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Abstract

Pion–kaon (πK) final states, often appearing in heavy-particle decays at the precision
frontier, are important for Standard-Model tests, to describe crossed channels with exotic
states, and for spectroscopy of excited kaon resonances. We construct a representation
of the πK S-wave form factor using the elastic πK scattering phase shift via dispersion
relations in the elastic region and extend this model into the inelastic region using res-
onance exchange, while maintaining unitarity and the correct analytic structure. As a
first application, we successfully described the τ→ KSπντ spectrum to not only achieve a
better distinction between S- and P-wave contributions, but also to provide an improved
estimate of the CP asymmetry produced by a tensor operator as well as the forward–
backward asymmetry, both of which can be confronted with future data at Belle II. The
work presented here is published in Ref. [1].

1 Introduction

When searching for physics beyond the Standard Model (BSM), including in C P-violating
observables, one often encounters multi-hadron final states, e.g., in semi-leptonic, D- and B-
meson decays. In addition, the identification of exotic resonances in such final states requires
control over rescattering effects. Especially for heavy particles decaying with net strangeness,
it thus becomes increasingly important to also describe the abundantly appearing final-state
interactions of kaons and pions up to high energies. In particular a consistent description of
πK scattering and production can serve as a test of SM physics, be used to search for exotic
hadronic states in crossed channels, and improve the spectroscopy of excited kaon resonances.

To be more specific, in the quest for C P violation beyond the SM the inelastic contributions
to the πK channel enter in the C P asymmetry in τ→ KSπντ generated by a tensor operator,
as the elastic contributions cancel by Watson’s theorem [2]. Further, in the hunt for exotic
hadrons the Zc(4430) was discovered by Belle and LHCb in the reaction B → ψ′πK in the
ψ′π subsystem [3,4]. Since, to describe such a crossed process, the different partial waves of
the πK subsystem interfere, a high control over especially their phases is compulsory, which
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2 FORMALISM

cannot be achieved by a simple Breit–Wigner (BW) model. Hence, generally speaking a better
understanding of the πK form factors is needed to describe all these processes appropriately.

For these purposes, we constructed a representation of the πK S-wave form factor using
the elasticπK scattering phase shifts via dispersion relations in the elastic region, as demanded
by Watson’s theorem, and extended this model into the inelastic region using resonance ex-
change, while maintaining unitarity and the correct analytic structure [5, 6]. As a first appli-
cation, we successfully described the τ→ KSπντ spectrum, including the highly overlapping
S-wave resonance K∗0(1430) and P-wave resonance K∗(1410). In contrast to common BW pa-
rameterizations, which violate unitarity, our parameterization has the correct phase behavior
built in and fulfills unitarity by construction. For an improved separation of these resonances
using future measurements, we further calculated forward–backward (FB) asymmetries for
the different fit scenarios. In addition, we could use our results to refine the estimate of the
C P asymmetry generated by a tensor operator. Finally, we were able to extract the resonance
properties of the K∗0(1430) and K∗0(1950) via Padé approximants. Here, we provide a summary
of the main ideas and applications, while deferring a more detailed discourse to Ref. [1].

2 Formalism

Our formalism for the T -matrix that fulfills the criteria of unitarity and analyticity is built upon
the Bethe–Salpeter equation, which in channel space in matrix form reads

Ti f = Vi f + VimGmmTmf , (1)

and fulfills unitarity as long as Vi f ∈ R and disc Gmm = 2iρm, where ρm denotes the two-body
phase space in channel m. Furthermore, we employ the so-called two-potential formalism [7],
which starts by splitting the scattering potential V into two pieces,

V = V0 + VR . (2)

Accordingly, this results in a corresponding splitting of the T -matrix

T = T0 + TR , (3)

where T0 fulfills the Bethe–Salpeter equation that has V0 as input, T0 = V0 + V0GT0. In our
application we assume T0 to be purely elastic and consider the additional channels to couple
only through the resonance exchange in TR, as motivated by the phenomenologically successful
isobar model [8–10]. Employing a two-channel setup, corresponding in our application to πK
and η′K , we therefore have

T0 =

� 1
ρ1

sinδ0eiδ0 0
0 0

�

, (4)

which only depends on the scattering phase δ0 and makes any explicit parameterization of V0
obsolete, using an empirical parameterizations of δ0 instead.

By means of dispersion theory we can use the given constraints to calculate TR and conse-
quently the full scattering T -matrix, which is given as

T = T0 + TR = T0 +Ω [1− VRΣ]
−1 VRΩ

T , (5)

with

Ω=

�

Ω11 0
0 1

�

, Ω11 = exp

�

s
π

∫ ∞

sth

dz
δ0(z)

z(z − s)

�

, (6)

2
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the Omnès function for the πK channel and

Σi j(s) =
s

2πi

∫ ∞

sth

dz
Ω†

im(z)disc Gmm(z)Ωmf (z)

z(z − s)
, (7)

the dressed loop operator also called self energy. Furthermore, we parameterize the resonance
potential VR as

VR(s)i j =
∑

r

g(r)i
s− s0

�

s− eM2
(r)

��

s0 − eM2
(r)

� g(r)j , (8)

which is subtracted at s0 = (MK +Mη)2 to remove low-energy contributions already consid-

ered via T0. Here the mass eM(r) is the bare mass of resonance r and g(r)i is the bare coupling
of the resonance r to channel i. The scalar form factor fs, given in channel space via

( fs)i = Mi + TimGmmMm , (9)

can now be expressed as

fs(s) = Ω(s) [1− VR(s)Σ(s)]
−1 M(s) , (10)

where M is a reparameterized source term, which can be written as

Mi =
kmax
∑

k=0

c(k)i sk −
∑

r

g(r)i
s− s0

�

s− eM2
(r)

��

s0 − eM2
(r)

�α(r) . (11)

Here, the coefficients c(k)i and the resonance couplings α(r) are parameters of the model that
depend on the source.

3 Fit to scattering data

We fit our parameterization of the πK I = 1
2 S-wave in combination with an elastic I = 3

2 pa-
rameterization from Ref. [11] to the data of Ref. [12]. As phase input we use the elastic part
of Ref. [11], where we turn off all resonant contributions and guide the phase smoothly to π
at
p

sm = 1.52GeV, thus only including the lowest resonance K∗0(700) within the phase. As
we aim at a description from the πK threshold up to 2.5GeV the additional scalar resonances
K∗0(1430) and K∗0(1950) are included explicitly via VR. We consider a two-channel setup, incor-
porating only the πK and η′K channel, as the ηK channel turns out empirically to effectively
decouple in that energy range. Figure 1 shows the results of the combined fit of argument
and absolute value. Considering the modest quality of the data, we find the fit suitable up to
about 2.3GeV. An extension to higher energies would require the inclusion of yet another K∗0
resonance, which however would require reliable data up to even higher energies.

4 Application to τ decays

Using the scattering parameterization acquired in the previous section we now have, using
Eq. (10), a parameterization of the πK I = 1

2 scalar form factor, with free parameters only
contained within the source term (11). For now we use this parameterization to describe the
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Figure 1: Plot of the combined fit of argument and absolute value of
T̂i f = ρi

�

T
1
2 + T

3
2 /2
�

i f , with 1σ uncertainty band, to the corresponding data of As-
ton et al. [12] in comparison to the results of Peláez and Rodas [11,13]. We further
show the accordingly defined low-energy amplitude T̂0 and the resonance part of the
model T̂R, independently.

scalar form factor within the decay spectrum of τ−→ KSπ
−ντ as measured by the Belle collab-

oration [14]. We fix the scalar form factor using our parameterization via ( fs)1, see Eq. (10),
while we use for the vector form factor a more conventional parameterization from resonance
chiral perturbation theory [15–19], where we follow the conventions from Ref. [19]. There
we choose the subtraction constants fixed to their central values (as determined independently
from Kl3 decays) and allow the bare mass and width as well as the mixing parameter to vary
in such a way that the shape of the generated πK P-wave remains phenomenologically viable.

We find four representative fit scenarios, which turn out to be visibly indistinguishable
in the total decay rate. However, the actual scalar form factors contained within the four
parameterizations, see Fig. 2, differ more substantially, especially above the η′K threshold,
where the contribution to the decay rate is very suppressed by the phase space and the data
points have large uncertainties. All fits are equally well suitable to describe the decay rate and
have similar fit statistics with a reduced χ2 ≈ 1. Despite the strong overlap of the K∗(1410)
and K∗0(1430) in the total decay rate, which in the past was usually solved by discarding one
of the resonances, we were able to get distinct parameters for both resonances, as in our
application the resonance couplings to the K∗0(1430) are already fixed by the scattering data.
The K∗0(1950), on the other hand, is difficult to constrain from this fit, as it lies above the τ
mass and its influence on the decay region is quite limited, which can also be seen by the huge
contributions in the scalar form factor in Fit 1 and 2, above the boundary of the phase space
with a free α(2). However, even the parameterizations without a source term coupling to the
K∗0(1950) (Fit 3 and 4 with α(2) = 0) show resonant structures around its mass, which nicely
shows the built-in unitarity indirectly including the knowledge of the scattering phase about
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Figure 2: Scalar form factor f̄0 for the fit of our parameterization of the total de-
cay rate of τ−→ KSπ

−ντ to efficiency-corrected and background-reduced events of
Ref. [14] in comparison to two BW parameterizations “Belle 1” and “Belle 2” [14]—
which include K∗0(700), K∗(892), and K∗(1410), or K∗0(700), K∗(892), and K∗0(1430),
respectively. We consider different combinations of fixing the α(2) and c(1)1 param-

eters. c(0)1 and c(0)2 are implicitly determined by the normalization via ( fs)1(0) = 1
and by U(3) ChPT via ( fs)2(0) =

p
3, respectively. The Callan–Treiman low-energy

theorem is also included as an additional constraint into the fit.

all resonances. Furthermore, by construction the phase of the scalar form factor is fixed up
to the η′K threshold to the scattering phase as demanded by Watson’s theorem and elastic
unitarity. This is in marked contrast to the BW parameterizations by Belle [14], which show
very inconsistent phases at low energies and unphysical structures below the πK threshold.
Including a linear term c(1)1 in the source term (Fit 2 and 4) gives some slight improvements
to the fit quality, but changes the high-energy behavior of the scalar form factor to approach
a constant instead of falling of like 1/s, as expected by perturbative-QCD arguments. As the
fit statistics are even without this linear term sufficient, we conclude that all fits are basically
equivalent. To further distinguish the different fit scenarios, additional data are required.

5 Implications and results

5.1 Forward–backward asymmetry

One such possibility to further distinguish the different fit scenarios would be to examine the
FB asymmetry [20,21] as can be measured by Belle II [21]:

AFB(s) =

∫ 1
0 dz
�dΓ

dz (z)−
dΓ
dz (−z)
�

∫ 1
0 dz
�dΓ

dz (z) +
dΓ
dz (−z)
�

=
−2 Re( f0 f ∗+)∆πKqπK

p
s

| f0|2∆2
πK +

4
3 | f+|2q2

πK

�

2s2

m2
τ
+ s
� , (12)
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Figure 3: FB asymmetry as defined in Eq. (12) for the four fit variants.

where z denotes the cosine of the πK helicity angle. This quantity would separate vector and
scalar components and make it easier to distinguish the K∗(1410) and K∗0(1430) contributions.
We show the FB asymmetry for the four fit scenarios in Fig. 3. Major differences can be seen
above the η′K threshold, as expected due to the different phase motion in that energy region.

5.2 Branching ratio

By integrating over the differential decay rate we calculate the branching ratio for τ→ KSπντ.
Averaging over all four fit scenarios with its spread as systematic uncertainty (sys) we get

BR(τ→ KSπντ) = 4.35(6)st(3)norm(7)sys × 10−3 = 4.35(10)× 10−3 , (13)

where we also included the statistical error (st) propagated from the fit parameters and the un-
certainty from the normalization constants (norm). Although this result is 2σ above the origi-
nal Belle result BR(τ→ KSπντ)| [14] = 4.04(13)×10−3, it agrees at 1.5σ with the more recent
BR(τ→ KSπντ)| [22] = 4.16(8)× 10−3 as well as the Particle Data Group average
BR(τ→ KSπντ)| [23] = 4.19(7)× 10−3.

5.3 CP asymmetry

We were further able to improve the estimate of the BSM C P asymmetry produced by a tensor
operator with Wilson coefficient cT interfering with the vector operator. Due to the absence of
a scalar–vector interference this is the only option to generate a C P asymmetry with new heavy
degrees of freedom. As shown in Ref. [2], by Watson’s theorem it follows that in this case all
elastic contributions to the C P asymmetry cancel identically, as vector and tensor operators
follow the same unitarity condition and thus have to have the same strong phase in the purely
elastic case. Hence inelastic effects, included in our parameterization via resonance exchange,
are mandatory to obtain a non-vanishing C P asymmetry. Within the SM, a C P asymmetry is
generated by K0–K̄0 mixing, but the corresponding prediction shows a 2.8σ tension with the
2012 BaBar measurement [24], which could point to C P violation beyond the SM. Using our
parameterization we find

Aτ,BSM
C P = −0.034(14) Im cT , (14)

which supports the simpler estimate of Ref. [2]. Unfortunately, limits on Im cT from the neutron
electric dipole moment and D–D̄ mixing rule out this mechanism to explain the tension.
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Figure 4: Extracted pole position of the K∗0(1950) (left) and K∗0(1430) (right) in
comparison to the works of Aston et al. [12], Anisovich and Sarantsev [25], and
Zhou and Zheng [26] as well as Peláez et al. [27], Lees et al. [28], Bugg (2010) [29],
Bonvicini et al. [30], Bugg (2006) [31], Zhou and Zheng [26], Zeng et al. [32], Aitala
et al. [33], Anisovich and Serantsev [25], and Aston et al. [12], respectively.

5.4 Pole extraction

We were able to extract the pole positions as well as residues of the two scalar resonances
K∗0(1430) and K∗0(1950) using Padé approximants as shown in Fig. 4. For both resonances our
results are in reasonable agreement with previous extractions, indicating a K∗0(1430) mass
towards the lower end, see Ref. [1] for more details on the extraction of the pole parameters
and residues.

Furthermore, we extracted the coupling of the R= K∗0(1430) resonance to the s̄γµu current
in a model-independent way via its residue Cus

R , which can then be re-interpreted in a narrow-
width sense as a decay rate

Γ (τ→ Rντ) =
6π2cΓ∆

2
πK

M4
R

�

1−
M2

R

m2
τ

�2
�

�Cus
R

�

�

2
. (15)

We find an upper bound on the branching ratio of BR(τ→ K∗0(1430)ντ)< 1.6×10−4 (at 95%
confidence level), which is by a factor of 3 better than the current literature values [23, 34].
Our residues (from the four fit scenarios) are scattered around the values from other theoretical
investigations, including Refs. [35, 36], which however are more rigid in the fit function. For
instance, Ref. [36] uses a coupled-channel Omnès matrix, which requires inputs for scattering
phases and elasticity parameters for all channels that are not available at the moment. The
implementation from Ref. [36] circumvents this issue by relying on further chiral constraints,
with the scalar form factor uniquely determined from the T -matrix. Our parameterization,
on the other hand, also fulfills the chiral constraints, but allows for more flexibility by adding
further terms in the resonance potential.

6 Conclusion

In conclusion, the formalism proposed in Ref. [1] has proven adequate for the description of
πK S-wave scattering as well as the scalar form factor up to the K∗0(1950). It should thus
also allow for a meaningful description of the πK form factors in future analyses of semi-
leptonic D- and B-meson decays and transfer to higher partial waves. Future measurements
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expected from Belle II, for the τ → KSπντ spectrum, FB and C P asymmetry, will improve
the phenomenology presented here, especially in the inelastic region, and thereby provide
valuable input for controlling πK final-state interactions in more complicated systems.
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