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Abstract

The initial phase of the inspiral process of a binary black-hole system can be described by
perturbation theory. At the third post-Minkowskian order a two-loop double box graph,
known as H-graph, contributes. In this talk we report how all master integrals of the
H-graph with equal masses can be expressed up to weight four in terms of multiple
polylogarithms. We also discuss techniques for the unequal mass case. The essential
complication (and the focus of the talk) is the occurrence of several square roots.

1 Introduction

The initial phase of the inspiral process of a binary system producing gravitational waves can be
described by perturbation theory [ 1-6]. Effective field theory methods provide a link between
general relativity and particle physics [7-10] and there has been a fruitful interplay between
these fields in recent years [11-36]. Two expansions are important: The post-Newtonian
expansion is an expansion in the weak gravitational field limit and the small velocity limit.
The post-Minkowskian expansion is an expansion in the weak gravitational field limit.

Let us focus on the third order of the post-Minkowskian expansion of a binary system. The
most complicated graph entering at this order is shown in fig. 1 and is called the H-graph. The
name H-graph stems from the fact that the gravitons form the letter “H” (which in our figure
is rotated by 90°). In order to describe the kinematics we introduce the Mandelstam variables

s = (p1+p2)*,  t = (py+p3). )

The external momenta are on-shell:

Py =py=mi, p3=py=m @

For a binary system the limit |s| < t, m%, mg is relevant. Nevertheless, a calculation without

approximations is helpful. We distinguish two cases:

Equal mass case: m;=my=m.

Unequal mass case : my 7# my. 3
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Figure 1: The H-graph. Solid lines denote massive objects, dashed lines denote mass-
less particles.

The equal mass case has been first studied in [37]. The first steps of our calculation are
standard: We use integration-by-parts identities [38,39] to derive the differential equation for
the master integrals I [40-43]

dIl = Al 4)

The differential equation can be cast to an ¢-form [44]:

Nletter
A = ¢ Z Ckwk; wWp = dlnfk. (5)
k=1

In our case the f;’s are algebraic functions of the kinematic variables, i.e. the f;’s may contain
square roots. Our system of master integrals is characterised by the number kinematic vari-
ables Nyi,, the number of master integrals N .., the number of distinct square roots N,
and the number of letters Njoie,- Table 1 summarises these numbers for the equal and un-
equal mass case. The differential equation (4) is solved in terms of Chen’s iterated integrals

Equal mass case: Unequal mass case:

2 kinematic variables s/m?, t/m? | 3 kinematic variables s/ m%, t/ m%, m% / m%
25 master integrals 40 master integrals

4 square roots 6 square roots

17 dlog-forms 29 dlog-forms

Table 1: The essential numbers for the equal and unequal mass case.

I(wj,...,w; ) [45]. We are interested in the question if these iterated integrals (say up to
weight four) can be converted to standard functions (i.e. multiple polylogarithms). The com-
plication is given by the occurrence of the square roots. In the unequal mass case the occurring
square roots are

r=14/—s (4m% —s), ry = \/—s [4m%m‘2jr —s (m% — t)z], (6)

ry =4/ —s(4m2 —s), re = \/—s [4m‘1‘m§ —s(m2— t)z],

3= \/[(ml —my)? —e][(my+my)* —¢], o= \/[(ml —my)* —s—t][(my +my)* —s—t].

In the equal mass case r; and r, become identical, and so do r, and rs.
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We remark that the scalar double box integral with no dots and no irreducible scalar prod-
ucts has up to weight four a rather simple expression in terms of multiple polylogarithms. In
the equal mass case we have

1 _ _ _
S = 46 L LN+ 5G]’ +4{26(2,1,1,1:7)
3
+2G(0,1,1,1;7)—2G(1,1,2,1;5) —2G(1,1,0,1; )
+20,[G(2,1;7)+G(0,1;7)~G(1,1;7)1- 36 (1;7)
+2[G(1,1,1;7) + {6 (1, )]G (1, %) —2In ()]} e* + O (¢°),
=2

')22 2 _ Y mZ. (7)

and similar for the unequal mass case. We are interested in all master integrals up to weight
four. The remaining master integrals in the top sector as well as master integrals from sub-
sectors will involve non-trivial subsets of the square roots up to weight 4. The most challenging
topologies are shown in fig. 2.

unequal: 4 masters 5 masters 3 masters
equal: 3 masters 4 masters 3 masters

Figure 2: Topologies with a dependence up to weight 4 on a non-trivial subset of the
square roots.

2 Rationalisation of square roots

By a change of variables it is sometimes possible to rationalise a square root. Let us look at a
simple example. Consider a dlog-form with a square root:

2m? —s—r 2 (d dm?
_ 1 1 _ S S 1
@ d“‘(m)—r(?——z ®
1 1 1 my
The transformation
s (1—x)?
T T x ®
1

rationalises the square root:

w = 2dIn(x) = Zd—x (10)
x

Let us assume that the differential equation is in ¢-dlog-form, where the arguments of the log-
arithms contain square roots. There are algorithms to rationalise square roots [46,47]. If we
can simultaneously rationalise all square roots, all integrals can be expressed in terms of mul-
tiple polylogarithms. It can be hard to prove that the set of square roots cannot be rationalised
simultaneously [48]. Even if one can prove that a set of square roots cannot be rationalised
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simultaneously, this does not imply that the Feynman integrals cannot be expressed in terms of
multiple polylogarithms [49]. Hence, being able to rationalise simultaneously all square roots
is a sufficient condition that the result can be expressed in terms of multiple polylogarithms,
but not a necessary condition. If a set of square roots cannot be rationalised simultaneously,
other methods like symbol calculus [49, 50] or introducing additional variables [51-54] may
express the Feynman integrals in terms of multiple polylogarithms.

Multiple square roots appear not only in the Feynman integrals associated to the H-graph,
but also in Feynman integrals associated to other processes. Example are Bhabha scattering
[55] or Drell-Yan [56]. As we study more two-loop integrals with several kinematic variables,
multiple square roots become more frequent. We want to learn how to handle them.

We therefore study the case of the H-graph in more detail. We first note that the last
square root rg appears up to weight 4 only in one master integral (one master integral from
the sub-topology shown in the middle in fig. 2). This master integral can be computed in the
Feynman parameter representation and evaluates to multiple polylogarithms following the
lines of [49,57,58]. This holds in the equal mass case and in the unequal mass case.

In the equal mass case we then have the following situation: The remaining 24 master
integrals involve up to weight 4 only three square roots. These square roots can be ratio-
nalised simultaneously and therefore all master integrals evaluate up to weight 4 to multiple
polylogarithms [59].

The unequal mass case is more complicated: Each master integral is a linear combination
of iterated integrals. Each iterated integral of the master integrals contains up to weight 4 no
more than 3 distinct roots. In the remaining 39 master integrals up to weight 4 each occurring
triple of distinct roots can be rationalised simultaneously. In other words: we can rationalise
simultaneously any occurring triple (r;, 7, i) from {ry, 7y, 13,14, 15}, but we may have to use
different rationalisations for different triples. This raises the question whether we are allowed
to use different rationalisations for different iterated integrals. We have to distinguish two
cases:

1. Different rationalisations may correspond to different parametrisations of the same in-
tegration path (left picture of fig. 3).

2. Different rationalisations may correspond to different integration paths (right picture of
fig. 3).

Yy (w1,y) and (22, y) Y1 (z,y1) and (x,y2)

Y2 = const

y = const

T1,T2

Figure 3: The left picture shows two parametrisations of the same integration path,
the right picture shows two different integration paths.

Case 1 is unproblematic and we therefore discuss case 2. Asingle iterated integral I, (w, . .., ®,)
is in general path dependent. The linear combination of iterated integrals in the &/-term of
the i-th master integral I l.(j ) is path independent, this is ensured by the integrability condition
of the differential equation dA—AAA = 0. This allows us to use different integration paths for

Il.(jl) and 192,
1 5]
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Now let’s look at a single expression Il.(j ). We would like to split

0 _ D0
I; = Il.’a+1i’b (1)

and use different integration paths for I, (J ) and I (Jb) . This is only allowed if I (]a) and Il(] ) are
path independent. In order to give a cr1ter1a when a linear combination of iterated 1ntegrals is
path independent we first introduce the bar notation for the tensor algebra (we assume that
all w j’s are closed):

[w1|w2|---|wr] = w0 ®wWy® QW
r—1

dlwilwsl...lo,] = D[] |wji]w;Awjlosl... o] (12)
=1

We associate to a linear combination of iterated integrals

-
I = Z Z cilmijly(a)il,...,wij) = B = Z Z Ci .. lj[ w; | |col-j] (13)

J=1i,000; J=1ig,e00;

By a theorem of Chen [45] the linear combination I is path independent if and only if dB = 0.
For the case at hand, we observe that w; A w; may involve less square roots than w; ® w;.
()

subtr

Although Il({‘) and Il.(jb) may be path dependent, we may find I
nalisations such that

compatible with two ratio-

19 _ W ()R 0))
( i,a Isubtr) and (I + Isubtr) (14)
are path independent. We may then evaluate (I U)_g s(fl itr) with a rationalisation corresponding

to an integration path y, and (I () +I, U ) ) witha rat10nal1sat1on corresponding to an integration
path y,. The subtraction terms can be obtalned from Stokes’ theorem by integrating w;Awj, as

I(J)

sketched in fig. 4. We remark that in mathematical terms, I,

is related to Massey products.

Y1 Y1

Y2 = const

y1 = const

x x

Figure 4: The difference of two integration paths defines an area (green), which we
write may write as the difference of two areas, where each area only knows about
one integration path.

Let us discuss another pitfall, which may occur when using different rationalisations. This
pitfall may occur already for different parametrisations of the same integration path and is
related to trailing zeros. Consider the transformation x = 2x’ and the dlog-form

wy = dIn(x) = dIn(2x") = d[In(2) +In(x")] = dIn(x’). (15)

Consider the apparent contradiction

/

Xf Xy
on = In(x;) # In(x;)—In(2) = ln(x}) = on. (16)
0 0
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The solution to this contradiction is as follows: The two integrals appearing in eq. (16) are
divergent integrals. Although it is common practice to define

Xg
L ), 17)
X

0

we should not forget what this notation actually means: We first introduce a lower cut-off A
as a regulator. In a second step we employ a “renormalisation scheme” and remove all In(A)-
terms. It is now clear what the solution has to be: A transformation x = 2x’ induces a change
of the “renormalisation scheme”. In practice this boils down to that we isolate all trailing zeros
in x” and substitute

In(x) — In(x")+In(2). (18)

3 Conclusion

In this talk we discussed the computation of the master integrals of the two-loop H-graph,
relevant to gravitational waves. The differential equation for the master integrals involves
four square roots in the equal mass case and six square roots in the unequal mass case. The
major challenge is a method for an efficient computation for the case where not all square roots
can be rationalised simultaneously. In the equal mass case we found that all master integrals
up to weight 4 can be expressed in terms of multiple polylogarithms. For the unequal mass case
we reported on techniques to render sub-expressions of iterated integrals path-independent.
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