients in tilted Dirac system:

We define the response of the electric current ~J and the heat current ~Q to an external electric field
~E, spatial gradient ~∇T and possibly temporal variation ∂0T of temperature as follows

J i(t) =

∫
dt′
[
σijEj(t

′)−αij∂jT (t′)−βiT (t′)∂0
µ(t′)

T (t′)

]
, (9)

Qi(t) =

∫
dt′
[
T ᾱijEj(t′)−κ̄ij∂jT (t′)−µγiT (t′)∂0

µ(t′)

T (t′)

]
, (10)

where σij , αij , ᾱij and κ̄ij are the usual tensor response coefficients relating the electric and heat
currents to spatial gradients of electrochemical potential or temperature [2]. Anticipating elec-
tric/heat currents in response to temporal gradient ∂0T , we have additionally introduced the vector
transport coefficients βi and γi. All the above coefficients are functions of t − t′ as the external
influence (such as temperature or electrochemical potential) are applied in the laboratory frame
where the spacetime structure has no ζ and hence are subject to time-translational invariance.

We compute the above transport coefficients within hydrodynamics theory. We imagine that
fluid is perturbed around its equilibrium state (specified by µ0, T0 and uµ0 = (1− ζ2)−1/2(1,~0) in
the rest frame of the fluid exposed to ~E0 = ~0) by a slight amount parameterized as follows

δT (t, ~x), δuµ(t, ~x) = γ(−γ2~ζ · δ~v, δ~v), δ ~E(t, ~x). (11)
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The linear response of the electric current is given by

δJ i = nγδvi − σQζi
µ0
T0
∂0δT − σQgij

(
γδEj −

µ0
T0
∂jδT

)
. (12)

Moreover, the leading order perturbation in derivatives is

δT 0i = γ2(ε0 + p0)δv
i − δpζi (13)

+ ηγ2ζ2ζi(2∂0δu0 − g00∂αδuα)
− η(ζjζi + γ2ζ2gij)(∂0δuj + ∂jδu0 − g0j∂αδuα)
+ ηζjgik(∂jδuk + ∂kδuj − gjk∂αδuα) + ξBζ

i∂αδu
α.

Here δp and δvi are changes in pressure and velocity caused by the probe (external) electric field
or temperature gradients and are first order in the probe fields. Using the above equation, we can
compute thermal conductivity through

δQi =
1

γ2
δT 0i − δ(µJ i). (14)

An interesting feature of Eq. (8) in the tilted Dirac/Weyl materials is a genuine effect where
temporal variations generate currents: We note that in a linear hydrodynamic theory the terms in
the brackets in these equations are already first order, and therefore at this order Pµν → gµν .
Therefore the spatial component J i of the current (in addition to the first term nui) will acquire a
contribution proportional to ∂0µ and ∂0T which is accompanied by the factor gi0 that is nothing
but the tilt parameter = −ζi. This effect is solely dependent on the tilt parameters ζi and vanishes
for upright Dirac/Weyl systems where ζi = 0. That is why, we extend the conventional thermo-
electric coefficients in Eqns. (9) and (10) to account for this important observation by introducing
additional transport coefficients βi and γi.

We solve the hydrodynamic equations to evaluate the electric current and thermal current in
the presence of background electric field and temperature spatiotemporal gradients. At this leading
order, the charge conservation ∂µJµ = 0 implies

∂t

[
γδn− nγ3ζiδvi+

µ0
T0
σQ(γ2ζ2∂0 − ζi∂i)δT+σQζ

iγδEi

]
+ ∂i(δJ

i) = 0. (15)

The energy and momentum conservations are of the form of ∂µTµν = 0. In the presence of
external influence the right hand side of the above equation will be non-zero to account for the
transfer of energy-momentum to the system by external agents the handling of which requires
some care and will be discussed shortly. For warmup, let us first consider a situation without
external sources. In this case, the energy conservation ∂µTµ0 = 0 reads

∂t

[
γ2δε+ γ2ζ2δp− 2γ4(ε0 + p0)ζiδv

i − ηγ4ζ4(2∂0δu0 − g00∂αδuα)

+2ηζ2γ2ζi(∂iδu0 + ∂0δui − gi0∂αδuα)− ηζiζj(∂iδuj + ∂jδui − gij∂αδuα)− ξBγ2ζ2∂αuα
]

+∂iδT
i0 = 0, (16)

whereas the momentum conservation ∂µTµi = 0 is 3

−ε0 + p0
τimp

δui = ∂0(δT
0i) + ∂i

[
δpgij − ηζiζj(2∂0δu0 − g00∂αδuα)

+η(ζigjk + ζjgik)(∂0δuk + ∂kδu0 − g0k∂αδvα)

3We note that, due to electron scattering off impurities and phonons, momentum is not a conserved charge for
electron fluid in metals. Thus, we need to introduce a term which is responsible for momentum relaxation. In low
temperature, we only consider the dominant electron scattering off impurities.
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−ηgilgkj(∂lδuk + ∂kδul − glk∂αuα)− ξBgij∂αδvα
]
, (17)

where the parameter τimp is the relaxation time due to scattering from impurities. The above
expressions in the square bracket are leading order perturbations in number density, energy, density
and the stress tensor. We find the response of equations (15), (16) and (17) to external perturbations
in order to extract transport coefficients.

3.1 External forces in the tilt geometry

In this section, we include external forces which modifies the right hand side of the conservation
equations for the energy-momentum tensor. First, we consider the electromagnetic fields and
spatial gradients of the temperature. Then we discuss how to include temporal gradients.

3.1.1 Electromagnetic force and spatial gradients of temperature

The electromagnetic force can be introduced through the following coupling to the electron current

∂νT
µν = FµνJν . (18)

Although Eq. (18) looks covariant, we note that the electromagnetic field (the photon) propagates
in Minkowski space-time and is not affected by the tilt parameters, whereas the electron current
confided to the sample is affected by the tilt parameter.

The Euclidean time has period 1
T and we rescale the time coordinate as t = t′

T [51, 52].

Then, the metric elements are gt′t′ = − 1
γ2T 2 and gt′i = − ζi

T . A small temperature gradient,
T → T + xi∂iT , implies that

δgt′t′ =
2xi∂iT

γ2T 3
, (19)

δgt′i =
ζixj∂jT

T 2
. (20)

Taking into account gauge transformations on the background field δgµν = ∇µαν+∇ναµ, δAµ =
Aν∂µα

ν +αν∂νAµ and assuming the time dependence as e−iω
′t′ , we take the the diffeomorphism

parameter αµ as αt′ = −ixi∂iT
ω′T 3 e−iω

′t′ and αi =
−ixj∂jTζi
T 2ω′ e−iω

′t′ that gives

δgtt = 0, (21)

iωδgti =
∂iT

γ2T
, (22)

iωδgij =
ζi∂jT + ζj∂iT

T
, (23)

iωδAi = −µ∂iT
T
, (24)

where quantities are scaled back to the original time coordinate t. Under the above gauge trans-
formation, the effective 2+1 dimensional action changes as

δS =

∫
d2xdt

√
−g(Tµνδgµν + JµδAµ)

=

∫
d2xdt

√
−g(

1

γ2
T 0i − µJ i)−∂iT

−iωT
+ T ijδgij + J i

Ei
iω

), (25)

which in particular suggests that the thermal current is Qi = 1
γ2
T 0i − µJ i. Moreover, it can be

seen that in the tilted space-time 2, we have a momentum flow which is coupled to δgij which is
determined by the temperature gradient.
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In colculsion, we promote partial derivative to covariant derivative and write the hydrodynamic
Eq. (18) in a non-trivial background metric (2) perturbed by perturbations (21) to (24) and keep the
leading order terms. Doing so the energy and momentum equations for the perfect fluid become

∂µT
µ0 = n0γζiE

i − [(ε0 + p0)− µn0γ]
ζi∂iT

T
, (26)

∂µT
µi =

[
(ε0 + p0)−

µn0
γ

]
∂iT

T
− (ε0 + p0)ζ

i ζ
j∂jT

T
+
n0E

i

γ
. (27)

3.1.2 Temporal gradient of temperature

Following the same line of the reasoning as above, the response of the system to the temporal
gradient of temperature T → T + t′∂t′T in the re-scaled time coordinate implies

δgt′t′ =
2t′∂t′T

γ2T 3
, (28)

δgt′i = ζi
t′∂t′T

T 2
. (29)

Then, in the oroginal time coordinate t we find

∂tδgtt =
2∂tT

γ2T
, (30)

∂tδgti = ζi
∂tT

T
. (31)

Consequently, the presence of temporal gradient of temperature modifies the right hand side of the
energy and momentum conservation equations according to

∂tT
tt = 2γ2(ε0 + p0)

∂tT

T
, (32)

∂tT
0i = −ε0 + p0

τimp
γδvi. (33)

3.2 Perfect fluid: Non-Drude features

To study the perfect fluid, we start by ignoring dissipation η = ξB = 0, Furthermore, we are
interested in a homogeneous flow; i.e. spatially uniform solutions with ∂jδvi = 0 and ∂iδp = 0.
With these assumptions, the energy-momentum equations become

∂t

[
γ2(δε+ ζ2δp)− 2γ4(ε0 + p0)ζjδv

j
]

= n0γζiE
i − [(ε0 + p0)− µn0γ]

ζi∇iT
T

, (34)

∂t

[
γ2(ε0 + p0)δv

i − ζiδp
]
= −ε0 + p0

τimp
γδvi

+

[
(ε0 + p0)−

µn0
γ

]
∇iT
T
− (ε0 + p0)ζ

i ζ
j∂jT

T
+
n0E

i

γ
. (35)

After a Fourier transformation in time, the above equations can be solved for the velocity pertur-
bation as

δvi = (C−1)ij
[
n0A

jkEk +Bjk∇kT
]
, (36)

where Aij and Bi
j are defined by
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Aij =
1

γ
[δij − ζiζj

2 + ζ2
], (37)

Bij =
1

T

[
(ε0 + p0 −

µn0
γ

)δij −
(

(ε0 + p0)
3 + ζ2

2 + ζ2
− µn0γ

2 + ζ2

)
ζiζj

]
, (38)

and C−1 is the inverse matrix of

Cij =
[
γ
ε0 + p0
τimp

(1− iγωτimp)
]
δij +

[
2iωγ2

ε0 + p0
2 + ζ2

]
ζiζj , (39)

which is explicitly computed in the appendix. Then, we compute the electric current (12) as a
response to spatiotemporal variations of the electric field and temperature. Finally, by applying
equation (36) we can read the coefficients in (9) as follows

σij = γn20(C−1)ikAkj + gijγσQ, (40)

αij = −γn0(C−1)ikBkj − µ0
T0
σQg

ij . (41)

The pole structure of the electric and heat conductivity tensors are the same. This is because
they are both related to the determinant of the matrix C. Therefore, we focus on the poles of the
conductivity. We find that the conductivity tensor has the following two poles

ω1 =
−i
γτimp

≡ −i
τ labimp

, (42)

ω2 =
2 + ζ2

2− ζ2
ω1. (43)

In the upright Dirac cone with Minkowski spacetime structure, ζ → 0, both poles ω1 and ω2 of
Eqns. (42) and (43) reduce to the Drude result. To understand these poles, we have defined a red-
shifted relaxation time τ labimp = γτimp. In this definition τimp can be interpreted as the microscopic
relaxation time experienced by electrons in the spacetime with a given ζ, while τ labimp can be inter-
preted as the same time measured in the laboratory by the experimentalist sitting in the laboratory
spacetime having ζ = 0. As such, the pole at ω1 is a natural extension of the Drude pole to the
geometry (1). However, the new pole ω2 arises from the new spacetime structure. Although at
ζ → 0 limit it becomes degenerate with the Drude pole, but at ζ → 1 it can become up to 3 times
larger than ω1. Both poles are on the imaginary axis, and their real part is zero, as they are caused
by very low-energy (Drude) excitations across the Fermi level. Then the question will be, is there
a way to distinguish the contributions from the Drude pole ω1 and the spacetime pole ω2? To
answer this question, we need to look at the residues at the two poles that determine the spectral
intensity associated with each pole.

Let us start by looking at the residue of the absorptive part of the conductivity, namely the
longitudinal conductivity σxx. The residues at the above poles can be written in the following
suggestive form 4

Res(σxxω1
) =

n2v2F
ε0 + p0

ζ2y
γ2ζ2

, (44)

Res(σxxω2
) =

n2v2F
ε0 + p0

2ζ2x
γ2(2− ζ2)ζ2

. (45)

4In all plots of this paper, the Fermi velocity vF has been explicitly included and expressed in units of [r/τimp]
where r is a length scale that defines the average linear dimension available for one electron and is related to the density
by nr2 = 1. For typical n ∼ 1012cm−2, we get r = 10−6cm. Furthermore a typical value of τimp is 10−13s.
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Figure 1: Polar dependence of the residue of the longitudinal conductivity σxx for Drude like pole
ω1 (solid lines) and spacetime pole ω2 (dashed lines) in units of [meV.τ2imp]−1 . The structure of
spacetime is such that the new pole ω2 is born from a parent Drude pole ω1 in the sense that the
sum of their intensities has a well defined ζ → 0 limits. The polar angle is measured from the
direction of the tilt vector ζ.

The above form suggests that the sum of the intensities of the two poles has a very well defined
ζ → 0 limit given by n2v2F /(ε0 + p0). This observation combined with the fact that the ζ → 0
limits of ω2 gives ω1 implies that in the presence of the tilt, the Drude peak splits into two peaks.
The new pole ω2 that we call it ”spacetime pole” is an offspring of Drude pole 5. By symmetries
of space time σyy can be extracted from σxx only by exchanging ζx ↔ ζy. So there is no new
information in residues of the poles of σyy.

As pointed out, both ω1 and ω2 poles are on the imaginary axis and their real part is zero.
To disentangle their contribution, note that the meaning of the longitudinal conductivity σxx is
the current along the applied electric field (both assumed along the x direction). The x axis can
subtend an angle θ with the tilt direction ζ. This can be an interesting variable. Therefore, in
Fig. 1 we have plotted the dependence of the residues of the longitudinal part of the conductivity
on the polar angle θ of the tilt direction. The solid (dashed) lines correspond to the Drude-like
pole ω1 (spacetime pole ω2). Various colors correspond to different tilt magnitudes. Both poles
have a bipolar pattern. But their nodal structure is different which helps to identify which pole is
contributing the spectral weight. When the electric field is applied along the tilt direction (θ =
0), the residue of the Drude-like pole vanishes and the absorption is entirely contributed by the
offspring pole ω2. By rotating the applied electric field away from the tilt direction, the Drude-
like pole ω1 takes over the spacetime pole ω2. When the applied electric field is completely
perpendicular to ζ, the entire absorption is contributed by the ω1 (Drude) pole. The common
feature of solid and dashed curves in Fig. 1 is that the spectral weight of both the parent Drune
pole ω1 and its offspring pole ω2 decreases by increasing the tilt ζ.

3.3 Tilt-induced Hall-like response

Now we would like to see how does the spacetime structure affect the off-diagonal (Hall-like)
conductivity. In a Hall bar setup experiment, a background magnetic field along the z-direction

5However, one has to note that in the limit ζ → 0, a zero at ω1 appears in the numerator of conductivity coefficients
that prevents the formation of second order Drude pole.
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is assumed. Then a current driven along x axis gives rise to a voltage drop along y axis. This
effect is quantified by the off-diagonal component σxy (or σH ). Similarly a current driven along y
direction will give a voltage drop in−x direction. As such, in the standard Hall setup, the conduc-
tivity tensor is fully antisymmetric. Therefore the rotational invariance implies that σxy = −σyx.
If the conductivity tensor had any symmetric part, there exists a coordinate system in which the
symmetric part of the off-diagonal conductivity becomes zero. However, the assumption of rota-
tional invariance implies that, all the coordinate systems related by a rotation must be equivalent.
Therefore, to be consistent, the rotational invariance prohibits symmetric parts for the off-diagonal
conductivity. As pointed out in the introduction, the presence of the tilt ζ breaks that rotational
invariance 6

The new spacetime structure indeed gives rise to a totally novel form of the symmetric part
in the conductivity tensor. Unlike the ordinary spactime, such a symmetric part does not vanish,
because the rotational invariance does not hold anymore. Furthermore, such a Hall-like coefficient
arises in the absence of external magnetic field and is rooted in the off-diagonal metric elements
of the metric gij ∝ ζiζj . This element of the metric directly leads to a non-zero Hall-like electric
and Hall-like thermal coefficient proportional to ζiζj arising in Eqs. (40) and (41). This effect
also solely depends on the presence of the tilt ζi. Mathematically speaking, in the absence of ζi

(isotropic space), the conductivity tensor σij (as in the case of graphene) will become proportional
to (the isotropic tensor) δij . But in the present case, the anisotropy of the space will be reflected
in a ζiζj dependence in all tensorial quantities, including the electric conductivity and heat con-
ductivity tensors. Since ζiζj = ζjζi, the above contribution from the spacetime structure to the
off-diagonal transport coefficients will be always symmetric. This is what we wish to emphasize
by using ”Hall-like” response instead of ”Hall” response. As such, in the tilted Dirac cones sys-
tems, we obtain a novel form of anomalous (i.e. without the need to externally applied B field)
Hall response which is symmetric that can be directly attributed to the structure of the spacetime.

To summarize, the off-diagonal (Hall) response may have both antisymmetric and symmetric
parts. But in materials with Minkowski or Gallilean spacetime, the symmetric part of the Hall re-
sponse is inert in ordinary materials. But tilted Dirac cone materials provide a unique opportunity
for the appearance of a symmetric (anomalous) Hall response.

Now let us consider the off-diagonal (transverse) component of the conductivity, namely σxy.
The pole structure of off-diagonal components of the conductivity is the same as the diagonal
part, as in both cases the poles are contributed by the determinant of the same matrix C given in
Eq. (39). However, the residues of the off-diagonal response differ in a very interesting way from
the diagonal conductivity and are given by

Res(σxyω1
) = −

n2v2F
ε0 + p0

ζxζy
γ2ζ2

, (46)

Res(σxyω2
) =

n2v2F
ε0 + p0

2ζxζy
γ2(2− ζ2)ζ2

. (47)

Again the sum of the above residues has a clear ζ → 0 (Minkowski) limit where it vanishes. Being
off-diagonal conductivity, the above poles can not be associated with absorption (dissipation). But
still it is interesting to note that how a total zero pole intensity in the ζ → 0 limits evolves two
poles of opposite intensity upon deviation of the spacetime structure from the Minkowski limit.
Mathematically, σij (and also αij) being tensors are naturally expected to have a term proportional
to gij ∼ ζiζj .

The residues of the Hall conductivity arising from ω1 and ω2 poles are plotted in Fig. 2. As
can be seen both poles display quadrangular pattern. Also their behavior with ζ is similar. Both
intensities decrease upon decreasing the tilt magnitude ζ.

6In fact rotation is not the isometry of the metric (1) anymore. Solving Killing equation gives the correct isometries
of the spacetime (1) which are extensions of the ordinary rotation and ordinary Lorentz boosts [15].

11



SciPost Physics Submission

Figure 2: Polar angle dependence of the residues of σxy for ω1 (solid lines) and ω2 (dashed lines)
in units of [meV.τ2imp]−1. The polar angle denotes the angle between the applied electric field and
the tilt vector ζ. The sign of the two residues are opposite as in (46) and (47).

The conclusion is that, the longitudinal conductivity suffices to disentangle the role of Drude-
like pole ω1 and spacetime pole ω2 in the conductivity of tilted Dirac material sheets.

3.4 Heat current from gradual heating

Now let us turn our attention to the heat (energy) transport coefficients. The thermal current in a
non-viscous homogeneous fluid is given by

Qi =
1

γ2
(γ2(ε0 + p0)δv

i − ζiδp)− µ0δJ i, (48)

where δJ i is given in (12). We analyze the energy-momentum conservation equations for an exter-
nally applied constant spatio-temporal temperature gradient. For the spatial temperature gradient,
the energy-momentum conservation equations are

∂t

[
γ2(δε+ ζ2δp)− 2γ4(ε0 + p0)ζjδv

j
]

= − [(ε0 + p0)− µn0γ]
ζi∂iT

T
,

∂t

[
γ2(ε0 + p0)δv

i − ζiδp
]
= −ε0 + p0

τimp
γδvi +

[
(ε0 + p0)−

µn0
γ

]
∂iT

T
− (ε0 + p0)ζ

i ζ
j∂jT

T
.

In d = 2 space dimensions, the above equations are d+ 1 equations for a total of d+ 1 unknowns.
These are d velocity perturbation δvj and one pressure perturbation δp. To be more intuitive, we
solve these equations in the real space. Using the first of the above equations to express ∂tδp in
terms of ∂tδvi and ∂jT gives

∂tδp =
2γ2(ε0 + p0)ζj∂tδv

j

2 + ζ2
− ε0 + p0 − µn0γ

γ2(2 + ζ2)

ζj∂jT

T
, (49)

which can be used in the second equation above to eliminate δp that results in the following
equation for the velocity perturbations δvi:

M ij∂tδv
j +

1

γτimp
δvi = N ij ∂jT

T
(50)
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where the 2× 2 matrices M ij and N ij are defined by

M ij = δij − 2ζiζj

2 + ζ2
(51)

N ij =
(ε0 + p0)(2 + ζ2)δij − (γ2(ε0 + p0)(2 + ζ2) + ε0 + p0 − µn0γ)ζiζj

γ4(ε0 + p0)(2 + ζ2)
. (52)

The general solutions of Eq. (50) is

δvi = γτimpN
ij ∂jT

T
+

[
c1e

−λ1t
γτimpLi1 + c2e

−λ2t
γτimpLi2

]
(53)

where λa and ~La for a = 1, 2 are two eigenvalues and eigenvectors of the matrix M−1 and ca are
some constants determined by the initial conditions. We see that in the late time 7 t � τimp, the
transient terms in the square brackets fade away and velocity δvi becomes a constant given by the
first term of the above equation. Substitution of the above result in Eq. (49) gives the following
late time behavior for ∂tδp

∂tδp = −ε0 + p0 − µn0γ
γ2(2 + ζ2)

ζj∂jT

T
, (54)

so the late time behavior of δp ∝ t. Plugging this result in Eq. (48) implies a similar t-linear
behavior for the thermal current Qi. This result simply states that if an external source manages
to maintain a constant spatial temperature gradient, the resulting heat current Qi will be directed
along ζi and is t−linear. This amounts to a constant thermal power. This behavior is expected in
a generically anisotropic medium where the energy supplied by the external source that maintains
the constant spatial gradient oriented along the preferred direction ζ of the material. It may sound
a bit unusual for the spatial gradient of temperature to induce a time-depended fluctuation of the
pressure. The origin of this can be traced back to the assumption of zero spatial pressure gradient,
∂iδp = 0. To see how this happens let us relax this assumption that will immediately result in a
steady-state solution of energy-momentum equation as follows:

∂t

[
γ2(δε+ ζ2δp)− 2γ4(ε0 + p0)ζjδv

j
]

+ ∂i

[
γ2(ε0 + p0)δv

i − ζiδp
]

= − [(ε0 + p0)− µn0γ]
ζi∂iT

T
, (55)

∂t

[
γ2(ε0 + p0)δv

i − ζiδp
]

+ gij∂jδp= −
ε0 + p0
τimp

γδvi

+

[
(ε0 + p0)−

µn0
γ

]
∂iT

T
− (ε0 + p0)ζ

i ζ
j∂jT

T
. (56)

To find the steady-state solution, one simply sets all the partial time derivatives to zero. We further
assume that in the late time limit, velocity will be a constant. Then we obtain

ζi∂iδp =
(
ε0 + p0 − µn0γ

)ζi∂iT
T

(57)

ε0 + p0
τimp

δvi = −gij∂jδp+

[
ε0 + p0 −

µn0
γ

]
∂iT

T
− (ε0 + p0)ζ

i ζ
j∂jT

T
(58)

Therefore the assumption of ∂tδp = 0 inveitably leads to a steady state soluiton with ∂iδp 6=
0. However, mathematically, there exists a non-steady-state solution as well that relies on the
assumption of ∂iδp = 0. In this case, a non-zero ∂tδp develops that is given by Eq. (54).

7Eigenvalues λ1 and λ2 are positive, so the late time is well defined.
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The peculiar form of anisotropy that sets the off-diagonal time-space components of the met-
ric (7) is capable to provide the above form of accumulative heat current in response to temporal
gradient of the temperature as well. To bring this fascinating result, one need to incorporate the
temporal gradient of temperature, ∂tT as a source. Therefore the right hand side of energy and mo-
mentum conservation will be replaced by terms in Eq. (32) and (33) so that now the perturbations
δvi and δp satisfy linear equations

∂tδp =
2γ2(ε0 + p0)

2 + ζ2
ζj∂tδv

i +
2(ε0 + p0)

2 + ζ2
∂tT

T
, (59)

M ij∂tδv
j +

1

γτimp
δvi =

2

(2 + ζ2)γ2
ζi
∂tT

T
. (60)

Similarly to the case of sourcing with ∂jT , the general solutions of the above equation are

δvi =
2γτimp

(2 + ζ2)γ2
ζi
∂tT

T
+

[
c1e

−λ1t
γτimpLi1 + c2e

−λ2t
γτimpLi2

]
. (61)

Again in the late time limit the transient terms in the bracket fade away and the first term of
the above equation survives. Substitution in the pressure equation gives the following late time
pressure perturbation

∂tδp =
2(ε0 + p0)

2 + ζ2
∂tT

T
. (62)

Once again, plugging in Eq. (48) gives a thermal current directed along ζi. The essential difference
of the heat current obtained by the pressure (62) with respect to (54) is that here the heat current
is caused by temporal variations of temperature. This is a fundamentally new concept in the
generation of electron current. In the so called hot deserts, it is not easy to control the spatial
gradient of temperature as they are determined by complicated solutions of the surrounding air.
But absorption of sun light from the coldest moment of the midnight to the hottest time of the
mid-day can serve as a natural resource of ∂tT . As such, the spacetime geometry in tilted Dirac
cone materials qualifies them as a novel class of materials that can convert gradual heating to
electron currents that carry heat. Since such a transport is only based on the spacetime parameter
ζ, it evenly couples to both electrons and holes. As such, the net electric current is zero, unless an
asymmetry between electrons and holes is implemented.

In a finite sample, one must solve the hydrodynamics once again subject to appropriate bound-
ary conditions. However, on physical grounds, one can speculate about such a situation as follows:
Due to the heat current obtained above, the hot electrons accumulate on one side of the sample.
As a result the accumulated density will generate an electric field that balances the force resulting
from the linear increase of the pressure. This balance will equilibrate a finite system. But in open
systems where the tilted Dirac material is part of a circuit, the accumulated electrons get released
and supply heat current to the circuit. The heat current obtained in this way solely depends on the
presence of a tilt vector ζ, and it is present both for ∂jT and ∂tT sources. The latter effect has no
analog in other solid-state systems. The peculiar ζ dependence along with a t-linear dependence
of this particular form of heat current can be employed to separate it from the other terms in the
heat current. The anomalous heat transport in 8Pmmn borophene studied in Ref. [53] can be
re-examined in the light of this new term.

3.5 Vector transport coefficients

So far we have seen that in materials with ordinary spacetime structure, the ∂tT has no chance
to serve as a source of transport and as such, it is inert in most materials. But this source can be
revived as we explained in the previous subsection. Now we can turn our attention to Eqs. (9)
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and (10) where new transport coefficients, βi and γi are introduced that quantify the transport
response of the system to temporal gradients of temperature and are given by

βi = −σQζi +
2n0τimpζ

i

µ(2 + ζ2)
(63)

γi = σQζ
i +
[ 2(ε0 + p0)

µ2γ2(2 + ζ2)

(
1− t

γτimp

)
− 2n0τimp

µ(2 + ζ2)

]
ζi. (64)

These vector transport coefficients (as opposed to tensor transport coefficients) relate the temporal
gradients of electrochemical potential and temperature to electric and heat currents. As can be
seen from Eqns. (63) and (64), at the present order of calculations, these are proportional to the
only available direction, namely ζ. The first term in both (63) and (64) in addition to ζ are
proportional to the ability σQ of the electron system to conduct. This part of the vector coefficient
is active when either of the electrons or holes dominate. When the chemical potential coincides
with the Dirac node, the conduction ability σQ of electrons and holes cancel each other. So to
obtain a contribution from this term, one must ensure that the tilted Dirac material has its chemical
potential away from the Dirac node. The second term in (63) and third term in Eq. 64 have similar
origins and arise from J i of Eqs. (12) and (14). The second term in Eq. (64) originates from the
δT 0i of Eq. (14). Its origin this t-linear behavior of the heat current δQi can be traced back to the
corresponding t-linear behavior of the pressure δp in Eq. (62).

In the absence of tilt in normal conductors, since the vector ζ is zero, there will be no pre-
ferred direction in the space, and therefore the vector transport coefficients γi and βi remain inert.
In tilted Dirac materials, these vector transport coefficients find a unique opportunity to become
active and play a significant role by enabling a transport response to temporal variations of tem-
perature.

Experimental applications of the above results might be interesting. We use graphene experi-
mental data to estimate electric current for temporal gradients of tilted Dirac materials. Graphene
has a high thermal conductivity which is usually estimated in the range κ ∼ 2000 − 4000 W

mK at
room temperature [54]. Typically thermoelectric coefficients are determined in terms of Seebeck
coefficient S and thermoelectric figure of merit (ZT ) which are more useful for exprimentalist:

ZT =
σS2T

κe
(65)

~J = −σS~∂T (66)
~Q = −κe~∂T (67)

where κe van be measured using the Wiedemann-Franz Law κe
σ = L0T where the Lorentz number

L0 is equal to 2.44×10−8WΩK−2. Seebeck coefficient for graphene can be measured as S(T ) =
100 T

300[K]
µV
K [55] and electric conductivity is qround σ ∼ 106(Ω.cm)−1. Based on the Kubo

formula, the standard conductivity is given by current-current correlation funciton σij ∝ 〈J iJ j〉,
where i, j denote the spatial directions. With the same reasoning, the vector transport coefficients
is given by a new Kubo formula βi ∝ 〈J iJ0〉, where J0 is the density rather than the current
operator. On dimensional grounds, the latter correlation function is expected to be related to the
conductivity σij by a natural velocity scale that can be nothing other than vF . Therefore, at room
temperature, we may approximate the effect of temporal gradients of temperature as follows:

~Jtemporal ∼
1

vF
σS∂0T~ζ. (68)

Typical temperature gradients in nanomaterials such as graphene are on the order of ∼ (1 −
20) K

nm [56–59]. The corresponding measured current densities are on the scale of Jx ∼ (10 −
200) µA

nm2 . For a sample with 1nm × 1cm cross sectional area, the current is of order 109µA.
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Using a typical Fermi velocity for borophene vF ∼ 105m/s ∼ 1014nm/s renders the above
spatial gradient to a temporal gradient of 10−14Ks−1. This means that a temporal gradient of
∂tT ∼ 1014Ks−1 results in a current of 109µA for a sample of 1cm width. Therefore with the
available industrial heating rates of the order ∂tT ∼ 0.4 × 103K/s [60] one expects currents on
the scale of 4nA. Therefore the experimental demonstration of the vector transport coefficients
requies industrial heating rates and samples of the ∼ 1cm width.

Generally, there can be materials with odd number of Dirac valleys [61], such as those on the
surface of crystalline topological insulators [62]. But quite often, the Dirac cones come in pairs.
This has to do with fermion doubling problem according to which, putting a Dirac theory on a
(hypercubic) lattice leads to doubling of the number of Dirac fermions [63]. In the former case
where the number of Dirac nodes is odd, there is no challenge and the vector transport coefficients
are already active. But the latter case corresponding to lattices on which Fermion doubling occurs,
requires some discussion: If the material is either inversion symmetric or time-reversal symmetric,
requiring the invariance of the ds2 = −dt2 + (d~r − ζdt)2 under ~r → −~r or t → −t imposes
a constraint on the tilt parameter of the two valleys: ζ± = ±ζ [19]. When the number of Dirac
valleys is even, and the effects in Eqs. (63) and (64) are odd functions of ζ, the bulk currents from
the two valleys cancel each other. Therefore, despite that the βi and γi transport coefficients for a
single valley are active, for the whole material hosting an even number of valleys they cancel each
other’s effect in an infinite system. However, if the materials lack either an inversion center or the
time reversal symmetry (e.g.by placing it on a magnetic substrate) such that ζ+ + ζ− becomes
non-zero, then a net electric (heat) current enabled by the coefficient βi (γi) can flow in response
to temporal gradients of temperature. Therefore, one possible rout to realization of the present
effect is to search for a tilted Dirac cone in a material without inversion center.

Even if both time reversal and inversion symmetry are present, thereby leading to zero bulk
currents, still the boundaries can be of help. The solution is based on the ideas of ”valleytron-
ics” [64] that are popular in planar (2D) materials. The essential idea is that imposing appropriate
boundary conditions by cutting appropriate edges, one can create valley valves [65] at the other
end of which the ”populations” of the two valleys are imbalanced. In this approach, although the
material is inversion and time-reversal symmetric and has even number of valleys with opposite
tilt,±ζ, that cancel out for infinite system, in finite systems with appropriately chosen boundaries,
the population imbalance between the valleys gives rise to a net electric current ∼ βi(n+ − n−)
or heat current ∼ γi(n+ − n−) which is driven by the imbalanced population of the symmetric
valleys. Such valley polarized effects resting on the boundaries, are expected to be important in
mesoscopic systems.

4 Viscous flow of tilted Dirac fermions

So far we have brought up essential physics of TDFs for ideal fluid of electrons. It is now expe-
dient to discuss the effect of viscosity in such systems. In this section, we focus only on electric
response of the system and ignore the thermal perturbations. In this case, the energy and momen-
tum conservation equations in Fourier space are respectively given as follows:

−iωδp =
γ2

2 + ζ2

[
− 2iω(ε0 + p0) + ζ2γω2(η + ξ)

]
ζjδv

j + n0γζiE
i, (69)

n0E
i

γ
=
[
γ
ε0 + p0
τimp

(
1− iωγτimp

)
δij + 2iωγ2

ε0 + p0
2 + ζ2

ζiζj

−ηω2γ3
(4 + 3ζ2

2 + ζ2
ζiζj + ζ2δij

)
−ξBω2γ3

2

2 + ζ2
ζiζj

]
δvj . (70)
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Figure 3: Temperature dependence of the poles of Eq. (73) in units of i[τimp]−1 for fixed ζx =
ζy = 0.1

Figure 4: (Left) Polar dependence of the residue of σxx for ω1 (solid lines) and ω2 (dashed lines)
in units of [meV.τ2imp]−1 for viscous fluid at T = 150K. (Right) The same for σxy.

Solving for the perturbation in the velocity field, we find

δvi = (F−1)ij
[
[n0A

jkEk
]
, (71)

where F−1 is the inverse matrix of

F ij = Cij − ηω2γ3
[4 + 3ζ2

2 + ζ2
ζiζj + ζ2δij

]
− ξBω2γ3

2

2 + ζ2
ζiζj , (72)

and C is the same as Eq. (39) for dissipationless fluid. The explicit form of inverse matrix is pre-
sented in the appendix. Then similar to the no-viscous fluid, by applying equations (12) and (71),
we can read the electric conductivity coefficients in (9) as

σij = γn20(F−1)ikAkj + gijγσQ. (73)

This equation is quite similar to Eq. (40), except that the matrix F encompassing viscosity param-
eters replaces matrix C of non-viscose case.
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Figure 5: Comparison between the angular dependence of the residue of σxx at fixed ζ = 0.5 for
viscous fluid (solid-lines) and ideal fluid (dashed lines). The poles ω1 and ω2 are shown by blue
and red color. Spectral weights are larger for ideal fluid of TDFs.

The bulk viscosity at this order can be ignored [22] and shear viscosity can be controlled by
temperature and its dependence for graphene is as follows [42]:

η = 0.45
(kBT )2

}(vFα)2
, (74)

where α = cαQED/(εrvF ) and εr is the relative permeability of the material with respect to
vacuum which for graphene can be estimated as 1 ≤ εr ≤ 5 [22] and in this paper we have
assumed εr = 3 and αQED is the fine structure constant. Essential scales are the temperature and
the kinetic energy of the Dirac electrons set by vF . Since vF in TDFs is comparable to graphene,
we expect this formula to give a reasonable estimate of η in TDFs.

As can be seen, The poles are given by zeros of the determinant of matrix F which is now
a fourth degree polynomial and it must have two extra poles. It turns out that only two of these
poles are causal and reduce to the ω1 and ω2 poles of the ideal fluid in Eq. (42) and (43). As can
be seen in Fig. 3 the poles do not alter much by viscosity (which is controlled by temperature).
In Fig. 4-Left we have given a polar plot of the residue of the σxx at the ω1 (solid lines) and
ω2 (dashed lines) poles. Similarly, in Fig. 4-Right we have plotted the same information for the
Hall-like conductance σxy. As can be seen the two figures 4-Left and 4-Right parallel their ideal
counterparts in Figs. 1 and 2, respectively.

As can be seen, their qualitative features are identical, so we do not expect the viscosity to
heavily alter the conductivity of the TDFs. To see this in a more quantitative setting, in Fig. 5, we
have shown a polar plot of the residues of the longitudinal conductivity σxx for the viscous flow
(solid line) and the ideal flow (dashed lines). As before, the vertical lobe (blue) corresponds to the
Drude-like pole ω1, while the horizontal lobe (red) corresponds to the offspring (spacetime) pole
ω2. Fig. 5 nicely shows how the viscous flow is continuously connected to the ideal flow. One
further information that can be extracted from this figure is that the spectral intensity in ideal flow
is larger than the viscous flow. Although the quantitative difference is small, but it indicates that
the light can be better absorbed by the ideal TDFs than the viscous TDFs.

Now that we have given a comprehensive comparison between the conductivity tensor for
the ideal and viscous flow of TDFs, we are ready to present the actual experimentally expected
conductivity lineshapes. As noted in Eq. (42) and (43), and their viscous extensions in Fig. 3, both
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Figure 6: (Left) Real part (solid-lines) and imaginary part (dashed-lines) of σxx for viscous fluid
of TDFs at T=150 K in units of [meV.τimp]−1. The hidden structure inside the broad Drude peak
can be revealed by polar dependence in Figs. 1 and 4-Left. (Right) The same for σxy.

poles are purely imaginary and their real part is zero. This conforms to the intuition, as in a Fermi
surface built on a tilted Dirac cone dispersion, one does not expect higher energy absorptions to
take place. One still has the low-energy particle-hole excitations across the Fermi surface.

Fig. 6-Left shows the real (solid line) and imaginary (dashed line) parts of the longitudinal
conductivity σxx for the fluid of TDFs. The viscosity corresponds to T = 150K. The polar angle
is chosen to be θ = π/4. The reason is that Fig. 1 and 4-Left suggest that the contribution of ω1

and ω2 poles becomes comparable along this direction. As can be seen, larger tilt values reduce
the height of the Drude peak. Figure 6-Right shows the same information as Fig. 6-Left for the
Hall-like conductivity σxy. Again we have plotted this curve for θ = π/4 at which both poles have
comparable contributions as demonstrated in Figs. 2 and 4-Right. The Hall-like conductivity in
contrast to the longitudinal conductivity shows enhancement of the central peak upon increasing
the tilt ζ.

5 Summary and outlook

In this paper, we have investigated the hydrodynamics of tilted Dirac fermions that live in the tilted
Dirac materials. The essential feature of these materials is that the ”tilt” deformation of the Dirac
(or Weyl if we are in three space dimensions) can be neatly encoded into the spacetime metric.
As such, these materials are bestowed with an emergent spacetime geometry which distinguishes
them from the rest of solid state systems. This metric encodes the long-distance structure of the
complicated and rich content of the 8pmmn lattice. Putting it another way, the 8pmmn point group
symmetry of the atomic scales becomes a metric at long wavelength scales [20, 21]. Therefore, as
long the system has quasiparticles, even the strong electron-electron interactions responsible for
the formation of the hydrodynamic regime are not able to destroy this metric structure if the lattice
is not melted. What our hydrodynamic theory in this paper predicts is that the mixing of space and
time coordinates in such solids gives rise to transport properties which have no analogue in other
solid state systems where there is no mixing between space and time coordinates.

The first non-trivial consequence of the spacetime structure determined by tilt parameters ζi is
that it gives rise to off-diagonal (Hall-like) transport coefficients in the absence of magnetic field.
These Hall coefficients appear in both charge and heat transport. By generic symmetry structure
of the spacetime in such solids, the conductivity tensors will be proportional to gij = δij − ζiζj
that destroys the rotational invariance of the space. This is the root cause of symmetric Hall
coefficient without a magnetic field. The intuitive understanding of the anomalous symmetric Hall
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response σxy ∼ ζ1ζ2 come from the small tilt limit where the tilt can be viewed as a Lorentz
boost parameter that converts part of the electric field that is transverse to ζ into a magnetic field,
whereby a Hall response can be generated. However, note that our theory is not limited to small
tilts and is valid for arbitrary tilts.

The second non-trivial consequence of the structure of spacetime in these solids is the appear-
ance of an additional t-linear contribution to the heat current for a constant temporal gradient of
temperature ∂tT that is rooted in a corresponding t-linear behavior of the pressure in Eq. (62). In
a finite system this leads to accumulation of charges that continues until the resulting electric field
will cancel the pressure gradient. But when the system is part of an external circuit, the resulting
heat current can be transmitted to the outside world for possible applications.

The third non-trivial and perhaps the most important aspect of transport in tilted Dirac ma-
terials which might have far reaching technological consequences is that a temporal gradient of
temperature or electrochemical potential can be converted into electric or heat currents. The fact
that the nature provides free ∂tT in hot deserts from mid-night to mid-day might transform this
unique capability of TDFs into a technological concept. This property arises, because the struc-
ture of spacetime in tilted Dirac fermion solids is such that it allows for a mixing between space
and time coordinates. The intuitive explanation of this effect is as follows: When the system is
heated, i.e. ∂tT > 0, in the absence of tilt, the entire heat goes into random motion of electron. A
system with a non-zero tilt is related to the one with zero tilt by a Galilean boost. Boosting a the
random kinetic motion of electrons will give rise to a net current. Therefore, it is not surprising
that temporal gradients can drive currents, pretty much the same way spatial gradients can drive
currents. We have introduced the notion of vector transport coefficients (as opposed to commonly
used, tensor ones), to formalize and quantify these effects. The important technological advantage
of such effects is that, via the vector transport coefficient βi, a gradual heating of these materials
(∂tT ) generates electric currents.

Typical industrial heating rates are on the scale of ∂tT ∼ 0.4× 103K/s [60] for sample of the
width ∼ 1cm, give total currents on the scale of 4nA that makes the vector transport coefficients
assessible in the laboratory. Despite that it is possible to demonstrate this effect experimentally, in
terms of the natural sources of the ∂tT in the hot desert, a typical temperature span of 40K during
half cycle of earth rotation ∼ 40× 103s will give 10−3K/s which is nearly 5 orders of magnitude
smaller than the industrial heating rates. This means that large facilities of the order of ∼ 1km
width are able to provide nA currents using the naturally available heating rates of the hot deserts.

Our theory presented in this paper is for a single tilted Dirac cone and is directly relevant to ma-
terials that host odd number of Dirac cones [61]. If the material at hand has both time reversal and
inversion symmetry, there should be another Dirac node with opposite tilt that leads to the cancel-
lation of the effects such as vector transport coefficients that are odd in ζ. However, if the material
lacks inversion symmetry, or time reversal (e.g. by proximity to magnetic substrate), or three di-
mensional Weyl materials that intrinsically break the time-reversal symmetry, the tilt parameters
need not be opposite and still the effects survive. Even in the presence of both time-reversal and
inversion symmetry, in mesoscopic devices, appropriately shaped boundaries can cause valley po-
larization that can imbalance the effects from two oppositely tilted Dirac cones. [64, 65]. In this
situation, the vector transport coefficients will be operating in an out-of-equilibrium setting. In
fact, in such valleytronics setup, the valley polarization translates into an effective ~ζ polarization
which therefore activates a net non-zero vector transport coefficient.

The corresponding heat transport coefficient γi makes materials with TDFs a suitable candi-
date in applications that require to guide the heat current into a given direction. This direction
in TDFs is set by ζ. Such a preferred direction is reminiscent of non-reciprocal spin currents in
gradient materials [66]. The heating of a TDF material (corresponding to ∂tT > 0) converts the
heat to the work. This corresponds to the charging stage if this effect is employed to construct a
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battery. The reverse situation, namely cooling with ∂tT < 0 corresponds to the discharge stage of
the battery where battery does work on the environment during which the heat is extracted from
the system.
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6 Appendix

In this appendix, we give explicit expressions for the transport coefficients of TDFs. The inverse
matrix F−1 used in (72) is computed as follows

F−1 =
1

f0 + f1ω + f2ω2 + f3ω3 + f4ω4

(
a0 + a1ω + a2ω

2 b1ω + b2ω
2

b1ω + b2ω
2 c0 + c1ω + c2ω

2

)
, (75)

where the above coefficients are given by

a0 = γ
ε0 + p0
τimp

, a1 = iγ2
ε0 + p0
2 + ζ2

(ζ2y − ζ2x − 2), (76)

a2 = 2γ3
ζ2y

2 + ζ2
ξ + γ3ζ2

(2 + ζ2)(1− 2ζ2y )− ζ2y
2 + ζ2

η,

b1 = −2iγ2
ε0 + p0
2 + ζ2

ζxζy, b2 = γ3
ζ2(2ζ2 + 5)η − 2ξ

2 + ζ2
ζxζy,

c0 = γ
ε0 + p0
τimp

, c1 = iγ2
ε0 + p0
2 + ζ2

(ζ2x − ζ2y − 2), (77)

c2 = 2γ3
ζ2x

2 + ζ2
ξ + γ3ζ2

(2 + ζ2)(1− 2ζ2x)− ζ2x
2 + ζ2

η,

and

f0 = a0c0, f1 = a1c0 + a0c1, f2 = a2c0 + a0c2 + a1c1 − b21, (78)

f3 = a2c1 + a1c2 − 2b1b2, f4 = a2c2 − b22.
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