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Abstract

Numerical tools, such as OpenLoops, provide NLO scattering amplitudes for a very wide
range of hard scattering amplitudes in a fully automated way. In order to match the
numerical precision of current and future experiments, however, the higher precision of
NNLO calculations is essential, and their automation in a similar tool highly desirable.

In our approach, D-dimensional amplitudes are decomposed into loop-momentum
tensor integrals with coefficients constructed in four dimensions and rational terms. We
present a fully generic algorithm for the efficient numerical construction of the tensor
coefficients, which constitutes an important building block for an automated NNLO tool.
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1 Introduction

Precise Monte Carlo simulations of scattering processes have played a major role in the success
of the LHC. The hard scattering amplitudes at the core of these simulations can be obtained
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2. TREE-LEVEL AND ONE-LOOP AMPLITUDE CONSTRUCTION IN OPENLOOPSCONTENTS

by fully automated numerical tools, such as OpenLoops [1–3], at tree and one-loop level.
This is sufficient in order to obtain LO and NLO predictions for most processes, but in order
to fully exploit the potential of the LHC and future colliders, NNLO predictions are required
for a wide range of processes. While dedicated NNLO calculations, which involve two-loop
amplitudes, exist for many 2 → 2 and a few 2 → 3 processes, a fully automated NNLO tool
for processes with four, five and possibly more scattering particles would greatly expand the
scope of precision phenomenology.

In the following, we will summarize the building blocks of the NLO OpenLoops program,
and describe the ones required for a future NNLO tool. We will then present a major building
block for a NNLO OpenLoops program, namely a new algorithm for the numerical construction
of two-loop amplitudes in terms of loop-momentum tensor integrals.

2 Tree-level and one-loop amplitude construction in OpenLoops

L-loop scattering amplitudes are computed as sums of Feynman diagrams Γ ,

ML(h) =
∑

Γ

ML,Γ (h), (1)

the amplitudes of which depend on the helicity configuration h of the external particles and
are factorised into a colour factor and colour-stripped amplitude,

ML,Γ (h) = CL,Γ AL,Γ (h). (2)

While the colour factors CL,Γ are handled algebraically, the colour-stripped amplitudes AL,Γ
are constructed numerically in OpenLoops.

Tree-level diagrams are decomposed into subtrees wa, represented as blue bubbles in our
graphs, which are then constructed through recursion steps,

wαa = α wa

ka

= α

wb

wc

kb

kc

=
Xα
βγ
(kb, kc)

k2
a −m2

a
wβb wγc , (3)

from two subtrees with less propagators and a universal function X derived from the Feyn-
man rule of the connecting vertex and adjacent propagator. The denominator contains the
mass ma and momentum ka of this propagator. The recursion starts from the external wave
functions, and ends in connecting two subtrees which form the full diagram. This recursion is
implemented in four dimensions, achieving a high level of efficiency through the recycling of
already constructed subtrees in multiple tree-level and loop diagrams.1

Starting from one-loop level, divergences can appear and need to be treated through renor-
malisation and IR subtraction procedures. In addition, the numerators of Feynman integrals
are constructed in integer dimensions in a numerical tool. Hence, one-loop amplitudes M̄1
in D dimensions are split into an amplitude M1 constructed from Feynman integrals with
four-dimensional numerators and a remainder stemming from (D − 4)-dimensional numera-
tors. The latter can be fully reconstructed through rational counterterm [4–7] insertions into
tree level amplitudes, which are computed together with the one-loop UV counterterms in the
chosen renormalisation scheme as M0,1l−CT.

1Subtrees can be factorised from divergent loop diagrams as well as from the corresponding counterterm dia-
grams, which allows for their construction in four dimensions, since the sum of these diagrams is finite.
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2. TREE-LEVEL AND ONE-LOOP AMPLITUDE CONSTRUCTION IN OPENLOOPSCONTENTS

For a large class of processes the helicity and colour-summed squared tree-level amplitude

WLO =
1

Nhcs

∑

h,col

|M0(h)|2, (4)

where 1/Nhcs encodes the average over initial-state helicity and colour d.o.f as well as sym-
metry factors for identical final-state particles (see [3]), constitutes the LO contribution of
the scattering probability density, while the NLO contribution is computed from the Born-loop
interference

W virtual
NLO

=
∑

h,col

2Re
�

M∗
0(h)M1(h) +M∗

0(h)M0,1l−CT(h)
�

. (5)

The colour-stripped amplitude of a one-loop diagram Γ is given by

A1,Γ =

wN−1wN

w1 w2

D0

D1

D2

DN−1

q =

∫

dq̄
Tr [S1(q)· · ·SN(q)]

D0· · ·DN−1
(6)

with the integration measure in loop momentum space
∫

dq̄ = µ2ε
∫ d

D
q̄

(2π)D
and scalar propa-

gator denominators Da(q) = (q + pa)2 −m2
a with mass ma and external momentum pa. The

numerator factorises into loop segments with at most linear q-dependence,

Sa(q) =
βa−1

wa

ka

Da

βa

= {Y a
σ + Za

ν;σ qν}wσa , (7)

which consist of a loop vertex and propagator encoded in the universal building blocks Y, Z
and one or two external sub-trees wa with external momentum ka. These segments should be
understood as matrices with Lorentz or spinor indices βa−1,βa.

In OpenLoops, the one-loop diagram is cut open at a chosen off-shell propagator D0 and
the resulting chain of segments constructed recursively through steps (k = 1, . . . , N)

Nk(q) = Nk−1(q)Sk(q) =
β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN

(8)

starting from N0 = 1. The numerator can be written as

Nk(q) =
k
∏

i=1

Si(q) =
k
∑

r=0

Nk,µ1...µr
qµ1 . . . qµr , (9)

and the numerical recursion is implemented at the level of the tensor coefficients Nk,µ1...µr
,

retaining the analytical structure in q throughout the amplitude construction. The tensor in-
tegrals in the resulting amplitude

A1,Γ =
N
∑

r=0

NN ,µ1...µr

∫

dD̄q
qµ1 . . . qµr

D0· · ·DN−1
(10)

are either reduced a posteriori, using external libraries such as Collier [8], or on the fly, i.e. dur-
ing the amplitude construction [2], with Collier or OneLoop [9] for the final evaluation of
scalar integrals. This completely generic algorithm is fully implemented for NLO QCD and
NLO EW and available in the public OpenLoops tool [3].
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3. STRUCTURE OF A TWO-LOOP OPENLOOPS TOOL CONTENTS

3 Structure of a two-loop OpenLoops tool

A full NNLO calculation consists of a double-virtual, real-virtual and real-real part. The lat-
ter two are already provided by the public OpenLoops tool, as well as the squared one-loop
amplitude entering the renormalised double-virtual contribution,

W virtual
NNLO

=
∑

h,col

2 Re
�

M∗
0(h)RM̄2(h)

�

+ |RM̄1(h)|2, (11)

where the bar marks the amplitude in D dimensions and the operator R the renormalisation
procedure. In the following, we focus on the crucial piece for which new efficient methods
need to be developed and implemented in the OpenLoops framework, namely the Born two-
loop interference. The numerators of two-loop integrals are again decomposed into a part
that can be numerically constructed in four dimensions, and (D−4)-dimensional remainders.
In [10–12] it was demonstrated that the renormalised D-dimensional two-loop amplitude can
be split into amplitudes computed with four-dimensional loop numerators,

RM̄2(h) =M2(h) +M1,1l−CT(h) +M0,2l−CT(h) +M0,2×(1l−CT)(h), (12)

where the four terms on the rhs are the unrenormalised two-loop amplitude, the one-loop
amplitude with one-loop rational and UV counterterm insertions, the tree-level amplitude with
two-loop rational and UV counterterm insertions, and the tree-level amplitude with double
one-loop rational and UV counterterm insertions.2 The most challenging part is the Born two-
loop interference term constructed with four dimensional numerators

W02 =
∑

h,col

2 Re
�

M∗
0(h)M2(h)

�

= Re
∑

Γ

∑

h

�

∑

col

2M∗
0(h)C2,Γ

�

A2,Γ (h), (13)

where we use (2), and the sum is taken over the full set of two-loop diagrams Γ of the scattering
process. In the following, we will discuss two-loop diagrams, which become 1PI on amputation
of all external subtrees.3

The colour-stripped amplitude A2,Γ of an irreducible two-loop diagram is constructed from
three chains connected by two vertices V0,V1, and has the form

A2,Γ =

w(1)
1

w(1)
2

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

w(3)
1

w(3)

N3−1

D(3)
0

D(3)
N3−1

w(2)
1

w(2)
2

w(2)

N2−1

D(2)
0

D(2)
1

D(2)

N2−1

V0

V1

q1 q2

q3

=

∫

dq̄1

∫

dq̄2
N (q1, q2)
3
∏

i=1
D(i)(q̄i)

�

�

�

q3=−(q1+q2)

=
R1
∑

r1=0

R2
∑

r2=0

Nµ1···µr1ν1···νr2

∫

dq̄1

∫

dq̄2
qµ1

1 · · ·q
µr1
1 qν1

2 · · ·q
νr2
2

D(1)(q̄1)D(2)(q̄2)D(3)(q̄3)

�

�

�

q3=−(q1+q2)
(14)

2The universal two-loop rational terms of UV origin were computed in [10–12] for QED, QCD and QCD cor-
rections of the SM for any renormalisation scheme. Potential rational terms originating from the interplay of
(D− 4)-dimensional loop numerator parts and IR divergences are currently under investigation.

3For reducible diagrams we refer to [13]. These diagrams factorise into one-loop contributions, and can be
computed with a new algorithm based on the existing one-loop machinery. This is also fully implemented.
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3. STRUCTURE OF A TWO-LOOP OPENLOOPS TOOL CONTENTS

with the three denominator chains (i = 1,2, 3)

D(i)(q̄i) = D(i)0 (q̄i) · · ·D
(i)
Ni−1(q̄i) , where D(i)a (q̄i) = (q̄i + pia)

2 −m2
ia (15)

The numerator construction is again performed at the level of tensor coefficients. The tensor
integral reduction and evaluation is then the remaining piece to be developed and imple-
mented in our framework.

For the tensor coefficient construction we exploit the factorisation of the numerator into
three chains and two connecting vertices,

N (q1, q2) =
3
∏

i=1

N (i)(qi)
1
∏

j=0

V j(q1, q2), (16)

and the factorisation of the chains – each dependent on a single loop momentum – into seg-
ments of the same structure as the one-loop segments,

N (i)(qi , {h(i)a }) = S(i)0 (qi , h(i)0 ) · · ·S
(i)
Ni−1(qi , h(i)Ni−1). (17)

Here we made the dependence of each segment on the helicity d.o.f. h(i)a of the associated
subset of external particles explicit.4

In order to construct (13), the numerator is interfered with the colour factor and full Born
amplitude of the process,

U(q1, q2) =
∑

h

U (1)−1 (h)N (q1, q2, h), U (1)−1 (h) = 2
∑

col

M∗
0(h)C2,Γ (18)

The objective is now to construct U(q1, q2) in a recursive way, at the level of tensor coefficients,
which are then contracted with tensor integrals in the two loop momenta q̄1, q̄2. In order to
find the most efficient recursion with Nr steps,

Vn = Vn−1Sn (n= 1, . . . , Nr) (19)

with VNr
= U(q1, q2) and the building blocks Sn ∈ {S(i)a ,V0,1,N (i),U (1)−1 }, a CPU cost analysis for

the possible algorithms of this form was performed, each for several QED and QCD Feynman
diagrams. Here we estimated the CPU cost of each step by the number of multiplications, the
most expensive numerical operation. The most efficient recursion was then fully implemented
and validated for QED and QCD corrections to SM processes. It consists of the following steps.

0. The three chains are sorted by their number of segments, such that N1 ≥ N2 ≥ N3. The
order of V0 and V1 is determined by vertex type, such that the number of multiplications
in the following steps is minimal (for details see [13]).

1. The shortest chain C3(q̄3) is constructed through the recursion

N (3)
n (q3, ĥ(3)n ) =N (3)

n−1(q3, ĥ(3)n−1) · S
(3)
n (q3, h(3)n ) with ĥ(3)n =

n
∑

a=1

h(3)a (20)

and n= 0, . . . , N3−1. This is usually the chain with the least helicity d.o.f. and intermediate
results can be recycled in multiple Feynman diagrams, such that this step is negligible in
the overall CPU cost for a full process.

4The helicity labels are defined in an additive way, such that the global helicity h =
3
∑

i=1
h(i) is the sum of the

chain helicities h(i) =
Ni−1
∑

a=1
h(i)a , which are constructed from the segment helicities h(i)a . For the simplicity of our

description in this section, we assume three-point vertices V0,1. In the case of four-vertices V0,1 with external
subtrees, additional helicity labels are introduced for these two vertices. This is also fully implemented and included
in the studies presented in section 4. For details on the helicity definitions and treatment see [13].
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4. CPU EFFICIENCY AND NUMERICAL STABILITY CONTENTS

2. The full diagram is then constructed through a sequence of sub-recursions:

2.1 The longest chain C1(q̄1) is constructed through steps

U (1)n (q1, ȟ(1)n ) =
∑

h(1)n

U (1)n−1(q1, ȟ(1)n−1) · S
(1)
n (q1, h(1)n ) with ȟ(1)n = h−

n
∑

a=1

h(1)a (21)

and n= 0, . . . , N1−1. The initial condition defined in (18) contains the interference with
the full Born, which allows for the on-the-fly summation of the helicities of each chain
segment during the recursion step, in which it is attached.5 Since C1(q̄1) is the longest
chain, a large portion of helicity d.o.f is already summed over at a stage at which the
partially constructed diagram depends only on a single loop momentum.

2.2 The two-loop vertex V1 is connected to the previously constructed chains,

U (13)(q1, q3, h(2)) =
∑

h(3)
U (1)1(q1, h− h(1))N (3)(q3, h(3)) V1(q1, q3) (22)

summing over the helicities of C3(q̄3), and introducing the dependence on a second loop
momentum, and hence a much higher complexity.

2.3 The two-loop vertex V0 is connected,

U (123)
−1 (q1, q2, h(2)) = U (13)(q1, q3, h(2)) V0(q1, q1)

�

�

�

q3=−(q1+q2)
(23)

which reduces the number of open Lorentz/spinor indices from three to two.

2.4 The remaining chain C2(q̄2) is constructed through steps

U (123)
n (q1, q2, h̃(2)n ) =

∑

h(2)n

U (123)
n−1 (q1, q2, h̃(2)n−1) S(2)n (q2, h(2)n ) with h̃(2)n =

N2−1
∑

a=n+1

h(2)a (24)

and n = 0, . . . , N1 − 1. Here the complexity stemming from the high tensor ranks in the
loop momenta is counterbalanced by the dependence on only a few remaining helicities.
By construction, in the final result

U(q1, q2) = U (123)
N2−1 (q1, q2, 0) (25)

all helicities are summed.

This algorithm is completely generic. For QED and QCD corrections to the SM, it has been fully
implemented and validated at the level of tensor coefficients in the OpenLoops framework.

4 CPU efficiency and numerical stability

In order to test the CPU efficiency of this new algorithm, we computed the tensor coefficients
for a wide range of QED and QCD processes, each for 1000 uniform random phase space
points (psp) on a computer with a single Intel i7-6600U @ 2.6 GHz processor and 16GB RAM.
The average time per psp is shown in the upper plot of Fig. 1 against the number of Feyn-
man diagrams. The runtimes for the complete two-loop recursion, including full colour and
helicity sums, range from a few ms for simple QED and QCD processes to O(1s) for more
complex 2→ 3 processes. The computation time scales linearly with the number of diagrams.
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5. CONCLUSION CONTENTS
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Figure 1: Computation time for QCD and QED corrections to selected SM processes.
For processes with external e±, QED corrections were considered, for all other pro-
cesses QCD corrections. Amplitudes with external tops were computed with a mas-
sive top, all others with purely massless internal fermions.

It is interesting to compare these two-loop (2l) time measurements to the ones for the corre-
sponding real-virtual corrections, i.e. the same process with one additional photon or gluon at
one-loop level (1l+g), which constitutes another, already fully available component of a full
NNLO calculation. The ratio of 2l and 1l+g timings is depicted in the lower plot of Fig. 1, once
including only the tensor coefficient constructions, and once including the tensor integrals in
the one-loop calculation. These ratios are fairly constant over all considered processes with

2l (tensor coefficients)
1l+g (tensor coefficients)

= 9± 3,
2l (tensor coefficients)
1l+g (full calculation)

= 4± 1.

Compared to the corresponding one-loop tensor coefficient construction with two extra glu-
ons/photons, the two-loop tensor integral construction is even a factor 3−8 faster (see [13]).
Considering the much higher complexity of two-loop diagrams as compared to one-loop dia-
grams, these are very promising values, and we expect that the efficiency of the future tool for
full two-loop calculations will largely depend on the efficiency of the tensor reduction.

Our implementation of this new algorithm also shows high numerical stability at the level
of the tensor integral coefficients, as demonstrated by relative uncertainty measurements for
2→ 2 and 2→ 3 QCD amplitudes computed in double precision for 105 uniform random psp.
These relative uncertainties are in the range of 10−16 to 10−14 for the bulk of the psp, and
never below 10−12 and 10−11. For details we refer to [13].

5 Conclusion

We presented a completely new algorithm for the CPU efficient and numerically stable con-
struction of the loop-momentum tensor coefficients of two-loop amplitudes. This is an impor-
tant building block in the development of a fully automated two-loop tool in the OpenLoops
framework.

5The on-the-fly summation of helicities was already introduced in [2] for the one-loop algorithm.
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