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We uncover 2-group symmetries in 6d superconformal field theories. These symmetries arise when the

discrete 1-form symmetry and continuous flavor symmetry group of a theory mix with each other. We

classify all 6d superconformal field theories with such 2-group symmetries. The approach taken in 6d

is applicable more generally, with minor modifications to include dimension specific operators (such

as instantons in 5d and monopoles in 3d), and we provide a discussion of the dimension-independent

aspects of the analysis. We include an ancillary mathematica code for computing 2-group symmetries,

once the dimension specific input is provided. We also discuss a mixed ’t Hooft anomaly between

discrete 0-form and 1-form symmetries in 6d.
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1 Introduction

Global symmetries are an essential characteristic of quantum field theories (QFTs). They determine

the charges of operators – local or extended – and their ’t Hooft anomalies provide an RG-flow

invariant. Higher-form symmetries [1] and higher-group structures [2] are the newest members of the

family of global symmetries in QFTs1. In the past year it has become clear that their role extends

beyond low-dimensional theories, and provides a characterization of higher-dimensional QFTs, in

particular superconformal field theories (SCFTs). This is particularly important in the context of

strongly coupled SCFTs in 5d and 6d, whose existence is largely argued based on their string theoretic

realizations. Global 0-form flavor symmetries are e.g. an important datum to test our understanding

of the UV fixed points in 5d – starting with the work in [25–27] and more recently in [20, 28–73].

There is a clear distinction between higher-form symmetries that are continuous and those that are

discrete. Continuous 1-form symmetries were shown to not exist in 5d SCFTs in [74], because of the

absence of a conserved 2-form current in the spectrum of short multiplets, which are representations

of the superconformal algebra. In contrast however, discrete 1-form symmetries and their gauged

versions, 2-form symmetries, are numerous in 5d SCFTs [20, 62, 68, 75]. Moreover, in [20] it was shown

that there are also 2-group symmetries in 5d SCFTs involving these discrete 1-form symmetries.

Likewise, based on the superconformal symmetry, it was shown in [15] that continuous 1-form

symmetries, and 2-groups having continuous 1-form and 0-form components, cannot exist in 6d SCFTs.

The presence of discrete 1-form symmetries in 6d SCFTs was already pointed out in [62, 68] 2. In

the present paper we show that there are 2-group symmetries in 6d SCFTs, based on discrete 1-form

symmetries and continuous 0-form symmetries. With the full classification of 6d SCFTs in place we

are able to give a complete list of 6d SCFTs exhibiting a particular kind of 2-group symmetry: these

are always a combination of the 1-form symmetry that is a discrete group, and the flavor symmetry

group, which is a non-simply-connected continuous group. All models with 2-group symmetries in 6d

are summarized in table 1, modulo the information about the possible choices of gauge groups, which

can be found in section 3.3.2. In contrast, we find that this kind of discrete 2-group does not exist in

little string theories (LSTs). However there definitely are continuous ones, as was shown in [15, 16].

1A wide array of recent work has been devoted to higher-group structures in QFTs. See [2–24].
2There is also a defect group associated to 2d charged objects in 6d [76].
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A detailed derivation of 2-group structures will be provided in this paper. We should here give

some intuition,3 when a 2-group symmetry (of the kind studied in this paper) can be expected in

a given QFT. Necessary conditions are the existence of a discrete 1-form symmetry Γ(1), but also a

non-trivial 0-form flavor symmetry group, which is not simply-connected. We can write the latter as

F = F/Z, where F is a cover of the flavor symmetry group, and Z a subgroup of the center ZF of F

. Whenever there are local operators that are charged under both flavor and gauge symmetry, these

can lead to a non-trivial extension of Γ(1) by Z. This maximal, trivially acting group will be denoted

by E in the following. Whenever this forms a non-trivial extension

1→ Γ(1) → E → Z → 1 , (1.1)

with a non-trivial Bockstein map

Bock : H2(BF ,Z)→ H3(BF ,Γ(1)) , (1.2)

where BF is the classifying space for the flavor symmetry F-bundles, then there is a 2-group symmetry.

The background B2 ∈ C2(BF ,Γ(1)) is then related to the Stiefel-Whitney class w2 ∈ H2(BF ,Z), that

measures the obstruction of lifting F-bundles to F -bundles, by

δB2 = Bock(w2) . (1.3)

This relatively simple argument percolates throughout QFTs in all dimensions. The central theory-

dependent information is the sequence (1.1), i.e. the 1-form symmetry Γ(1), the subgroup of the flavor

center Z, which acts trivially, and perhaps most importantly, the extension sequence they form. This

sequence is encoded in the symmetries (gauge and flavor), matter and – depending on dimension –

non-perturbative states such as instantons, monopoles and vortices etc.

In view of this general nature of the 2-group construction, we provide a computational tool in

the form of a mathematica notebook, TwoGroupCalculator.nb. It simply requires the input of the

symmetry groups, and charges of states (perturbative and non-perturbative alike), and outputs the

1-form symmetry and E , as well as the embedding of the former into the latter. This specifies whether

there is a non-trivial extension. Subsequently of course one still needs to determine whether Bock(w2)

is a non-zero element or not. The code also specifies Z as a subgroup of ZF , from which we then also

can infer the global form F of the flavor symmetry group.

The non-perturbative BPS strings play a crucial role for the 1-form symmetries, as well as for the

2-groups. They give rise to massive states at low-energy but massless in the UV where the SCFTs

3Here we provide this intuition by staying within the context of gauge theories, though the formalism we discuss can

be applied even when no useful gauge theory description is available. For example, see [21], where this formalism was

used to deduce 2-group symmetries of 4d N = 2 theories of Class S, which generically do not admit a gauge theory

description.
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or LSTs live. These states can sometimes screen Wilson lines transforming in the center of a gauge

group, therefore breaking the 1-form symmetry. They can also mediate between gauge and flavor

Wilson lines. We describe a method that, without knowing explicitly the representation of the BPS

string charges, provides a consistency condition for turning on the 1-form symmetry [77], 0-form flavor

symmetry and/or 2-group backgrounds. This methods relies on studying the Dirac quantization of the

BPS string charge lattice in the presence of these backgrounds, via the Green-Schwarz-West-Sagnotti

6d topological couplings.

Finally, we discuss also the role of abelian flavor symmetries. In particular, the classical U(1)

symmetries get broken by Adler-Bell-Jackiw (ABJ) anomalies at the quantum level. These anomalies

sometimes leave a remnant discrete 0-form symmetry. We show that for certain 6d theories on 6-

manifold with non-vanishing first Pontryagin class there is a mixed ’t Hooft anomaly between the

discrete 0-form symmetry and the 1-form symmetry. The existence of the 2-group is consistent with

this mixed anomaly as discussed at the end of section 4.2.

The plan of this paper is as follows: in section 2 we discuss the general framework for 2-groups.

This section is to a large extent dimension independent. In section 3 we apply this to the 6d SCFTs

and LSTs and provide in section 5 the complete classification of theories exhibiting 2-groups (of a

particular type). In section 4 we discuss anomalies – in particular the ABJ anomaly for theories with

U(1) global symmetries and a new mixed anomaly in 6d. The appendices supply the details of the

mathematica code and a selection of detailed examples of 2-groups in 6d.

2 2-Group Symmetries

The construction of 2-groups has many facets. Here we describe a construction which applies to theories

in general dimension d. What remains dimension specific is the specific type of gauge, flavor symmetry

groups and charged matter states (including non-perturbative states such as strings, instantons and

monopoles).

2.1 The Types of 2-Group Symmetries

2-group symmetries describe mixings between 0-form and 1-form symmetries of a theory. The most

straightforward way this can happen is if elements of a 0-form symmetry group Γ(0) act on elements

of the 1-form symmetry group Γ(1) (see figure 1). An example of such a situation arises in a pure

SU(N) gauge theory, which has a Z(1)
N 1-form symmetry group that is acted upon by the Z(0)

2 charge

conjugation symmetry. The action sends an element in Z(1)
N to its inverse element.

In this paper, we do not study 2-groups that involve action of 0-form symmetry on 1-form sym-

metry. The 2-groups that we study can be described in terms of a non-closedness condition on the
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α ∈ Γ(1) o · α ∈ Γ(1)

o ∈ Γ(0)

Figure 1. Action of a topological operator associated to 0-form symmetry on topological operators associated

to 1-form symmetries.

1-form symmetry background B2 of the form

δB2 = B∗1Θ , (2.1)

where Θ ∈ H3
(
BF ,Γ(1)

)
is known as the Postnikov class of the 2-group symmetry, Γ(1) is the 1-form

symmetry group, F is the 0-form flavor symmetry group, BF is its classifying space and B∗1 is the

pullback associated to the map B1 : M → BF from the spacetime manifold M to BF associated to a

background principal bundle for F .

Moreover, in this paper we only study the absence/presence of a particular term of the form

Bock(w2) in the Postnikov class

Θ = Bock(w2) + · · · , (2.2)

where w2 ∈ H2(BF ,Z) describes the obstruction class associated to lifting F bundles to F -bundles,

where F = F/Z and Z is a subgroup of the center ZF of F (which therefore is a cover of F). Bock

represents the Bockstein homomorphism (which is the connecting homomorphism in the associated

long exact sequence in cohomology)

Bock : H2(BF ,Z)→ H3(BF ,Γ(1)) , (2.3)

associated to a short exact sequence

0→ Γ(1) → E → Z → 0 , (2.4)

extending Z by Γ(1). Note that, if the short exact sequence splits, then the Bockstein homomorphism

is trivial, we do not obtain a non-trivial contribution of the form Bock(w2) to the Postnikov class, and

thus there is no 2-group symmetry of this type.
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L1 L2

O21

=⇒ L1 ∼ L2

Figure 2. If there exists a non-genuine local operator O21 6= 0 that can be used to transform a line defect L1

to line defect L2, then we regard L1 and L2 to be in the same equivalence class. Such equivalence classes form

a group under OPE of line defects, which can be recognized as the Pontryagin dual group Γ̂(1) of the 1-form

symmetry group Γ(1).

R1 R2

R2 ⊗R∗1
=⇒ R1 ∼ R2

Figure 3. A genuine local operator transforming in representation R2⊗R∗1 of the flavor symmetry algebra f can

be regarded as transforming a flavor Wilson line in representation R1 to a flavor Wilson line in representation

R2. The above configuration of the local operator joined to flavor Wilson lines is consistent as it is invariant

under gauge transformations of a background flavor connection. If such a local operator exists, then we regard

the R1 and R2 flavor Wilson lines to be in the same equivalence class. Such equivalence classes form a group

Ẑ with product operation being tensor product of representations.

(L1, R1) (L2, R2)
O21 ∈ R2 ⊗R∗1

=⇒ (L1, R1) ∼ (L2, R2)

Figure 4. Now, consider a non-genuine local operator O21 transitioning line defect L1 to line defect L2. Say

O21 transforms as R2 ⊗ R∗1 under the flavor algebra. Then we regard elements (L1, R1) and (L2, R2) (in the

product set of line defects and flavor Wilson lines) to lie in the same equivalence class. Such equivalence classes

form a group Ê with product operation being OPE and tensor product of representations.

To determine whether a theory has 2-groups of this type it is necessary to compute the 1-form

symmetry group Γ(1), as well as the flavor symmetry group F , and thus the discrete subgroup Z such

that

F = F/Z , (2.5)

with F a cover of the flavor symmetry group. As we describe below, it is possible to do so from

the spectrum of the theory and determine these groups as well as the short exact sequence (2.4).

Necessary conditions for there to be a 2-group of this type are that the flavor symmetry group F is

not simply-connected, the non-triviality of the 1-form symmetry and that the sequence (2.4) does not

split. Another condition is also that the associated Postnikov class is non-vanishing.

2.2 Computing 2-Groups From Properties of Line Defects

A more physically intuitive way to deduce the presence of this term in the Postnikov class is by

studying line defects and flavor Wilson lines modulo screening [21, 23]:

• Γ(1) is computed as the Pontryagin dual of the group Γ̂(1) = Hom(Γ(1), U(1)) formed by equiv-

alence classes of line defects modulo screenings due to non-genuine local operators4 (see figure

4We remind the reader that a non-genuine local operator is one that is constrained to live at a 0-dimensional end
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2), where one does not include flavor Wilson lines or any information about flavor charges of the

local operators.

• The flavor symmetry group F has the key property that the representations formed by genuine

local operators are allowed representations for F , but not allowed representations of any other

group of the form F ′ = F/Z ′ with Z ′ being some non-trivial subgroup of the center ZF of F .

• On the other hand, the group F can be taken to be any covering group of F such that the

representations formed by genuine and non-genuine local operators are allowed representations

for F .

• We can write F = F/Z, which provides the definition for Z. The group Z can also be understood

as the Pontryagin dual of the group Ẑ formed by equivalence classes of flavor Wilson lines modulo

screenings due to genuine local operators (see figure 3).

• E is computed as the Pontryagin dual of the group Ê formed by equivalence classes of line defects

plus flavor Wilson lines modulo screenings due to genuine and non-genuine local operators (see

figure 4).

• Ẑ naturally forms a subgroup of Ê , leading to the short exact sequence

0→ Ẑ → Ê → Γ̂(1) → 0 , (2.6)

whose Pontryagin dual produces the key short exact sequence (2.4).

2.3 2-Groups for Gauge Theories in d Dimensions

Another alternate way of deducing such 2-groups opens up if the theory under study admits a gauge

theory description with a non-abelian gauge algebra g and gauge group G.

For d ≤ 3, the gauge theory is UV complete on its own, and we study this UV complete theory.

We do not add any Chern-Simons terms (or finite versions thereof) involving either only dynamical

fields or dynamical and background fields5.

For d = 4, we study gauge theories having the property that all the gauge couplings have non-

positive beta functions. Such a gauge theory is UV complete on its own and we study this UV complete

theory. We furthermore assume that the gauge group G = G, where G is the simply-connected group

associated to the gauge algebra g. This is to ensure that the 2-group does not receive extra “magnetic

or junction of higher-dimensional defects. On the other hand, a genuine local operator exists independently of higher-

dimensional defects.
5If these assumptions are violated, then monopole operators produce extra contributions that need to be accounted

alongside the matter field contributions. A systematic analysis of these extra contributions in the context of generalized

global symmetries will appear elsewhere.
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or dyonic” contributions besides the “electric” contributions coming from matter fields, which further

complicate the analysis. See [23] for details on how to handle these extra contributions to the 2-group.

For d = 5, we study gauge theories that describe low-energy physics of relevant deformations of

5d N = 1 SCFTs. For d = 6, we study gauge theories that describe low-energy physics on the tensor

branch of vacua of 6d N = (1, 0) SCFTs and LSTs.

Under the assumptions discussed above, for d ≤ 4, we only need to include contributions coming

from the matter fields of the gauge theory. However, for d = 5, 6 we also need to include further

instantonic contributions. Such contributions for 6d theories were discussed in [68] and the contribu-

tions relevant for our purposes are described later in this paper (see section 3.2). For 5d theories, see

[20, 68] for a detailed description of such contributions.

Pick a d-dimensional gauge theory of one of the types discussed above. Let ψi be the matter fields

in the gauge theory. It transforms in an irrep R
(i)
G ⊗ R

(i)
F of G × F , where G is the gauge group and

F is the cover of the flavor group F . Each matter field carries a charge under the center ZG of the

gauge group G, and the center ZF of the cover F of the flavor group F . This is provided by the charge

of R
(i)
G under ZG and the charge of R

(i)
F under ZF . These charges describe elements βi of ẐG × ẐF ,

where ẐG, ẐF are Pontryagin duals of ZG, ZF respectively.

For d = 5, 6, the extra instantonic contributions a similarly provide elements βa of ẐG × ẐF .

Similarly, if we drop the restrictions on gauge theories in d ≤ 4 discussed above, then we obtain

extra contributions a which can be incorporated in the same fashion as done above for d = 5, 6 gauge

theories.

LetM be the sub-lattice of ẐG× ẐF generated by βi and βa for all i, a. From this we can extract

the data relevant for 2-group symmetries as follows:

• E is the subgroup of ZG × ZF that pairs trivially with M. That is, an element α ∈ E iff it acts

trivially on all matter fields and extra contributions.

• Γ(1) is the subgroup of E such that α ∈ Γ(1) iff πF (α) = 0, where πF is the projection map

πF : ZG × ZF → ZF . In other words, Γ(1) = E ∩ ZG.

• Z is the subgroup of ZF defined as the image πF (E) of E under the projection map πF . One can

easily check that Z can be identified as E/Γ(1), leading to the key short exact sequence (2.4).

2.3.1 Structure Group

The data of E can be used to assign a structure group S to the gauge theory via

S =
G× F
E

. (2.7)
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The importance of the structure group is that it describes the full set of gauge and flavor bundles

that can be turned on in the gauge theory. A gauge bundle and a flavor bundle can be turned on

simultaneously only if they combine to form a bundle for the structure group S.

Let us begin by choosing a background B2 ∈ C2(M,Γ(1)) which is a 2-cochain valued in Γ(1) on

spacetime M . Also, choose a bundle for the flavor symmetry group F , which comes equipped with a

characteristic class [w2] ∈ H2(M,Z) describing the obstruction of lifting the F bundle to an F bundle.

Combine the data of B2, w2 as follows

Bw = i(B2) + w̃2 , (2.8)

where i : C2(M,Γ(1))→ C2(M, E) induced by Γ(1) → E , and w̃2 ∈ C2(M, E) is a 2-cochain lifting w2

from Z to E . Bw is closed and describes an element [Bw] ∈ H2(M, E).

Let us define

Γ(1)′ = πG(E) , (2.9)

where

πG : ZG × ZF → ZG , (2.10)

is the projection map onto ZG. This lets us construct

w′2 := πG[Bw] ∈ H2(M,Γ(1)′) , (2.11)

which describes the obstruction class of lifting G/Γ(1)′ -gauge bundles to G-bundles.

Once a 1-form symmetry background B2 and a flavor background bundle are chosen (which fixes

w2), the gauge theory sums over all possible G/Γ(1)′ bundles with a fixed value of w′2 that is determined

in terms of B2, w2 via (2.11) and (2.8).

One important point to note is that the 1-form symmetry background B2 cannot be chosen

independently from the flavor background bundle. This can be seen from the form of Bw appearing

in (2.8). Since Bw is closed, applying δ on both sides of (2.8) leads to the relation6

δB2 = Bock(w2) , (2.12)

which recovers the fact that 1-form symmetry and flavor symmetry combine to form a 2-group sym-

metry.

2.3.2 Computation Using Charge Matrix

As we have discussed above, there are many key ingredients that go into the determination of 2-group

symmetry:

6See for example [21] for the details on intermediate steps in the calculation.
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• The (isomorphism classes of) groups Γ(1), E and Z.

• The embedding i : Γ(1) → E , and the projection π : E → Z.

• The embedding iF : Z → ZF .

The first two ingredients listed above determine the short exact sequence (2.4), which is used for the

determination of the precise Bockstein homomorphism to be used in computing the Postnikov class

(2.2). On the other hand, the last ingredient listed above determines the flavor symmetry group F

and the obstruction class w2 used in the computation of Postnikov class (2.2).

These ingredients can be computed algorithmically using a charge matrixM, as we discuss in this

subsubsection. We can build M iteratively as follows:

• Decompose the gauge group center as ZG =
∏I
i=1 Zni , and the center of the cover of flavor group

as ZF =
∏A
a=1 Zna .

• Start with a diagonal square matrix MI of rank I. The i-th entry on the diagonal of MI is ni.

• Take another diagonal matrix MA of rank A whose a-th diagonal entry is na
7

• Join MI and MA to make a diagonal matrix MI+A of rank I +A.

• Let φα be different matter fields (and extra non-perturbative contributions). Each φα carries a

charge nα,i (mod ni) under Zni and a charge nα,a (mod na) under Zna .

• For each α, append a column to MI+A whose i-th entry is nα,i and a-th entry is nα,a. Let the

total number of columns being added be N .

After appending all such columns, the resulting matrix of rank (I +A)× (I +A+N) is what we call

the charge matrix M:

M =


MI

n1,1 . . . nN,1
...

...

n1,I . . . nN,I

MA

...
...

n1,A . . . nN,A


. (2.13)

We will also need a submatrix MG of M,

M =

[
MG

MF

]
, (2.14)

7Notice that a was used in a different context at the start of this subsection 2.3.
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which is obtained by keeping only the top I rows of M and discarding the bottom A rows. The rank

of MG is I × (I +A+N).

The 1-form symmetry Γ(1) is obtained by computing Smith Normal Form SNF(MG) of MG.

Each row i of SNF(MG) contains a single non-zero entry pi. Then, we can write

Γ(1) =

I∏
i=1

Zpi . (2.15)

Similarly, the group E is obtained by computing Smith Normal Form SNF(M) of M. Each row i of

SNF(M) contains a single non-zero entry qi. Then, we can write

E =

I+A∏
i=1

Zqi . (2.16)

Now we discuss the computation of the short exact sequence (2.4) from the charge matrix M.

Firstly, we want to understand the embedding of Γ(1) into E . Let us express SNF(MG) in terms of

MG via two integral square matrices AG and BG as follows

SNF(MG) = AG · MG ·BG . (2.17)

The rank of AG is I and the rank of BG is I +A+N . AG encodes the map Γ(1) → ZG, but this map

is not of particular relevance to us. We can also implement the transformations performed by AG, BG

on the full matrix M, which leads to a new matrix M′

M′ =

[
AG

IA×A

]
· M ·BG . (2.18)

Additionally, define the integral square matrices AE , BE via

SNF(M′) = AE · M′ ·BE (2.19)

with the additional constraint that AE is an upper diagonal matrix with all its diagonal entries being

1. Note that

SNF(M′) = SNF(M) . (2.20)

The rank of AE is I +A and the rank of BE is I +A+N . The above process captures the embedding

i : Γ(1) → E . To see this embedding explicitly we define the matrix (A−1
E )G as the I × (I + A) rank

matrix obtained by deleting the bottom A rows of A−1
E :

A−1
E =

[
(A−1
E )G

(A−1
E )F

]
. (2.21)
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Let us represent Zpi as Z (mod piZ). Pick an element α of Γ(1). Its projection onto Zpi subfactor is

described by an integer αi (mod pi). Let eα be a rank I row vector whose i-th entry is αi. To describe

the image i(α) ∈ E of α ∈ Γ(1) we compute

fα := eαR
t , R :=

(
P−1(A−1

E )GQ
)t
, (2.22)

where P = diag(pi : i = 1, . . . , I) and Q = diag(qi : i = 1, . . . , I + A), and the superscript t denotes

transpose. The projection of i(α) on Zqi subfactor of E is (fα)i (mod qi) where (fα)i is the i-th entry

of the rank I +A row vector fα.

We can also compute the subgroup Z of the flavor center in terms of these matrices, using

the fact that Z = E/Γ(1). Now, define a matrix MZ by appending the diagonal matrix Q to R as

shown below

MZ =
[
Q R

]
. (2.23)

This is analogous to the matrix M we used to compute E (more precisely its Pontryagin dual Ê) as

a projection from ẐG × ẐF . Here we are computing Z as a projection from E : computing the Smith

Normal Form SNF(MZ) ofMZ directly computes E/Γ(1). Each row i of SNF(MZ) contains a single

non-zero entry ri. Then, we can write

Z =

I+A∏
i=1

Zri . (2.24)

To describe the map π : E → Z, we define integral square matrices AZ , BZ via

SNF(MZ) = AZ · MZ ·BZ , (2.25)

with the additional constraint that AZ is a lower diagonal matrix with all its diagonal entries being

1. The rank of AZ is I + A and the rank of BZ is 2I + A. The matrix AZ encodes the projection

π as follows. Pick an element β ∈ E whose projection onto Zqi subfactor is described by an integer

βi (mod qi). Associate it to a column vector cβ whose i-th entry is βi. Compute

dβ := AZcβ . (2.26)

Let the i-th entry of dβ be (dβ)i. Then, the projection of π(β) ∈ Z onto its Zri subfactor is given

by (dβ)i (mod ri). Thus, we have reconstructed the full short exact sequence (2.4) using the data of

charge matrix M.

Finally, in order to find the flavor symmetry group F and the obstruction class w2 appearing

in (2.2), we need to understand the map iF : Z → ZF . Pick an element γ ∈ Z whose projection onto

the Zri subfactor is γi (mod ri). Let vγ be a rank I + A column vector whose i-th entry is γi. Then

compute

uγ :=MA[(AtE)
−1Q−1A−1

Z ]F vγ , (2.27)
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where [(AtE)
−1Q−1A−1

Z ]F is obtained from (AtE)
−1Q−1A−1

Z by deleting its top I rows and keeping the

bottom A rows. uγ is then a rank A column vector. The projection of iF (γ) onto its Zna subfactor is

given by uγ,a (mod na). This completely specifies the map iF : Z → ZF .

2.4 Example: Spin(4N + 2) with Vector Hypers in General Dimension d

Consider a d-dimensional supersymmetric (with 8 supercharges) Spin(4N + 2) gauge theory with

Nf hypermultiplets transforming in vector representation of Spin(4N + 2). The hypers form the

fundamental representation of f = sp(Nf ) flavor symmetry algebra, and so we can choose F = Sp(Nf ),

which is the simply-connected group associated to f.

For d ≤ 3, we can allow arbitrary positive values of Nf . For d = 4, the non-positivity of the beta

function implies that we must have Nf ≤ 4N . For d = 5, we have Nf ≤ 4N−1 for the gauge theory to

arise (at low energies) from a relevant deformation of a 5d SCFT. For d = 6, such a gauge theory can

arise (at low energies) on the tensor branch of 6d SCFTs, but not on the tensor branch of 6d LSTs,

and we must have Nf = 4N − 6. This is necessary for the cancellation of 1-loop irreducible quartic

gauge anomalies.

Let us now discuss the extra instantonic contributions we need to take into account for d =

5, 6. For d = 5, it was shown in [20] that the instantonic contribution can be taken to have charge

(0 (mod 4), Nf (mod 2)) under ZG × ZF = Z4 × Z2. For d = 6, the instantons are dynamical strings

whose (particle-like) vibration modes give rise to the relevant instantonic contributions we need to

take into account. Such instantonic contributions can be taken to have trivial charges under ZG×ZF .

Let us first consider that either of the two possibilities holds:

• d 6= 5

• Or d = 5 and Nf is even.

Then we do not need to worry about any extra instantonic contributions. The matter content trans-

forms in representation F⊗F of G×F = Spin(4N+2)×Sp(Nf ). We have ZG = Z4 and ZF = Z2. The

generator αG of ZG = Z4 acts as −1 ∈ U(1) on the matter field, and the generator αF of ZF = Z2 also

acts as −1 ∈ U(1) on the matter field. Thus, the diagonal combination αGF = (αG, αF ) ∈ ZG × ZF
of the two generators leaves the matter field invariant. This diagonal combination αGF generates the

subgroup E = Z4 inside ZG × ZF . Moreover, we have πF (2αGF ) = 0, and hence Γ(1) = Z2 is the Z2

subgroup of E generated by 2αGF . Thus, Z = E/Γ(1) = Z2, which implies that the flavor symmetry

group F of the theory is

F = F/Z = Sp(Nf )/Z2 ≡ PSp(Nf ) . (2.28)
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The key short exact sequence (2.4) becomes

0→ Z2 → Z4 → Z2 → 0 , (2.29)

which does not split. This leads to a non-trivial 2-group symmetry whose Postnikov class Θ is

Θ = Bock(w2) + · · · , (2.30)

where w2 ∈ H2(BF ,Z2) = H2(BPSp(Nf ),Z2) is the obstruction class for lifting F = PSp(Nf )

bundles to F = Sp(Nf ) bundles, and Bock is the Bockstein homomorphism associated to (2.29). We

have H3(BPSp(Nf ),Z2) = Z2 generated by an element w3, and we can identify Bock(w2) = w3.

Now consider d = 5 and Nf odd. In this case, αGF does not leave the instanton invariant. We

instead have E = Z2 generated by (2αG, 0) ∈ ZG × ZF , which can be identified with the 1-form

symmetry Γ(1) = Z2. Thus we have Z = Z1, implying that the flavor symmetry group is

F = Sp(Nf ) , (2.31)

and there is no 2-group symmetry.

Now let us derive the above results for the first case using the charge matrix. In that case, the

charge matrix is

M =

[
4 0 2

0 2 1

]
. (2.32)

Following the algorithm presented above, we can compute

SNF(MG) =
(
0 0 2

)
, M′ =

(
0 0 2

−2 2 1

)
, SNF(M′) =

(
4 0 0

0 0 1

)
, (2.33)

from which we can read off Γ(1) = Z2 and E = Z4 × Z1 = Z4. Thus, we have p1 = 1, q1 = 4, q2 = 1.

To determine the embedding of the 1-form symmetry into E we compute8

AE =

(
1 −2

0 1

)
, (2.34)

using which we find

Rt =
(
2 1
)
, (2.35)

which implies that the image in E of the generator of Γ(1) = Z2 has a projection of 2 (mod 4) onto

the Z4 subfactor of E , and a projection of 1 (mod 1) = 0 (mod 1) onto the Z1 subfactor of E . Thus

Γ(1) = Z2 embeds as the Z2 subgroup of E = Z4.

8There are various possibilities for AE depending on the value of the matrix BE . Here, and in what follows, we make

one such choice. It should be noted that the mathematica code attached with this paper might produce a different

choice.
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To compute Z, we find that

SNF(MZ) =

(
0 0 2

0 1 0

)
, (2.36)

implying that Z = Z2 × Z1 = Z2. That is, r1 = 2, r2 = 1. To compute the projection E → Z, we first

compute

AZ =

(
1 0

0 1

)
, (2.37)

which means that the generator of Z4 subfactor of E is mapped to the generator of the Z2 subfactor

of Z. Let us now compute the embedding of Z into ZF . For this we need the matrix

MA[(AtE)
−1Q−1A−1

Z ]F =
(
1 2
)
. (2.38)

This implies that the generator of Z = Z2 maps to the generator of ZF = Z2.

This confirms our results derived above without the use of charge matrix. The use of charge matrix

to compute (2.4) might seem a bit overkill in this simple example. However, if one deals with a theory

involving large number of gauge and flavor algebras, then the use of charge matrix turns out to be very

convenient, especially to perform these with a computer. We have performed the calculation using

charge matrix for this simple example to illustrate the various objects involved in such a computation.

The ancillary mathematica file provides an implementation of this algorithm.

3 2-Group Symmetries in 6d SCFTs and LSTs

Although general arguments [15] show that there cannot be continuous 1-form symmetries and 2-

groups in 6d SCFTs, it has been shown in [62, 68], that discrete 1-form symmetries can exist in 6d

N = (1, 0) SCFTs and LSTs.

A 6d N = (1, 0) SCFT or LST is described (at low energies) along its tensor branch by a 6d

N = (1, 0) non-abelian gauge theory. The gauge theory is coupled to massive string-like excitations.

Some of these strings can be recognized as instanton strings of the gauge theory. However, a general

6d SCFT or LST can have strings that are not instantons.

Thus, 2-group symmetries of 6d SCFTs and LSTs can be deduced by applying the gauge-theory-

based analysis of section 2.3. Along with matter fields, we have to incorporate contributions from the

massive strings discussed above. These are discussed in section 3.2.

3.1 Construction of 6d SCFTs and LSTs

A uniform construction of all known 6d SCFTs and LSTs is provided by compactifying F-theory

on elliptically fibered Calabi-Yau threefolds. Most of the theories can be constructed by using the

unfrozen phase of F-theory, while some outlying theories can only be constructed using the frozen
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phase of F-theory [78–80]. The classification of the theories lying in the unfrozen phase was performed

in [81–83] while the frozen phase theories were classified in [84]9.

The theories resulting from both of these classifications can be described in the same graphical

language. The theory is described by a connected graph. A node in the graph takes the following form

g

k , (3.1)

where g is a simple gauge algebra carried by the node and k ≥ 0 is known as the value of the node.

For 6d SCFTs, the set of allowed nodes can be found in Tables 1 and 2 of [53]. These nodes are also

allowed for 6d LSTs, but there are a few more allowed nodes for 6d LSTs that are listed in Table 2 of

[83]. The value of all of these nodes is k = 0.

The nodes can be joined by single or double edges. For 6d SCFTs, the set of allowed edges can

be found in Tables 3–5 of [53]. These edges are also allowed for 6d LSTs, but there are a few more

allowed edges for 6d LSTs that are listed in section 7.1.2 of [83].

There are two kinds of flavor symmetries: localized and delocalized. The localized flavor symme-

tries are associated to a single node in the graph, while delocalized flavor symmetries are associated

to multiple nodes. We will see later in section 5.3 that only localized flavor symmetries that are

continuous and non-abelian can participate in 2-group symmetries of the type studied in this paper

(see section 2.1). A flavor symmetry of this type associated to a node of the form (3.1) is depicted by

attaching a flavor node encapsulated between two square brackets as shown below

g

k [f]
, (3.2)

where f is the non-abelian continuous localized flavor symmetry associated to the node (3.1).

For nodes allowed in both 6d SCFTs and LSTs, such flavor symmetries can be found in Tables

1 and 2 of [69]. The nodes allowed only in 6d LSTs all have a Lagrangian description, so such flavor

symmetries are obtained simply by computing the flavor algebras rotating the hypermultiplets.

3.2 Strings and Corresponding Charges

Each non-flavor node gives rise to a massive dynamical string on the tensor branch. The various

vibration modes of such a (closed) string give rise to massive particles. These particles can provide

extra charges under ZG × ZF that are not provided by matter hypermultiplets.

In our considerations regarding 2-group symmetries, such extra charges arise only from strings

associated to nodes of the form
sp(n)

1 , (3.3)

9See also [85] for a classification based on solving consistency conditions for 6d N = (1, 0) gauge theories.
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for n ≥ 010.

Let us now describe the extra charges provided by such a string. Let i be the set of nodes (flavor

and non-flavor) neighboring such a node, and let gi be the (flavor or gauge) algebra carried by the

i-th node. For n > 0, we have ⊕
i

gi ⊆ so(4n+ 16) . (3.4)

Let R be the representation of
⊕

i gi obtained by reducing the spinor irrep S of so(4n+ 16), and let

R =
⊕

aRa be the irrep decomposition of R. Then, the extra contributions are completely captured

by the representations Ra. For n = 0, we instead have⊕
i

gi ⊆ e8 . (3.5)

and the extra contributions are captured by representations Ra that appear in irrep decomposition of

the representation R obtained by reducing the adjoint representation e8 under
⊕

i gi.

3.3 List of 6d SCFTs and LSTs with 2-Group Symmetries

The data discussed above is sufficient to completely classify the 6d SCFTs and LSTs that admit 2-

group symmetries. The classification is carried out in detail in the next section. Here we describe the

final result of the classification.

We find that there are no LSTs that carry the type of 2-group symmetries being discussed in this

paper. On the other hand, we find seven classes of 6d SCFTs carrying 2-group symmetries, which are

displayed in table 1.

10For n = 0, the gauge algebra sp(0) is trivial and the associated string is not an instanton for any gauge group.
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Label Quiver

Type 1
[sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

so(4n3+2)

4

[sp(m3)]

sp(n2R)

1

[so(4m2R)]

so(4n2R+1+2)

4

[sp(m2R+1)]

Type 2
[sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

so(4n3+2)

4

[sp(m3)]

sp(n2R)

1

[so(4m2R)]

so(4p)

4

so(4n2R+1+2)

4

[sp(q)]

[sp(m2R+1)]

Type 3
[sp(m1)]

so(4n1)

4
sp(n2)

1

[so(4m2)]

so(4n3)

4

[sp(m3)]

so(4n2R−1)

4

[sp(m2R−1)]

sp(n2R)

1

[so(4m2R)]

so(4p+2)

4

so(4n2R+1+2)

4

[sp(q)]

[sp(m2R+1)]

Type 3′

sp(n2)

1

[so(4m2)]

so(4n3)

4

[sp(m3)]

so(4n2R−1)

4

[sp(m2R−1)]

sp(n2R)

1

[so(4m2R)]

so(4p+2)

4

so(4n2R+1+2)

4

[sp(q)]

[sp(m2R+1)]

Type 4
[sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

so(4n3+2)

4

[sp(m3)]

sp(n4)

1

[so(4m4)]

so(4p1)

4

so(4n5+2)

4

sp(p2)

1
[sp(q1)] [so(4q2)]

[sp(m5)]

Type 5
[su(2m1)]

su(2n1)

2

[su(2m2)]

su(2n2)

2
su(2nR)

2

[su(2mR)]

so(4n+2)

4

[sp(2m)]

Type 6

su(2p)

2

[su(2q)] [sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

sp(n2R)

1

[so(4m2R)]

so(4n2R+1+2)

4

[sp(m2R+1)]

Table 1. All types of 6d SCFTs consistent with 2-group symmetry. Out of these, only type 1 arises in the

unfrozen phase of F-theory, while the other types arise in the frozen phase of F-theory. The frozen phase

theories also admit a type IIA brane construction [86, 87].11
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3.3.1 Classification of Allowed Ranks

We now supply the information in table 1 with some more details on the allowed ranks of the algebras

involved. The allowed gauge groups will be discussed in the next subsection.

Type 1

[sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

so(4n3+2)

4

[sp(m3)]

sp(n2R)

1

[so(4m2R)]

so(4n2R+1+2)

4

[sp(m2R+1)]
(3.6)

Fixing n1 and {mi, i 6= 2R+ 1} fixes all other nodes:

n2 = 4n1 − 6−m1 ,

4n2i+1 + 2 = 4n2i + 16− 4m2i − (4n2i−1 + 2) , (i = 1, . . . , R) .

n2i = 4n2i−1 −m2i−1 − 6− n2i−2 , (i = 2, . . . , R) ,

(3.7)

and

m2R+1 = 4n2R+1 − 6− n2R . (3.8)

Type 2

[sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

so(4n3+2)

4

[sp(m3)]

sp(n2R)

1

[so(4m2R)]

so(4p)

4

so(4n2R+1+2)

4

[sp(q)]

[sp(m2R+1)]
(3.9)

Fixing n1 and all mi fixes the quiver entirely:

n2 = 4n1 − 6−m1 ,

4n2i−1 + 2 = 4n2i−2 + 16− 4m2i−2 − (4n2i−3 + 2) , i = 2, . . . , R

n2i = 4n2i−1 − 6−m2i−1 − n2i−2 , i = 2, . . . , R

4n2R+1 − 6 = n2R +m2R+1 ,

4p = 4n2R + 16− 4m2R − (4n2R−1 + 2)− (4n2R+1 + 2) ,

q = 4p− 8− n2R .

(3.10)

11We do not believe that there is any particular physical significance to the fact that the majority of our examples arise

in the frozen phase of F-theory, instead suggest this could be a geometric property of the F-theory compactifications

themselves.
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Type 3

[sp(m1)]

so(4n1)

4
sp(n2)

1

[so(4m2)]

so(4n3)

4

[sp(m3)]

so(4n2R−1)

4

[sp(m2R−1)]

sp(n2R)

1

[so(4m2R)]

so(4p+2)

4

so(4n2R+1+2)

4

[sp(q)]

[sp(m2R+1)]
(3.11)

Fixing n1 and all mi fixes all nodes of these quivers:

n2 = 4n1 − 8−m1 ,

4n2i−1 = 4n2i−2 + 16− 4m2i−2 − 4n2i−3 , i = 2, . . . , R.

n2i = 4n2i−1 − 8−m2i−1 − n2i−2 , i = 2, . . . , R. ,

4n2R+1 − 6 = n2R +m2R+1 ,

4p+ 2 = 4n2R + 16− 4m2R − (4n2R−1 + 2)− (4n2R+1 + 2) ,

q = 4p− 6− n2R .

(3.12)

Type 3′ Note that the quivers of type 3′ can be formed from those of type 3 by deleting the left-most

so node and its associated flavor sp node. The ranks can be fixed exactly as above for type 3, except

now written in terms of n2 and all mi.

Type 4

[sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

so(4n3+2)

4

[sp(m3)]

sp(n4)

1

[so(4m4)]

so(4p1)

4

so(4n5+2)

4

sp(p2)

1
[sp(q1)] [so(4q2)]

[sp(m5)]
(3.13)
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By fixing n1, q1 and all mi, we fix all other ranks:

n2 = 4n1 − 6−m1 ,

4n3 + 2 = 4n2 + 16− 4m2 − (4n1 + 2) ,

n4 = 4n3 − 6−m3 − n2 ,

4n5 − 6 = n4 +m5 ,

4p1 = 4n4 + 16− (4n3 + 2)− (4n5 + 2)− 4m4 ,

p2 = 4p1 − 8− q1 − n4 ,

4q2 = 4p2 + 16− 4p1 .

(3.14)

Type 5

[su(2m1)]

su(2n1)

2

[su(2m2)]

su(2n2)

2
su(2nR)

2

[su(2mR)]

so(4n+2)

4

[sp(2m)]
(3.15)

We can fix all ranks by fixing n1 and {mi}:

2n2 = 4n1 − 2m1 ,

2ni = 4ni−1 − 2mi−1 − 2ni−2 , i 6= 1 ,

4n+ 2 = 4nR − 2nR−1 − 2mR ,

2m = 4n− 6− 2nR .

(3.16)

Type 6

su(2p)

2

[su(2q)] [sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

sp(n2R)

1

[so(4m2R)]

so(4n2R+1+2)

4

[sp(m2R+1)]
(3.17)

In this type, all ranks can be fixed by fixing p, q and {mi, i 6= 2R+ 1}:

4n1 + 2 = 4p− 2q ,

n2 = 4n1 − 6−m1 − 2p ,

4n2i−1 + 2 = 4n2i−2 + 16− 4m2i−2 − (4n2i−3 + 2) , i = 2, , . . . , R+ 1.

n2i = 4n2i−1 − 6−m2i−1 − n2i−2 , i = 2, . . . , R.

m2R+1 = 4n2R+1 − 6− n2R .

(3.18)
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3.3.2 Classification of Allowed Gauge Groups

In this subsection, we classify, for each of the above 7 types, the allowed choices of gauge groups that

are consistent with the existence of 2-group symmetry. As will be discussed in section 5, there is

always at least one choice of gauge group, which is

G =
∏
i

Gi , (3.19)

where i parametrizes various non-flavor nodes and Gi denotes the simply-connected group associated

to the gauge algebra gi of the node i.

To determine other allowed choices of gauge groups, we need to first determine the 1-form sym-

metry Γ(1) for theories obtained by equipping all 7 types with the above choice (3.19) of gauge group.

We find that:

Γ(1) =

{
Z2 , Types 1, 3′,4,5,6 ,

Z2 × Z2 , Types 2,3 .
(3.20)

Other choices of gauge groups are obtained by gauging subgroups of Γ(1). For types 1, 3′, 4, 5 and

6, the 1-form symmetry is Z2, which participates in the 2-group symmetry. Gauging this 1-form

symmetry removes the 2-group symmetry. Thus, for types 1, 3′, 4, 5 and 6, there are no allowed

choice of gauge groups other than (3.19) that gives rise to a theory with 2-group symmetry.

For types 2 and 3, the 1-form symmetry is Z(2g)
2 × Z(n2g)

2 . The Z(2g)
2 factor participates in 2-

group, while the Z(n2g)
2 does not. Thus, we can gauge Z(n2g)

2 subgroup of Γ(1) or the diagonal Z2 inside

Γ(1) = Z(2g)
2 ×Z(n2g)

2 without destroying 2-group symmetry. Hence, there are two more allowed choices

of gauge groups other than the choice (3.19).

For type 2, the first additional choice of gauge group is

R∏
i=1

Spin(4n2i−1 + 2)×
R∏
i=1

Sp(n2i)×
Spin(4n2R+1 + 2)× Spin(4p)

Z2
, (3.21)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center of

Spin(4n2R+1 + 2) gives rise to the order 2 element inside its Z4 center, and projecting the Z2 onto

center of Spin(4p) gives rise to the order 2 element inside its Z2
2 center that does not act on the vector

representation of Spin(4p). The second additional choice of gauge group is∏R
i=1 Spin(4n2i−1 + 2)× Spin(4p)

Z2
×

R∏
i=1

Sp(n2i)× Spin(4n2R+1 + 2) , (3.22)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center of

Spin(4n2i−1 + 2) for any i gives rise to the order 2 element inside its Z4 center, and projecting

the Z2 onto center of Spin(4p) gives rise to the order 2 element inside its Z2
2 center that does not act

on the vector representation of Spin(4p).
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For type 3, the first additional choice of gauge group is∏R
i=1 Spin(4n2i−1)× Spin(4p+ 2)

Z2
×

R∏
i=1

Sp(n2i)× Spin(4n2R+1 + 2) , (3.23)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center of

Spin(4n2i−1) for any i gives rise to the order 2 element inside its Z2
2 center that does not act on

the vector representation of Spin(4n2i−1), and projecting the Z2 onto center of Spin(4p+ 2) gives rise

to the order 2 element inside its Z4 center. The second additional choice of gauge group is∏R
i=1 Spin(4n2i−1)× Spin(4n2R+1 + 2)

Z2
×

R∏
i=1

Sp(n2i)× Spin(4p+ 2) , (3.24)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center of

Spin(4n2i−1) for any i gives rise to the order 2 element inside its Z2
2 center that does not act on

the vector representation of Spin(4n2i−1), and projecting the Z2 onto center of Spin(4n2R+1 + 2) gives

rise to the order 2 element inside its Z4 center.

3.3.3 Flavor Symmetry Groups and Postnikov Classes

A crucial ingredient in the analysis of the 2-groups is the global form of the flavor symmetry group12.

We now determine the flavor groups for the above types. For types 1–4 (including 3′) and any choice

of gauge groups, the flavor symmetry groups are respectively

FType 1 =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)

Z2
,

FType 2 =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)× Sp(q)
Z2

,

FType 3 =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)× Sp(q)
Z2

,

FType 3′ =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i+1)× Sp(q)
Z2

,

FType 4 =

∏2
i=1 SO(4m2i)×

∏3
i=1 Sp(m2i−1)× Sp(q1)× SO(4q2)

Z2
,

(3.25)

where each subfactor in numerator has a Z2 center, and the Z2 appearing in the denominator is the

combined diagonal of all of these Z2s. Let us define the num(erator) part

FType i =
FType i

num

Z2
. (3.26)

The Postnikov class for the 2-group symmetry is then

Θ = Bock(w2) + · · · , (3.27)

12Some aspects of the global form of gauge and flavor have been discussed in F-theory in [88].
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where w2 is the obstruction class for lifting FType i bundles to FType i
num bundles, and Bock is the

Bockstein homomorphism associated to the short exact sequence

0→ Z2 → Z4 → Z2 → 0 . (3.28)

For types 5 and 6, we do not determine the full flavor symmetry group. However, we can still describe

the Postnikov class, which can be written again as in (3.27) with Bockstein homomorphism associated

to (3.28). The obstruction class w2 can be identified for type 5 as the obstruction for lifting

FType 5
relevant =

∏R
i=1 SU(2mi)× Sp(2m)

Z2
, (3.29)

bundles to

FType 5
relevant, num =

R∏
i=1

SU(2mi)× Sp(2m) , (3.30)

bundles. For type 6, w2 can be identified as the obstruction for lifting

FType 6
relevant =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)× SU(2q)

Z2
, (3.31)

bundles to

FType 6
relevant, num =

R∏
i=1

SO(4m2i)×
R+1∏
i=1

Sp(m2i−1)× SU(2q) , (3.32)

bundles. We can write the flavor symmetry group for types 5 and 6 as

FType i =
FType i

relevant × Γ

Z
, (3.33)

where Γ is an abelian group (involving both continuous and finite factors), and Z is a subgroup of

ZType i
relevant × Γ where ZType i

relevant is the center of FType i
relevant. The obstruction class w2 for types 5 and 6 can

also be recognized as the obstruction for lifting FType i bundles to

FType i
num =

FType i
relevant, num × Γ

Z
, (3.34)

bundles.

3.4 Mixed 0-Form 3-Form Anomaly Dual to 2-Group Symmetry

In general d dimensions, gauging a 1-form symmetry participating in a 2-group symmetry, leads to a

dual (d − 3)-form symmetry which instead has a mixed ’t Hooft anomaly with the 0-form symmetry

group [2].

For the above discussed theories in 6d, we have a Z2 1-form symmetry participating in 2-group

symmetry. Gauging this Z2 1-form symmetry results in a mixed anomaly between FType i 0-form

flavor symmetry and the dual Z2 3-form symmetry. The associated anomaly theory is

I7 =

∫
B4 ∪ Bock(w2) , (3.35)
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where w2 is the obstruction class appearing in the Postnikov class (3.27), and B4 is the background

field for the 3-form symmetry.

The 6d theories having such a mixed anomaly have the following gauge groups:

• For type 1, we have the following gauge group:∏R+1
i=1 Spin(4n2i−1 + 2)

Z2
×

R∏
i=1

Sp(n2i) , (3.36)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2i−1 + 2) groups.

• For type 2, we have two possibilities for gauge groups. The first possibility is∏R+1
i=1 Spin(4n2i−1 + 2)

Z2
×

R∏
i=1

Sp(n2i)× Spin(4p) , (3.37)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2i−1 + 2) groups. The second possibility is∏R+1
i=1 Spin(4n2i−1 + 2)× Spin(4p)

Z(1)
2 × Z(2)

2

×
R∏
i=1

Sp(n2i) , (3.38)

where Z(1)
2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2i−1 + 2) groups. Z(2)
2 projects to the Z2 inside Z2

2 center of Spin(4p) that does not act

on the vector rep, and the Z2 subgroup of the Z4 center of Spin(4n2R+1 + 2).

• For type 3, we have two possibilities for gauge groups. The first possibility is

R∏
i=1

Spin(4n2i−1)×
R∏
i=1

Sp(n2i)×
Spin(4p+ 2)× Spin(4n2R+1 + 2)

Z2
, (3.39)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2R+1 + 2) and Spin(4p+ 2) groups. The second possibility is∏R
i=1 Spin(4n2i−1)× Spin(4n2R+1 + 2)× Spin(4p+ 2)

Z(1)
2 × Z(2)

2

×
R∏
i=1

Sp(n2i) , (3.40)

where Z(1)
2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2R+1+2) and Spin(4p+2) groups. Z(2)
2 projects to the Z2 inside Z2

2 center of Spin(4n2i−1)

that does not act on its vector rep, and the Z2 subgroup of the Z4 center of Spin(4n2R+1 + 2).

• For type 3′, we have the following gauge group:

R∏
i=1

Spin(4n2i+1)×
R∏
i=1

Sp(n2i)×
Spin(4p+ 2)× Spin(4n2R+1 + 2)

Z2
, (3.41)
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where Z2 in the denominator is the diagonal Z2 of the Z2 centers of Spin(4p+2) and Spin(4n2R+1+

2)).

• For type 4, we have the following gauge group:∏3
i=1 Spin(4n2i−1 + 2)

Z2
×

2∏
i=1

Sp(n2i)× Spin(4p1)× Sp(p2) , (3.42)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2i−1 + 2) groups.

• For type 5, we have the following gauge group:

R∏
i=1

SU(2n2i)× SO(4n+ 2) . (3.43)

• For type 6, we have the following gauge group:∏R+1
i=1 Spin(4n2i−1 + 2)

Z2
×

R∏
i=1

Sp(n2i)× SU(2p) , (3.44)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2i−1 + 2) groups.

3.5 A Quiver Example

In this subsection, we discuss in some detail the calculation of 2-group symmetry in the simplest quiver

example among the seven types of theories appearing above. Consider the 6d theory:

[sp(m1)]

so(4n1+2)

4
sp(n2)

1

[so(4m2)]

so(4n3+2)

4

[sp(m3)]
(3.45)

with the gauge group chosen to be

G = Spin(4n1 + 2)× Sp(n2)× Spin(4n3 + 2) . (3.46)

Its center is

ZG = Z1 × Z2 × Z3 = Z4 × Z2 × Z4 . (3.47)

The subgroup of ZG that leaves the hypermultiplets invariant is

Γ̃(1) = Z2 × Z2 , (3.48)
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where the first Z2 factor is the Z2 subgroup of Z1 = Z4, while the second Z2 factor is the Z2 subgroup

of Z3 = Z4.

However the 1-form symmetry Γ(1) is not given by Γ̃(1). Only the diagonal of the two Z2 factors

in Γ̃(1) survives as 1-form symmetry of the full theory. This is because the instanton string associated

to the Sp(n2) provides excitations that are charged as bi-spinor of Spin(4n1 +2)×Spin(4n3 +2). This

is only left invariant by the diagonal Z2 inside Γ̃(1). Thus, the 1-form symmetry group for this 6d

theory is

Γ(1) = Z2 . (3.49)

Now, let us compute the 0-form flavor symmetry group F of this 6d theory. We need to first pick a

global form F of the flavor algebra

f = sp(m1)⊕ so(4m2)⊕ sp(m3) , (3.50)

such that all the representations under f formed by hypermultiplets and string states are allowed

representations of F . Let us assume m1, m2 and m3 are all non-zero. Then, looking at the matter

content, we find that F must allow for fundamental representations of sp(m1) and sp(m3), and vector

representation of so(4m2). The string states are charged as spinor (S) and co-spinor (C) irreps of

so(4m2), so these irreps should also be allowed by F . Thus, we must pick

F = Sp(m1)× Spin(4m2)× Sp(m3) , (3.51)

whose center is

ZF = Z2 × Z2
2 × Z2 . (3.52)

In order to now compute E , we need all the charges contributed by the Sp(n2) instanton string. This

string provides extra states transforming in representation

SSS ⊕ SCC ⊕CSC ⊕CCS , (3.53)

of Spin(4n1 + 2)× Spin(4n3 + 2)× Spin(4m2). These states and hypermultiplets are left invariant by

E = Z4 × Z2 , (3.54)

subgroup of ZG × ZF . The projection of the Z4 factor in E on the centers of Sp(m1), Sp(n2) and

Sp(m3) is Z2, on the centers of Spin(4n1 + 2) and Spin(4n3 + 2) is Z4, and the center of Spin(4m2)

is the Z2 that acts on spinor irrep but does not act on cospinor irrep. The projection of the Z2

factor in E on the centers of Sp(m1), Spin(4n1 + 2), Sp(n2) and Sp(m3) is trivial Z1, on the center
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of Spin(4n3 + 2) is Z2, and the center of Spin(4m2) is the Z2 that does not act on the vector irrep.

From this we compute

Z = πF (E) = Z2 × Z2 , (3.55)

and the 0-form flavor symmetry group F is

F = F/Z =
Sp(m1)× SO(4m2)× Sp(m3)

Z2
, (3.56)

where the Z2 in the denominator is the diagonal Z2 of the Z2 centers of Sp(m1), SO(4m2) and Sp(m3).

The groups Γ(1), E and Z sit in a short exact sequence (2.4) that becomes

0→ Z2 → Z4 × Z2 → Z2 × Z2 → 0 . (3.57)

This leads to a non-trivial 2-group symmetry with the Postnikov class

Θ = Bock(w2) , (3.58)

where w2 is the obstruction class for lifting F bundles to Sp(m1)× SO(4m2)× Sp(m3) bundles. The

Bockstein homomorphism appearing in (3.58) is associated to the short exact sequence

0→ Z2 → Z4 → Z2 → 0 , (3.59)

which is the non-split part of the short exact sequence (3.57). We can arrive at the same conclusions

as above by using the charge matrix. For this, we write

ZG = ZSpin(4n1+2)
4 × ZSp(n2)

2 × ZSpin(4n3+2)
4 , (3.60)

and

ZF = ZSp(m1)
2 × (Z2 × Z2)Spin(4m2) × ZSp(m3)

2 . (3.61)

The charge matrix can then be written as

M =



4 0 0 0 0 0 0 2 2 0 0 0 1 1

0 2 0 0 0 0 0 0 1 1 1 0 0 0

0 0 4 0 0 0 0 0 0 0 2 2 1 3

0 0 0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 1 0 0 1 0

0 0 0 0 0 2 0 0 0 1 0 0 0 1

0 0 0 0 0 0 2 0 0 0 0 1 0 0


. (3.62)

From this we compute
Γ(1) = Z2 × Z1 × Z1 ,

E = Z4 × Z1 × Z2 × Z1 × Z1 × Z1 × Z1 .
(3.63)
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with

A−1
E =



1 −2 0 −2 −2 −4 −2

0 1 0 1 1 2 1

0 0 1 0 −1 −1 0

0 0 0 1 1 2 1

0 0 0 0 1 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, (3.64)

and

Rt =

2 −1 0 −1 −1 −2 −1

0 1 0 1 1 2 1

0 0 2 0 −1 −1 0

 . (3.65)

Thus, the generator of Z2 subfactor of Γ(1) embeds as twice the generator of the Z4 subfactor of E .

One can easily check that the two Z1 subfactors of Γ(1) do not have a non-trivial embedding into the

Z4 or Z2 subfactor of E .

Continuing, we find that

Z = Z2 × Z1 × Z2 × Z1 × Z1 × Z1 × Z1 , (3.66)

with AZ being the identity matrix. Thus, the generator of the Z4 subfactor of E projects to the

generator of the first Z2 subfactor of Z, and the generator of the Z2 subfactor of E projects to the

generator of the second Z2 subfactor of Z. So far we have recovered the short exact sequence (3.57).

Now, we want to find the embedding of Z into ZF which would allow us to read F and the

obstruction class w2 appearing in the Postnikov class. For this we compute

MA[(AtE)
−1Q−1A−1

Z ]F =


−1 2 0 2 0 0 0

−1 2 −1 2 2 0 0

−2 4 −1 4 2 2 0

−1 2 0 2 0 0 2

 , (3.67)

to find that the first Z2 subfactor of Z embeds as the diagonal of the first, second and fourth Z2

subfactors of ZF , while the second Z2 subfactor of Z embeds as the diagonal of the second and third

Z2 subfactors of ZF . This confirms the result for the flavor symmetry group F in (3.56). The fact

that the first Z2 subfactor of Z participates in the non-split part of (3.57) which embeds into ZF as

above recovers the class w2 appearing in (3.58).

3.6 Strings, 1-form Symmetries and Structure Groups

There is an equivalent way to see how the states given by the strings are consistent or not with the

1-form symmetry predicted by the low-energy gauge theory in 6d, which does not require knowing

the charges of the states under the centers of the gauge and flavor symmetries. This method was

proposed in [77], and relies on analyzing the Green-Schwarz-West-Sagnotti (GSWS) couplings present
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in the low-energy effective action in 6d, which are necessary for the cancellation of reducible gauge

anomalies. A generic 6d theory has tensor multiplets (φi, ti2, γ
i
I) and vector multiplets (Aiµ, λ

i
I), where

ti2 are dynamical antisymmetric tensor fields, I = 1, 2 indicates an SU(2)R doublet, and i is the index

labelling the dynamical tensor multiplets.13 The GSWS coupling reads

SGSWS = 2πΩij

∫
M6

ti2 ∧
1

4
Tr(F j ∧ F j) , (3.68)

where we only need the part related to the instanton density Ij4 = 1
4Tr(F j ∧ F j), and Ωij is the

Dirac pairing in the string charge lattice. Due to tadpole cancellation, a non-trivial configuration∫
M4⊂M6

Ij4 ∈ Z, where M4 is a general submanifold of M6, requires the presence of BPS strings whose

induced charges are Qj = −
∫
M4⊂M6

Ij4 ∈ Z. In addition Dirac quantisation asserts that

〈Qi, Qj〉 ≡ QiΩijQj ∈ Z, Ωij ∈ Z , ∀i, j . (3.69)

We now ask what happens when the 1
4Tr(F j∧F j) fractionalizes (the

∫
M4⊂M6

Ij4 is a fractional number)

due to turning backgrounds that twist the gauge group by its center or subgroups thereof, i.e. bundles

in G/Γ(1)14, where Γ(1) ⊂ ZG (see table 2 for the list of centers ZG). This means to activate a

background field that is

B = w2(G/Γ(1)) ∈ H2(BG/Γ(1),Γ(1)) , (3.70)

where characteristic class w2 is the obstruction of lifting a G/Γ(1) bundle to a G bundle. For any G,

which is not Spin(4N), the center is ZG = Zn and subgroups are given by Γ(1) = Zk. Then we have

that

B̃ =
n

k
B , (3.71)

where B is the background for G/Γ(1) and B̃ for G/ZG. The fractionalisation of I4 then reads

I4 =
n2αG
k2

P(B) mod Z , (3.72)

where P(B) is the pontryagin square characteristic class and αG encodes the fractionalisation of the

instanton density, see table 2. The case of G = Spin(4N) is slightly different, there are three different

subgroups, ZL2 , ZR2 and Z2 ↪→ ZL2 × ZR2 , which is the diagonal embedding. So in general we have.

Γ(1) = ZL2 : I4 =
N

4
P(BL) mod Z ,

Γ(1) = ZR2 : I4 =
N

4
P(BR) mod Z ,

Γ(1) = Z2 : I4 =
1

2
B ∪B =

1

2
P(B) mod Z ,

(3.73)

where BL = BR = B.

13Note that the gauge group associated to a particular tensor labelled by i can also be trivial.
14Where we suppressed the index j for a moment.
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G ZG αG

SU(N) ZN N−1
2N

Sp(N) Z2
N
4

Spin(2N + 1) Z2
1
2

Spin(4N + 2) Z4
2N+1

8

Spin(4N) Z2 × Z2

(
N
4 ,

1
2

)
E6 Z3

2
3

E7 Z2
3
4

Table 2. Center symmetries ZG and fractionalisation of the instanton density. For Spin(4N) the two contri-

butions consist of P(B(L) + B(R)) and B(L) ∪B(R), respectively [89].

We now have all the ingredients and the fractionalisation, due to G/Γ(1) backgrounds, reads

SGSWS = 2πΩij

∫
M6

ti2 ∧
n2αjG
k2

P(Bj) , (3.74)

and Dirac quantisation for the induced charges on BPS strings [77] demands the following necessary

condition,

Qi = Ωij
n2αjG
k2

∫
M4⊂M6

P(Bj) ∈ Z , ∀i . (3.75)

The first step of this procedure consist of turning on a background for the center symmetries which

are compatible with the massless spectrum of the low-energy gauge theory in the tensor branch. Then

with the above condition it is possible to understand whether the background is also consistent with

the non-perturbative massive string states, which become massless for example in 6d SCFTs. This

method was for example used in [77] to understand the fate of various 1-form symmetry in 6d. We show

here in some explicit examples how it is possible to detect the quotient group E in the structure group

and the consistency of the related background. This gives a hint towards the 2-group backgrounds.

This is done by including the backgrounds for the center of various flavor symmetries. Let us look at

a simple example

so(4N+2)

4
[sp(4N − 6)]

. (3.76)

First of all we can see how the strings are consistent with the Γ(1) = Z2 ⊂ Z4 = ZSpin(4N+2) 1-form

symmetry, such that we have

Ω11
n2α1

G

k2
= 16αSpin(4N+2) ∈ Z , (3.77)

where n = 4, k = 2, αSpin(4N+2) = 2N+1
8 and Ωij = 4. We can now activate general twisted

backgrounds which fractionalise the instanton density including the flavor symmetries such that we
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have

SGSWS = 2π

∫
t2 ∧

(
2N + 1

2
P[w2(Spin(4N + 2)/Z4)]− 2N − 3

2
P[w2(Sp(4N − 6)/Z2)]

)
. (3.78)

We see that the most general choice of background that is compatible with (3.75) is

w2(Spin(4N + 2)/Z4) = 2B − w2(Sp(4N − 6)/Z2) mod 4 , (3.79)

where we recall that B is the background field for the 1-form symmetry.15 From this we gain several

pieces of information. First, (3.79) is just the manifestation of E = Z4. Secondly, w2(Sp(4N − 6)/Z2)

is allowed and therefore the flavor symmetry is F = Sp(4N − 6)/Z2. Finally, the form of the (3.79)

hints also at the two group symmetry, where the Z2 1-form symmetry and the Z2 quotient of the flavor

symmetry mix to give a non-trivial element in Z4.

A second illustrative example is provided by just attaching an E-string to this theory, specializing

to N = 2:

[su(4)] ∅
1

so(10)

4
[sp(2)]

, (3.80)

and therefore the intersection pairing in the string lattice is

Ω =

(
1 −1

−1 4

)
. (3.81)

This case does not have a 1-form symmetry since the string states break the one predicted just from

the gauge theory massless spectrum as one can see from,

SGSWS = −2π

∫
t12 ∧

(
5

8
P[w2(Spin(10)/Z4)]

)
, (3.82)

where t12 is the tensor which charges the E-string. From this we can see that there is no subgroup of the

center Z4 satisfied integrality of the induced gauge charges. This is just the low-energy manifestation

that the E-strings states transforming under the spinor representations of Spin(10). For instance, the

fractionalized GSWS coupling (3.82) can be thought as generated by integrating out massive E-string

states, when going from the SCFT in the UV to the low-energy theory in the tensor branch. Having

now 1-form symmetry implies that we do not have a 2-group. On the other hand we can still activate

twisted backgrounds for the flavor symmetries compatible with the low-energy massless matter, and

understand what are the backgrounds allowed by the BPS strings. In this case we get two conditions,

SGSWS1 = −2π

∫
t12 ∧

(
5

8
P[w2(Spin(10)/Z4) +

3

8
P[w2(SU(4)/Z4)]

)
SGSWS2

= 2π

∫
t22 ∧

(
5

2
P[w2(Spin(10)/Z4)− 1

2
P[w2(Sp(2)/Z2)]

)
,

(3.83)

15One can check this by expanding the pontryagin square in cup products [13].
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where t22 is the tensor with self-charge 4. The integrality for the second line is satisfied when (3.79)

holds, where B now is simply the background for a Z2 ⊂ Z4 = Z(Spin(10)), not related to any 1-form

symmetry. For the induced charges on the E-string to be integral we need the integrality of quantity

which multiplies the t12 in the first line of (3.83). The most general choice which satisfies this is given

by

w2(SU(4)/Z4) = w2(Spin(10)/Z4) = 2B − w2(Sp(4N − 6)/Z2) mod 4. (3.84)

This implies that E = Z4 in the structure group and the full flavor symmetry of the 6d theory is

F =
SU(4)× Sp(2)

Z4
, (3.85)

where Z2 ⊂ Z4 does not act on Sp(2).

4 Abelian and Discrete 0-Form Symmetries

Some of the theories we encountered in the discussion of 2-groups in 6d SCFTs have abelian flavor

symmetries. These can be broken by ABJ anomalies. In addition we discuss a mixed anomaly between

0-form and 1-form symmetries that can exist in such theories.

4.1 ABJ Anomaly

In order to know the full flavor symmetry of 6d field theories we need to understand the abelian

components. In particular, not all the U(1) symmetries which can be seen from the lagrangian will

survive quantum mechanically. This is due to the presence of ABJ anomalies [90], and holographically

in [91]. Let us consider a 6d theory in the tensor branch with a certain number of abelian flavor sym-

metries labelled by U(1)` and with gauge vector multiplets transforming in the adjoint representation

of gi. The matter is charged under U(1)` with charge q` and transforms in a representation ρ(gi). By

evaluating 1-loop diagrams there is an ABJ anomaly in 6d, and its anomaly polynomial reads,16

IABJ =
∑

matter

q`FU(1)`

1

6
trρ(F

3
gi) =

∑
matter

q`FU(1)`

A(ρi)

6
Trfund(F 3

gi) , (4.1)

where A(ρ) is called the anomaly coefficient, which normalises the cubic trace of a representation in

terms of the fundamental representation, which has A(fund) = 1. Notice also that the cubic trace is

non-vanishing only for g = su. Moreover, we have that 1
6Trfund(F 3

su(N)) = c3
2 , where c3

2 is the third

Chern class. For an SU(N) bundle, c3
2 is always integer on a compact 6-manifold with an almost

complex structure17, that is necessary to define Chern classes, see appendix C.

16Alternatively to derive the ABJ anomaly one can take the
Trρ(h)F

4

24
hypermultiplet contribution, see appendix A of

[92], and decompose the h ⊂ g ⊕ u(1), where g is non-abelian. We also recall that in 6d the hypermultiplet contains a

single Weyl fermion which transforms in a doublet of SU(2)R.
17A 6-dimensional manifold has a almost complex structure if and only if has a spinc structure. We restrict here to

M6 with a spinc structure.
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A first consequence of the ABJ anomaly is that under a U(1)` rotation, one can always choose the

θ = 0 in a θ-angle term like L ⊃ θ
6Trfund(F 3

gi) as long as we do not have SU(3) NHCs participating

in the 6d theory under consideration. Crucially there are U(1) combinations that lead to a vanishing

ABJ anomaly. These U(1) symmetries survive as quantum symmetries of the theory, which in total are

U(1)#(lagrangian U(1)s)−#(SU gauge nodes). In addition there can be discrete unbroken transformations

which form the discrete part 0-form symmetry group, that is Γ
(0)
tor ⊂ Γ(0) ⊂

∏
` U(1)`. Both the

continuous and torsion part of Γ(0) can be read off from a basis change which preserves the lattice of

U(1)` charges, F̃U(1)` = Λ``′FU(1)`′
such that Λ``′ is a matrix with unit determinant. Moreover, F̃U(1)i

are the combinations that appear in front of the Trfund(F 3
gi) with coefficients,∑

matter

q`FU(1)`A(ρi) = piF̃U(1)i . (4.2)

The torsional backgrounds such that piF̃U(1)i = 0 exactly define

Γ
(0)
tor =

∏
i

Zpi , (4.3)

The full abelian symmetry reads,

Γ(0) = U(1)#(lagrangian U(1)s)−#(SU gauge nodes)
∏
i

Zpi . (4.4)

We now illustrate this in an explicit example. Let us take the following type 5 example,

[u(2)]

su(12)

2
so(22)

2

[sp(2)]
. (4.5)

In this quiver there are two continuous abelian symmetries from the lagrangian. The first one is

u(1)f ⊂ u(2), the second is given by the baryonic symmetry rotating the hypers between su(12) and

so(22), which we denote by u(1)b. Their ABJ anomaly reads,

IABJ =
(
−2FU(1)f + 22FU(1)b

) 1

6
Trfund(F 3

su(12)) . (4.6)

We can see that there is a combination of the two U(1)s which is free from ABJ anomalies and remains

a symmetry of the quantum theory. Upon the following lattice of charge preserving change of basis,(
F̃U(1)1

F̃U(1)2

)
=

(
−1 11

0 1

)
=

(
FU(1)f

FU(1)b

)
, (4.7)

the ABJ anomaly now reads,

IABJ = 2F̃U(1)1

1

6
Trfund(F 3

su(12)) . (4.8)
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This means that the continuous anomaly free combination is given by F̃U(1)1 = −FU(1)f +11FU(1)b = 0,

and that torsional background configurations, such that

2F̃U(1)1 = 0 , (4.9)

are not anomalous, leading to Γ
(0)
tor = Z2. The full abelian symmetry is

Γ(0) = U(1)× Z2 . (4.10)

Let us consider another illustrative example,

[Λ2] su(4)

0 [S2]
, (4.11)

where the flavor symmetry algebra rotating the two-index antisymmetric Λ2 is sp(1) and the one

associated to the two-index symmetric S2 is so(2)S2 = u(1)S2 . So we have an abelian flavor symmetry

and its ABJ anomaly is,

IABJ = 8FU(1)S2

1

6
Trfund(F 3

su(4)) . (4.12)

where A(S2(su(4))) = 8. In this case there is no continuous ABJ anomaly free combination, but there

is a discrete remnant given by 8FU(1)S2
= 0, that gives

Γ(0) = Z8 . (4.13)

4.2 A New Mixed Anomaly Between Flavor and 1-Form Symmetries

We now consider the situation, when turning on the 1-form symmetry backgrounds, where 1
6Trfund(F 3

gi)

fractionalizes. In particular the cases that appear in this paper are such that g = su(2n) and the one-

form symmetry, which is a subgroup of the center Z2n of SU(2n) is Γ(0) = Z2. It is then possible to

rewrite the cubic trace as follows

1

6
Trfund(F 3

su(2n)) =
1

2
c3(F ′u(2n))−

(
(2n)

2
− 1

)
B2c2(F ′u(2n)) +

(2n)((2n)− 1)((2n)− 2)

6
B3

2 , (4.14)

where B2 is the 1-form symmetry, Γ(1) = Z2, background with
∮
B2 ∈ Z

2 periods, and the u2n bundle

is related to the su2n by

A′u2n
= Asu2n

+
1

2n

2n

2
BI2n , (4.15)

where 2B2 = dB, and the U(1) field is reabsorbed by the 1-form symmetry transformation A′u(2n) →

A′uN + I2nλ, B2 → B2 + dλ. The first two terms in (4.14) are integer valued and do not lead to

any anomaly. This is because
∫
c3 ∈ 2Z for a u(2n) vector bundle on a compact 6-manifold with an
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almost complex structure, see appendix C. The second term vanishes mod Z. All in all, the result of

performing a Γ(0) transformation leads to following mixed ’t Hooft anomaly,

A =
2n(2n− 1)(2n− 2)

6
pi
∑
i

aiB
3
2 , (4.16)

where ai have discrete periods,
∮
ai ∈ Z

pi
, and

∮
B2 ∈ Z

2 periods. We can see that for (4.5), the

anomaly on a general 6-manifold18 reads,

A =
11× 5

2
ãB̃3

2 mod Z , (4.17)

where ã and B̃2 have integer periods mod 2. For (4.11) we also have that on a 6-general manifold,

A =
1

2
ãB̃3

2 mod Z , (4.18)

where ã has integer periods mod 8 and B̃2 has integer periods mod 2.

There is a potential clash between the existence of the above anomaly A and the existence of 2-

group symmetry, if the same 1-form symmetry participates in both. The existence of 2-group implies

that δB 6= 0, which forces δA 6= 0 making the expression A for the anomaly ill-defined. Merrily, such

a clash does not occur for 6d SCFTs, at least for the type of 2-group symmetry being discussed in

this paper. The reason for this is that, from the analysis of section 5, we know that 1-form symmetry

participating in 2-group symmetry does not have non-trivial projection on the center of any SU gauge

group appearing on the tensor branch of the theory. On the other hand, the above anomaly arises

only for 1-form symmetries that have a non-trivial projection on some SU gauge group.

5 Proof of the Classification of 6d Theories With 2-Group Symmetries

In this section, we classify 6d SCFTs and LSTs with non-trivial 2-group symmetries. The output of

this section is a list of building blocks for theories that can have non-trivial 2-group symmetries, which

are listed in section 5.1.

5.1 Building Blocks For 6d Theories with 2-Group Symmetries

From the analysis of the subsequent section, we find that the 6d theories admitting 2-group symmetries

(of the type being studied in this paper, see section 2.1) are obtained by composing the following

building blocks:

Block 1

so(4n1 + 2) sp(n2) so(4n3 + 2)
. (5.1)

The dashed lines represent series of alternating so(4N + 2)− sp(M) gauge algebras.

18i.e. with no condition on the spin structure, or on its pontryagin classes.
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Block 2

so(4n1 + 2) sp(n2) so(4n3 + 2)

so(4m1)
. (5.2)

The dashed lines represent series of alternating so(4N + 2)− sp(M) gauge algebras. The dotted line

represents a series of alternating so(4N)− sp(M) gauge algebras.

Block 3
so(4n1 + 2) su(n2)

. (5.3)

The dashed line represents a series of alternating so(4N + 2)− sp(M) gauge algebras. The dotted line

represents a series of su(P ) gauge algebras.

Combining these building blocks with the imposition of rank constraints, and ensuring that an

sp node always have at least two non-flavor neighboring nodes (which is required for the existence of

1-form symmetry participating in 2-group), we are lead to a full list of 6d theories admitting 2-group

symmetries of the type studied in this paper. These theories are discussed in detail in section 3.3.

5.2 Proof Strategy

Let us begin by setting up some notation first. Let i parametrize different non-flavor nodes and let

ki be the value of the node i. Let gi be the gauge algebra carried by the node i, and Gi be the

simply-connected associated to gi.

For the purposes of deduction of 2-group symmetries, we can choose the gauge group to be

G =
∏
iGi. A different choice G′ of gauge group is obtained by gauging a subgroup Γ(1)′ of the 1-form

symmetry group Γ(1). The theory with gauge group G′ carries an Γ(1)/Γ(1)′ 1-form symmetry and a

potential 2-group symmetry whose Postnikov class Θ′ is given by

Θ′ = π′(Θ) , (5.4)

where π′ is the natural map

π′ : H3(BF ,Γ(1))→ H3(BF ,Γ(1)/Γ(1)′) , (5.5)

induced by the map Γ(1) → Γ(1)/Γ(1)′ . We can also write

Θ′ = Bock′(w2) + · · · , (5.6)
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where w2 ∈ H2(BF ,Z) is again the obstruction class for lifting F bundles to F bundles, and Bock′ is

the Bockstein homomorphism induced by the short exact sequence

0→ Γ(1)/Γ(1)′ → E/Γ(1)′ → Z → 0 . (5.7)

In particular, we have

Bock′(w2) = π′ (Bock(w2)) . (5.8)

Thus, if Bock′(w2) 6= 0, then we must have Bock(w2) 6= 0. This means that 2-group symmetry (of

the type studied in this paper) for theory with gauge group G′ can be completely understood if one

understands 2-group symmetry (of the type studied in this paper) for the theory with gauge group

G. Consequently, in the rest of the classification, we will assume that the gauge group is G =
∏
iGi.

At the end of the classification, we will study all the possible 1-form symmetry gaugings that lead to

theories with other gauge groups that also carry 2-group symmetries.

Let Zi be the center of the group Gi. Then ZG =
∏
i Zi. Let πi : ZG×ZF → Zi be the projection

map onto Zi. Let us also decompose the group F into its factors Fa. There are various allowed

possibilities for Fa:

• Continuous and non-abelian. In this case it is a localized flavor symmetry.

• Continuous and abelian. In this case it can be localized or delocalized.

• Finite and abelian. In this case it is delocalized, and arises from remnant of a continuous abelian

flavor symmetry afflicted by ABJ anomaly.

Let Za be the center of Fa and let πa : ZG × ZF → Za be the projection map onto Za. For the rest

of this section, we study the consequences of E containing an element α such that

• α 6= pα′ for p > 1 and α′ ∈ E .

• α generates a Zn subgroup of E .

• πF (α) generates a Zk subgroup of Z.

In such a situation α generates a piece of (2.4) of the form

0→ Zn/k → Zn → Zk → 0 , (5.9)

and provides a contribution of the form

Θ = Bock(w2) + · · · , (5.10)
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to the 2-group symmetry, where w2 ∈ H2
(
B F

Zk ,Zk
)

is the obstruction class for lifting F/Zk bundles

to F bundles. The non-triviality of Bock(w2) requires gcd(k, n/k) ≥ 2, which implies k ≥ 2 and n ≥ 4.

Let us also define

β := kα , (5.11)

which has the property πF (β) = 0, and hence generates the Zn/k 1-form symmetry appearing in (5.9).

The rest of this section is organized as follows. In section 5.3, we first argue that only continuous

non-abelian flavor symmetries participate in 2-groups of the type discussed in this paper. From section

5.4 onward, we begin exploring the consequences of the existence of the element α discussed above.

We define the notion of a special node, which is a non-flavour node where α is represented faithfully.

A theory exhibiting 2-group symmetry must contain at least one special node. We find that the

special node can either carry an SU(N) gauge group or a Spin(4M + 2) gauge group. In section 5.4,

we study all theories containing a special node of SU type, and find that no such theory can have

2-group symmetry. In section 5.5, we study all theories containing a special node of Spin type. We

find many building blocks consistent with 2-group symmetry that can be composed to build theories

having 2-group symmetries. These building blocks are collected in section 5.1. The list of theories

appearing in section 3.3 is obtained by composing these building blocks.

5.3 Removing Abelian Factors Inside F

Consider first a situation such that an Fa = U(1) participates in (5.9), i.e. we have πa(α) 6= 1 ∈ Za =

U(1). Furthermore, we can choose Fa = U(1) to be large enough that πa(α) generates a Zk subgroup

of Za = U(1). Then, we can express the contribution (5.10) as

Θ = Bock(w2) + · · · , (5.12)

with w2 ∈ H2
(
B Fa

Zk ,Zk
)

being the obstruction class for lifting Fa/Zk = U(1)/Zk bundles to Fa = U(1)

bundles.

This description of w2 and Bock(w2) makes it manifest that Bock(w2) = 0. To see this, notice

that we can identify

w2 = c1 (mod k) , (5.13)

with c1 being the first Chern class of Fa/Zk = U(1)/Zk ' U(1) bundles. This makes it clear that w2

is in the image of the map

H2

(
B
Fa
Zk
,Zn

)
→ H2

(
B
Fa
Zk
,Zk

)
, (5.14)

associated to the map Zn → Zk in (5.9), since it is the image of c1 (mod n) ∈ H2
(
B Fa

Zk ,Zn
)

. By

exactness of long exact sequence in cohomology, this implies that w2 is in the kernel of the connecting
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Bockstein homomorphism

H2

(
B
Fa
Zk
,Zk

)
→ H3

(
B
Fa
Zk
,Zn/k

)
. (5.15)

Thus, we can discard continuous abelian Fa from F as far as deduction of non-trivial 2-group symme-

tries is concerned.

Now, consider a situation such that an Fa = Zm participates in (5.9), i.e. we have πa(α) 6=

1 ∈ Za = Zm. Furthermore, we can choose Fa = Zm to be large enough that πa(α) generates a Zk
subgroup of Za = Zm. Then, we can express the contribution (5.10) as

Θ = Bock(w2) + · · · , (5.16)

with w2 ∈ H2
(
B Fa

Zk ,Zk
)

being the obstruction class for lifting Fa/Zk = Zm/k bundles to Fa = Zm
bundles.

We can now show that Bock(w2) = 0. Consider w′2 ∈ H2
(
B Fa

Zk ,Zn
)

describing the obstruction of

lifting Fa/Zk = Zm/k bundles to Zmn/k bundles. We can recognize w2 as the image of w′2 under the

map (5.14). By the same argument as above, this shows that Bock(w2) = 0.

Thus, we can discard both continuous and finite abelian Fa from F as far as deduction of non-

trivial 2-group symmetries is concerned.

5.4 Rejecting The Possibility of Special Node of Type SU

We must have at least one non-flavor node i such that πi(α) generates a Zn subgroup of Zi. This

means that Zi must contain an element of order at least 4, since n ≥ 4. This restricts the possible

values of Gi to be either Spin(4M + 2) or SU(N) with N ≥ 4. We will call such a node i a special

node. Note that there can be multiple special nodes in a 6d theory. If a special node carries SU(N)

gauge group for some N , we call it a special node of SU type. If a special node carries Spin(4M + 2)

gauge group for some M , we call it a special node of Spin type.

Let us begin by considering a theory that admits a special node i of SU type carrying Gi = SU(N).

If any other node j carrying Gj = SU(M) is a neighbor of i, then we must have a bifundamental in

between them. For this bifundamental to be left invariant under α, πj(α) must generate a Zn subgroup

inside Zj . Thus, the node j is also a special node of type SU .

In general, let us define I to be the set of nodes carrying SU gauge groups that can be connected

to the special node i by a chain of SU gauge nodes. Any node j ∈ I is also a special node of SU type.

Let us now assume that there is a node k carrying non-SU gauge group which is a neighbor of a

node j ∈ I:

Gi = SU(N) SU(M) I 3 Gj = SU(P ) Gk =?, Gk 6= SU
. (5.17)
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We first consider gauge-theoretic options for the node k:

• Gk = Sp(Q). In this case there must be a bifundamental hyper between k and j. This hyper

cannot be invariant under α as Zk = Z2 can only act with order ≤ 2 on the bifundamental, while

πj(α) acts with order n ≥ 4 on it.

• Gk = Spin(2Q). In this case there must be a bifundamental hyper between k and j. πj(α) and

πj(β) act non-trivially on the bifundamental, but it is not possible for both πk(α) and πk(β)

to act non-trivially on the bifundamental, since the subgroup of Zk acting faithfully on the

bifundamental is only Z2. This is in contradiction with the presence of 2-group symmetry.

• Gk = Spin(2Q+1) or G2. In this case the hyper between k and j transforms as F ⊗R of Gj×Gk
where R is an irrep of Gk. Since Zk ≤ Z2, the same argument as for the Gk = Sp(Q) case above

removes these possibilities for Gk as well.

We therefore cannot have a non-SU gauge-theoretic neighbour of I. Let us now consider non-gauge-

theoretic neighbors k of a node j ∈ I:

• Gk = SU(1). In this case we must have Gj = SU(2), but that is not possible since j is a special

node and hence P ≥ 4.

• Gk = Sp(0) is possible only if Gj = SU(P ≤ 9). For Gj = SU(9), there is no flavor symmetry

arising from the Sp(0) node, and the BPS string arising from the Sp(0) node contributes a state

charged as Λ3 of SU(9). This has no direct contradiction with 2-group symmetry and therefore

provides a consistent ingredient to build models of this class that have 2-group symmetries.

• For Gj = SU(8) and Gk = Sp(0)π, there is only a u(1) flavor symmetry arising from the Sp(0)

node, and the BPS string arising from the Sp(0) node contributes a state charged as F of SU(8).

This is not consistent with 2-group symmetry.

• For Gj = SU(8) and Gk = Sp(0)0, there is an su(2) flavor symmetry arising from the Sp(0)

node, and the BPS string arising from the Sp(0) node contributes two states: one charged as Λ2

of SU(8), and the other charged as F of SU(2). Now, α must act non-trivially on the Λ2 string

state, but there is no flavor symmetry associated to it that can compensate this action. This is

in contradiction with 2-group symmetry.

• Gj = SU(P ≤ 7) with P 6= 4. The center Zj is such that j cannot be chosen as the special node

i. So we need not consider these possibilities.
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• Gj = SU(4). There is an so(10) flavor symmetry arising from the Sp(0) node, and the BPS

string arising from the Sp(0) node contributes a state charged as F ⊗ S of SU(4) × Spin(10).

This has no direct contradiction with 2-group symmetry, and is therefore a consistent ingredient.

Combining the ingredients found above, there is only one configuration of nodes that can sit inside a

model with a special node i of SU type that is consistent with 2-group symmetry:

Λ2 SU SU SU S2
. (5.18)

This follows by analyzing the constraints on the ranks of the gauge groups, and requiring that all

fundamentals of SU gauge nodes are gauged by other gauge groups (for β to generate a non-trivial

1-form symmetry). Notice that the above configuration is already an LST, so no further nodes can be

attached to it without ruining consistency.

Unfortunately, this model does not have 2-group symmetry as we must have πa(α) 6= 1 ∈ Fa =

U(1) flavor symmetry rotating S2. But, as we saw in the previous subsection, the associated Postnikov

class must be trivial in such a situation.

5.5 Constraining The Possible Theories Carrying Special Nodes of Type Spin

Now consider theories which contain a special node i of Spin type. For such a theory, β must be of

order two, and α must be of order four. The value of the node must be ki = 4, otherwise β is not a

part of 1-form symmetry.

We start by understanding the possible gauge-theoretic blocks neighboring the node i. Consider

a node j which is a neighbor of i, carrying Gj = Sp(n). It gives rise to a bifundamental half-hyper

of Gi ×Gj and, more importantly, the string associated to the node j gives rise to a state charged as

S of Gi. Thus, j must have another neighbor k under which the string state is charged, leading to a

sub-graph of the form:

Gi = Spin(4M + 2) Gj = Sp(N) Gk =?
. (5.19)

There are various possibilities to consider for the node k:

• Gk = Spin(4P + 2). Now the string state associated to j is charged as S ⊗ S of Gi × Gk.

Invariance of this state under α leads us to the conclusion that k is a special node of Spin type.

Consequently, the value of the node k must be kk = 4.

• Gk = SU(2P + 1). In this case Zk does not have a Z2 element, but πk(α) must be a Z2 element

in Zk. This contradicts the existence of 2-group symmetry.
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• Gk = SU(2P ). Assume that there is no other non-flavor node connected to j. Then there is a

flavor node a neighboring j which carries Fa = Spin(4Q+2). The string associated to j provides

states charged as S ⊗ 1 ⊗ S,1 ⊗ Λ2 ⊗ 1,S ⊗ F ⊗ C of Gi × Gk × Fa. From the first string

state, we see that πa(β) is the Z2 element of Za, which is not allowed since β is a part of 1-form

symmetry, and hence cannot involve non-trivial elements of flavor centers.

Now assume there is another non-flavor node l connected to j. The value of l must be 4, and

hence l must carry Gl = Spin(q). The configuration formed by the four nodes i, j, k, l is a LST,

so no more non-flavor nodes can be added to it. Implementing the constraints on the ranks,

we find that such a model cannot have any flavor symmetry, and hence cannot carry 2-group

symmetry.

• Consider Gk = Spin(4P ) with a bifundamental half-hyper between j and k. Suppose first that

there is no other non-flavor neighbor l of j. There is a string state charged as a bi-spinor of

Gi × Gk. For this state to be left invariant under β, πk(β) must be an order two element in

Zk = Z2
2. However, if this is true then πk(α) must be a Z4 element inside Zk, which is a

contradiction.

Now assume that there is a non-flavor neighbor l of j. If l is non-gauge-theoretic, it must

carry Gl = SU(1), constraining Gj to be Sp(1). Moreover, it induces a trapped half-hyper

transforming as F of Gj at the intersection of l and j, which does not transform under any

flavor symmetry. This 1
2F transforms under α and destroys the 2-group symmetry.

Thus l must be gauge-theoretic. We must have Gl = Spin(4q+2). There might be an additional

flavor node a attached to j carrying Fa = Spin(4r). Then, we have string states transforming

as S ⊗ S ⊗ S ⊗ S,S ⊗ S ⊗C ⊗C,S ⊗C ⊗ S ⊗C,S ⊗C ⊗C ⊗ S under Gi × Gl × Gk × Fa.

Along with hypers, one can see that this is consistent with the existence of 2-group symmetry.

l is a special node of Spin type, and hence its value must be kl = 4.

We can also consider adding spinor and cospinor matter for Gk. This is possible only for Gk =

Spin(8) or Spin(12). Implementing the rank constraints, we find only the following possibility:

Spin(14) Sp(6) Spin(12)

Spin(14)

S , (5.20)

in which the U(1) symmetry rotating the spinor participates in α. This means that the associated

Postnikov class is trivial as we discussed earlier in this section.
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• Consider Gk = Spin(2P + 1) with a bifundamental half-hyper between j and k. πj(α) acts on

this bifundamental, so has to compensated by an element from Zk. However, no element of Zk

acts non-trivially on the bifundamental. Thus, such a node is not allowed.

• For Gk = Spin(7), we can have a half-hyper in F ⊗ S of Gj × Gk. Assume first that there is

no other non-flavor node l connected to j. In this case, we have a string state transforming as

S ⊗ 1 of Gi ×Gk which transforms under β, leading to a contradiction.

Now assume that there is a non-flavor node l. The value of l must be at least 3. Thus, l must

be gauge-theoretic. Gl cannot be SU(3) since n > 0, so we must have Gl = Spin(2P ) with a

half-bifundamental between l and j. Assume P is even. Then we must have a flavor node a

neighboring j and carrying Fa = Spin(4Q + 2). Moreover, we have a string state transforming

as S ⊗ 1⊗S ⊗S of Gi ×Gk ×Gl × Fa. For this string state to be left invariant by α, we must

have πa(α) as an order four element of Za. This implies that πa(β) is an order two element of

Za, which is in contradiction with the fact that β is part of 1-form symmetry.

Now consider the case P odd. In this case, rank constraints imply that there is no possible

model.

• Gk = G2 is not allowed since Zk must contain πk(α) as a Z2 element but Zk = Z1.

Another possibility for j is Gj = SU(N). For this case, N must be even, since πj(α) has to be the Z2

element of Zj . Let J be the set of nodes k such that Gk = SU(P ) and k is connected to j by a chain

of SU nodes.

Gi = Spin(4M + 2) Gj = SU(N) J 3 Gk = SU(P ) Gl =?
. (5.21)

We now study gauge-theoretic neighbors l of J :

• We cannot have a Spin neighbor of J by the rank constraints.

• We cannot have a Gl = G2 neighbor since we would need πl(α) to be a Z2 element in Zl = Z1,

which is not possible.

• Consider Gl = Spin(7) and let it be a neighbor of k ∈ J with Gk = SU(2). In this case there is

a half-hyper in F ⊗S of Gk ×Gl. This is not allowed since all the matter content associated to

k is gauged by l, and it is therefore not possible to connect k to i.

• Consider Gl = Sp(Q). The rank constraints imply that the only possibility is

Spin(4M + 2) SU(4M − 6) SU(4M − 14) SU(2Q+ 8) Sp(Q)
,

(5.22)
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which has no flavor symmetry and hence no 2-group symmetry.

To finish the analysis of possible gauge theory nodes surrounding i, we need to understand possible

neighbors l of k carrying Gk = Spin(4p) with value kk = 4, which arises in a sub-graph of the form:

Gi = Spin(4M + 2) Gj = Sp(N) Gk = Spin(4P )

Spin(4Q+ 2)

Gl =?

. (5.23)

First consider the case Gl = Sp(R). Suppose there are no other non-flavor neighbors of l. We can

have a flavor node a attached to l carrying Fa = Spin(4S). The string states arising from l transform

as S ⊗ S,C ⊗C of Gk × Fa. From this one can see that the existence of such a node l is consistent

with 2-group symmetry. Let us consider possible neighbors h of l:

• We can have Gh = Spin(4S) with kh = 4 consistently. For kh < 4, it is not possible to satisfy

rank constraints.

• We cannot have Gh = Spin(4S + 2) as then there must be a non-trivial flavor symmetry node

a attached to l carrying Fa = Spin(4T + 2) with the property that πa(β) is Z2 element of Fa,

which is a contradiction with the fact that β is a part of 1-from symmetry.

• Gh = Spin(2S + 1) with bifundamental half-hyper between h and l is not allowed as one needs

πh(α) to act non-trivially on the vector rep of Gh, but no element of Zh acts non-trivially on

the vector rep.

• Gh = Spin(7) with half-hyper in F ⊗ S of Gl × Gh is not allowed by rank constraints.

• Gh = G2 or SU(2S + 1) are not allowed since we would need πh(α) to be a Z2 element in Zh,

which does not exist.

• Choosing Gh = SU(2S) constrains the model fully via rank constraints to be

Spin(4M + 2) Sp(4M − 6) Spin(8M − 12)

Spin(4M + 2)

Spin(4S + 16)

Sp(2S)SU(2S)
,

(5.24)
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which does not have any flavor symmetry, and hence no 2-group symmetry.

Another possibility is Gl = SU(R) which can be rejected because it does not satisfy the rank con-

straints.

We now explore possible non-gauge-theoretic nodes l neighboring the above studied gauge-theoretic

block surrounding the special node i of Spin type:

• For Gl = SU(1), it traps a 1
2F of the neighboring node k carrying SU(2) or Sp(1). πk(α) acts

on this 1
2F and this action cannot be compensated by any flavor symmetry. So Gl = SU(1) is

not allowed.

• Consider Gl = Sp(0) and its neighbor Gk = SU(P ≤ 9). This is not consistent with the rank

constraints.

• Consider Gl = Sp(0) and its neighbor Gk = Spin(4P + 2). We have two possibilities. For

Gk = Spin(14), the flavor symmetry attached to Gl is only u(1). So, no other node can be

attached to l. The node l contributes a string state transforming as S of Spin(14) which breaks

the 1-form symmetry. For Gk = Spin(10), we must have a node h neighboring l and carrying

Gh = SU(4). Moreover, πh(α) and πh(β) are Z4 and Z2 elements inside Zh respectively. This

implies that h is a special node of SU type, but we have already ruled out the existence of such

a special node in the previous subsection.

• Consider Gl = Sp(0) and its neighbor Gk = Spin(4P ). This is only possible for P ≤ 4. However,

the rank constraints force P ≥ 5, leading to a contradiction.

Thus, no such non-gauge-theoretic nodes are allowed.

Implementing the above discussed constraints on the possible theories having special nodes of Spin

type, we are lead to the building blocks listed in section 5.1. Combining these building blocks results

in the classification presented in section 3.3.

6 Conclusions

This paper uncovers the existence of global 2-group symmetries in 6d SCFTs and provides a complete

classification of such theories carrying 2-group symmetries of the type discussed here. These are

2-groups formed out of discrete 1-form symmetries and continuous 0-form flavor symmetry groups.

The result is perhaps surprising in view of the no-go theorems for 2-groups having continuous 1-form

symmetries and continuous 0-form symmetries from general principles [15].
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Moreover the reasoning put forward to check for the existence of 2-groups is applicable quite

generally, in all dimensions (d = 3, 4, 5, 6 specifically), and the analysis in section 2 is completely

general. The only dimension-dependent features arise in the type of charged objects one needs to

incorporate (of course matter multiplets, but also non-perturbative states that can be dimension

specific). The simplest avatar of this universally present 2-group symmetry can be seen in gauge

theories Spin(4N + 2) with NF vectors with 8 supercharges. These theories have 2-groups in all

dimensions; in N = 1 and N = 0 (non-supersymmetric) theories in 4d this was observed in [14, 23]. It

is in view of this generality that we provide a mathematica code TwoGroupCalculator.nb, which can

be used in this general setting to determine the 2-group symmetries of a given quiver gauge theory in

d dimensions.

Thanks to the classification of 6d SCFTs we are able to determine all possible theories with 2-

groups of the type studied in this paper, which are summarized in table 1. Their tensor branches are

quivers built out of so− sp or so− su gauge algebras. We also show that LSTs do not have these types

of 2-groups (formed from discrete 1-form symmetries and continuous flavor groups), though unlike

6d SCFTs they instead do have continuous 2-groups. In our analysis it is crucial to determine the

global form of the flavor symmetry group F of the 6d theory. This is part of our analysis and can be

extracted from the computation of E and its projection Z onto the center of the flavor symmetry ZF .

We also discussed that in the case of abelian flavor symmetry factors there can be ABJ anomalies that

break these symmetries to discrete subgroups.

Global symmetries can have ’t Hooft anomalies and we identified two such anomalies in 6d: one is

the standard “dual” mixed anomaly for a 2-group, in this case between the 0-form and 3-form symmetry

(which is the symmetry obtained after gauging the 1-form symmetry that participates in the 2-group).

The other ’t Hooft anomaly is a mixed anomaly between the 0-form and 1-form symmetry, which is

similar to known anomalies in 4d and 5d.

Clearly, the study of generalized symmetries, and in particular higher-group and categorical sym-

metries are at a starting point. It would be exciting to explore the physical implications of higher-

groups, similar to the relevance of higher-form symmetries (e.g. for confinement). The higher-groups

can have ’t Hooft anomalies, in addition to the anomalies we have discussed here. It would be in-

teresting to derive these from first principles from the F-theory geometric realization, and to explore

their potential implications for the UV fixed points.
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A Mathematica Code for 2-Groups: TwoGroupCalculator.nb

We also provide a supplementary notebook TwoGroupCalculator.nb. With this at hand the reader can

interrogate examples of their own. Specifically, given the gauge and flavour centers and hyper/string

charges, the notebook allows its user to calculate the 1-form symmetry Γ(1), E , and Z. Furthermore

it calculates the mappings that define the sequence

0→ Γ(1) → E → Z → 0 . (A.1)

Take, for example, a type 5 quiver:

[u(2)]

su(12)

2
so(22)

2

[sp(2)]
. (A.2)

The required input for the code is a list of gauge centers (Z12 × Z4)

{12, 4} , (A.3)

and flavour centers (Z2 × Z2)

{2, 2} , (A.4)

and matter charges as as list of associations

{< |1→ 1, 3→ 1| >,< |1→ 1, 2→ 2| >,< |2→ 2, 4→ 1| >} . (A.5)

with the notation < |nodei → chargej | > representing the charge of a given hyper under node i, where

i is a numerical label for each node. E.g. < |1→ 1, 3→ 1| > means that the first hyper has charge 1

under node 1 (su(12)) and charge 1 under node 3 (u(2)).

Included in the notebook is an explicit example for each type of 6d quiver, as well as detailed

worked examples to explain how to calculate desired attributes of any quiver.
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B Detailed Quiver Example

In this appendix we will discuss in depth the 2-group for the 6d SCFT with tensor branch

[sp(N − 5)] so(4N)

4
sp(3N−3)

1
so(4N+2)

4
[sp(N − 3)]

so(4N+2)

4

[sp(N − 3)]

, (B.1)

with simply-connected gauge and flavour symmetry groups

G = Spin(4N)× Spin(4N + 2)2 × Sp(3N − 3) ,

F = Sp(N − 3)2 × Sp(N − 5) .
(B.2)

A local consistency condition is that the flavours attached to the sp(3N − 3) node are soaked up by

the surrounding nodes

2(3N − 3) + 8 =
1

2
(4N + 2 + 4N + 2 + 4N) . (B.3)

We can write the matter content in terms of representations of (so(4N), sp(3N−3), so(4N+2), so(4N+

2)) as

(N − 5)(F , 1, 1, 1)⊕ 1

2
(F ,F , 1, 1)⊕ 1

2
(1,F ,F , 1)⊕ 1

2
(1,F , 1,F )

⊕ (N − 3)(1, 1, 1,F )⊕ (N − 3)(1, 1,F , 1) ,

(B.4)

The hypermultiplet content described above can also be written in terms of charges under the center

symmetries (table 3).

ZG = (Z2 × Z2)× Z4 × Z2 × Z4 ,

ZF = Z2 × Z2 × Z2 .
(B.5)

Here we employ notation (a, b, c) to represent the charges under the flavour symmetries running anti-

clockwise around the Sp flavour nodes starting from the bottom left. We must also be careful about

Hypermultiplet ZG charge ZF charge

(F , 1, 1, 1) ((1 mod 2,1 mod 2),0,0,0) (1 mod 2,0,0)
1
2 (F ,F , 1, 1) ((1 mod 2,1 mod 2),1 mod 2,0,0) (0,0,0)
1
2 (1,F ,F , 1) ((0,0),1 mod 2,2 mod 4,0) (0,0,0)
1
2 (1,F , 1,F ) ((0,0),1 mod 2,0,2 mod 4) (0,0,0)

(1, 1, 1,F ) ((0,0),0,0,2 mod 4) (0,1 mod 2,0)

(1, 1,F , 1) ((0,0),0,2 mod 4,0) (0,0,1 mod 2)

Table 3. Matter content in terms of ZG × ZF charges.
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Charged Strings ZG charge ZF charge

String 1 ((1 mod 2, 0 mod 2),0,1 mod 4, 1 mod 4) (0,0,0)

String 2 ((1 mod 2, 0 mod 2),0,3 mod 4, 3 mod 4) (0,0,0)

String 3 ((0 mod 2, 1 mod 2),0,1 mod 4, 3 mod 4) (0,0,0)

String 4 ((0 mod 2, 1 mod 2),0,3 mod 4, 1 mod 4) (0,0,0)

Table 4. String content in terms of ZG × ZF charges.

charged strings. In this case, the string charges under Spin(4N) × Spin(4N + 2)2 gauge centers are

given in table 4 .

With this in place we can ask: what is the maximal subgroup of ZG×ZF that leaves these charged

states invariant? Neglecting the flavour charges, this calculation would give us the 1-form symmetry

of the theory (the subgroup of the gauge centers acting trivially on the matter and strings). Including

them, we obtain E required for the definition of the structure group.

Calculating the 1-form symmetry

The task is now, in principle, simple. Take, for example, the generator of one of the Z4 gauge centers

〈(0, 0), 0,
1

4
, 0〉 . (B.6)

We can see that this is immediately reduced to a Z2 subgroup by the matter (1, 1,F , 1)

〈(0, 0), 0,
1

4
, 0〉 · ((0, 0), 0, 2 mod 4, 0) 6= 0 mod Z . (B.7)

Notice that the matter can also reduce to a mixed subgroup of two gauge factors. For example, the

matter 1
2 (1,F ,F , 1) reduces a combined Z2 × Z4 to a diagonal Z2 subgroup

〈(0, 0),
1

2
,

1

4
, 0〉 · ((0, 0), 1, 2 mod 4, 0) 6= 0 mod Z .

→ 〈(0, 0),
1

2
,

2

4
, 0〉 · ((0, 0), 1, 2 mod 4, 0) = 0 mod Z .

(B.8)

Playing this game throughout, we obtain the 1-form symmetry group Γ(1) = Z2×Z2 and its generators

γ1 = 〈(1

2
,

1

2
), 0,

2

4
, 0〉 , γ2 = 〈(1

2
,

1

2
), 0, 0,

2

4
〉 . (B.9)

Calculating E and the embedding of Γ(1)

In this example we can identify

Γ(1) = Z2 × Z2 , E = Z2 × Z4 . (B.10)
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The non-trivial question is: how is Γ(1) embedded in E? We can use the explicit charge presentation

to determine that a diagonal Z2 combination of the Γ(1) generators is enhanced inside the Z4. The

generator of the Z4 ⊂ E is (under ZG × ZF )

α = 〈(1

2
, 0),

1

2
,

1

4
,

1

4
|1
2
,

1

2
,

1

2
〉 . (B.11)

We notice that α2|G = γ1 ·γ2: explicit confirmation that a diagonal (in our chosen basis of generators)

Z2 is enhanced.

C Chern Classes, Characters, and Integrality

Let us recall some basic identities about Chern classes. The Chern forms for a complex vector bundle

are defined by the following expansion,∑
j

cj(V )tj = Idρt+ itrρ(F )− 1

2

(
trρ(F

2)− trρ(F )2
)
t2

+ i
1

6

(
−2trρ(F

2)3 + 3trρ(F
2)trρ(F )− trρ(F )6

)
t3 + . . . ,

(C.1)

where dρ is the dimension of the representation. The Chern character for a vector bundle given by a

representation of a Lie algebra ρ(g) is instead defined as,

ch(V ) = trρ (exp(iF )) = 1 + itrρ(F )t− trρ(F
2)

2
+ i

trρ(F
2)3

6
. . .

= dρ + c1(V ) +
1

2

(
c1(V )2 − 2c2(V )

)
+

1

6

(
3c2(V )− 3c1(V )c2(V ) + c1(V )3

)
+ . . . .

(C.2)

For the abelian vector bundle we have,

ch(U(1)q) = 1 + qc1(V ) +
q2c1(V )2

2
+
q3c1(V )3

6
+ . . . . (C.3)

If we have W = V ⊗U where these are all vector bundles, we can decompose the curvatures and Chern

classes using the following formula,

ch(W ) = ch(V )ch(U) . (C.4)

In particular let us decompose the vector bundle where the fundamental representation of u(N) acts,

and with an abuse of notation like in (C.3), we will look at each term in the expansion of the following

formula ch(u(N)) = ch(su(N))ch(u(1)). By using (C.2) and (C.3), with q = 1 and dρ = N we obtain

c1(u(N)) = Nc1(u(1)) ,

c2(u(N)) = c2(su(N)) +
N(N − 1)

2
c1(u(1))2 ,

c3(u(N)) = c3(su(N)) + (N − 2)c2(su(N))c1(u(1)) +
N(N − 1)(N − 2)

6
c1(u(1))3 .

(C.5)
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We would like to discuss the integrality of the curvature and Chern classes when integrated on a

6-manifold with an almost complex structure or submanifold thereof. In particular, a very important

formula which is a corollary of the Atiyah-Singer theorem is that the index of a vector bundle reads

Ind(V ) =
∑
p

(−1)php(M6, V ) =

∫
M6

ch(V )td(M6)|6 ∈ Z , (C.6)

where hp indicates the dimension of various integral cohomologies, and the Todd class is defined as

follows

td(M6) = 1 +
1

2
c1 +

1

12
(c21 + c2) +

c1c2
24

+ . . . , (C.7)

where when there is no argument for the Chern classes we mean the one of the manifold under

inspection. For the vector bundle where the fundamental representation of su(N) acts, we have that

Ind(Vfund(su(N))) =
c3(su(N))

2
+

1

2
c1c2(su(N)) +

c1c2
24

. (C.8)

In addition on a manifold with an almost complex structure (or equivalently with a spinc structure)

we have that
∫

Σ
c1 = 2genus(Σ) − 2 ∈ 2Z and c1c2 ∈ 24Z, [93]. This together with the integrality of

the index implies that c3(su(N)) ∈ 2Z.

We can use this to prove also that c3(u(2n)) ∈ 2Z. Specializing the third equation of (C.5) to

N = 2n we get,

c3(u(2n)) = c3(su(2n)) + 2(n− 1)c2(su(2n))c1(u(1)) +
2n(2n− 1)(2n− 2)

6
c1(u(1))3 , (C.9)

where all the terms on the right hand side are in 2Z.
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