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Abstract

We compute the leading term of the tripartite information at long distances for three spheres
in a CFT. This falls as r−6∆, where r is the typical distance between the spheres, and ∆ the
lowest primary field dimension. The coefficient turns out to be a combination of terms coming
from the two- and three-point functions and depends on the OPE coefficient of the field. We
check the result with three-dimensional free scalars in the lattice finding excellent agreement.
When the lowest-dimensional field is a scalar, we find that the mutual information can be
monogamous only for quite large OPE coefficients, far away from a perturbative regime. When
the lowest-dimensional primary is a fermion, we argue that the scaling must always be faster
than r−6∆f . In particular, lattice calculations suggest a leading scaling r−(6∆f+1). For free
fermions in three dimensions, we show that mutual information is also non-monogamous in the
long-distance regime.
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1 Introduction

In quantum field theory (QFT), entanglement entropy (EE) characterizes the statistical properties
of the vacuum state in the local operator algebras attached to spacetime regions. An important
task in investigations related to EE has been to understand how it is related to more traditional
QFT observables. Several important connections are well established, such as the realization that
renormalization group charges are extractable from the universal parts of the entropy of spheres
[1–4].

Universal, cutoff independent pieces of EE can be systematically extracted by considering the
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mutual information for two disjoint regions A,B,

I(A,B) ≡ S(A) + S(B)− S(AB) . (1)

This is finite, universal and well defined mathematically. For a conformal field theory (CFT),
the renormalization group charges appear in an expansion of the mutual information between two
spheres in the short distance limit [4, 5].

In the opposite limit, i.e., for far away regions, application of the replica trick and the operator
product expansion (OPE) for twist operators leads to an expansion of mutual information in inverse
powers of the distance. The corresponding exponents are sums of the conformal dimensions of the
theory [6]. In this way, important information about the spectrum can be recovered from EE. The
coefficients in the long-distance expansion can be computed in particular cases. Notably, the exact
form of the coefficient of the leading term for spheres has a closed universal expression which only
depends on the spin and conformal dimension of the operator [7–9].

In this work we focus on the large separation distances expansion of the tripartite information
associated to three disjoint spheres in a CFT. This is defined for three entangling regions A,B,C
as

I3(A,B,C) ≡ I(A,B) + I(A,C)− I(A,BC) (2)

= S(A) + S(B) + S(C)− S(AB)− S(AC)− S(BC) + S(ABC) .

By its very definition, I3 measures the non-extensivity of mutual information. It is known that
I3(A,B,C) can be used as an order parameter for topological theories [10] and, remarkably, it is
always negative for holographic EE [11] —for a discussion on how much tripartite entanglement is
present in holographic states see [12] vs [13]. This inequality, I3 ≤ 0, called “monogamy” of mutual
information,1 is one of the inequalities defining the so called “holographic entropy cone” [16] —see
also [17]. On the other hand, the case I3 ≡ 0 gives place to the “Extensive Mutual Information
model” [18], which corresponds to a free fermion in d = 2, and has been recently shown not to
describe the mutual information of any QFT (or limit of QFTs) in higher dimensions [19]. The
case I3 ≥ 0 is also known to occur e.g., for free fields [18], so the tripartite does not have a definite
sign in general [20, 21].

Part of our interest in the long-distance behavior of I3 arises from the fact that this quantity
seems to offer a relatively simple access to the three-point function coefficients —also known as
“structure constants” or “OPE coefficients”— which, alongside the conformal dimensions, consti-
tute the CFT data. Here we show that these coefficients already show up in the leading term of
the tripartite information. Indeed, when the primary operator with the lowest scaling dimension
present in the theory is a scalar, we obtain for three spherical regions A,B,C of radii R and with
relative separations rAB, rBC , rAC � R ,

I3(A,B,C) = − R6∆

r2∆
ABr

2∆
BCr

2∆
AC

[√
π

4

Γ(3∆ + 1)

Γ
(
3∆ + 3

2

) (COOO)2 −
26∆Γ

(
∆ + 1

2

)3
2πΓ

(
3∆ + 3

2

) ] , (3)

a formula which is valid in general dimensions. As compared to the analogous expression for the
mutual information, a new feature of this expression is its dependence on the structure constant

1For qubit systems, it was argued in [14] that random states also tend to have a monogamous mutual information.
A simple N -qubit state which has a positive tripartite information is the GHZ state 1/

√
2[⊗Ni |0〉i + ⊗Ni |1〉i] —see

[15] for a discussion on how to construct generalizations of such state which maximize I3.
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COOO. This implies that knowledge of the leading term in the tripartite information can be
used to extract the values of both the smallest scaling dimension in the theory, ∆, as well as the
dynamical coefficient COOO. Thus, considering other primary operator contributions one could
imagine extracting as well other OPE coefficients and with this completing the task of getting the
full CFT information from the mutual information. When the lowest-dimensional primary is not a
scalar, more work is required in order to generalize eq. (3), but we do argue here that the analogous
result when this field is a fermion has a vanishing coefficient for the naive leading piece ∼ r−6∆f .

The remainder of the paper goes as follows. In Section 2 we compute the leading term in
the long-distance expansion of the tripartite information for a generic CFT such that its lowest-
dimensional primary is a scalar field. In Section 3 we show with an explicit calculation that the term
responsible for the would-be leading term in the case of a CFT with a fermionic lowest-dimensional
primary identically vanishes. In Section 4 we use lattice calculations in three-dimensions to verify
the scalings obtained in the previous sections for free scalars and fermions (in particular, we find
a scaling ∼ r−(6∆f+1) for the latter). We also verify there that the free scalar result for the three-
disks coefficient computed analytically in Section 2 is reproduced numerically in the lattice and
we obtain the analogous one for fermions. In Section 5 we conclude with a couple of comments
regarding: the implications of our results for the “entropic bootstrap” program; and how difficult
is to achieve a monogamous mutual information at long distances. In appendix A we show how
our formula for the long-distance tripartite information can be enhanced in order to include the
full conformal block associated to the lowest-dimensional primary.

2 Tripartite information at long distances

We wish to compute the tripartite information for three entangling regions bounded by spheres of
equal radii R in the regime in which the distance between any of the two is much larger than R. In
order to do this, it is convenient to split I3(A,B,C) into two contributions, one which depends on
the individual mutual informations of pairs of spheres, and a remanent piece which depends only
on the subtracted entropy of the three regions, this is

I3(A,B,C) = I(A,B) + I(A,C) + I(B,C)− Ĩ3(A,B,C) , (4)

where

Ĩ3(A,B,C) ≡ S(A) + S(B) + S(C)− S(ABC) . (5)

We are interested in the leading contribution to I3(A,B,C) in the long-distance regime of the
above set up. For such a computation we can exclusively focus on Ĩ3(A,B,C), since in [7] the
corresponding behavior of the remaining mutual informations was already understood.

2.1 Warm up: Mutual Information

First, recall that for a given entangling region A, the Rényi entropy S(n)(A) can be obtained as the
following path integral:

S(n)(A) =
1

1− n
log

[
Z(C(n)

A )

Zn

]
, (6)
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where C(n)
A represents the replica manifold for the n copies of the original space-time geometry

after suitably identifying the region A of copy i with the one of i + 1, and n + 1 ≡ 1. Z(X) is
the partition function of the theory defined on the manifold X (for simplicity we use Z when the
manifold is a single copy of the original spacetime). Using this expression, one gets for the Rényi
mutual information

I(n)(A,B) =
1

n− 1
log

[
Z(C(n)

AB)Zn

Z(C(n)
A )Z(C(n)

B )

]
=

1

n− 1
log

[
Z

(n)
AB Z

n

Z
(n)
A Z

(n)
B

]
, (7)

where we have simplified the notation for convenience using Z
(n)
A ≡ Z(C(n)

A ). In [6], it was proposed
that at long distances from the conifold of singularities, one can interpret the associated twist
operator as a semi-local operator that couples the n QFT’s in the corresponding region. This
implies that in the evaluation of the partition function

Z
(n)
AB

Zn
= 〈Σ(n)

A Σ
(n)
B 〉Mn , (8)

where Mn is the replicated theory, provided A and B are apart from each other, one can expand

Σ
(n)
A as a linear combination of local operators

Σ
(n)
A =

Z
(n)
A

Zn

∑
{kj}

CA{kj}

n−1∏
j=0

Φ
(j)
kj

(rA) , (9)

where {Φ(j)
kj

(rA)} is a complete set of operators in the jth copy of the QFT located at a conveniently
chosen point rA in region A. We can further separate the identity contributions from the product
of operators in (9) as

Σ
(n)
A =

Z
(n)
A

Zn
(1 + Σ̃

(n)
A ) , where Σ̃

(n)
A =

∑
{kj}6=I

CA{kj}

n−1∏
j=0

Φ
(j)
kj

(rA) , (10)

and analogously for B. This leads to

Z
(n)
AB

Zn
=
Z

(n)
A Z

(n)
B

Z2n

(
1 + 〈Σ̃(n)

A Σ̃
(n)
B 〉Mn

)
, (11)

where we take into account that one-point functions vanish in a CFT

〈Σ̃(n)
A 〉Mn = 0 . (12)

The expansion of the logarithm reads

log

[
Z

(n)
AB Z

n

Z
(n)
A Z

(n)
B

]
=

[
〈Σ̃(n)

A Σ̃
(n)
B 〉Mn − 1

2

(
〈Σ̃(n)

A Σ̃
(n)
B 〉Mn

)2
+ · · ·

]
. (13)

The leading term in the above expansion goes as (n− 1) when n→ 1, while the higher order terms
involve higher powers of (n−1) and as such they vanish in the same limit. The mutual information
is thus given entirely by

I(A,B) = lim
n→1

1

n− 1
〈Σ̃(n)

A Σ̃
(n)
B 〉Mn . (14)
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In [6], it was shown that the leading contribution to I(A,B) comes from products of two
operators located at different sheets and, from those, the ones with lowest scaling dimension ∆
contribute the most. Making explicit the contributions of products of the lowest dimensional
operator Oi in different copies, and assuming this operator is a scalar,

Σ̃
(n)
A =

∑
i

CAi Oi + · · ·
∑
i<j

CAijOiOj + · · ·+
∑
i<j<k

CAijkOiOjOk + · · · . (15)

As Σ̃
(n)
A vanish in the n → 0 limit (where Σ1

A = 1) the coefficient of the linear term must be
proportional to n − 1 and will not contribute to the mutual information [7]. Then the leading
contribution in the long-distance expansion has the form

I(A,B) =

 lim
n→1

1

n− 1

∑
i<j

CAijC
B
ij

 1

r4∆
+ · · · (16)

The coefficients CAij are given by the two-point functions on the conifold properly normalized [6],
this is

CAij = lim
r→∞

|r|4∆〈Oi(r)Oj(r)〉C(n)
A

. (17)

Although it might be difficult to have an analytic handle on the above coefficients, the factor in
brackets appearing in (16) can actually be evaluated analytically [7]. The result is

lim
n→1

1

n− 1

∑
i<j

CAijC
B
ij =

√
π

4

Γ (2∆ + 1)

Γ
(
2∆ + 3

2

)R2∆
A R2∆

B . (18)

Taking RA = RB = R for simplicity, we can write the leading term in the mutual information as

I(A,B) =

√
π

4

Γ (2∆ + 1)

Γ
(
2∆ + 3

2

)R4∆

r4∆
+ · · · . (19)

The next term in the expansion of the twist operator which contributes to I(A,B) (assuming there
are no other operators with dimension ∆φ ≤ 3∆/2) is∑

i<j<k

CAijkOiOjOk . (20)

As we will argue later, such type of terms would give a contribution to I(A,B) of order ∼ (R/r)6∆ .
Indeed, this type of contributions were computed in [22], for free scalars in three dimensions. We
show below that this order of contribution appears also in Ĩ3(A,B,C) and that it is in fact the
leading one in I3(A,B,C).

2.2 Tripartite Information

Let us now move to the tripartite information. We consider three well separated spheres and
compute the leading term, assuming the lowest-dimensional operator is a scalar. For the evaluation
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of both Ĩ3(A,B,C) and I3(A,B,C), the new ingredient is the computation of Z
(n)
ABC . This can be

expressed as

Z
(n)
ABC

Zn
= 〈Σ(n)

A Σ
(n)
B Σ

(n)
C 〉Mn , (21)

which in terms of correlators of Σ̃’s results in

Z
(n)
ABC

Zn
=

Z
(n)
A Z

(n)
B Z

(n)
C

Z3n
× (22)

+
(

1 + 〈Σ̃(n)
B Σ̃

(n)
C 〉Mn + 〈Σ̃(n)

A Σ̃
(n)
C 〉Mn + 〈Σ̃(n)

A Σ̃
(n)
B 〉Mn + 〈Σ̃(n)

A Σ̃
(n)
B Σ̃

(n)
C 〉Mn

)
,

where once again we eliminated terms with a single Σ̃ as they have zero expectation value. This
expansion implies the following leading contribution to Ĩ3(A,B,C),

Ĩ
(n)
3 (A,B,C) =

1

n− 1
log

[
Z

(n)
ABC Z

2n

Z
(n)
A Z

(n)
B Z

(n)
C

]
=

1

n− 1
log

[
1 +

(
Z

(n)
ABC Z

2n

Z
(n)
A Z

(n)
B Z

(n)
C

− 1

)]

=
1

n− 1

( Z
(n)
ABC Z

2n

Z
(n)
A Z

(n)
B Z

(n)
C

− 1

)
− 1

2

(
Z

(n)
ABC Z

2n

Z
(n)
A Z

(n)
B Z

(n)
C

− 1

)2

+ · · ·

 . (23)

The linear term in the expansion of the logarithm goes as ∼ (n− 1) in the n→ 1 limit, while the
other terms have higher powers. Therefore, for the purpose of computing the tripartite information
only the first term contributes, and we get

Ĩ3(A,B,C) = lim
n→1

1

n− 1

[
〈Σ̃(n)

B Σ̃
(n)
C 〉Mn + 〈Σ̃(n)

A Σ̃
(n)
C 〉Mn (24)

+〈Σ̃(n)
A Σ̃

(n)
B 〉Mn + 〈Σ̃(n)

A Σ̃
(n)
B Σ̃

(n)
C 〉Mn

]
.

In the above equation we can recognize the leading-order expressions (in powers of (n− 1)) for the
Rényi mutual informations of pairs of regions (13). After such identification, we can rewrite (24)
as

Ĩ3(A,B,C) = lim
n→1

1

n− 1
〈Σ̃(n)

A Σ̃
(n)
B Σ̃

(n)
C 〉Mn + I(A,B) + I(B,C) + I(A,C) . (25)

Comparing this equation with (4) we straightforwardly identify an exact expression for the tripartite
information,

I3(A,B,C) = lim
n→1

1

1− n
〈Σ̃(n)

A Σ̃
(n)
B Σ̃

(n)
C 〉Mn . (26)

The lowest order of approximation corresponds to taking the quadratic term in the expansion
(15). Thus

〈Σ̃(n)
A Σ̃

(n)
B Σ̃

(n)
C 〉Mn

=
∑
{kj}

∑
{pl}

∑
{qm}

CA{kj}C
B
{pl}C

C
{qm}

n−1∏
j,l,m=0

〈Φ(j)
kj

(rA)Φ(l)
pl

(rB)Φ(m)
qm (rC)〉Mn

∼
∑
ij

∑
kl

∑
pq

CijCklCpq〈Oi(rA)Oj(rA)Ok(rB)Ol(rB)Op(rC)Oq(rC)〉Mn . (27)
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Within the correlators, we need to pair operators of different regions. They will only give non-zero
contributions provided they are in the same sheet. We can describe two different configurations
that contribute in these sums. In order to analyze them, it is convenient to introduce a matrix
representation. Since we have n sheets and 3 regions, we can put the various operator locations in
a 3× n matrix as follows,

First configuration:

 1 · · · Oi(rA) · · · Oj(rA) · · · 1
1 · · · Oi(rB) · · · Oj(rB) · · · 1
1 · · · Oi(rC) · · · Oj(rC) · · · 1

 , (28)

Second configuration:

 1 · · · Oi(rA) · · · Oj(rA) · · · 1 · · · 1
1 · · · 1 · · · Oj(rB) · · · Ok(rB) · · · 1
1 · · · Oi(rC) · · · 1 · · · Ok(rC) · · · 1

 . (29)

Here, each row represents the operators associated to a given region: A, B, C and each column
represents a sheet on the multiple copies of the geometry.

We normalize primary operators so that their two- and three-point functions are given by

〈O(rA)O(rB)〉 =
1

r2∆
AB

, and 〈O(rA)O(rB)O(rC)〉 =
COOO

r∆
ABr

∆
BCr

∆
AC

, (30)

respectively. We use the notation rAB = |rA − rB|. In the first configuration we get a product of
two three-point functions while in the second we get a product of three two-point functions. Both
of them yield a ∼ (rABrBCrAC)−2∆ behavior.

A configuration of the type (28) for fixed {i, j} is unique while a configuration like (29) for fixed
{i, j, k} —via permutations across the regions A, B and C— gives rise to 3! = 6 non-equivalent
ones but with the same numerical value. Thus, the full answer is given by

I3(A,B,C) = − 1

r2∆
ABr

2∆
BCr

2∆
AC

lim
n→1

(COOO)2

n− 1

∑
i<j

(Cij)
3 +

6

n− 1

∑
i<j<k

CijCjkCki

 . (31)

By looking at the derivation of (18) in [7], we observe that for a power different than two, say s,
we simply need to replace ∆→ s∆/2 in that formula. For our case, s = 3, and we obtain

lim
n→1

1

n− 1

∑
i<j

(Cij)
3 =

√
π

4

Γ(3∆ + 1)

Γ
(
3∆ + 3

2

)R2∆
A R2∆

B R2∆
C . (32)

This allows us to evaluate the first term of (31), which therefore gives a negative contribution to
the tripartite information.

The second term is more complicated to analyze. We devote section 2.3 to explain how to
compute it using the same techniques introduced in [7]. The final result reads

lim
n→1

1

n− 1

∑
i<j<k

CijCjkCki = −
26∆Γ

(
∆ + 1

2

)3
12πΓ

(
3∆ + 3

2

)R2∆
A R2∆

B R2∆
C . (33)
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Figure 1: In the first two plots, we show, respectively, the dependence on the lowest-scaling dimen-
sion ∆ of a given CFT of the two coefficients appearing in our formula for the tripartite information
at long distances. The third plot represents how the value of (COOO)2 determines whether or not
the CFT has a monogamous mutual information (at least in the long-distance regime). When

(COOO)2 is larger than 26∆+1Γ(∆+1/2)3

π3/2Γ(3∆+1)
(red curve) the mutual information is monogamous and

viceversa.

Putting the pieces together, we obtain a closed expression for the leading term in the long-
distance regime of the tripartite information, namely,

I3(A,B,C) = −
R2∆
A R2∆

B R2∆
C

r2∆
ABr

2∆
BCr

2∆
AC

[√
π

4

Γ(3∆ + 1)

Γ
(
3∆ + 3

2

) (COOO)2 −
26∆Γ

(
∆ + 1

2

)3
2πΓ

(
3∆ + 3

2

) ] . (34)

This is our main result. Observe that both terms inside the square brackets are positive-definitive
except for the relative minus sign. As it happens for the long distance coefficient of the mutual
information, the coefficient of the tripartite information depends on the lowest scaling dimension but
not explicitly on the spacetime dimension. This is due to the universal form of the modular flow for
spherical entangling surfaces. The coefficient in front of the (COOO)2 is a monotonically decreasing
function of ∆ and tends to zero for ∆� 1. On the other hand, the coefficient with the minus sign
takes a minimum value of ' 0.604 for ∆min ' 0.841 and then becomes monotonically increasing
for greater values of ∆ —see left and middle plots in Fig. 1. We observe then that depending on
the value of COOO, the tripartite information in this regime can be positive, negative or zero. The
first two cases correspond to non-monogamous and monogamous mutual informations, respectively
—see right plot in Fig. 1. We make more comments regarding these possibilities in Section 5.

Note also that when the coefficient COOO = 0 —in particular when the lowest dimensional
operator is free or charged under a global symmetry that gives non-zero charge to the product of
three operators (such as a Z2 symmetry acting as O → −O)— the tripartite information reduces
to

I3(A,B,C) =
26∆Γ

(
∆ + 1

2

)3
2πΓ

(
3∆ + 3

2

) R2∆
A R2∆

B R2∆
C

r2∆
ABr

2∆
BCr

2∆
AC

. (35)
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For all these theories, the mutual information is non monogamous. In particular for a free scalar
in d spacetime dimensions, ∆ = (d − 2)/2, and setting the three radii of the spheres equal for
simplicity, one gets,

I3(A,B,C)|scalar
d=3 =

2(3d−7)Γ
(
d−1

2

)3
πΓ
(

3(d−1)
2

) R3(d−2)

r
(d−2)
AB r

(d−2)
BC r

(d−2)
AC

. (36)

Later, we will verify this expression in the lattice for d = 3. In that case, we have

I3(A,B,C)|scalar
d=3 =

2

π

R3

rABrBCrAC
. (37)

Another natural example is the Ising model in three dimensions. The lowest scaling dimension
is in that case given by [23] ∆Ising

d=3 = 0.5181489(10) , and hence we find for the corresponding
long-distance tripartite information

I3(A,B,C)|Ising
d=3 ' 0.632833

R3.10889

r1.0362978
AB r1.0362978

BC r1.0362978
AC

. (38)

Note that the power is slightly greater than in the scalar case, whereas the coefficient is smaller
(2/π ' 0.63662). Similarly, for the O(2) model one finds using results from [24],

I3(A,B,C)|O(2)
d=3 ' 0.632645

R3.11453

r1.03818
AB r1.03818

BC r1.03818
AC

. (39)

For the O(3) model, the currently known result for ∆
O(3)
d=3 [23] suggests that it may be slightly greater

than ∆
O(2)
d=3 , which would produce a greater power for R and r, and a slightly smaller coefficient.

For sufficiently large values of N , the result tends to the free scalar values. In particular, in the
large-N limit, we have

I3(A,B,C)|O(N�1)
d=3 '

[
2

π
+

4(4 log(2)− 3)

π3N

]
R3+8/(π2N)

r
1+8/(3π2N)
AB r

1+8/(3π2N)
BC r

1+8/(3π2N)
AC

, (40)

where we used the expression for ∆|O(N�1)
d=3 valid up to O(1/N) —see e.g., [25] for the answer up

to O(1/N3).

Our formula is completely general, so it applies to any other model with a scalar as its lowest
scaling dimension operator. For instance, the explicit expression for the O(N) model in the large-N
expansion for general d can be similarly obtained using e.g., results from [26]. Our formula can also
be generalized to include all the descending operators associated to the leading term in the OPE
expansion of the twist operator, this is, the quadratic term in (15). The final formula is given in
(119). We discussed this generalization in detail in appendix A.

2.3 Analytic continuation of the sums over coefficients Cij

The first coefficient in our formula eq. (34) can be relatively easily obtained, as we saw in the
previous subsection. On the other hand, computing the second one has required considerably more

9



γn

Im(s) = 0

Im(s) = 2πn

Figure 2: Integration contour (depicted in solid blue) used to evaluate the complex integral in (43).
Assuming the integrand vanishes for Re(s) → ±∞, we can then deform the contour γn to be the
dashed blue lines at Im(s) = ε and at Im(s) = 2πn − ε with ε > 0. For illustrative purposes, we
have picked the value n = 4 to make this figure.

work, which we present here. We wish to show that the LHS of eq. (33) can be written as the
expression appearing in the RHS.

As a first step, we recall that in [7], the coefficient Cij was related to the thermal Green function
of the theory on hyperbolic space, evaluated at different points along the thermal circle

Cjj′ = (2R)2∆Gn(2π(j − j′)) , (41)

where the factor (2R)2∆ comes from the details of the conformal transformation. More explicitly,
the conformal map introduced in [4] takes a single copy of Rd into S1 × Hd−1, where Hd−1 is the

hyperbolic space. Such map can be adapted such that the conifold of singularities C(n)
A is mapped

to S1
n × Hd−1, where the thermal circle S1

n now obeys τ ≡ τ + 2πn and thus allows us to connect

two-point functions on C(n)
A with thermal two-point functions on S1

n ×Hd−1 (41).

For n = 1 the thermal two-point function is known to be

G1(τ) =
1

2∆ (1− cos τ)∆
=

1

22∆ sin2∆ (τ/2)
, (42)

where we also known that G1(−is) decays as e−∆|s| for real s. The assumed analyticity in n
implies that a similar exponential decay should happen for Gn(−is). This property together with
the standard analyticity properties of thermal two-point functions allows us to evaluate the sum∑n−1

j=1 G
2
n(2πj) in [7]. A key step in that computation is to relate the previous sum to a contour

integral

n−1∑
j=1

G2
n(2πj) =

∫
γn

ds

2πi

G2
n(−is)
es − 1

, (43)

where the exponential decay assumption allows us to deform the integral contour γn to the hori-
zontal lines at Im(s) = 2πn− ε and Im(s) = ε as depicted in Figure 2.

Here we are interested in the following sum,∑
i<j<k

CijCjkCki = (2R)6∆
∑
i<j<k

Gn(2π(j − i))Gn(2π(k − j))Gn(2π(i− k)) , (44)

10



where we used eq. (41) in the RHS. Notice that one can extend the sum to a disordered one and
pay a symmetry factor for it. Then one can further fix the location of one of the operators to be
zero and multiply by n using the replica symmetry. After that, we can recover an ordered sum by
paying the price of a remaining symmetry factor of 2. The sequence is∑

i<j<k

→ 1

3!

∑
i 6=j 6=k

→ n

3!

∑
i=0,j 6=k>0

→ n

3

∑
i=0,k>j>0

. (45)

Applying the above equivalence we can write∑
i<j<k

CijCjkCki = 26∆R6∆ n

3
Cn , (46)

where

Cn ≡
n−2∑
j=1

Gn(2πj)

n−1∑
k=j+1

Gn(2π(k − j))Gn(2πk) , (47)

and where we also used the fact that Green functions must be reflection symmetricGn(τ) = Gn(−τ).
Now it is convenient to rewrite the double sum as

Cn =

n−1∑
k=2

Gn(2πk)

k−1∑
j=1

Gn(2π(j − k))Gn(2πj) , (48)

where the relevant contour for the j-sum is given in Fig. 2 (with the simple n → k replacement).
At this point we cannot make a similar replacement for the other sum as the first contour depends
on the integer label k. We deform the integral to the horizontal contours along Im(s) = ε and
Im(s) = 2πk − ε. The vertical parts do not contribute as we assume an exponential decay along
the imaginary axis as discussed around (42). Then, we have

Cn =
n−1∑
k=2

Gn(2πk)

∫ ∞
−∞

ds

2πi

[
Gn(−is+ ε)Gn(−is− 2πk + ε)

e(s+iε) − 1
(49)

−Gn(−is− ε)Gn(−is+ 2πk − ε)
e(s+i2πk−iε) − 1

]
.

Using e2πik = 1 for integer k one gets

Cn =
n−1∑
k=2

Gn(2πk)

∫ ∞
−∞

ds

2πi

[
Gn(−is+ ε)Gn(−is− 2πk + ε)

e(s+iε) − 1
(50)

−Gn(−is− ε)Gn(−is+ 2πk − ε)
e(s−iε) − 1

]
.

The remanent sum can be done via a contour integral by introducing the following function [9]

f(n, τ) ≡ 1

2πi

n−1∑
k=2

1

τ − ik
=

1

2π
(ψ(n+ iτ)− ψ(2 + iτ)) (51)

11



where ψ(z) ≡ Γ′(z)/Γ(z) is the digamma function. For positive integer n ≥ 3, the function f(n, iu)
has poles at u = 2, · · · , n − 1 with residue one, thus, one can turn the sum over k in (50) into a
contour integral over τ with with k → −iτ as

Cn =

∫ ∞
−∞

ds

2πi

∮
dτf(n, τ)Gn(−2πiτ)

[
Gn(−is+ ε)Gn(−is+ 2πiτ + ε)

e(s+iε) − 1
(52)

−Gn(−is− ε)Gn(−is− 2πiτ − ε)
e(s−iε) − 1

]
.

The above contour must encircle the poles along τ = iu with u ≥ 2. Fixing the integration contour
one can study the n→ 1 limit of the above expression. Before doing so let us study in some detail
the function f(n, τ). First, notice that one can rewrite (51) as

f(n, τ) = − 1

2πi

1

τ − i
+

1

2π
(ψ(n+ iτ)− ψ(1 + iτ)) , (53)

where we have added un subtracted a function with a single pole at τ = i and used the following
recursive property ψ(z + 1) = ψ(z) + 1/z. Of course, the full function has no poles at τ = i,
nevertheless, such separation is convenient since the second term has a simple expression in the
n→ 1 limit [9]. Since we want to discard the first term, it is enough to make sure the integration
contour in (52) does not contain the spurious pole at τ = i. Indeed, we will chose the contour
integral to be made out of the line Im(τ) = 3i/2 plus a semi-circle of infinite radius closing the
contour on the upper half plane. Such contour satisfies all our requirements and the integral on
the semi-circle vanishes due to the exponential damp coming from Gn.

In the n→ 1 limit we have

f(n, τ) ∼ − 1

2πi

1

τ − i
− (n− 1)

(
1

2π
ψ′(−iτ) +

π

2 sinh2(πτ)

)
+O((n− 1)2) . (54)

The function ψ′(−iτ) and 1/(τ − i) above has no poles inside the integration contour and therefore,
they do not contribute to the contour integral. The second term inside the parenthesis gives
a contribution proportional to n − 1, which means we can evaluate the remaining terms in the
integrand at n = 1. Thus, the leading term in the n− 1 expansion of Cn is

Cn = (n− 1)

∫ ∞
−∞

ds

2πi

∫ ∞
∞

ds′
G1(−is′ + π)

4 cosh2(s′/2)

[
G1(−is+ ε)G1(−i(s− s′) + π + ε)

e(s+iε) − 1
(55)

−G1(−is− ε)G1(−i(s+ s′) + π − ε)
e(s−iε) − 1

]
,

where we have changed the integration variable from τ to s′ via τ = 3i/2 + s′/2π, and used the 2π
periodicity of G1(τ). The integral above can be further simplified into

Cn = (n− 1)

∫ ∞
−∞

ds

2πi

[
G1(−is+ ε)

e(s+iε) − 1
− G1(−is− ε)

e(s−iε) − 1

] ∫ ∞
−∞

ds′
G1(−is′ + π)G1(−i (s− s′) + π)

4 cosh2(s′/2)
,

(56)

which we arrive at after changing s′ → −s′ in the second integral, using the reflection symmetry
of G1(τ) and the 2π periodicity. We also dropped the ε dependence on the G1 functions with real
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argument π as those functions are completely regular inside the integrals. Replacing the expression
for G1 in the second integral leads to

Cn = (n− 1)
1

24∆

∫ ∞
−∞

ds

2πi

[
G1(−is+ ε)

e(s+iε) − 1
− G1(−is− ε)

e(s−iε) − 1

]
(57)

·
∫ ∞
−∞

ds′
1

4 cosh2(∆+1)(s′/2) cosh2∆((s− s′)/2)
.

So far we have succeeded at obtaining a closed-form expression for the linear piece of Cn in the (n−1)
expansion, which is relevant for the computation of the tripartite information. This expression is
given as a double integral which we will now evaluate via a series of convenient manipulations. Let
us first separate Cn into two contributions as

Cn = C+
n − C−n , (58)

with the obvious identifications. Now, let us factor out the coupling term in the double integral by
introducing a delta function of the form∫ ∞

−∞

du

2
δ

[
u

2
−
(
s− s′

2

)]
=

∫ ∞
−∞

dq

2π

∫ ∞
−∞

du

2
e
iq
[
u
2
−
(
s−s′

2

)]
. (59)

Then, the C±n become

C±n = (n− 1)
1

24∆+3

∫ ∞
−∞

dq

2π

∫ ∞
−∞

ds

2πi

e−iqs/2G1(−is± ε)
e(s±iε) − 1

∫ ∞
−∞

ds′
eiqs

′/2

cosh2(∆+1)(s′/2)∫ ∞
−∞

du
eiqu/2

cosh2∆(u/2)
. (60)

Now, the s integral in this C±n contour can be deformed to the Im(s) = ±iπ surface and after that
we can safely take ε→ 0. This results in

C±n = −(n− 1)
1

26∆+4

∫ ∞
−∞

dq

2π
e±qπ/2

∫ ∞
−∞

ds

2πi

e−s/2e−iqs/2

cosh2∆+1
(
s
2

) ∫ ∞
−∞

ds′
eiqs

′/2

cosh2(∆+1)(s′/2)∫ ∞
−∞

du
eiqu/2

cosh2∆(u/2)
, (61)

and therefore for Cn we get

Cn = −(n− 1)
1

26∆+3

1

2πi

∫ ∞
−∞

dq

2π
sinh

(qπ
2

)∫ ∞
−∞

ds
e−s/2e−iqs/2

cosh2∆+1
(
s
2

) ∫ ∞
−∞

ds′
eiqs

′/2

cosh2(∆+1)(s′/2)∫ ∞
−∞

du
eiqu/2

cosh2∆(u/2)
. (62)

Now we can use the following integral∫ ∞
−∞

du
e±iqu/2

cosh∆(u/2)
=

2∆Γ
(

∆
2 + i q2

)
Γ
(

∆
2 − i

q
2

)
Γ(∆)

, (63)

which can be analytically continued to get∫ ∞
−∞

du
e±iqu/2e−u/2

cosh∆(u/2)
=

2∆Γ
(

∆
2 ± i

q
2 −

1
2

)
Γ
(

∆
2 ∓ i

q
2 + 1

2

)
Γ(∆)

. (64)
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Replacing these integrals in the resulting expression for Cn one gets:

Cn = −(n− 1)

2πi

∫ ∞
−∞

dq

2π
sinh

(qπ
2

) Γ
(
∆− i q2

)2
Γ
(
∆ + i q2 + 1

)2
Γ
(
∆− i q2 + 1

)
Γ
(
∆ + i q2

)
Γ(2∆ + 1)Γ(2∆ + 2)Γ(2∆)

.

(65)

This expression is not obviously real. However, we can rewrite it in a manifestly real form using
the relation |Γ(z)|2 = Γ(z)Γ(z̄) and the defining property of the Gamma function as

Cn = −(n− 1)

2πi

∫ ∞
−∞

dq

2π
sinh

(qπ
2

)(
∆ + i

q

2

) ∣∣Γ (∆ + i q2 + 1
)∣∣2 ∣∣Γ (∆ + i q2

)∣∣4
Γ(2∆ + 1)Γ(2∆ + 2)Γ(2∆)

. (66)

In this integral, only the even part contributes. Since |Γ(z)|2 is even on the imaginary part of its
argument we conclude that only the imaginary part in (∆ + iq/2) contributes. This results in2

Cn = −(n− 1)
1

8π∆

∫ ∞
−∞

dq

2π
q sinh

(qπ
2

) ∣∣Γ (∆ + i q2 + 1
)∣∣2 ∣∣Γ (∆ + i q2

)∣∣4
Γ(2∆ + 2) (Γ(2∆))2 . (67)

The expression above is real and non-positive for n > 1. Now, we are interested in the coefficient
C defined as

C ≡ lim
n→1

1

n− 1

∑
i<j<k

CijCjkCki = lim
n→1

26∆

3
R6∆ nCn

n− 1
, (68)

where the second equality follows from (46). From (67) one finds

C

R6∆
= − 26∆

24π∆

∫ ∞
−∞

dq

2π
q sinh

(qπ
2

) ∣∣Γ (∆ + i q2 + 1
)∣∣2 ∣∣Γ (∆ + i q2

)∣∣4
Γ(2∆ + 2) (Γ(2∆))2 . (69)

Finally, one can check this reduces to

C

R6∆
= −

26∆Γ
(
∆ + 1

2

)3
12πΓ

(
3∆ + 3

2

) , (70)

which leads to (33).

3 Mutual and tripartite information for fermions

In the previous section we derived a formula for the leading long distance contribution to the tripar-
tite information for disjoint spheres (34). Such result was obtained for a generic CFT with a scalar
as its lowest scaling dimension operator. However, in general, such an operator can have arbitrary
spin. In this section we study how the above analysis gets modified when the lowest dimension
operator is fermionic. This case is of special interest due to the fact that in two dimensions a free
fermion has an identically vanishing tripartite information, I3 ≡ 0, while a naive generalization to
the formula (34) suggests a non-zero answer. This seems to be the case, due to the presence of a

2For a recent analysis of a similar analytic continuation see [27]. There is also an interesting analytic continuation
in [28], where the authors continue a sum over three-point functions.
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universal contribution coming from products of two-point functions —second term in (34). In this
section we will show that such universal contribution vanishes identically for fermions. This fact
will be later supported by a lattice analysis in Section 4.

Following Cardy [6], the twist operator Σ̃A is dominated at long distance by the product of two
operators with the lowest scaling dimension in the theory. For spin half operators this implies

Σ̃A ≈
∑
j 6=i

CA,αβij ψ̄iα(rA)ψjβ(rA) , (71)

where i, j labels the sheets on which the spinor fields are located and α, β are spinor indices. The
tensor structure for CA,αβij was deduced in [9] to be

CA,αβij = aAijδαβ + bAijn
µ
A (γµ)αβ , (72)

where nµA is the vector normal to the spherical region. The authors of [9] further argued that
aAij = 0. In even dimensions this is the case due to chiral symmetry and in odd dimension this

avoids parity violation. As in the scalar case, one can read off the undetermined coefficients bAij , by
studying the long distance behavior of the appropriate two point function in the presence of the
twist operator. This is, one computes3

n̄µTr[〈Σ̃Aψ̄
i
λ(r̄) (γµ)λρ ψ

j
σ(r̄)〉] when |r̄ − rA|2 →∞ . (73)

In the above formula r̄ is an arbitrary point chosen to be far away from A. Likewise, n̄ is an
arbitrary future directed time-like normal vector and thus one can chose it to have any particular
direction as to simplify the above formula.

For the computation of (73) we need the two point function of the spinor fields

〈ψα(rA)ψ̄β(rB)〉 = i(γµ)αβ
(rB − rA)µ
|rB − rA|2∆+1

, (74)

where ∆ is the scaling dimension of the spinor field. We evaluate the quantity (73) by using (71)
and (72) with aAij = 0, which leads to

n̄µ〈Σ̃Aψ̄
i
λ(r̄) (γµ)λρ ψ

j
ρ(r̄)〉 =

∑
k 6=l

bAkl n
ν
A (γν)αβ n̄

µ (γµ)λρ 〈ψ̄
k
α(rA)ψlβ(rA)ψ̄iλ(r̄)ψjρ(r̄)〉 , (75)

where the trace in (73) has been included implicitly. The four-point function factorizes into a
product of two-point functions which can be evaluated using (74). The result is

n̄µ〈Σ̃Aψ̄
i
λ(r̄) (γµ)λρ ψ

j
ρ(r̄)〉 = − 1

r4∆
bAji n

ν
A (γν)αβ n̄

µ (γµ)λρ r̂
π (γπ)ρα r̂

ρ (γσ)βλ

= − 1

r4∆
bAji n

ν
An̄

µr̂π r̂σTr (γνγσγµγπ)

= − [2 (nA · r̂) (n̄ · r̂)− (nA · n̄)]
bAji
r4∆

, (76)

3Notice that the correlator Tr[〈Σ̃Aψ̄iρ(r̄)ψjσ(r̄)〉] vanishes identically as it is proportional to the trace of a single
gamma matrix
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where we introduced the variables r = |r̄ − rA| and r̂ = (r̄ − rA)/|r̄ − rA|, and used the identity

Tr (γαγµγβγν) = 2[ d2 ] (ηαµηβν + ηανηµβ − ηαβηµν) (77)

in the last line. Equation (76) can be inverted to obtain the coefficient bAji in terms of the correlator
in (73) when r goes to infinity as

bAji = − lim
r→∞

2−[ d2 ] r4∆
n̄µ〈Σ̃Aψ̄

i
λ(r̄) (γµ)λρ ψ

j
ρ(r̄)〉

[2 (nA · r̂) (n̄ · r̂)− (nA · n̄)]
. (78)

3.1 Mutual information

We can write down expressions for the leading term in the mutual information and tripartite
information respectively in terms of the coefficients bij from the twist operator expansion (71). We
start with the mutual information I(A,B) whose leading term, according to (7), (71) and (72) is
given by

I(A,B) = lim
n→1

1

n− 1

∑
j 6=i

∑
l 6=k

bAij b
B
kl n

µ
An

ν
B〈ψ̄iα(rA) (γµ)αβ ψ

j
β(rA)ψ̄kρ(rB) (γν)ρσ ψ

l
σ(rB)〉+ . . . (79)

Following the same steps used to obtain the coefficient bAji in (76), one can reduce the above
expression to

I(A,B) = 2[ d2 ]+1 (2(nA · r̂)(nB · r̂)− (nA · nB))

r4∆

 lim
n→1

1

2(1− n)

∑
j 6=i

bAij b
B
ji

+ . . . , (80)

where here r = |rB − rA| and r̂ = (rB − rA)/|rB − rA|. With a bit of extra work it can be shown
that the analytic continuation of the sum over bAijb

B
ji in the n going to 1 limit (the last factor in

(80)), equals the analogous coefficient for the scalar (18). Thus, the final long-distance result for
the mutual information coincides with the one presented in [9] —including the tensor structure—
as well as with the earlier work of [8]. This is

I(A,B) = 2[ d2 ]+1

√
π

4

Γ (2∆ + 1)

Γ
(
2∆ + 3

2

) [2(nA · r̂)(nB · r̂)− (nA · nB)]
R2∆
A R2∆

B

r4∆
+ . . . (81)

3.2 Tripartite information

Now, we would like to study the analogous long-distance behavior of the tripartite information for
conformal spinors. We start with the expression for the tripartite information given in (26). Using
(71) and (72) we can write the leading term of (26) in terms of sums of six point functions as

I3(A,B,C) ∼ lim
n→1

1

n− 1

∑
j 6=i

∑
l 6=k

∑
m 6=n

bAij b
B
kl b

C
mnn

µ
A (γµ)αβ n

ν
B (γν)ρσ n

λ
C (γλ)πξ

×〈ψ̄iα(rA)ψjβ(rA)ψ̄kρ(rB)ψlσ(rB)ψ̄mπ (rC)ψnξ (rC)〉 . (82)
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The above six-point function factorizes into products of two-point functions, there are no three-
point function terms for spinors. Let us write down the factorization in question explicitly

〈ψ̄iα(rA)ψjβ(rA)ψ̄kρ(rB)ψlσ(rB)ψ̄mπ (rC)ψnξ (rC)〉

= −δilδjmδkn〈ψ̄iα(rA)ψlσ(rB)〉〈ψjβ(rA)ψ̄mπ (rC)〉〈ψ̄kρ(rB)ψnξ (rC)〉

+δinδjkδlm〈ψ̄iα(rA)ψnξ (rC)〉〈ψjβ(rA)ψ̄kρ(rB)〉〈ψlσ(rB)ψ̄mπ (rC)〉

= − i

r2∆
ABr

2∆
ACr

2∆
BC

[
− δilδjmδknr̂τAB r̂

η
AC r̂

χ
BC (γτ )σα (γη)βπ (γχ)ξρ

+δinδjkδlmr̂τAC r̂
η
AB r̂

χ
BC (γτ )ξα (γη)βρ (γχ)σπ

]
, (83)

where we used (74) in the second equality, r̂AB ≡ (rB−rA)/|rR−rA|, rAB ≡ |rB−rA|, and similarly
for the AC and BC combinations. Plugging (83) into (82), and after a bit of algebra we find

I3(A,B,C) ∼

 lim
n→1

1

n− 1

∑
i 6=j 6=k

bAij b
B
jk b

C
ki

 i

r2∆
ABr

2∆
ACr

2∆
BC

r̂τAB r̂
η
AC r̂

χ
BCn

µ
An

ν
Bn

λ
C{

Tr [γµγηγλγχγνγτ ]− Tr [γτγνγχγλγηγµ]
}
.

(84)

We expect the analytically continued sum (the first term in brackets) to be related to the analogous
coefficient for the scalar case (33). However, the term in curly brackets is identically equal to zero,
and thus we conclude that the analogue contribution to the tripartite information obtained for
scalars (25) identically vanishes for spinors

I3(A,B,C) = 0 + . . . (85)

Therefore, the tripartite information at long distances must decay faster than (R/r)6∆ when the
lowest scaling dimension in the CFT is a spinor with scaling dimension ∆. This is indeed the
case for 2d free fermions as I3 ≡ 0.4 For free fermions in three dimensions we find via a lattice
computation presented in Section 4, that

I3 ∼ (R/r)6∆f+1 (86)

(where in that case ∆f = 1), which is consistent with the above result. We expect eq. (86) to be the
leading-order scaling for theories with a fermion as their lowest-dimensional primary. An alternative
possibility would involve an additional primary with a scaling dimension ∆f < ∆̃ < ∆f +1/6 which

would then give rise to a leading scaling I3 ∼ (R/r)∆̃ instead. Observe that the difference in the
leading power of the tripartite information between theories with a scalar or a fermion as their
lowest-dimensional operator is somewhat different from the mutual information situation. In that
case, the leading term is ∼ r−4∆ regardless of the spin of the lowest-dimensional primary —the
only difference being an overall tensorial structure which changes as a function of the spin [9].

4For dimensions higher than two, free fermions are known not to be extensive [18]. Nevertheless, it is interesting to
notice that free fermions are close to be so, as it can be seen from a comparison between the varios charges associated
to the free fermion theory and the so called “Extensive Mutual Information model” [18, 19].
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4 Lattice calculations in (2 + 1) dimensions

In this section we perform some checks of our analytic results in the case of three-dimensional free
fields. In particular, for the free scalar we verify that the long-distance scaling of the tripartite
information is I3 ∼ (R/r)3 and that the coefficient in the case of disk entangling regions matches
our analytic prediction with reasonable precision. In the case of the fermion, we verify that the
analogous long-distance scaling is I3 ∼ (R/r)7, in agreement with our result that the naive leading
scaling I3 ∼ (R/r)6 does not hold due to the vanishing of the involved tensorial structures. The
coefficient of the leading term for disk regions is also evaluated numerically for the free fermion.

4.1 Long-distance scaling for free scalars and fermions

Let us start with the free scalar. Consider a square lattice of N points and a set of scalar fields
and momenta φi, πj , i, j = 1, . . . , N satisfying canonical commutation relations, [φi, πj ] = iδij ,
[φi, φj ] = [πi, πj ] = 0. Given a Gaussian state ρ, consider the two-point correlators Xij ≡ tr(ρφiφj),
Pij ≡ tr(ρπiπj). Then, the entanglement entropy corresponding to a region A can be obtained from
the restrictions of Xij and Pij to the sites belonging to such a region as

S(A) = tr [(CA + 1/2) log(CA + 1/2)− (CA − 1/2) log(CA − 1/2)] , (87)

where CA ≡
√
XAPA and we denote (XA)ij ≡ Xij , (PA)ij = Pij with i, j ∈ A.

Here we will work in d = 2 + 1, so each index i corresponds to coordinates in a two-dimensional
lattice. The free-scalar lattice Hamiltonian can be written as

H =
1

2

∞∑
n,m=−∞

[
π2
n,m + (φn+1,m − φn,m)2 + (φn,m+1 − φn,m)2

]
, (88)

where we set the lattice spacing to one. Expressions for X(x1,y1),(x2,y2) and P(x1,y1),(x2,y2) for the
vacuum state can be found in [29] and read

X(0,0),(i,j) =
1

8π2

∫ π

−π
dx

∫ π

−π
dy

cos(ix) cos(jy)√
2(1− cosx) + 2(1− cos y)

, (89)

P(0,0),(i,j) =
1

8π2

∫ π

−π
dx

∫ π

−π
dy cos(ix) cos(jy)

√
2(1− cosx) + 2(1− cos y) . (90)

Using these expressions, we can evaluate the tripartite information of lattice regions A, B, C using
eq. (87) and the general expression eq. (2).

The story is analogous for the free fermion. We start with fermionic fields ψi, i = 1, . . . , N
defined at the lattice sites and satisfying canonical anticommutation relations, {ψi, ψ†j} = δij . For

a Gaussian density matrix ρ, we define the correlators matrix Dij ≡ tr(ρψiψ
†
j). Then, the entangle-

ment entropy for some region A can be computed from the restriction of Dij to the corresponding
lattice sites as

S(A) = − tr [DA logDA + (1−DA) log(1−DA)] . (91)
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Figure 3: We show two examples of the equilateral-triangle lattice configurations considered. In
the left, three squares of 152 = 225 points separated a distance of ' 82 points. In the right, three
disks of 317 ∼ π102 points separated a distance of ' 104 points. The configurations are chosen so
that the distances between each pair of centers are very similar. For instance, the distance between
each of the lower squares and the upper one is

√
(82/2)2 + 712 = 81.9878. Similarly, the separation

between each of the lower disks and the upper one is
√

(104/2)2 + 902 = 103.942.

The three-dimensional lattice Hamiltonian we consider for the free fermion reads

H = − i
2

∑
n,m

[(
ψ†m,nγ

0γ1(ψm+1,n − ψm,n) + ψ†m,nγ
0γ2(ψm,n+1 − ψm,n)

)
− h.c.

]
, (92)

and the vacuum-state correlators read in this case

D(n,k),(j,l) =
1

2
δn,jδkl −

∫ π

−π
dx

∫ π

−π
dy

sin(x)γ0γ1 + sin(y)γ0γ2

8π2
√

sin2 x+ sin2 y
ei(x(n−j)+y(k−l)) . (93)

In all cases, we restrict ourselves to configurations consisting of identical entangling regions
which we separate forming approximate the vertices of equilateral triangles — see Fig. 3 for a
couple of examples corresponding to square and disk regions.

Our first goal is to determine the power of the scaling of the tripartite information with the ratio
R/r for both theories. In order to do that, we consider square-shaped lattice regions of various side
lengths R and fix the distance r. Then, we plot the resulting data points against various possible
powers of (R/r). The idea is that whenever the right power is chosen, the points should follow a
linear relation.

The results are plotted in Fig. 4. In the case of the scalar, we observe that a linear fit of
the data points with respect to (R/r)3 sits on top of the data points, whereas the (R/r)2 and
(R/r)4 scalings are ruled out. In the case of the fermion, we observe that the naive (R/r)6 scaling
is disfavored by our numerical calculations, in agreement with our observation that this putative
leading term is in fact absent. The next candidate leading power, (R/r)7, is on the other hand the
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Figure 4: (Upper row) For a free scalar field, we plot I3(A,B,C) for three squares of equal size for
several values of (R/r) as a function of possible different powers of such ratio (data points). The
(R/r)2 and (R/r)4 scalings are clearly off, whereas the (R/r)3 one does a very good job in fitting
the data linearly, as expected from our analytic computations. (Lower row) Same quantity for a
free fermion. In this case, the differences between the possible scalings are not so neat, but it is
nonetheless manifest that the (R/r)7 linear fit is the best one.

winner of this comparison, strongly suggesting that in the case of the fermion, the long-distance
behavior of the tripartite information is I ferm

3 ∝ (R/r)7. Observe also that both the scalar and the
fermion have a tripartite information which is positive in the long-distance regime —namely, their
mutual informations are non-monogamous.
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Figure 5: (Left) For a free scalar, we plot the tripartite information for three disks of radius R
positioned at the vertices of an equilateral triangle os side r as a function of (R/r)3. (Right) Same
for a free fermion as a function of (R/r)7. In both plots the solid lines correspond to fits which
include a linear term plus a subleading correction as explained in the main text.

4.2 Three-disks coefficient

One of the results that follow from our analysis in the previous section is that the coefficient
corresponding to the leading term in the long-distance expansion of the tripartite information in
the case of three disks is 2/π. Here we verify this prediction from a lattice calculation and perform
the analogous analysis in the case of a free fermion.

In the left plot of Fig. 5 we show the results for various configurations of radius-R disks positioned
at the vertices of equilateral triangles of side r as a function of (R/r)3, which is the leading power
in the long-distance regime, as we have learnt. At subleading order, we expect a contribution
proportional to (R/r)4, so in order to extract the coefficient of the leading term, we fit the data
points to a function of the form I3 = α3x+α4x

4/3 where x ≡ (R/r)3. The resulting curve is shown
in Fig. 5 and approximates all points rather well. The coefficients of the fit read, respectively,
α4 ' −0.741 and

α3 ' 0.6325 = 0.9935 · 2

π
, (94)

which is an excellent agreement with the analytic result.

We repeat the analysis in the case of the free fermion. For that, we fit the data points to
a function of the form I3 = β7x + β8x

8/7, which assumes a subleading piece in the tripartite
information scaling with ∼ (R/r)8. The fit is again excellent and appears in the right plot of Fig. 5.
For the corresponding coefficients we find β8 ' −3.089 and

β7 ' 1.641 , (95)

which —just like for the scalar— is a positive number and therefore corresponds to a non-monogamous
mutual information (as anticipated in the case of the square regions). It would be interesting to
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compute β7 analytically and compare it with this numerical result.5

5 Discussion

In this paper we have shown how to compute the tripartite information in a CFT in an expansion
for long distances of the involved regions. A more detailed summary of our main results can be
found at the end of the introduction. We end with two comments. The first discusses these results
as part of the program aiming at bootstrapping CFT data from entropy quantities. The second
discusses what the results teach us about the monogamy condition in a CFT.

5.1 CFT data from mutual information

In [30] it was found that the mutual information for disjoint spherical regions in a CFT has an
expansion in terms of conformal blocks of the form

I(A,B) =
∑
∆,J

b∆,JG∆,J(u, v) , (96)

where {∆, J} is the set of replica primary operators which contribute to the Rényi mutual infor-
mation and survives the n→ 1 limit. G∆,J(u, v) is the conformal block associated to the respective
replica primary and it is written naturally in terms of the conformal ratios u, v. Also, b∆,J is a
proportionality coefficient. The conformal ratios are constructed from the tips of the causal cones
defining the spheres. For example, for a sphere A, x+

A denotes the future causal tip while x−A denotes
the past causal tip. The explicit expression is

u =
|x+
A − x

−
A|2|x

+
B − x

−
B|2

|x−B − x
−
A|2|x

+
B − x

+
A|2

, v =
|x+
B − x

−
A|2|x

+
A − x

−
B|2

|x−B − x
−
A|2|x

+
B − x

+
A|2

. (97)

Equation (96) comes from an OPE block expansion of the twist operator in the replica theory as
reviewed in appendix A. Interestingly, knowledge of the mutual information for disjoint spheres
can be used to “bootstrap” part of the operator content in the replica theory.6 Such procedure
was outlined in [19] where we used it to rule out the “Extensive Mutual Information model” as
corresponding to a CFT in d ≥ 3.

The “bootstrapping” procedure is the following. We consider the long-distance limit of each
conformal block, in the usual cross-ratio variables u, v. This corresponds to the u→ 0 and v → 1
limits, which in terms of the physical parameters is [9]

u ∼
16R2

AR
2
B

L4
, v ∼ 1− 8RARB

L2
[2 (nA · r̂) (nB · r̂)− nA · nB] . (98)

5We point out that a function of the form I3 = β̃7x + β̃9x
9/7 produces an almost identical fit for coefficients

β̃7 ' 1.399 and β̃9 ' −9.796. Given that the naive O(R/r)6 term is actually absent for the fermion, it does not seem
impossible that the O(R/r)8 term does not appear either. In that case, the exact coefficient for the leading piece
would be closer to β̃7 rather than to β7.

6This formula does not necessarily include all the primary operators that appear in the replica theory as there
might be many operators which do not contribute to the mutual information. However, the replica primaries which
are simply related to the primary operators of the seeding CFT will always appear in the mutual information. For
instance, operators of the form OiOj with i, j replica indices always appear in the mutual information.

22



In that case

lim
u→0,v→1

G∆,J(u, v) ∼ cd,Ju
∆
2 C

d
2
−1

J

[
v − 1

2u1/2

]
= cd,J

(
4RARB
L2

)∆

C
d
2
−1

J

[
2 (nA · r̂) (nB · r̂)− nA · nB

]
, (99)

where the C
d
2
−1

J [x] are the Gegenbauer polynomials. Therefore, from (96) we see that the long-
distance limit of I(A,B) would be given by the long-distance limit of the leading conformal block,
namely, the RHS of (99) for the smallest possible ∆. Thus, from this term we can read off the
corresponding scaling dimension ∆ and spin J of the smallest replica primary which contributes to
the mutual information.

Next, we can subtract off the full leading conformal block appearing on the RHS of (96) from
I(A,B), which results in:

I(1)(A,B) ≡ I(A,B)− b∆1,J1G∆1,J1(u, v) =
∑

∆ 6=∆1,J 6=J1

b∆,JG∆,J(u, v) , (100)

where the super-index (1) in I(1)(A,B) indicates that we removed the first leading conformal block
to the mutual information. After that, we can apply the described algorithm to I(1)(A,B), finding
in this way the subleading replica primary operator that contributes to I(A,B). Possible degenera-
cies could also be accounted for by identifying the linear combination of Gegenbauer polynomials
contributing to that order (which is possible by the completeness of the Gegenbauer polynomials).
Some of the coefficients cd,J appearing in (99) can be obtained via an explicit computation using
the framework developed in [9].

In summary, applying the above procedure one could reconstruct the set of primary replica
operators that contributes to the mutual information, including their corresponding scaling di-
mensions ∆’s and spins J ’s. Via a detailed analysis of the possible replica operators that can be
constructed from the original or seed CFT, one could invert the above data to obtain the set of
primary operators, their scaling dimensions ∆̄’s and associated spins J̄ ’s as well as possibly some
of the OPE coefficients7 Cijk of the seed CFT. Let us elaborate a bit further on that possibility.

Schematically, the replica primary operators can be constructed from the seed primaries in
varios different ways. For example, some of them can include products of two seed primaries in
different replicas with arbitrary number of derivatives in between

Aµ1···µnOi∂µ1 · · · ∂µnOj , (101)

where the tensor structures Aµ1···µn may have different symmetries and Oi are scalars. For fermions
there are also tensor structures one can be build from two-seed primary fermions, and which have
non zero coefficients,

ψ̄iγµψj , ψ̄iγµ1 · · · ∂µnψj , · · · (102)

None of these replica primaries would have information about the structure coefficients Cijk, and
their coefficients depend only on the two-point function. However, there are replica primaries

7In this section we use ∆̄’s to represent the conformal dimensions of the seed theory operators while ∆’s to
represent the conformal dimensions of the replica theory.
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formed by fields in more than two copies consistent with conservation laws and super-selection
constraints, for example,

OiOjOk, ΨiΨ̄jΨkΨ̄l Oiψ̄jγµψk . (103)

The contributions of these replica primaries would contain information about the OPE coefficients
Cijk and thus the above procedure could in principle allow us to extract such CFT data from
I(A,B). Unfortunately, the procedure for these operators as well as replica primaries involving
higher number of replica operators is significantly harder to use in practice than the ones that
involve only two replicas. Therefore, one might deem this procedure unpractical for the purpose of
obtaining the OPE coefficients.

Interestingly, our current work presents a complementary avenue for extracting the OPE co-
efficients. As opposed to what happens for the mutual information of two disjoint spheres, the
tripartite information for three spheres at long distances receives contributions at the leading order
from the replica primaries involving three replicas. For this reason, even the leading expression for
the tripartite information includes also information about the OPE coefficients of the seed CFT
as is manifest in (34). Thus, the reconstruction procedure derived from (96) can be complemented
with an analogous one from (34) properly generalized to include all replica primaries, to facilitate
the extraction of the full information of the seed CFT.

5.2 Monogamy condition and holography

From the expression of the long-distance tripartite information (34) it is easy to read off a condition
for having monogamy of mutual information, I3 ≤ 0. In this geometric setup and in this regime
the condition reduces to

(COOO)2 ≥
26∆+1Γ

(
∆ + 1

2

)3
π3/2Γ(3∆ + 1)

=
2

Γ (3∆ + 1)

(
2 Γ (2∆)

Γ (∆)

)3

. (104)

The RHS of (104) is a growing function of ∆ and its limiting value when ∆→ 0 is 2. The asymptotic
behavior for large ∆ can be determined from the Stirling approximation, which gives

2

Γ (3∆ + 1)

(
2 Γ (2∆)

Γ (∆)

)3

∼ 4

(3π∆)1/2

(
4

3

)3∆

. (105)

This approximation is an strict upper bound on the RHS of (104) and thus it is a good estimate
on how large should (COOO)2 be for the theory to be monogamous at large separations. This is a
strong condition over (COOO)2, which suggest that generically in QFT the mutual information for
separated regions tends to be non-monogamous (if dominated by scalars8). Definitely, monogamous
behavior could only hold far from a perturbative regime. This statement is in line with the obser-
vation that in a perturbative scheme the tripartite information is generically non-monogamous [31],
although note that the latter statement was made in the context of entanglement in momentum
space.

As mentioned in the introduction, for holographic theories the tripartite information is known
to be monogamous at leading order in the large-N parameter. However, the existence of RT phase

8But possibly also for fermions in view of our results in the rest of the paper.
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transitions for disjoint regions implies that in our regime of interest —large separation— the RT
contribution to the holographic tripartite information vanishes and thus its behavior is determined
by the subleading contribution, which is given by the tripartite information of the associated dual
bulk homology regions. Depending on the dual bulk theory, then, this tripartite information might
be positive or negative, which renders the boundary mutual information to be generically non-
monogamous. However, there is an interesting possibility, namely, one in which the bulk theory is
itself holographic. These situations are known as double holographic [32, 33], and they have been
the focus of important recent activity due to their relevance in the partial resolution to the black
hole information paradox [34, 35]. In this context, one could imagine situations in which the bulk
mutual information of the first dual theory is non vanishing at leading order, thus the RT surface
of the second dual theory would be in the connected phase and therefore it would be necessarily
monogamous (by the properties of the RT formula for the second holographic theory). In other
words, in such geometric configurations the first bulk theory would be monogamous, and likewise
would be its associated boundary theory. Indeed, boundary monogamy has been recently proved
to hold at all orders in the large-N expansion provided the bulk theory is also monogamous [36].9

Unfortunately, in the strict large separation regime both first and second bulk RT surfaces would be
in the disconnected phase and thus monogamy would not be guarantee even in double holography.
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A OPE block expansion of the tripartite information

In this appendix we want to comment on how to improve our result for the leading term of the
tripartite information by including all descendent operators of the leading ones. As explained
earlier, (26) represents the leading Rényi tripartite information as a correlator of twist operators.
In that expression we have the following expansion for the non-local twist operators (10)

Σ̃
(n)
A =

∑
{kj}6=I

CA{kj}

n−1∏
j=0

Φ
(j)
kj

(rA) . (106)

However, one can improve the above ansatz by taking each primary operator
∏n−1
j=0 Φ

(j)
kj

(rA) in the
replica theory and adding all its descendants, in other words, by considering instead its associated
OPE block.

The OPE block appears in the contribution of a primary operator to the OPE of two primaries
in a general CFT. For example, when the primaries in question are scalars, say Oi(x) and Oj(0),

9See also [37] for a weaker statement proved in the context of quantum bit threads. Namely, holographic entropy
cone inequalities in the bulk imply boundary monogamy.
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with conformal dimensions ∆i, ∆j , then one can replace its product inside the expectation value
of an arbitrary product of local operators by the following expansion

Oi(x)Oj(0) =
∑
k

Cijk|x|∆k−∆i−∆j (1 + b1x
µ∂µ + b2x

µxν∂µ∂ν + · · ·)Ok(0) , (107)

provided all other operator insertions are located sufficiently apart from points x and 0.10 The
coefficients bn become independent of the conformal dimensions ∆i, ∆j when ∆i = ∆j . In that
case, the total contribution associated to a given k will depend only on the conformal symmetry
and the generating operator Ok. Such contribution is known as the OPE block associated to Ok,

Bk(x, 0) = |x|∆k (1 + b1x
µ∂µ + b2x

µxν∂µ∂ν + · · ·)Ok(0) . (108)

There is a useful integral expression for this operator in cases in which the points {x, 0}, hereafter
{x1, x2} are time-like separated and therefore define a causal cone D(x1, x2) with {x1, x2} as its
tips [39],

Bk(x1, x2) = ck

∫
D(x1,x2)

ddξ

(
|x1 − ξ||x2 − ξ|
|x1 − x2|

)∆k−d
Ok(ξ) . (109)

There exists an analogous formula for the OPE block of an arbitrary primary operator in a sym-
metric spin J representation Oµ1···µJ , namely [40],

Bk,J(x1, x2) =
ck

(2π)∆k−d

∫
D(x1,x2)

ddξ |K|∆k−d−JKµ1 · · ·KµJOk, µ1···µJ (ξ) . (110)

Here, Kµ is the conformal killing vector that keeps the boundary of the causal cone fixed, and it is
given by

Kµ∂µ = − 2π

(x1 − x2)2

[
(x2 − ξ)2(xµ1 − ξ

µ)− (x1 − ξ)2(xµ2 − ξ
µ)
]
∂µ , (111)

and

|K| = 2π
|x1 − ξ||x2 − ξ|
|x1 − x2|

. (112)

The above is precisely the proposal of Long [30]. In short, the idea is to improve upon the ex-
pansion of (106) developed by Cardy by considering instead a basis of non-local operators asso-
ciated to the entangling region. For a sphere SA, such operators are precisely the OPE blocks
(2RA)−∆kBk,J(x+

A, x
−
A) with {x+

A, x
−
A} as the tips of the causal development of the associated spher-

ical region. The expansion would have the form

Σ̃
(n)
A =

∑
{kj}6=I

CA{kj}

n−1∏
j=0

ckj (2RA)
−∆kj

(2π)
∆kj
−d

∫
D(x+

A,x
−
A)

ddξ |K|∆kj
−d−J

Kµ1 · · ·KµJΦ
(j)
kj ,µ1···µJ (ξ) . (113)

The leading contributing primary operator Φ
(j)
kj ,µ1···µJ (ξ) corresponds to the product of two primary

operators associated to different sheets with the lowest scaling conformal dimension ∆, this is,

∑
{kj}6=I

CA{kj}

n−1∏
j=0

Φ
(j)
kj ,µ1···µJ (ξ) =

∑
ij

(2RA)−2∆Cij Oi(ξ)Oj(ξ) , (114)

10There is a technically precise sense in which the above replacement is accurate for observables with support
outside the radius of convergence of the OPE [38].

26



and therefore, the leading contribution of (113) would be

Σ̃
(n)
A =

∑
ij

Cij
c2∆(2RA)−2∆

(2π)2∆−d

∫
DA

ddξ |K|2∆−dOi(ξ)Oj(ξ) , (115)

where we simplified our notation by defining DA ≡ D(x+
A, x

−
A). The normalization constant c2∆

satisfies

c2∆(2RA)−2∆

(2π)2∆−d

∫
DA

ddξ |K|2∆−d = 1 . (116)

If one replaces (115) into the formula for the mutual information as given in (14) one gets

I(A,B) =

√
π

4

Γ (2∆ + 1)

Γ
(
2∆ + 3

2

) c2
2∆

(2π)2(2∆−d)

∫
DA

ddξA

∫
DB

ddξB
|KA|2∆−d |KB|2∆−d

|ξA − ξB|4∆
.

(117)

The double integral above can be identified with the conformal block associated to an intermediate
scalar operator of dimension 2∆ via Gd∆k,0

(u, v) = 〈B∆k
(x+
A, x

−
A)B∆k

(x+
B, x

−
B)〉 which is a known

relation between the conformal and OPE blocks, consistent with our normalizations. The above
expression reduces to

I(A,B) =

√
π

24∆+2

Γ (2∆ + 1)

Γ
(
2∆ + 3

2

)Gd2∆,0(u, v) , (118)

which is the leading therm in the conformal block expansion of the mutual information [8]. In the
above expressions u and v are the usual conformal ratios defined explicitly in (97). Adding all other

possible replica primaries in the expansion of Σ̃
(n)
A leads to the full conformal block expansion of

the mutual information as described in Section 5.1 in the form of (96).

Similarly, we can replace (115) into the formula for the tripartite mutual information as given
in (26), follow through all the analysis of Section 2 until the derivation of the analogous formula to
(34) which in our present case is

I3(A,B,C) = −

[√
π

4

Γ(3∆ + 1)

Γ
(
3∆ + 3

2

) (COOO)2 −
26∆Γ

(
∆ + 1

2

)3
2πΓ

(
3∆ + 3

2

) ] (119)

×
∫
DA

∫
DB

∫
DC

F3(ξA, ξB, ξC)

|ξA − ξB|2∆|ξB − ξC |2∆|ξA − ξC |2∆
ddξAddξB ddξC

where we have introduced the function

F3(ξA, ξB, ξC) ≡
c3

2∆

(2π)3(2∆−d)
|KA|2∆−d|KB|2∆−d |KC |2∆−d . (120)

This is our final formula for the long-distance tripartite information which includes the contribution
of the leading OPE block in the twist operator expansion.

It would be interesting to explore whether the triple integral expression in (119) can be identified
with an interesting object in the CFT as it happens to the analogous formula for the mutual
information (118). Similarly, it would be interesting to study the full expansion of the tripartite
information which includes all replica primaries that can contribute to the twist operator expansion
in (113).
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[9] H. Casini, E. Testé, and G. Torroba, “Mutual information superadditivity and unitarity
bounds,” 2103.15847.

[10] A. Kitaev and J. Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96 (2006)
110404, hep-th/0510092.

[11] P. Hayden, M. Headrick, and A. Maloney, “Holographic Mutual Information is
Monogamous,” Phys. Rev. D 87 (2013), no. 4 046003, 1107.2940.

[12] S. X. Cui, P. Hayden, T. He, M. Headrick, B. Stoica, and M. Walter, “Bit Threads and
Holographic Monogamy,” Commun. Math. Phys. 376 (2019), no. 1 609–648, 1808.05234.

[13] C. Akers and P. Rath, “Entanglement Wedge Cross Sections Require Tripartite
Entanglement,” JHEP 04 (2020) 208, 1911.07852.

[14] M. Rangamani and M. Rota, “Entanglement structures in qubit systems,” J. Phys. A 48
(2015), no. 38 385301, 1505.03696.

[15] M. Rota, “Tripartite information of highly entangled states,” JHEP 04 (2016) 075,
1512.03751.

[16] N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully, and M. Walter, “The Holographic Entropy
Cone,” JHEP 09 (2015) 130, 1505.07839.

[17] V. E. Hubeny, M. Rangamani, and M. Rota, “Holographic entropy relations,” Fortsch. Phys.
66 (2018), no. 11-12 1800067, 1808.07871.

28

http://xxx.lanl.gov/abs/hep-th/9403108
http://xxx.lanl.gov/abs/hep-th/0405152
http://xxx.lanl.gov/abs/0802.3117
http://xxx.lanl.gov/abs/1102.0440
http://xxx.lanl.gov/abs/1506.06195
http://xxx.lanl.gov/abs/1304.7985
http://xxx.lanl.gov/abs/1511.07462
http://xxx.lanl.gov/abs/1704.03692
http://xxx.lanl.gov/abs/2103.15847
http://xxx.lanl.gov/abs/hep-th/0510092
http://xxx.lanl.gov/abs/1107.2940
http://xxx.lanl.gov/abs/1808.05234
http://xxx.lanl.gov/abs/1911.07852
http://xxx.lanl.gov/abs/1505.03696
http://xxx.lanl.gov/abs/1512.03751
http://xxx.lanl.gov/abs/1505.07839
http://xxx.lanl.gov/abs/1808.07871


[18] H. Casini and M. Huerta, “Remarks on the entanglement entropy for disconnected regions,”
JHEP 03 (2009) 048, 0812.1773.

[19] C. A. Agón, P. Bueno, and H. Casini, “Is the EMI model a QFT? An inquiry on the space of
allowed entropy functions,” 2105.11464.

[20] E. H. Lieb, “Some convexity and subadditivity properties of entropy,” Bull. Amer. Math.
Soc. 81 (1975) 1–13.

[21] V. Vedral, “The role of relative entropy in quantum information theory,” Rev. Mod. Phys. 74
(Mar, 2002) 197–234, https://link.aps.org/doi/10.1103/RevModPhys.74.197.

[22] C. A. Agón, I. Cohen-Abbo, and H. J. Schnitzer, “Large distance expansion of Mutual
Information for disjoint disks in a free scalar theory,” JHEP 11 (2016) 073, 1505.03757.

[23] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, “Precision Islands in the Ising and
O(N) Models,” JHEP 08 (2016) 036, 1603.04436.

[24] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, and A. Vichi,
“Carving out OPE space and precise O(2) model critical exponents,” JHEP 06 (2020) 142,
1912.03324.

[25] F. Kos, D. Poland, and D. Simmons-Duffin, “Bootstrapping the O(N) vector models,” JHEP
06 (2014) 091, 1307.6856.

[26] L. Fei, S. Giombi, and I. R. Klebanov, “Critical O(N) models in 6− ε dimensions,” Phys.
Rev. D 90 (2014), no. 2 025018, 1404.1094.

[27] V. Chandrasekaran, T. Faulkner, and A. Levine, “Scattering strings off quantum extremal
surfaces,” 2108.01093.
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