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I. INTRODUCTION

It is a remarkable fact that the long-distance physics of almost any interacting quantum system

at finite temperature is given by the theory of hydrodynamics. The ubiquity of such a description

essentially arises from the existence of conserved quantities: the conserved density of a charge

(such as a number current, or a momentum) cannot change arbitrarily fast, as any local change in
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the density must be supplied by a flow of current. The resulting slow dynamics of the charges is

governed by the universal framework of hydrodynamics [1, 2].

As the existence of hydrodynamics is intimately intertwined with the structure of conserved

quantities, global symmetries always play a crucial role in formulating a hydrodynamic description.

Recently, the set of systems admitting such a universal hydrodynamic description have been en-

larged, due to the emphasis and systematic studies of, higher form global symmetries [3]. Just as

an ordinary U(1) global symmetry enforces the existence of a conserved particle number with a

current jµ, a higher-form global symmetry enforces the existence of a conserved density of higher-

dimensional objects, such as strings (or branes). More specifically, a p-form symmetry results in a

conserved current that is a p+ 1-form: thus a conventional current jµ is associated with a 0-form

symmetry. One extremely familiar example of a 1-form symmetry is Maxwell electrodynamics in

four dimensions – the symmetry controlling the conservation of magnetic flux is precisely such a

higher-form symmetry, with associated conserved current Jµν = 1
2ε
µνρσFρσ. The realization of this

higher-form symmetry at finite temperature can be shown to lead to a hydrodynamic theory which

is a reformulation of dissipative relativistic magnetohydrodynamics [4–6]1.

A new set of interesting phenomena are possible when the theory has both an ordinary 0-

form global symmetry with conserved current jµ and a 1-form global symmetry with conserved

current Jµν . It is now possible for the resulting symmetries to intertwine in a non-trivial manner

characterized by an integer coefficient κ̂. There are many ways to describe the resulting structure,

called a 2-group: one simple implication is that the ordinary U(1) current is not conserved in the

presence of both an external source and a dynamical 1-form charge. The Ward identity is:

∇µ〈jµ〉 =
κ̂

2
〈Jµν〉Fµν , ∇µ〈Jµν〉 = 0 . (1.1)

Here F = da, where aµ is an external gauge field source that couples to the current operator

jµ. The current algebra is modified, but the symmetries formally remain non-anomalous, by

which we mean that the partition function as a function of the sources remains invariant under an

appropriate symmetry transformation. 2 One example where this structure occurs is U(1) gauge

theories coupled to appropriate fermionic matter. Consider, for example, a theory with ordinary

U(1)1×U(1)2 0-form global symmetry with a mixed anomaly of the usual kind in the U(1)1-U(1)1-

U(1)2 sector. The symmetry structure (1.1) can be obtained by gauging the U(1)2 non-anomalous

1 At ideal hydrodynamic level, the dynamic of 2-form current has been discussed in e.g. relativistic magnetohy-

drodynamic literature [7] and effective dynamics of higher-dimensional black holes [8]. At dissipative level, it was

discussed in [9] but without connection to higher-form symmetry.
2 Here, to distinguish clearly between operators and sources we have denoted the operators by their expectation

values, but the relation above holds in all states and is an operator equation.
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subgroup of the global symmetry in such theory, namely by couple it to a dynamical gauge field of

the U(1)2. The first Ward identity is nothing but the anomalous Ward identity of the ungauged

U(1)1 current jµ with the gauged magnetic flux (F2)µν replaced by the dynamical magnetic flux

operator J = ?F2 namely

∂µ〈jµ〉 = −1

2
κa2vε

µνρσ(F1)µν(F2)ρσ =⇒
gauging U(1)v

∂µj
µ =

1

2
κ̂〈Jµν〉(F1)µν

Here, the 2-group structure constant κ̂ is determined by a coefficient of the mixed anomaly between

U(1)1 and U(1)2. On the other hand, the conservation of 〈Jµν〉 = 〈?(F2)
µν〉 is nothing but

conservation of magnetic flux constructed from U(1)2 gauge field, and remains exact.

Gauging a subgroup of an anomalous theory is just one of many ways to obtain the 2-group

structure. In fact, 2-group or higher-group is a special kind of category which enlarges the concept

of group to a higher dimensional algebra [10]; we found Ref. [11] to be a good entry point into

the rather extensive literature. Unlike the mixed anomaly example above that exists only in 3 + 1

dimensions, a 2-group global symmetry can occur in any dimension larger than 1+1 such that Jµν

has a continuous value. There are various interesting quantum field theories where the 2-group

structure have been discussed see e.g. [12–23] and references therein3.

Here we emphasize that 2-group is a genuine global symmetry structure of the theory and should

be treated as such. In particular, the 2-group symmetry can be encoded in the generating function

Z[gµν , aµ, bµν ] =

〈
exp

[
i

∫
dd+1x

√
−g
(

1

2
Tµνgµν + jµaµ +

1

2
Jµνbµν

)]〉
(1.2)

where aµ, bµν are the source for an ordinary conserved current jµ the higher-form current Jµν

respectively. The 2-group Ward identities (1.1) can be obtained if the generating function is

invariant under the following transformation

0-form U(1) transformation : aµ → aµ + ∂µλ, bµν → bµν + κ̂(da)µνλ , (1.3a)

1-form U(1) transformation : bµν → bµν + 2∂[µΛν] , (1.3b)

which can be thought of as a Green-Schwarz mechanism for the background fields [14, 19, 21] 4 .

A more precise statement for discrete groups can be found in e.g. [21].

In this work, we will focus on a class of gapless theories in the IR which realized 2-group global

symmetry at finite temperature and densities, i.e. in a highly dynamical regime where we expect

3 The readers can find a nice introduction to 2-group from the current algebra and charge multiplication approach

in [19] and [21] respectively.
4 To be very precise, the transformation in (1.3) does not capture all elements of 2-group. For a 2-group constructed

from a zero-form G and an abelian one-form a global symmetry, it can be defined by a cross module (G, a, ρ, κ̂).

Here κ̂ is an integer appearing in (1.3) and α is a map from G to a group automorphism of a, which is trivial in

our setup. This version is called coherent 2-group [10] which is a specification of a more general definition found

in Ref.[11]. More physical implications and examples of α and κ̂ can be found in e.g. [14, 21].
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hydrodynamics to be applicable. We have two main motivations. Firstly, it is intrinsically inter-

esting to systematically expand the hydrodynamic framework to describe new classes of interesting

quantum field theories with more intricate symmetry structures. This is in the same spirit as many

of the earlier mentioned works, particularly [14, 17, 20, 22], which apply the concept of 2-group

to enlarge the description of IR gapped phases with non-trivial topological properties. Secondly,

it could also serve as a toy model to better understand the magnetohydrodynamic limit of chiral

medium, obtained by gauging the vector U(1) subgroup of a system with an ABJ anomaly [24–27].

Though this problem turns out to have a different character, we will comment further on this

aspect in the discussion.

Below, we present a framework to consistently construct the hydrodynamic description of sys-

tems with 2-group global symmetry. We give a summary of our results and some technical moti-

vations as well as an outline of the remainder of the manuscript in the next section.

A. Summary and outline

We argue that in the ideal limit the constitutive relations for a theory with 2-group global

symmetry with unbroken zero-form U(1) symmetry, namely 〈Tµν〉, 〈Jµν〉, 〈jµ〉 expressed in terms

of fluid variables, are

〈Tµν〉 = (ε+ p)uµuν + pgµν − µbρbhµhν − κ̂µ2aρb(uµhν + uνhµ) , (1.4a)

〈Jµν〉 = ρb(u
µhν − uνhµ) , (1.4b)

〈jµ〉 = ρau
µ − 2κ̂µaρbh

µ − κ̂〈Jµν〉aν (1.4c)

where uµ plays a role of fluid velocity and hµ is a unit vector pointing the direction of the string-like

charged objects. Both vectors are normalised, uµuµ = −1, hµhµ = 1, and are orthogonal to one

another uµhµ = 0. The chemical potentials µa, µb and the densities ρa, ρb with subscript a, b are

associated to the zero-form and one-form U(1) symmetry respectively. Together with the pressure

p and the energy density ε, they satisfy the following thermodynamic relations

ε+ p = sT + µaρa + µbρb , dp = sdT + ρadµa + ρbdµb . (1.5)

where p = p(T, µa, µb, κ̂) is an equation of state of a generic thermal equilibrium with 2-group global

symmetry. Classically, it is a collections of ‘point particle’ and ‘strings’, respectively charged under

the zero-form and one-form U(1), as illustrated in Figure 1.

One might be alarmed by the explicit dependence of the background gauge field aµ in the

constitutive relation (1.4c) despite the partition function (1.2) being invariant. This is due to the
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FIG. 1: Illustration of ρb strings per unit area pointing along the direction of a spatial unit vector

hµ combined with ρa particle densities. This ensemble arrange itself in such a way that the

2-group Ward identities are satisfied.

non-trivial transformation of bµν under the zero-form U(1) which depends on the field strength

of aµ (see (1.3a)). In fact, one can see that the redefinition of the background gauge field after

variation w.r.t. aµ yield

〈jµ[a]〉 =
δ

δaµ
logZ

∣∣∣∣∣
a6=0

→ 〈jµ[a+ dλ]〉 = 〈jµ[a]〉 − κ̂〈Jµν〉∂νλ . (1.6)

This situation is analogous to the consistent current in anomalous theory [28] (see also [29] for a

recent review). It is therefore convenient to define an analogue of a covariant current as

jµcov = 〈jµ〉+ κ̂〈Jµν〉aν (1.7)

Together 〈Tµν〉, 〈Jµν〉, jµcov satisfy the following Ward identity

∇µ〈Tµν〉 =
1

2
Hν

ρσ〈Jρσ〉+ F νµj
µ
cov , (1.8a)

∇µ〈Jµν〉 = 0 , (1.8b)

∇µjµcov = κ̂〈Jµν〉Fµν . (1.8c)

The Ward identities (1.8a)-(1.8c) and the constitutive relation (1.4a)-(1.4c) can be used to extract

observable effect such as conserved currents correlation functions at finite temperature and spec-

trum of collective excitations. Interestingly, the constitutive relation (1.4a) and (1.4c) indicate

that, even when aµ = 0 and the system in equilibrium configuration (with uµ = (1,0) be the

timelike Killing vector), it acquire finite values of 〈Tµν〉 and 〈jµ〉 at finite chemical potentials due
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to the 2-group structure constant κ̂, namely

〈jµ〉hµ
∣∣∣
a→0

= −2κ̂µaρb , 〈T tν〉hν = −κ̂µ2aρb (1.9)

where hµ is the vector pointed along the direction of the strings (that are counted by
∫
?J).

The equilibrium current is very similar to that arising in anomaly induced transport [30], such as

chiral magnetic/vortical effect discussed in [31–33] (see also [34] for a recent review and source of

references for this extensive literature). The existence of a dissipationless charged current

in equilibrium is somewhat interesting; such phenomena are familiar from e.g. the

quantum hall effect, where one finds a similar current flowing around the edge of

the sample at a finite chemical potential (see e.g. [35] for a recent discussion). We

stress that the microscopic origin of our current is the same as in the regular chiral

magnetic effect: there are charged particles flowing along the magnetic field lines.

However an important difference in the effective theory is that the magnetic field

is not a fixed external source but rather directly the conserved charge J0i that is

associated dynamical 2-form current. Thus the current must appear at the level of

ideal hydrodynamics, and not at first order as in the conventional chiral magnetic

effect. 5

We find two particularly interesting collective modes around the equilibrium configuration with

hµ = δµz. The first one, ω⊥(qz) governed the transverse fluctuations along the direction of the

string

ω⊥ =

− κ̂µ2aρb
ε+ p

±

√
V2A +

(
κ̂µ2aρb
ε+ p

)2
 qz , V2A =

µbρb
ε+ p

(1.10)

where qz is the momentum along the direction of hµ. In the case of κ̂ = 0 and where J ti is

the magnetic flux density, this mode ω⊥ is the Alfvén wave, ω⊥ = ±VAqz, which is a transverse

fluctuations along the magnetic field line. With a finite κ̂ and µa, we can see that the speed of the

‘Alfvén wave’ is skewed depending on whether the wave propagate in the same or opposite direction

of the magnetic flux line i.e. whether J tiki = ±1. The second mode is more complicated but in an

equation of state where ρa, µa vanish in equilibrium but with finite susceptibility χaa = ∂ρa/∂µa,

we find the following mode governs the longitudinal zero-form U(1) current 〈jµ〉hµ

ω‖ = − κ̂ρb
χaa

qz . (1.11)

5 There are other examples in hydrodynamics where the current jµ is misaligned with the fluid

velocity uµ even at ideal order in derivatives: e.g. a (1 + 1)-d fluid with anomalous U(1) symmetry

[35, 36], or a (2 + 1)-d example with mixed anomaly between zero-form U(1) and 1-form U(1) [37].
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Ṫhis mode is absent in the theory where the global symmetry is a simple product between a

zero-form U(1) and a one-form U(1).

We also build a minimal holographic model dual to a QFT with 2-group global symmetry. The

bulk fields are gauge fields Aa,Bab that encode the data of (aµ, 〈jµ〉) and (bµν , 〈Jµν〉 governed by

an action that is invariant under the bulk 2-group gauge transformation:

Sbulk = −
∫
dd+2X

√
−G

(
1

4
FabFab +

1

6
HabcHabc

)
(1.12)

where H = dB − κ̂A ∧ dA is the 2-group field strength. We propose a holographic dictionary as

well as associate the macroscopic degrees of freedom with Wilson lines and surfaces in the bulk,

explaining their transformation properties. We check that this model exhibits the equilibrium

current jµcov = 0 for general density ρa, ρb. The spectrum of the chiral mode at ρa = 0 discussed

above is found in the quasinormal mode of the holographic model, and we confirm that its speed

of sound agrees with the hydrodynamic prediction.

Readers who are familiar with the hydrodynamic description of a theory with an ’t Hooft

anomaly may notice more similarities between those and the above construction, despite the fact

that the latter is anomaly-free. We shall point out a few notable differences below:

• ’t Hooft anomaly induced transport in 2n spacetime dimensions occur at n− 1 order in the

gradient expansion, see e.g. [36]. 2-group can only exist in spacetime dimension larger than

d + 1 = 2 and the new term in the constitutive relation it induced always appear at zeroth

order in the derivative expansion.

• In d+ 1 = 4, one can obtain constitutive relations similar to 2-group by ‘weakly gauged’ one

of the U(1) in the theory with mixed U(1)×U(1) anomalous global symmetry. This can be

done at the cost of the gradient expansion i.e. by promoting the background field strength,

originally treated as the first derivative quantity, to the expectation value, which is a zeroth

derivative quantity6. The procedure presented here requires no such complication; it uses

only general principles of effective field theory, and is applicable when d+ 1 is odd and the

‘ungauged’ anomalous hydrodynamical picture is not available.

The remainder of the paper is dedicated to derivation of the results mentioned above. In section

II, we discuss the thermodynamics of such theories by studying the realization of 2-group global

symmetry on the Eucldiean finite-temperature manifold S1 × R3. In section III, we construct

6 For example, the gradient expansion is discarded outright in [38], and different gradient expansion scheme is applied

for spatial and time derivative in [39].
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the effective action of 2-group ideal hydrodynamics using the modern formalism of [40–43]7. This

includes the discussion of light degrees of freedom in the hydrodynamic effective action, derivation

of the constitutive relations in (1.4a)-(1.4c), thermodynamic relations, correlation functions of

Noether currents and the spectrum of collective excitations. In section IV, we study the holographic

model of (1.12) where we discussed holographic dictionaries for conserved currents and operators

in the EFT of Section III and confirm hydrodynamic prediction of equilibrium current and speed

of sound in (1.9)-(1.11). Open questions and interesting future directions are discussed in Section

V.

There are three appendices. In Appendix A, we show that the the coefficients of new terms in

the constitutive relation, beyond those in hydrodynamic with U(1) zero-form and U(1) one-form

symmetry8, are fixed by 2-group structure constants and thermodynamic quantities by demand-

ing that the entropy production vanished at ideal hydrodynamic level. This is analogous to the

constraints of anomaly induced transport coefficient of [30]. In Appendix B, we show that the

macroscopic modes in MHD effective theory (i.e. those with only U(1) one-form symmetry) is dual

to Wilson surface in the bulk as well as how to extract its transformation properties. Appendix C,

we note some useful formulae that were used to obtain the constitutive relation from the effective

action.

NOTE ADDED: Upon completion of the first version of this manuscript, we became aware of

[50] which discussed details of holographic dictionary used in Section IV as well as generalisation

to higher-group structure beyond 2-group.

II. 2-GROUP BACKGROUND FIELD AND EQUILIBRIUM PARTITION FUNCTION

We will begin by studying aspects of quantum field theories that enjoy a 2-group global symme-

try in thermal equilibrium. As usual, such thermodynamic aspects can be understood by studying

the theory on R3 × S1, where the S1 is the compact Euclidean time direction. It is instructive to

study the decomposition of the various symmetry currents under a this dimensional reduction; we

will show that this permits a simple way to understand the novel terms appearing in (1.4c).

7 See also [44] for review and [45–49] for alternative recent formulation.
8 See e.g. Section V of [4] and Section II.D. of [43] for more details on the constitutive relation and effective action

construction of this theory.
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A. 1-form symmetries in thermal equilibrium

To orient ourselves and develop some machinery, we begin by studying a simpler system: we

first review the description of system with only a single 1-form symmetry in thermal equilibrium,

i.e. a system with the conserved 2-form current

∇µJµν = 0 (2.1)

As described in detail in [4], this is expected to correspond to the universality class of relativis-

tic magnetohydrodynamics. This statement, however requires some refinement; some associated

subtleties have been discussed previously in [5, 6], and we here review some of their arguments in

slightly different language.

Let us denote the compact S1 direction by τ and consider how the current Jµν decomposes in

the dimensionally reduced theory. On R3, we now have a 0-form symmetry U(1)0 with current

J iτ , and a 1-form symmetry U(1)1 with current J ij . Physically, J iτ is the magnetic field 3-vector;

its divergencelessness ∇iJ iτ = 0 is equivalent to the conservation of magnetic flux. εijkJjk is the

electric field three-vector; we will see that (to leading order in derivatives) it vanishes in equilibrium.

To understand the thermodynamics, we now need to understand how the currents J iτ , J ij

are realized in the dimensionally reduced theory. Different choices for the realization of these

symmetries – e.g. spontaneously broken, unbroken, etc. – correspond to different phases of the

plasma. Somewhat counter-intuitively, U(1)0 is actually spontaneously broken in the “normal

phase”, i.e. the phase corresponding to a usual finite-temperature plasma, as previously argued in

slightly different language in [5, 6].

One way to understand this is to note that the assertion that J iτ is spontaneously broken is

equivalent to the usual statement that the magnetic field in a deconfined plasma is ”unscreened”. To

see this more explicitly, consider inserting two static probe magnetic monopoles into the plasma,

separated by a distance L. As the magnetic field is unscreened, the magnetic field essentially

behaves as though as it is in vacuum, and the two monopoles should experience an interaction

potential obeying the usual Coulomb law L−1. The field that mediates this power-law interaction

must therefore be gapless in the R3 directions. This field is in fact the Goldstone mode associated

with the spontaneous breaking of J iτ . 9

9 As an aside, this can also be understood perturbatively from a microscopic description; consider studying 4d

Maxwell EM coupled to electrically charged matter on S1 ×R3. Integrating out the matter, one finds an effective

action for the gauge field of the form

S =

∫
d3x

(
fijf

ij + (∂iaτ )2 +m2
D cos(qeaτ ) + · · ·

)
(2.2)

The 3d photon remains massless, while the time component of the photon picks up a mass due to the coupling

to charged particles moving around the Euclidean time circle. mD can be understod as the Debye mass. The

Goldstone mode ψ is the magnetic dual of the 3d photon.
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With this understood, we may now write down an effective action for our system on S1 × R3.

Let us denote by ψ the Goldstone mode for the spontaneously broken symmetry above; then under

a τ -independent 1-form symmetry transformation by Λµ(xi) in the original theory, we have

ψ → ψ + Λτ (xi) (2.3)

Suppose we now insert a probe magnetic monopole whose worldline wraps the τ direction, it

couples to ψ as exp
(
iqmψ(xi)

)
, which can be thought of as a vertex operator in the dimensionally

reduced theory. Indeed this operator transforms by a phase under (2.3), and so is charged under

J iτ . ψ will now mediate the long-range Coulomb interaction between two such monopoles. In other

words, there is a non-vanishing monopole-monopole correlation function at large spatial separation〈
exp

(
− iqmψ(xi)

)
exp

(
iqmψ(yi)

)〉
6= 0 . (2.4)

Of course this non-vanishing order parameter implies the presence of a spontaneously broken sym-

metry, and is crucial for construcing the effective action. A similar symmetry will play an important

role in the 2-group case discussed in the next section.

To write down a Euclidean effective action consistent with the above symmetries, let us define

the source for U(1)0 to be

bi ≡
1

2
(biτ − bτi) (2.5)

We see that the combination ∂iψ− bi is an invariant 3-vector. To match with usual hydrodynamic

notation, we should denote its norm and direction by µb and hi:

µ2b = (∂iψ − bi)2 hi = µ−1b (∂iψ − bi) . (2.6)

As usual in hydrodynamics, µ is taken to be zeroth order in derivatives. We can now construct the

following thermal effective action on R3 × S1:

W [b;ψ] =

∫
d3x p(µb, β) (2.7)

where p is an unconstrained function of two variables. The partition function in thermal equilibrium

is Z[b] =
∫

[Dψ] exp (W [b;ψ]).

One can show, using the above action that the equal-time correlation function of exp(iψ) at

two spatially separated points exhibit long-ranged order. Now, taking functional derivatives of W

we can now obtain the form of the 2-form current in equilibrium:

J iτ =
δW

δbi
=

∂p

∂µb
hi (2.8)
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This is the usual expression for the magnetic flux in relativistic magnetohydrodynamics, here ob-

tained from an action principle. Note that – unlike in conventional hydrodynamics – this Euclidean

action has a single gapless (in the R3 directions) degree of freedom ψ whose equation of motion we

must impose; this equation of motion is simply the conservation of magnetic flux:

∇iJ iτ = 0 (2.9)

If we write the action above in a generally covariant form it is also straightforward to derive

the expression for the stress tensor Tµν ; we do not do so here as we will obtain it from a more

sophisticated action principle in Section III. More details concerning how this light field ψ is

connected to those discussed in [5, 6, 43] and how it is encoded in the holographic dual can be

found in Appendix B10

One could also imagine a phase where U(1)0 is unbroken; this corresponds to the superconducting

or Higgs phase in thermal equilibrium. There magnetic flux is confined, and so the correlation

function of the vertex operators above in (2.4) should decay exponentially with separation in the

R3 directions. Within the hydro description this simply means that the correlator vanishes. We

do not discuss this phase any further in this work.

B. 2-group global symmetries in thermal equilibrium

We now repeat the earlier analysis for the theory with a 2-group global symmetry where we

have both a 0-form symmetry with current jµ and a 1-form symmetry with current Jµν . We now

study how all of these symmetry currents decompose if we write the theory on S1 × R3. We will

denote these currents and their corresponding symmetries by:

J iτ U(1)B0 (2.10)

J ij U(1)B1 (2.11)

ji U(1)A0 (2.12)

jτ U(1)A−1 (2.13)

Note that from the point of view of the dimensionally reduced theory, jτ can be formally thought

of as a “-1-form” current. This is a somewhat formal statement: after all, the “current” for a

10 Note that here we are studying only equilibrium states. If we were studying instead real-time evolution, (the

analogue of) ψ has no dynamics, (see Section B), and it does not introduce new light degrees of freedom in the

familiar MHD equations.
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-1-form symmetry does not obey a conservation law (though its charge does obey a quantization

condition:
∫
d3xjτ = Z), but we will see the utility of thinking in this formal manner later.

Recall now that the external source for the original 0-form current was aµ. It is now helpful to

define:

βµa ≡
∫
τ
aτ (2.14)

as the gauge-invariant Wilson loop of the source around the τ direction. Note that formally, this

is the “source for the −1-form current”.

It is also helpful to record how the sources change under a τ -independent 1-form and 0-form

transformation, which follow directly from the dimensional reduction of the corresponding 4d

expressions.

U(1)B0 : biτ → biτ + ∂iΛτ (2.15)

U(1)B1 : bij → bij + ∂iΛj − ∂jΛi (2.16)

U(1)A0 : ai → ai + ∂iλ bij → bij + κFijλ biτ → biτ + κ∂iµaλ (2.17)

The expressions for the currents in terms of the functional derivatives is:

J iτ =
δW

δbi
J ij =

δW

δbij
jτ =

δW

δµa
ji =

δW

δai
(2.18)

The current ji now enjoys an interesting non-conservation law:

∇ijicons = κ∇iµaJ iτ +
κ

2
FijJ

ij (2.19)

This is a combination of a (3d) 2-group together with a new structure which one is tempted to

call a 1-group, as it involves the (gradient of the) source for a -1-form symmetry together with the

current for a 0-form symmetry:

We would now like to write down a theory that is as simple as possible of a generalization of

that discussed in the previous subsection, i.e. that it permits an adjustable finite density of 1-form

charge. For this to happen we require the existence of an invariant chemical potential µb for the

1-form charge. Note however that the previous definition of µb in (2.6) is no longer invariant under

the extended transformation (2.15) to (2.17).

The simplest generalization is to consider a symmetry breaking pattern that breaks U(1)B0 ×

U(1)A0 down to a diagonal subgroup, where the precise embedding of this subgroup depends on the

value of µa; i.e. we postulate the existence of a field ψ that transforms as:

ψ → ψ + Λτ (xi) + κ̂µaλ(xi) (2.20)
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With this choice, it is now possible to write down a 3-vector

∂iψ − bi − κ̂µaai (2.21)

that is invariant under (2.15) to (2.17). Following (2.6) we may now define a 1-form chemical

potential and field direction vector:

µ2b = (∂iψ − bi − κµaai)2 hi = µ−1b (∂iψ − bi − κµaai) . (2.22)

We believe that the choice of symmetry breaking pattern (2.20) is the simplest choice that still

allows the construction of an invariant chemical potential. We can now use these invariants to

write down the 2-group generalization of (2.7):

W [a, b] =

∫
d3x p(µa, µb, β) (2.23)

From this action, one can show that the long-ranged interaction between the probe monopole in

this theory remains unscreened as the correlators (2.4) is nonzero. One may now take functional

derivatives to construct the consistent currents (from the zeroth order terms in the action):

J iτ =
∂p

∂µb
hi (2.24)

jτ =
∂p

∂µa
+ κaiJ

iτ (2.25)

ji = κµaJ
iτ (2.26)

This is precisely the structure of currents described in (1.4c); we see that the interesting phe-

nomenon of a persistent current in the direction of the magnetic field follows directly from the

invariance under the 2-group global symmetry.

We have now succeeded in deriving the structure of equilibrium currents from a generating

functional. It is straightforward to formulate the theory above in a generally covariant manner and

thereby construct the stress tensor as well; the Ward identities then provide the required equations

of motion and the full structure of hydrodynamics.

However, we now instead discuss how to obtain a dynamical hydrodynamic theory directly from

an action principle, where the hydrodynamic equations of motion arise from demanding that an

action is stationary.

III. HYDRODYNAMIC EFFECTIVE ACTION

The effective action for a non-dissipative hydrodynamic theory can be obtained by writing the

partition function as a path integral over light degrees of freedom {Xµ, ϕµ, φ} with the effective



15

action W

Z[gµν , aµν , bµν ] =

∫
D[X]D[ϕ]D[φ] exp

(
i

~
W [gµν , bµν , aµ, X

µ, ϕµ, φ]

)
, (3.1)

Here “~” controls the strength of fluctuations, both thermal and quantum; we will focus on the

case where ~ is small and employ the saddle point approximation. All of these degrees of freedom

depends on the spacetime xµ implicitly through an auxilliary space σA(xµ) = (σ0, σi), where one

can think of σi(xµ) as a labeling each infinitesimal fluid elements as it moves through the spacetime

and σ0 denoting the internal clock of these elements, see e.g. [44] for a review. The first variable

Xµ(σ) is a dynamical field which describes the motion of a fluid element labelled by σA. The

field ϕµ(σ(x)) and φ(σ(x)) can formally be thought of as Stueckelberg fields of the one-form and

zero-form U(1) symmetry. Upon the background field transformation

aµ → aµ + ∂µλ , bµν → bµν + κ̂Fµνλ+ 2∂[µΛν], (3.2)

the Stueckelberg fields {φ, ϕµ} simultaneously transform as

φ→ φ− λ, ϕµ → ϕµ − Λµ . (3.3)

Intuitively, one may think of φ(σ0, σi) as a phase of the fluid element labeled by σi at the internal

time σ0. Similarly, the integral
∫
dxµϕµ should be thought of as a phase associated to a dynamical

magnetic flux line.

To connect these degrees of freedom to those that appears in the equilibrium partition function

construction, one can set Xt = σ0 = t and Xi = σi = xi and analytically continue t to the

Euclidean time τ . In configuration where nothing depends on τ , the field ψ introduced in section

II B is straightforwardly related to the Stueckelberg fields φ, ϕµ. Using the transformation of ψ

under the 2-group background field redefinition in (2.20), it can be expressed in terms of the

Stueckelberg fields as:

ψ = −ϕτ − κ̂µaφ . (3.4)

In this section however we will work directly with φ and ϕ, which are more suited to the construction

of the hydrodynamic effective action.

Let us review a few more advantages of choosing {Xµ, ϕ, φ} as the hydrodynamic degrees of

freedom. To construct a theory invariant under the background field transformation (3.2), we

demand that the action W depends only on the the combinations of g, a, b and Stueckelberg fields
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through the following combinations

GAB = gµν
∂Xµ

∂σA
∂Xν

∂σB
, (3.5a)

AA =
∂Xµ

∂σA
(aµ + ∂µφ) , (3.5b)

BAB =
∂Xµ

∂σA
∂Xν

∂σB
(
bµν + 2∂[µϕν] + κ̂(da)µνφ

)
. (3.5c)

By construction {G,A,B} are invariant under the diffeomorphism of gµν and background gauge

transformation of aµ and bµν . Thus the effective action W [G,A,B] is guaranteed to be invariant.

In addition, the transformation of the Stueckelberg field implies that the Euler Lagrange equation

of Xµ, φ and ϕµ are nothing but the conservation of energy-momentum, one-form current jµ and

two-form current Jµν .

∂µ〈Tµν〉 =
1

2
Hν

ρσ〈Jρσ〉+ F νρ
(
〈jρ〉+ κ̂〈Jρσ〉aσ

)
, (3.6a)

∂µ〈jµ〉 = κ̂Fµν〈Jµν〉 , (3.6b)

∂µ〈Jµν〉 = 0 . (3.6c)

where H = db−κ̂a∧da is an invariant field strength. These Ward identities arise from the symmetry

transformation (1.3). As before, the explicit appearance of the background gauge field might seem

alarming but this is purely kinematic and arises from the fact that 〈jµ〉 also transformed under

a→ a+ dλ according to (1.6).

We further assume that the generating function admitted a gradient expansions in terms of the

local variables namely

W =

∫
dd+1x

√
−g

(
p(G,A,B) +O(∂)

)
(3.7)

where p is a local scalar that depends on {GAB, AA, BAB}.

Note, however, that not all components of GAB, AA and BAB can enter the effective action.

This is because the action is also required to be invariant with respect to the internal symmetry of

the world sheet σA and the Stueckelberg fields φ, ϕµ. These internal symmetries determined the

phase of the hydrodynamical system that the above effective action realised; see e.g. [51–53]. We

shall discussed the physical meaning of these internal symmetry and its consequences in Section

III A.



17

A. Internal symmetries of Stueckelberg fields

In this section, we discuss the internal symmetry of the fluid with 2-group global symmetry,

which forbid certain components of GAB, AA, BAB that enters the effective action. As a result

of this procedure, one will be able to related components of these quantities to more familiar

hydrodynamics variables such as temperature, chemical potential, fluid velocity etc. (1.4a)-(1.4c).

Moreover, we will show, in Section IV how to derive the transformation generated by these internal

symmetries from holographic dual description.

One demands the following internal symmetry of the world volume coordinate σA

(i) Spatial relabeling where one can choose to “rename” the infinitesimal fluid elements σi at a

specific time σ0 = constant by the different label σ′i. This gives

σi → σ′i(σj) (3.8a)

(ii) Time-shift where one allows to choose the initial time for each fluid elements σi. This

symmetry is manifested as

σ0 → σ0 + f(σi) (3.8b)

These world volume symmetries can be thought of as the defining properties of a fluid11. Demanding

that the effective Lagrangian to be invariant(3.8) restricts the components of Gab it can depends

on. We can see that G0i and Gij are not invariant under the spatial relabeling (3.8a). The only

allowed component is therefore G00, which defines the temperature in the following way

G00 = gµν
∂Xµ

∂σ0
∂Xν

∂σ0
≡ − 1

T 2
. (3.9)

One can view this quantity as a norm for a vector ∂Xµ/∂σ0, where the latter is also invariant

under internal symmetries of σA. We can then use it to define a unit vector which play the role of

the fluid velocity as

∂Xµ

∂σ0
=
uµ

T
, uµuµ = −1 . (3.10)

The next requirement came from the fact that demand that theory has an unbroken zero-form

U(1) symmetry. This means that we require the correlation function of two point-like operators

11 In the construction of [45], the effective action is formulated with the choice of σ0 chosen to be σ0 = X0. See also

discussion in section V.D. of [40].
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charged under the zero-form U(1) to decay exponentially, i.e. have vanishing correlation function

at large distance. For the effective action written in Eq.(3.7), these operators are vertex operators

defined as

V (x) = exp(−iφ(x)) , V †(x) = exp(iφ(x)) (3.11)

A way to demand that equal-time correlation function of these charge operators vanished is to

demand that the theory is invariant under the following transformation

(iii) Zero-form shift where we have a freedom to arbitrarily assign the phase φ at initial time σ0.

φ→ φ+ c(σi) (3.12)

which guaranteed that 〈V †(t, xi)V (t, yi)〉 = 0 otherwise it will become multi-valued. 12 This

symmetry is the well-known chemical shift; if we do not impose this, we find instead the

effective theory of a superfluid, see e.g. [45, 54]. In addition, we also demand that the field

ϕA = (∂Xµ/∂σA)ϕµ transformed under this shift symmetry as

ϕA → ϕA − κ̂ c(σi)AA (3.13)

whose meaning will be elaborated below.

The only component of AA invariant under (3.12) is A0, which gives us the zero-form chemical

potential

A0 =
∂Xµ

∂σ0
(aµ + ∂µφ) =

µa
T

(3.14)

Lastly, we impose a shift symmetry for the one-form Stueckelberg field ϕµ that is known to

produce the correct hydrodynamic description of a magnetohydrodynamics [43].

(iv) One-form shift where ϕµ transforms as:

ϕ0 :=
∂Xµ

∂σ0
ϕµ → ϕ0 , ϕi :=

∂Xµ

∂σi
ϕµ → ϕi + Ci(σ

j) (3.15)

Intuitively, this symmetry force the correlation function of a closed spatial t’Hooft line

W (γ) = P exp
(
i
∫
γ dσ

iϕi

)
to vanish; this is expected in the normal phase of a plasma.

12 More precisely, this correlator decays exponentially in a theory with unbroken zero-form U(1), and is only zero at

scales longer than a microscopic correlation length which is taken to be arbitrarily small in the hydro limit.
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We can demand the invariance under (3.15) to show that only B0i component is invariant. Note

however, that B0i is not invariant under (3.13) as it transformed as

B0i → B0i + κ̂(∂ic)A0

Nevertheless, one can combine a vector B0i with the product of A0Ai to make an invariant combi-

nations analogous to the construction of effective action for anomalous hydrodynamics[35, 55, 56].

This allows us to define the one-form chemical potential as

µbhi
T

= B0i − κ̂A0Ai

which can be converted from the labeling space {σ0, σi} to a physical spacetime xµ as

µbhµ = uνBνµ − κ̂µaA⊥µ , A⊥µ = ∆ ν
µ (aν + ∂νφ) (3.16)

with ∆µν = gµν + uµuν . Here, we define hµ to be a unit vector, hµhµ = 1 such that a scalar

quantity can be constructed via µb =
√
gµν(µbhµ)(µbhν).

Let us further elaborate on the zero-form shift of ϕµ in (3.13). This can be understood as

a covariant version of the transformation of ψ postulated in the KK reduced theory of Section

II, using the relations between ψ and ϕµ, φ alluded to in (3.4). One may also consider the the

equilibrium configuration where nothing depends on τ ∼ σ0 and uµ = δµτ , to show that the

definition of µb in (3.16), required by the one-form shift (3.13), is equivalent to those obtained in

equilibrium partition function analysis in Eq. (2.22).

All in all, the effective Lagrangian after imposing the internal symmetry at zeroth derivative

level can be written as

L = p(G00, A0, B0i − κ̂A0Ai) = p(T, µa, µb) . (3.17)

Upon variation w.r.t. to the background fields, one obtain the one-point function of the Noether

currents, namely

〈Tµν〉 =
2√
−g

δW

δgµν
, 〈Jµν〉 =

2√
−g

δW

δbµν
〈jµ〉 =

1√
−g

δW

δaµ
. (3.18)

With some algebraic manipulation, one obtain the constitutive relation in (1.4a)-(1.4c). Some

useful formulae aiding derivation of this result can be found in appendix C

B. Retarded 2-point functions and hydrodynamic modes

In this section, we point of a few retarded correlation functions which encodes interesting hy-

drodynamic modes. In general, the retarded correlators can be obtained by varying the generating
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one-point function w.r.t. the background fields in the following way (see e.g. [57] for a review)

δ
(√
−g〈Tµν(x)〉

)
= −

∫
dd+1y

[
1

2
Gµν,ρσTT (x, y)δgρσ(y) +

1

2
Gµν,ρσTJ (x, y)δbρσ(y) +Gµν,αTj (x, y)δaα(y)

]
,

δ
(√
−g〈Jµν(x)〉

)
= −

∫
dd+1y

[
1

2
Gµν,ρσJT (x, y)δgρσ(y) +

1

2
Gµν,ρσJJ (x, y)δbρσ(y) +Gµν,αJj (x, y)δaα(y)

]
,

δ
(√
−g〈jµ(x)〉

)
= −

∫
dd+1y

[
1

2
Gµ,ρσjT (x, y)δgρσ(y) +

1

2
Gµ,ρσjJ (x, y)δbρσ(y) +Gµ,αjj (x, y)δaα(y)

]

with GXY (x, y) denotes retarded correlation functions of operators X(x) and Y (y) and δ(
√
−gX)

on the l.h.s. means the difference between one-point function with and without background fields

perturbations. Operationally, it is amount to solving the perturbed thermodynamic quantities

e.g. {δT, δµa, δµb} and the {δuµ, δhµ} in terms of {δg, δb, δa}, plug it back into the constitutive

relations and then take the variational derivative with the appropriate background fields.

We focus on the response function of the equilibrium configuration with the string-like objects

are aligned parallel to the z−direction i.e. 〈J tz〉 = ρb for simplicity. The clearest signature of

2-group occur in the (Fourier transformed) correlators GXY (ω,q) with qx = qy = 0 so we will

restrict our presentation to this configuration as well.

There are two decoupled fluctuations channel: those that are transverse and perpendicular to

q. The fluctuations in the transverse channel is simple, as it only involves fluctuations of δu⊥, δh⊥

with ⊥= x, y in our setup. The resulting retarded correlation functions are

G t⊥,t⊥
TT (ω, qz) =

1

P⊥(ω, qz)

[
(ωε+ κ̂µ2aρbqz)

2 + p(ω2ε+ µbρbq
2
z)
]
,

G t⊥,t⊥
TJ (w, qz) = − ρbqz

P⊥(ω, qz)

[
ω(ε+ p) + κ̂µ2aρbqz

]
,

G t⊥,t⊥
JJ (ω, qz) = − (ρbqz)

2

P⊥(ω, qz)
.

(3.19)

with P⊥(ω, qz) is the polynomial encoding the collective modes responsible for transporting the

transverse momentum T t⊥ and transverse fluctuation of the string J t⊥. Its explicit form is

P⊥(ω, qz) = (ε+ p)ω2 + 2κ̂µ2aρbωqz − µbρbq2z (3.20)

which resulting in the following spectrum

ω⊥ =

− κ̂µ2aρb
ε+ p

±

√
V2A +

(
κ̂µ2aρb
ε+ p

)2
 qz , V2A =

µbρb
ε+ p

(3.21)

The longitudinal fluctuations is more complicated. There are three independent variables one

needed to solved namely {δT, δµa, δuz} and the pole of the retarded correlators is governed by
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a cubic equation in ω for a generic equations of states13. To get better understanding, and to

disentangle the effect of nonzero 2-group structure constant κ̂, one can study the limit of zero

charge density and chemical potential. This amounts to setting ρa = 0, µa = 0 in equilibrium and

write the fluctuation of density as δρa = χaaδµa where χaa is the (zero-form) charge susceptibility.

In this limit, the zero-form charge fluctuations decouple from the momentum and energy and the

resulting correlation functions involving jµ are

G t,t
jj (ω, qz) = − 2κ̂ρbqz

ω + (2κ̂ρb/χaa)qz
, G z,z

jj (ω, qz) =
(2κ̂ρb)

2ω

χaa(ω + (2κ̂ρb/χaa)qz)
,

G t,z
jj (ω, qz) = G z,t

jj (ω, qz) = − κ̂ρb(ωχaa − 2κ̂ρbqz)

ωχaa + 2κ̂ρbqz

(3.22)

where one find a chiral propagating mode with the spectrum governing the poles

ω = −2κ̂ρb
χaa

qz . (3.23)

These are the same correlation functions and modes one finds in the charge fluctuations of an ideal

fluid with chiral anomaly in 1+1 dimensions14 (for example at the edge of of quantum hall systems)

with anomaly coefficients replaced by κ̂ρb. This is not surprising since 2-group theory reduced on

spatial T d−1 orthogonal to the strings has the same anomalous Ward identity as the d + 1 = 2

chiral fermion [19]. The computation for Gµ,ν
jj (ω, qz) can be done easily in the holographic context

and we confirm the existence of these chiral sound mode as well as hydrodynamic prediction of the

chiral propagating mode (3.23) in Section IV.

IV. MINIMALIST’ HOLOGRAPHIC DUAL

In this section we study a simple holographic dual of a theory with 2-group global symmetry.

This theory was first discussed in [19]. The dynamical bulk fields are a one-form Aa(X) and

Bab(X), where Xa = {xµ, r} is the bulk coordinate.

The bulk action is:

Sbulk = −
∫
dd+2X

√
−G

(
1

4
FabFab +

1

6
HabcHabc

)
where H = dB−κ̂A∧dA. The transformation of these bulk fields under the 2-group symmetry is as

in (1.3) but with the transformation parameters {λ(xµ, r),Λa(x
µ, r)} depending on the holographic

coordinates. As usual in holography, we identify two fields at the boundary to be the source aµ, bµν

Aµ(r →∞) = aµ , Bµν(r →∞) ∼ bµν (4.1)

13 In the case where κ̂ = 0 or ρb = 0, one of the root of such equation is ω = 0 and the others two are typical sound

modes ω ∝ ±qz. This spectrum is the same as in fluid with finite ordinary U(1) charge density.
14 See e.g. [35] for a nice recent discussion of this kind of transport.
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Some relevant details on how to perform holographic renormalisation involving the 3-form field

strength for action of this type can be found in [58–60]; it requires a double trace-type deformation

at the boundary.

We now construct the holographic dictionary. The one-point function can be found by varying

the action with respect to aµ, bµν at the boundary, resulting in

〈jµ〉 = −
√
−G (Frµ + 2κ̂HrµνAν)

∣∣∣
r→∞

= −
√
−GFrµ(r →∞) + κ̂Jµνaν ,

〈Jµν〉 = −2
√
−GHrµν

∣∣∣
r→∞

(4.2)

This implies that the field strength alone is the covariant current, defined in (1.7),

jµcov = −
√
−GFrµ(r →∞) (4.3)

Note also that the r−component for the equations of motion for the gauge field Aabecomes the

Ward identity of the convariant current at the boundary i.e.

∇aFab = −κ̂(2Hbac)Fac ⇒ ∂µ〈jµcov〉 = κ̂〈Jµν〉(da)µν (4.4)

The purpose of this section is two fold. First, we perform a conceptual exercise: we show how

the macroscopic degrees of freedom φ, ϕµ discussed in Section III are encoded in this holographic

model. Moreover, we argue that the action has to depend on the combination Aµ, Bµν in (3.5), and

thus that one can derive from holography the somewhat peculiar structure of the chemical shift

symmetry in (3.12)-(3.13) and (3.15). (The deconstruction of GAB from holography at ideal limit

can be found in [61] and we will not focus on it in this section.)

Second, we perform a more conventional holographic calculation to verify some predictions of

our hydrodynamic theory: we show that this model exhibits the equilibrium current along the

magnetic field line in (1.9) and a chiral propagating mode in (1.11).

A. Holographic deconstruction of 2-group gauge theory

The structure of effective action can be obtained by keeping track of the radial components

Ar,Bµr. More precisely, the low energy hydrodynamic fields φ and ϕµ are related to the following

bulk line operators:

φ(xµ) =

∫ ∞
rh

dr′Ar , ϕµ(xµ) =

∫ ∞
rh

dr′ (Brµ − φFrµ) (4.5)

where we see that they transform as a Stueckelberg field of zero-form and one-form parts of the

2-group in (3.2)-(3.3) if we perform the large bulk gauge transformation with parameters λ(r, xµ)
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and Λa = (Λµ(r, xν), 0)) such that∫ ∞
rh

dr′∂r′λ(r′, xµ) = λ(∞, xµ) ,

∫ ∞
rh

dr′∂r′Λµ(r′, xν) = Λµ(∞, xν) (4.6)

This connection between the bulk Wilson line to the operator in hydrodynamic effective action

was explored in [62]. More systematic ways of extracting the action of real-time dynamics at finite

temperature (see e.g. [63, 64]) get further developed in [65, 66].

One could use presumably use this formalism to derive the full effective action; we will not do

this, and instead will just use it to show that the dual theory must only depends on combinations of

φ, ϕµ and Aµ,Bµν at r →∞ presented in Section III. More precisely, the invariance of the effective

action, W , under the gauge transformation implies that it can only depends on the combination

AA, BAB in (3.5). Further demanding that the correlation functions of φ, ϕµ to be independent

under a particular set of residual gauge transformation imposes the “chemical shift” symmetries

and further restricts W =
∫
dd+1x

√
−g p to those in (3.17).

This parallel between procedures in the hydrodynamic effective action construction and what

happens in the bulk 2-group gauge theory is illustrated in Figure 2.

To start with, the holographic action (1.12) is gauge invariant. Thus, we can choose a gauge such

that the structures in (3.5) is manifested. This procedure is well-understood for the holographic

dual of zero-form U(1) [65]; here we generalize it slightly to the 1-form case and for the 2-group

structure. First, we pick the gauge choice such that Aa → A(1)
a with A(1)

r = 0. This gives

A(1)
µ (r, xν) = Aµ(r, xν) + ∂µφ(r, xν) , φ(r, xµ) =

∫ ∞
r

dr′Ar(r, xµ) (4.7)

The bulk 2-form gauge field becomes

B(1)µν (r, xλ) = Bµν(r, xλ) + κ̂φ(r, xλ)Fµν(r, xλ) ,

B(1)rµ (r, xµ) = Brµ + κ̂φFrµ(r, xν)
(4.8)

Next, we perform the one-form U(1) gauge transformation to impose the radial gauge B(1)ab → B
(2)
ab

with B(2)rµ = 0. This can be done via choosing the transformation parameter Λa = (ϕµ(r, xν), 0)

such that

B(2)µν (r, xλ) = B(r, xµ) + κ̂φ(r, xλ)Fµν(r, xλ) + 2∂[µϕν](r, x
λ) (4.9)

with

ϕµ(r, xν) = −
∫ ∞
r

(
Brµ(r, xν) + φFrµ(r, xν)

)
(4.10)
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FIG. 2: Summary of the procedure which reduced the dependence of bulk fields Aa,Bab to

thermodynamic quantities {µa, µbhi}. From left to right, we list all the bulk fields and the

Stueckelberg fields in the dual QFT. Upon imposing the radial gauge, the bulk theory can only

depends on A(2)
µ ,B(2)µν in (4.7),(4.10) dual to Aµ, Bµν in (3.5). Lastly, we identify the residual

gauge transformation as the shift symmetry in (3.12)-(3.13) and (3.15). Requiring that the

physical quantities is independent of the residual gauge transformation, we conclude that the

effective action of the dual QFT can only depends on µa and µbhµ in (3.14) and (3.16).

whereas A(2)
a = A(1)

a . Near the boundary r →∞ the bulk operators in (4.7) and (4.10) becomes the

operator in the dual EFT action defined in (4.5). Note that the sequence of the gauge choice applied

above is chosen since, if one were to fix Brµ = 0 first, the zero-form U(1) gauge transformation

does not preserve the radial gauge for B. The onshell holographic action thus only depends on the

near boundary values of the radial gauge bulk fields A(2)
µ ,B(2)µν which becomes Aµ, Bµν in (3.5) that

enter the effective action.

Next, we shall elaborate on the residual gauge transformation and its connection to the chemical

shift. Let us first focus on A(2)
µ and consider such transformation which preserve the radial gauge

and regularity in the euclidean bulk geometry, namely

A(2)
r (r, xµ) = 0 , A(2)

τ (rh, x
µ) = 0 (4.11)

The residual zero-form gauge transformation that preserve these two conditions is a generated by

a shift in φ by a parameter c = c(xi) via

φ→ φ+ c(xi) .
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This is precisely the zero-form shift introduce in (3.12). The only zeroth derivative quantity

invariant under the above transformation is A(2)
τ evaluated at the boundary r → ∞. This is the

candidate for the chemical potential µa defined in (3.14).

Let us now turn our attentention to the components of B(2)µν . We first look for the residual

one-form U(1) gauge transformation that preserved the radial gauge B(2)rµ = 0 and the regularity

B(2)τi (rh) = 0. This is transformation is the same as the one-form shift in (3.15):

ϕ0 → ϕ0 , ϕi → ϕi + Ci(x
j) .

This implies that only B(2)τi (r → ∞) will enters the dual QFT’s effective action. This constraint

occurs even in the normal MHD case when κ̂ = 0; see Appendix B for more details.

However, for non-zero κ̂ this is not the end of the story. Under the zero-form residual gauge

transformation, we can see that the field ϕµ transformed as in (3.13)

ϕµ → ϕµ − κ̂A(2)
µ c(xi) (4.12)

by using the definition of the ϕµ in Eq. (4.5). While the zero-form shift for ϕµ and φ preserve

radial gauge condition B(2)rµ = 0 for all r, we can see that the thermodynamic data cannot solely

depends on Bτi as the latter is not invariant under the residual gauge transformation. The only

invariant candidate for the one-form chemical potential is therefore

B(2)τi (r, xµ) + κ̂A(2)
τ (r, xµ)A(2)

i (r, xµ) (4.13)

which, at the boundary, this combination is precisely the definition of the one-form chemical

potential in (3.16). To conclude, we find the dual of the Stueckelberg fields as well as their

transformation properties in accordance with those postulated in Section III A. Demanding that

the resulting on-shell gravity action at zeroth order in the derivative expansion is gauge invariant,

it can only depends on the thermodynamic data µa, µb, defined in (3.14) and (3.16) respectively.

We should point out that in the above analysis of the residual gauge transformation, we imagined

a bulk Euclidean geometry. It is sufficient to analytically continued the Euclidean time τ to the

Lorentzian time t and the equilibrium one-point function 〈Tµν〉, 〈Jµν〉, 〈jµ〉 becomes those of ideal

hydrodynamics. Nevertheless, one also reach the same conclusion by considering bulk dual of the

thermal state real-time dynamics, such as those in [63]. This geometry is constructed by sewing

together one Euclidean and two Lorentzian bulk in such a way that it corresponds to the Schwinger-

Keldysh time contour, see Figure 3. The continuity condition Aτ = At at the point where the

Euclidean and Lorentzian pieces are glued together allows us to extend regularity condition to
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the real-time evolution of At. These computation can be carry out in the same way as those

demonstrated for a holographic dual of the zero-form U(1) in [66] and it does not change our

conclusion at zeroth derivative level.

FIG. 3: Illustration of the Schwinger-Keldysh time contour for real-time evolution of the thermal

state and its corresponding geometry constructing with the procedure in [63, 64], see also [66] for

more explicit computations. The bulk geometry is obtained by sewing the two Lorentzian AdS

spaces at tL = tR = 0 with the Euclidean AdS at τ = 0 and τ = β along the dashed line and at

tR = −tL =∞. This way, the time evolution of the boundary of the space on the right

corresponds to the time contour on the left.

B. Equilibrium current and chiral sound modes from holography

After a less conventional analysis in the previous section, here we perform standard holographic

computations for current one-point and two-point function. We then show that the holographic

model exhibit equilibrium currents along the strings’ direction as well as propagating chiral mode

as promised in Section I A.

Before diving into the computation, let us summarise our setup and stating the results. To

simplify the computations, we focus on the ‘probe limit’ where the metric fluctuations are decoupled

from of the gauge fields A,B and the geometry is fixed as AdS5 Schwarzschild. This corresponds

to the scenario where T and uµ = (1,0) is fixed in the hydrodynamic description. The necessary

computation is amount to solve for the profile of the following perturbed gauge fields ansatz

A = Āt(r)dt+ Āz(r)dz + δAa(t, z, r)dXa ,

B = B̄(r)dt ∧ dz + δBab(t, z, r)dXa ∧ dXb ,
(4.14)
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on top of the fixed background geometry ds2 = r2(−dt2 + dxidx
i) + dr2/(r2f) with f = 1− r4h/r4.

As usual, this probe limit where we neglect the backreaction of the gauge fields on

the geometry corresponds to the hydrodynamic limit where T � µi, µ so that the

charge sector’s contribution to the free energy is subleading compared to that of

other uncharged degrees of freedom. This limit can also be systematically achieved

by demanding that the gauge field sector of the action in (4.1) is suppressed by a small

parameter (e.g. Nf/Nc in the study of probe branes) when added to the Einstein-

Hilbert action. This probe limit does not allow us to study 2-group hydrodynamics

in the most general equations of state, but will nevertheless highlight the physics of

interest. It would be interesting to study the situation including backreaction: this

will likely require numerics already at the level of the background, as in [67].

Here, the time-dependent part of B indicates that the strings in equilibrium configurations is

aligned along z−direction as in Section III B. We find that the equilibrium 1-point function of the

covariant current can be obtained by solving for Āt(r), Āz(r) which results in

jtcov = χaa(ρb, T )µa , jzcov = −2κ̂ρbµa (4.15)

where χa(ρb, T ) can be thought of as charge susceptibility. Its explicit form in AdS5 geometry can

be written as

χaa
2(πT )2

=
2Γ
(
5
4 −

1
4

√
1− (2K)2

)
Γ
(
5
4 + 1

4

√
1− (2K)2

)
Γ
(
3
4 −

1
4

√
1− (2K)2

)
Γ
(
3
4 + 1

4

√
1− (2K)2

) (4.16)

with the dimensionless parameter K := κ̂ρb/r
2
h with the Hawking temperature T = rh/π.

As for the spectrum of fluctuations, we solve for δAa, δBab. We expect from the hydrodynamic

prediction that the chiral propagating mode has speed

cs =
2κ̂ρb
χaa

=
K

χaa/
(

2(πT )2
) (4.17)

To see the mode with this property, we extract the quasinormal mode of the holographic using

standard method, such as those in [68]. We find that the quasinormal mode close to the origin in

the complex ω plane is described by

ω = −csqz − iΓs(qz)2 (4.18)

where the location of the pole in complex ω plane as well as the comparison between numerically

extracted dispersion relation and the hydrodynamic prediction in Figure 4. The parameter Γs

parametrised the sound attenuation which, while interesting, is beyond the scope of this work.

Below, we show some key steps that allows us to obtain these results.
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FIG. 4: (LEFT) The real part of w = ω/(2πT ) as a function of q = qz/(2πT ). The • denotes the

numerical result while the dashed line corresponds to the predicted dispersion relation in (1.11)

Reω = −csqz with the value of cs obtained via (4.18) for K = {1, 1/2, 1/8}. (RIGHT) The

numerical result of quasinormal mode in complex w−plane showing the behaviour Imw ∼ q2 at

small Re w and/or q as we vary q from positive to negative values.

1. Current one-point function

Let us consider the equations of motion for the bulk fields A,B

∇aFab + 2κ̂HbcdFcd = 0 , ∇aHabc = 0 . (4.19)

To find a homogeneous and time-independent solution, we first integrate the equilibrium equations

of motion once to arrive at the following first order form:

−2
√
−G H̄rtz = ρb ,

√
−G F̄rt + 2κ̂(2Htrz)Āz = Qt ,

√
−G F̄rz + 2κ̂(2Hzrt)Āt = Qz ,

(4.20)

where
√
−G F̄rt = −r3(Āt)′,

√
−G F̄rz = r3f(r)(Āz)′ with (...)′ means derivative w.r.t. the radial

coordinate r. The parameters ρb, Q
t, Qz are constants of the motion. The horizon regularity

conditions Āt(rh) = 0 and
√
−G and regularity of A′z(rh) (which implies F̄rz(rh) = 0) together

imply that Qz = 0.

Already at this point, we can see that F̄rz cannot be zero if the chemical potential Āt(r →∞) 6=

0. This is an indication that equilibrium (covariant) current is, enforced by the horizon regularity,

non vanishing.
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To obtain the constitutive relation for the covariant current, we use (4.2)-(4.3) and find that

〈J tz〉 = −2
√
−GHrtz

∣∣∣
r→∞

= ρb ,

jtcov = −
√
−GFrt

∣∣∣
r→∞

= r3(A(0)
t )′ ,

jzcov = −
√
−GFrz

∣∣∣
r→∞

= −r3f(r)(A(0)
z )′ ,

(4.21)

Using (4.20), evaluated at the boundary, we find that

〈jzcov〉 = −2κ̂µaρb (4.22)

indicating the presence of the equilibrium current. The expression for jtcov is slightly more compli-

cated. To do this, we combine (4.20) into a single decoupled radial evolution for Āt, namely

d2

du2
Āt −

1

f

(
κ̂ρb

(πT )2

)2

Āt = 0 (4.23)

where we introduce the normalised radial coordinate u = (rh/r)
2. The above equation can be

easily solved and, upon imposing regularity condition at the horizon u = 1, one finds

Āt(u) = µa

[
2F1

(
α, β;

1

2
;u

)
− (χau) 2F1

(
−β,−α;

3

2
;u

)]
,

= µa −
(
χaaµa
2(πT )2

)
u+O(u2) near u→ 0

(4.24)

where parameters in the above expressions are

α = −1

4

(
1 +

√
1− (2K)2

)
, β =

1

2
− α , K =

κ̂ρb
(πT )2

, (4.25)

and χaa is expressed in (4.16). Plugging the asymptotic solution for Āt into the holographic

expression for jµcov in (4.3), one finds that it becomes the constitutive relation in (4.15).

2. Quasinormal modes

The spectrum of perturbations can be obtained by solving the linearised perturbation equations

for δAa, δBab. It turns out that the relevant perturbation for zero-form charge fluctuations only

involves δAt, δAz and δAr. Their linearised equations of motion in the Fourier space (w, qz) can

be written as (
r3(δA′t + iωδAr)− 2κ̂ρbδAz

)′
− 2iκ̂ρbqδAr +

qz
rf

(ωδAz + qzδAt) = 0 ,(
r3f(δA′z − iqzδAr)− 2κ̂ρbδAt

)′
+ 2iκ̂ρbωδAr +

ω

rf
(ωδAz + qzδAt) = 0 ,

ω
(
r3δA′t − 2κ̂ρbδAz

)
+ q

(
r3fδA′z − 2κ̂ρbδAt

)
− ir3

(
ω2 − q2zf

)
δAr = 0 .

(4.26)
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where the last first order equation becomes the Ward identity for jµcov when evaluated at the

boundary. Note that the equation of motion in the radial gauge is almost identical to those found

in Maxwell-Chern-Simons theory in asymptotic AdS3 geometry (see e.g. [69]) up to the form of f

and power of r. Unlike that case, however we study this theory using the usual AdS/CFT boundary

conditions.

To solve this system of equations we consider the gauge invariant mode

Z = wδAz + qδAt , w =
ω

2πT
, q =

qz
2πT

(4.27)

Its equation of motion is best written in the u = (rh/r)
2 coordinate ranging from u ∈ [0, 1), which

can be explicitly written as

Z ′′(u) +

(
w2f ′(u)

f(u)(w2 − q2f(u))

)
Z ′(u) +

1

uf(u)2

(
w2 −

(
q2 + uK2 − Kwqf ′(u)

w2 − q2f(u)

)
f

)
Z(u) = 0

(4.28)

with the (...)′ in the above equation now denotes the derivative in u. The quasinormal mode can

be obtained using Frobenius method as in [68] where we expressed Z as

Z(u) = (1− u)−iw/2(1 + u)−w/2
N∑
n=1

cn(1− u)n (4.29)

and the Dirichlet boundary is imposed by

Z(u = 0) = 0 =

N∑
n=1

cn (4.30)

For our purpose, N = 20 is enough to reproduce the first three decimal places of quasinormal mode

at K = 0 reported in [68]. These numerical procedure is then used to produce the numerical data

shown in Figure 4 which shows agreement between hydrodynamic prediction of the speed of sound

and the holographic result.

We end this section by explaining what the above numerical procedure means in terms of the

correlation function. Consider the near boundary expansion of Z, one finds that

Z(u) = z0 + z2u
2 +O(u3) (4.31)

with z0 corresponds to the source ωδaz + qzδat in the dual field theory. The coefficient z2 encodes

the information of the δjµcov. Thus the ratio z2/z1 is related to the following object

z2
z1
∼ δjµcov

δaν
(4.32)

which can be shown, via (1.7), that it differs from the current-current correlation function

Gµ,νjj (ω, qz) by a contact term. The solution for ω, qz which yield non-vanishing z2 with z1 = 0 is

then corresponds to the pole of Gµ,νjj .
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V. DISCUSSIONS AND OUTLOOK

In this work, we provide a procedure to construct and the resulting hydrodynamic description

of a gapless IR theory with 2-group global symmetry. The present constitutive relation has been

derived only at the ideal hydrodynamic level, where all dissipative corrections are neglected. For

this description to be more reliable, one ought to classify the possible dissipative correction which

usually occur at the first order in the derivative expansion. A clear cut scheme to include such

effect, as well as statistical fluctuations, from the Schwinger-Keldysh effective action can be found

in e.g. [41, 44] (and in [65, 66] from holographic side) and can be readily applied to our setup.

Interestingly, despite similarities between the ideal 2-group hydrodynamics and anomalous ideal

fluid in 1 + 1 dimensions, the effect of the dissipation and fluctuations are very different. In

the latter case, the statistical fluctuations severely invalidate the usual hydrodynamic expansion

scheme (both with and without translational symmetry [35, 70]). On the other hand, these effects

are expected to be more controllable for 2-group hydrodynamics as its symmetry structure exists

in higher dimensions [35].

We have so far, restricted ourselves in the normal phase, where (modulo subtleties in the 1-form

case) the symmetries are mostly unbroken. This is clearly not the only possible phase. The 2-group

is, after all, a genuine global symmetry and can be explicitly or spontaneously broken as well as

anomalous, see [19, 21] for various examples. Study of possible phases and their hydrodynamic

descriptions for the higher-form U(1) symmetry has been done in [6], see also [37]. It would be

very interesting to do the same for 2-group global symmetry.

We only consider the case where the 2-group composed out of U(1) zero-form and U(1) one-form

symmetry but this is by no means the only possible 2-group. Our method is also applicable to

the case where the zero-form U(1) is replaced by another Lie group G and the one-form symmetry

by a general Abelian group a. In this case the 2-group structure constant κ̂ remains to be an

integer characterised by the third group cohomology class of G with coefficient in a, H3(BG, a)

[21]. A number of interesting gapless strongly interating theories in the IR, with interesting choices

of G and a, can be found in e.g. [16, 19, 21] with one particularly interesting example being the

case where the zero-form G is the Poincaré group itself! It would be very interesting to use the

hydrodynamic approach to understand their transport and out-of-equilibrium properties.

On an even more abstract level, 2-group is essentially one of many generalised symmetry struc-

ture beyond a group, see e.g. [16] for a point of view where multiplications of its elements is not

strictly associative or [11] from the category theory perspective. The 2-group structure considered
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in this work is but one of many of these generalisation (see footnote 4 in the introduction). There

are also a generalisation to a higher-group which involves a two-form symmetry, appearing even

in as seemingly simple a system as axion electrodynamics [71]. It would be very interesting to

understand how such larger symmetry structures fit into a hydrodynamic framework. Our work

here is a small step toward exploring this landscape of higher-form structures.

Let us also point of some of the more practical future direction. The 2-group structure study

here can be obtained by gauging the non-anomalous subgroup of a theory with a very particular

mixed anomaly coefficient. In general, a theory with global U(1)a × U(1)v symmetry in (3 + 1)-d,

there can be four (consistent) anomaly structure encoded in the anomalous Ward identities in the

following way

d ? 〈ja〉 = −κa3da ∧ da− κa2vda ∧ dv − κav2dv ∧ dv ,

d ? 〈jv〉 = −κv3dv ∧ dv .
(5.1)

Whenever κv3 = 0, one can proceed to gauge the U(1)v and ask about the global symmetry of the

system after gauging. This turns out to be a rather non-trivial and very interesting question; see

[18, 72] for some recent work in this direction. We have discussed the case where only κa2v 6= 0.

However an extremely interesting case is when κav2 6= 0 is also nonzero15, as in the case of the usual

massless Dirac fermion. In this case, formally the 0-form current is simply not conserved, and the

rules of hydrodynamics need not apply. Nevertheless, there exists an effective theory which describe

this type of theory called chiral magnetohydrodynamics [24–27] with possible applications in the

evolution of the early universe, see e.g. [73]. Though challenging, it would be very interesting

to understand (if one exists) the modified global symmetry structure when such other anomaly

coefficients are present and systematically derive the hydrodynamic constitutive relations with the

principle outlined in this work.

Stepping away from hydrodynamics entirely, we consider future holographic directions. We

considered only the Maxwell-type theory where zero-form and one-form symmetry are both U(1).

Nevertheless, it should be possible to construct an action where the one-form symmetry is Zn,

similar to those in [60]. In fact, many interesting theories with 2-group global symmetry that are

strongly coupled in the IR are known to have Zn one-form symmetry, such as those in d+ 1 = 3 in

[21] and d+1 = 6 in [74]16. At finite temperature and densities, the holographic dual is conceivably

the only way to access macroscopic features of these theory and it would be very interesting to

explore such possibilities.

15 We thank D. Hofman and U. Gursoy for discussions on this point.
16 More recent discussions where 2-group structure made an appearance in the context of 6d QFTs can be found in

e.g. [75, 76]
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Appendix A: Entropy production analysis

Here, we show that the additional structure is necessary for 2-group Ward identity in order to

have vanishing entropy production. The computation is almost identical to that of the anomalous

theory in 1 + 1 dimensions. 17

It is convenient to work on the covariant current jµcov. We wish to construct the most general

constitutive relations in terms of the same set of fluid variables as in fluid with zero-form and

one-form U(1) as in [4, 43]. Suppose we did not know about the effective action construction, one

can assume that the constitutive relation at zeroth derivative level takes the following form

Tµν = (ε+ p)uµuν + pgµν − µbρbhµhν + θ(uµhν + uνhµ) ,

Jµν = ρb(u
µhν − uνhµ) ,

jµcov = ρau
µ +mhµ .

(A1)

For this set of equation to be thermodynamically consistent, we demand that there is an entropy

current sµ which satisfy s = suµ where s is the thermodynamic entropy and that the entropy

production must vanish onshell i.e. ∇µsµ = 0. The entropy current is assumed to be the following

sµ =
p

T
uµ − Tµν

(uν
T

)
− jµcov

(µa
T

)
− Jµν

(
µbhν
T

)
+ s̃µ (A2)

17 We are very grateful to L. Delacretaz for discussions on the content of this section.



34

Demanding that sµ = suµ, we can fix the form of s̃µ to be

s̃µ =
(µa
T

)
mhµ + 2θu(µhν)

uν
T

(A3)

where sT = ε+ p− µaρa − µbρb. We will not assume a specific form of j̃µ and θ except that it has

to be composed of thermodynamic quantities and uµ, hµ. The entropy production can be written

as

∂µs
µ =

[
∂µ

(
puµ

T

)
−
(
Tµν − 2θu(µhν)

)
∂µ

(uν
T

)
− ρauµ∂µ

(µa
T

)
− Jµν∂µ

(
µbhν
T

)]
− (∂µT

µν)
uν
T
− [(∂µj

µ
cov)− ∂µ(mhµ)]

µa
T

+ 2∂µ

(
θu(µhν)

) uν
T
.

(A4)

Here, we will take the metric to be flat but allow nontrivial flux for aµ and bµν . Terms in the

first line of (A4) vanish once we impose the thermodynamic relations. We can then focus on the

contribution from the second line which, upon imposing the 2-group Ward identity, yield

∂µs
µ = −

[(
Hν

ρσJ
ρσ + (da)νρj

ρ
cov

) uν
T

]
−
[
κ̂µa
T
Jµν(da)µν − ∂µ(mhµ)

µa
T

]
+

1

T

[
− (h · ∂)θ + θuν(u · ∂)hν − θ∂µhµ

] (A5)

Substitute the constitutive relation in (A1) to (A5), we find that Hν
ρσJ

ρσ vanishes and the entropy

production reduced into

T∂µs
µ = − (m+ 2κ̂µaρb)u

µhν(da)µν + (µam− 2θ)∂µh
µ

+

(
µa
∂m

∂T
− ∂θ

∂T
− θ

ρb

∂ρb
∂T

)
(h · ∂)T +

(
µa
∂m

∂µa
− ∂θ

∂µa
− θ

ρb

∂ρb
∂µb

)
,

+

(
µa

∂µ

∂µb
− ∂θ

∂µb
− θ

ρb

∂ρb
∂µb

)
(h · ∂)µb

(A6)

Each terms in the above expressions can be shown to be linearly independent from one another.

Therefore, the vanishing of entropy production requires all coefficients to vanish. The choice of m

and θ that satisfy such conditions are To cancel the change in entropy

m = −2κ̂µaρb , θ =
1

2
µam = −κ̂µ2aρb (A7)

This agrees with the constitutive relation obtained from the effective action in Eq. (1.4a)-(1.4c).

Appendix B: Holographic deconstruction of a theory with one-form U(1) symmetry

Here we discuss the holographic deconstruction of a liquid with 1-form global symmetry. We

discuss the effective hydrodynamic description of a holographic theory with bulk action:

S =

∫
dd+2X

√
−G (dB)MNP (dB)MNP (B1)
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As pointed out in [43], the effective theory is written in terms of a variable B = b + dϕ with

a one-form Stueckelberg field ϕ = ϕµdx
µ. The background and Stueckelberg (b, ϕ) transformed

simultaneously as

b→ b+ dΛ , ϕ→ ϕ− Λ (B2)

and the effective action of the field theory dual can only depends on B = b+ dϕ. It also enjoy the

following one-form chemical shift

ϕ0 → ϕ0 , ϕi → ϕi + Ci(x
j) (B3)

This means that the two Wilson lines along two spacelike curves L1, L2 denoted by W (L1) =

exp
(
i
∫
L1
dxiϕi

)
and W (L2) = exp

(
i
∫
L2
dxiϕi

)
are not correlated. This is the same assumption

as in the main text.

Let’s see how to derive this chemical shift (B3) from holography.

1. First, we denote that Bµν(∞) ∼ bµν . Then pick the radial gauge by doing the following

transformation

Brµ → B(1)rµ = Brµ + ∂rϕµ − ∂µϕr ,

Bµν → B(1)µν = Bµν + ∂µϕν − ∂µϕr
(B4)

with

ϕµ = −
∫
drBrµ , ϕr = 0 (B5)

so that B(1)rµ = 0 in the entire bulk. The boundary value of radial gauge B(1)µν is then the

combination Bµν = bµν + ∂µϕν − ∂νϕµ.

2. Then we can ask what is the residual gauge transformation that preserve the gauge choice

B(1)rµ = 0. This is nothing but ϕµ → ϕµ + Cµ(xµ) where Cµ is radial independent. However,

we also have impose the horizon regularity

B0µ(rh) = 0 (B6)

This implies that ϕ0 → ϕ0 and ϕi → ϕi + Ci(x
j) are the only allowed residual gauge

transformation. This gives promised one-form chemical shift in (B3).

It should be emphasised here that the residual gauge transformation of B(1)µν is exactly like the

one-form shift symmetry in (3.15). To see this, let’s look at transformation of b0i and ϕµ under
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this transformation

b0i → b0i + ∂0Ci︸︷︷︸
=0

−∂iC0 , ϕµ → (ϕ0, ϕi + Ci) (B7)

Let us also comment on the construction of [6] which is more closely related to the construction

of equilibrium partition function in Section II A. There, they interpret the fact that ϕ0 which does

not transformed under the chemical shift as an indication that it is a Goldstone. Their fomulation

can be written in a simpler form when one consider the equilibrium configuration with the spacetime

being Rd × S1. One can define a one-form chemical potential as a vector µi by intergrating bτi

along the thermal cycle (analogous to those in [48, 49], it is not invariant but transformed as

µi
T

=

∫ 1/T

τ=0
dτ bτi =

∫ 1/T

τ=0
dτ uµbµi → µi

T
− ∂i

∫
dτΛτ (B8)

unlike the zero-form case where µ/T =
∫
dτaτ which is perfectly invariant (One may also assume

that all the fields are independent of τ and use the definition µi = uµbµi with uµ = (1,0). But

it essentially boils down to the same thing). To fix this they introduce a Goldstone ψ which

transformed as

ψ → ψ − Λτ (xi) while b→ b+ dΛ (B9)

Then, the combination ∫
dτ (bτi − ∂iψ) =

∫
dτ (uµbµi − ∂iψ) (B10)

is invariant and they use this to define the one-form chemical potential. One can try to connect it

to the field ϕµ, we ask ourselves what is the transformation property of ϕµ such that

− ∂iψ = uµ (∂µϕi − ∂iϕµ) = ∂0ϕi − ∂iϕ0 (B11)

So that the chemical potential is defined to be µi = b0i + ∂0ϕi − ∂iϕ0 as in [43]. Note that this

definition of chemical potential is redundant as the redefinition of ϕµ

ϕ0 → ϕ0 ϕi → ∂iC(xi) , bµν fixed (B12)

does not change the chemical potential. The above transformation, again, is nothing but the

one-form shift in (3.15).
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Appendix C: Useful formulae

These identities are useful to obtain the constitutive relation (1.4a)-(1.4c) from the effective

action obtained at the end of Section (III A)

δT =
T

2
uαuβδgαβ , (C1)

δuµ =
1

2
uµuαuβδgαβ , (C2)

δ∆µν =
(
−gµαgνβ + uµuνuαuβ

)
δgαβ , (C3)

δµa =
µa
2
uαuβδgαβ + uαδaα , (C4)

δA⊥µ =
µa
2

(
∆α

µu
β + ∆β

µu
α
)
δgαβ + ∆α

µδaα (C5)

where ∆µν := gµν + uµuν and A⊥µ := ∆ ν
µ Aν is the invariant combination Aµ projected onto a

plane orthogonal to uµ. Then, the variation of the chemical shift invariant µbhν = uνBνµ− κ̂µaA⊥µ ,

where hµh
µ = 1, can be written as

δ(µbhµ) =
1

2

(
vµu

αuβ − κ̂µ2a
(
uα∆β

µ + uβ∆α
µ

))
δgαβ − uνδbµν − κ̂µa∆ ν

µ δaν (C6)

− κ̂A⊥µ uνδaν + κ̂uνφ(∂νδaµ − ∂µδaν) ,

δµb = hαδ(µbhα)− µb
2
hαhβδgαβ (C7)
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J. Schober, “Laminar and turbulent dynamos in chiral magnetohydrodynamics-I: Theory,” Astrophys.

http://dx.doi.org/10.1103/PhysRevD.91.043518
http://arxiv.org/abs/1412.3135
http://arxiv.org/abs/1412.3135
http://eudml.org/doc/124217
http://dx.doi.org/10.1007/s10714-010-1070-9
http://dx.doi.org/10.1007/s10714-010-1070-9
http://arxiv.org/abs/1003.4485
http://dx.doi.org/10.1016/S0003-4916(03)00147-7
http://dx.doi.org/10.1016/S0003-4916(03)00147-7
http://arxiv.org/abs/hep-th/0304074
http://arxiv.org/abs/1307.4793
http://arxiv.org/abs/1309.4721
http://dx.doi.org/10.1103/PhysRevB.100.115147
http://arxiv.org/abs/1410.4540
http://arxiv.org/abs/1410.4540
http://dx.doi.org/10.1002/prop.201500048
http://arxiv.org/abs/1508.04770
http://arxiv.org/abs/1511.02929
http://arxiv.org/abs/1712.09542
http://arxiv.org/abs/1802.04790
http://dx.doi.org/10.1007/JHEP10(2018)049
http://dx.doi.org/10.1007/JHEP10(2018)049
http://arxiv.org/abs/1802.10104
http://arxiv.org/abs/1803.09336
http://dx.doi.org/10.1103/PhysRevB.99.205139
http://arxiv.org/abs/1812.02517
http://dx.doi.org/10.1002/prop.201910001
http://dx.doi.org/10.1002/prop.201910001
http://arxiv.org/abs/1903.02807
http://dx.doi.org/10.1103/PhysRevD.93.125016
http://dx.doi.org/10.1103/PhysRevD.93.125016
http://arxiv.org/abs/1603.08864
http://dx.doi.org/10.1103/PhysRevD.92.043004
https://link.aps.org/doi/10.1103/PhysRevD.92.043004
http://dx.doi.org/10.3847/1538-4357/aa886b


39

J. 846 no. 2, (2017) 153, arXiv:1705.00378 [physics.plasm-ph].

[27] K. Hattori, Y. Hirono, H.-U. Yee, and Y. Yin, “MagnetoHydrodynamics with chiral anomaly: phases

of collective excitations and instabilities,” Phys. Rev. D100 no. 6, (2019) 065023, arXiv:1711.08450

[hep-th].

[28] W. A. Bardeen and B. Zumino, “Consistent and Covariant Anomalies in Gauge and Gravitational

Theories,” Nucl. Phys. B 244 (1984) 421–453.

[29] K. Jensen, R. Loganayagam, and A. Yarom, “Anomaly inflow and thermal equilibrium,” JHEP 05

(2014) 134, arXiv:1310.7024 [hep-th].

[30] D. T. Son and P. Surowka, “Hydrodynamics with Triangle Anomalies,” Phys. Rev. Lett. 103 (2009)

191601, arXiv:0906.5044 [hep-th].

[31] A. Yu. Alekseev, V. V. Cheianov, and J. Frohlich, “Universality of transport properties in

equilibrium, Goldstone theorem and chiral anomaly,” Phys. Rev. Lett. 81 (1998) 3503–3506,

arXiv:cond-mat/9803346 [cond-mat].

[32] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D78

(2008) 074033, arXiv:0808.3382 [hep-ph].

[33] D. E. Kharzeev, “The Chiral Magnetic Effect and Anomaly-Induced Transport,” Prog. Part. Nucl.

Phys. 75 (2014) 133–151, arXiv:1312.3348 [hep-ph].

[34] K. Landsteiner, “Notes on Anomaly Induced Transport,” Acta Phys. Polon. B47 (2016) 2617,

arXiv:1610.04413 [hep-th].

[35] L. V. Delacretaz and P. Glorioso, “Breakdown of Diffusion on the Edge,” Phys. Rev. Lett. 124 no. 23,

(2020) 236802, arXiv:2002.08365 [cond-mat.str-el].

[36] R. Loganayagam, “Anomaly Induced Transport in Arbitrary Dimensions,” arXiv:1106.0277

[hep-th].

[37] L. V. Delacrétaz, D. M. Hofman, and G. Mathys, “Superfluids as Higher-form Anomalies,”

arXiv:1908.06977 [hep-th].

[38] D. E. Kharzeev and H.-U. Yee, “Chiral Magnetic Wave,” Phys. Rev. D 83 (2011) 085007,

arXiv:1012.6026 [hep-th].

[39] N. Yamamoto, “Chiral Alfvén Wave in Anomalous Hydrodynamics,” Phys. Rev. Lett. 115 no. 14,

(2015) 141601, arXiv:1505.05444 [hep-th].

[40] M. Crossley, P. Glorioso, and H. Liu, “Effective field theory of dissipative fluids,” JHEP 09 (2017)

095, arXiv:1511.03646 [hep-th].

[41] P. Glorioso, M. Crossley, and H. Liu, “Effective field theory of dissipative fluids (II): classical limit,

dynamical KMS symmetry and entropy current,” JHEP 09 (2017) 096, arXiv:1701.07817 [hep-th].

[42] K. Jensen, N. Pinzani-Fokeeva, and A. Yarom, “Dissipative hydrodynamics in superspace,” JHEP 09

(2018) 127, arXiv:1701.07436 [hep-th].

[43] P. Glorioso and D. T. Son, “Effective field theory of magnetohydrodynamics from generalized global

symmetries,” arXiv:1811.04879 [hep-th].

http://dx.doi.org/10.3847/1538-4357/aa886b
http://dx.doi.org/10.3847/1538-4357/aa886b
http://arxiv.org/abs/1705.00378
http://dx.doi.org/10.1103/PhysRevD.100.065023
http://arxiv.org/abs/1711.08450
http://arxiv.org/abs/1711.08450
http://dx.doi.org/10.1016/0550-3213(84)90322-5
http://dx.doi.org/10.1007/JHEP05(2014)134
http://dx.doi.org/10.1007/JHEP05(2014)134
http://arxiv.org/abs/1310.7024
http://dx.doi.org/10.1103/PhysRevLett.103.191601
http://dx.doi.org/10.1103/PhysRevLett.103.191601
http://arxiv.org/abs/0906.5044
http://dx.doi.org/10.1103/PhysRevLett.81.3503
http://arxiv.org/abs/cond-mat/9803346
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://arxiv.org/abs/0808.3382
http://dx.doi.org/10.1016/j.ppnp.2014.01.002
http://dx.doi.org/10.1016/j.ppnp.2014.01.002
http://arxiv.org/abs/1312.3348
http://dx.doi.org/10.5506/APhysPolB.47.2617
http://arxiv.org/abs/1610.04413
http://dx.doi.org/10.1103/PhysRevLett.124.236802
http://dx.doi.org/10.1103/PhysRevLett.124.236802
http://arxiv.org/abs/2002.08365
http://arxiv.org/abs/1106.0277
http://arxiv.org/abs/1106.0277
http://arxiv.org/abs/1908.06977
http://dx.doi.org/10.1103/PhysRevD.83.085007
http://arxiv.org/abs/1012.6026
http://dx.doi.org/10.1103/PhysRevLett.115.141601
http://dx.doi.org/10.1103/PhysRevLett.115.141601
http://arxiv.org/abs/1505.05444
http://dx.doi.org/10.1007/JHEP09(2017)095
http://dx.doi.org/10.1007/JHEP09(2017)095
http://arxiv.org/abs/1511.03646
http://dx.doi.org/10.1007/JHEP09(2017)096
http://arxiv.org/abs/1701.07817
http://dx.doi.org/10.1007/JHEP09(2018)127
http://dx.doi.org/10.1007/JHEP09(2018)127
http://arxiv.org/abs/1701.07436
http://arxiv.org/abs/1811.04879


40

[44] H. Liu and P. Glorioso, “Lectures on non-equilibrium effective field theories and fluctuating

hydrodynamics,” PoS TASI2017 (2018) 008, arXiv:1805.09331 [hep-th].

[45] S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, “Effective field theory for hydrodynamics:

thermodynamics, and the derivative expansion,” Phys. Rev. D85 (2012) 085029, arXiv:1107.0731

[hep-th].

[46] S. Grozdanov and J. Polonyi, “Viscosity and dissipative hydrodynamics from effective field theory,”

Phys. Rev. D91 no. 10, (2015) 105031, arXiv:1305.3670 [hep-th].

[47] M. J. Landry, “The coset construction for non-equilibrium systems,” JHEP 07 (2020) 200,

arXiv:1912.12301 [hep-th].

[48] F. M. Haehl, R. Loganayagam, and M. Rangamani, “Adiabatic hydrodynamics: The eightfold way to

dissipation,” JHEP 05 (2015) 060, arXiv:1502.00636 [hep-th].

[49] F. M. Haehl, R. Loganayagam, and M. Rangamani, “Topological sigma models & dissipative

hydrodynamics,” JHEP 04 (2016) 039, arXiv:1511.07809 [hep-th].

[50] O. DeWolfe and K. Higginbotham, “Generalized symmetries and 2-groups via electromagnetic duality

in AdS/CFT ,” Phys. Rev. D 103 no. 2, (2021) 026011, arXiv:2010.06594 [hep-th].

[51] A. Nicolis, R. Penco, and R. A. Rosen, “Relativistic Fluids, Superfluids, Solids and Supersolids from a

Coset Construction,” Phys. Rev. D89 no. 4, (2014) 045002, arXiv:1307.0517 [hep-th].
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