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Abstract

We study the relaxation of the local ferromagnetic order in the transverse field quantum
Ising chain with power-law decaying interactions ∼ 1/rα. We prepare the system in the
GHZ state and study the time evolution of the probability distribution function (PDF) of
the order-parameter within a block of ` when quenching the transverse field. The model
is known to support long-range order at finite temperature for α ≤ 2.0. In this regime,
quasi-localized topological magnetic defects are expected to strongly affect the equili-
bration of the full probability distribution. We highlight different dynamical regimes
where gaussification mechanism may be slowed down by confinement and eventually
breaks. We further study the PDF dynamics induced by changing the effective dimen-
sionality of the system; we mimic this by quenching the range of the interactions. As a
matter of fact, the behavior of the system crucially depends on the value of α governing
the unitary evolution.
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1 Introduction

Advances in the field of synthetic quantum matter in laboratory has allowed us to gain deeper
insights into the static and dynamic properties of isolated many body quantum systems [1–8].
One of the primary objective of these experiments is to calculate the full quantum mechan-
ical probability distribution of certain observables as it holds the full information about the
quantum fluctuation in the system. In parallel, several analytical and numerical studies have
been carried out to study the full probability distribution of the system’s order parameter both
in equilibrium and out of equilibrium regime [9–17]. In this work we study the dynamics
of order parameter statistics, encoded in its probability distribution, of the long-range Ising
model following a global quantum quench [18]. Similar studies have been carried out for
systems with short range interaction [9–11,13], where the main objective is to see if and how
the initial order in the system melts after quantum quench. Long-range Ising model is more
interesting as it exhibits short-range Ising and mean-field universality class [7] connected by
an intermediate region where the critical exponents vary monotonically [19]. Quenches in
the mean-field regime reveals information on the dynamics of systems with dimension higher
than one.

We perform two different kind of quenches; the first kind is along the transverse field at
constant value of interaction range. Here we initialize our system deep in the ferromagnetic
region, which is characterized by double peak probability distribution function (PDF) of our
local order parameter. Locality is a crucial concept to ensure the relaxation of the order param-
eter at late time [20]. The system is then suddenly quenched along the transverse field and
evolved with the new Hamiltonian. We are interested in how the initial ferromagnetic order
melts after a quantum quench and specially if the PDF attains a Gaussian shape around zero in
the maximum time limit and system size that we can effectively simulate. The second kind of
quench is performed along the direction of the interaction range, keeping constant transverse
field. We perform quenches in both directions: initializing the system as fully connected and
quenching to a short range Hamiltonian, and vice versa. We investigate how the system retains
memory of the initial ferromagnetic order after the quench, and whether quenches performed
in opposite directions are qualitatively equivalent.

Specifically, the manuscript is organized as follows:

• In Sec. 2 we introduce the model, the parameters involved, and the equilibrium phase
diagram. We define the local order parameter and introduce the full counting statistics.
We define the cumulant generating function and its relation to the probability distribu-
tion function (PDF) and outline the steps to compute each of these in a spin model. We
define the general quench protocol and the algorithms used.

• Sec. 3 is devoted to the results. We present the results for the dynamics of order parame-
ter statistics for quenches along the transverse field, at different values of the interaction
range. We show that there is a region in the parameter space where the the system never
shows Gaussification, independently of the simulation time and the system size. On the
contrary, outside this region the Gaussification of the PDF strongly depends on the sim-
ulation parameters. We also present the results for the dynamics of the order parameter
statistics for quenches along the interaction range at different values of transverse field.
Here we show that the dynamics is strongly dependent on the post quench parameters
and that the quenches performed in the opposite direction yields qualitatively different
behaviour.

• In Sec. 4 we draw our conclusion, also mentioning further possible lines of investigation
and eventually connecting this study to finite temperature analysis.
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2 Model and methods

2.1 Hamiltonian of Long-range transverse field Ising model

We study the long range transverse field Ising model. A spin model like this can be experi-
mentally realized with systems of trapped ions [7, 21, 22] where the interaction is mediated
by collective vibrations. The Hamiltonian is

H(α, h/J) = −
1

K(α)

N
∑

i< j

J
|i − j|α

Ŝ x
i Ŝ x

j − h
N
∑

i=1

Ŝz
i (1)

where Ŝa
i , a = x , y, z are the spin 1/2 matrices on the i th lattice site. The spin-spin inter-

action is long ranged and is decaying as the inverse power of the distance between two spins.
This interaction is tuned by the interaction range α. The Kac normalization is defined as

K(α) = 1
N − 1

N
∑

i< j

J
|i − j|α

=
1

N − 1

N
∑

n=1

N − n
nα

(2)

and ensures the intensive scaling of the energy density for α < 1, which otherwise blows up
since the spin-spin interaction series becomes hyper-harmonic in the thermodynamic limit.

At the two extremities of the exponent α we have two familiar models: (i) at α =∞ the
model reduces to the well-celebrated nearest-neighbor Ising model with transverse field, which
can be solved analytically in terms of free fermions [23]; this model undergoes an equilibrium
quantum phase transition from ferromagnetic to paramagnetic phase at hc/J = 0.5. (ii) At
α= 0.0 where the model becomes a fully connected, and it is also known as Lipkin, Meshkov,
and Glick (LMG) model [24–26]; here the zero-temperature ferromagnetic and paramagnetic
phases are separated by a critical point at hc/J = 1. In thermodynamic limit, the quantum
phase-transition point is kept unchanged for all 0≤ α≤ 1 [27].

However, it is sufficient to have α < 2.0 to observe a persisting ferromagnetic long-range
order at low but finite temperature for |h| smaller than a critical value. In this regime, the
system manifests a plethora of exotic phenomena such as non-linear light-cone propagation of
correlations [28–30], dynamical phase transitions [31–34], quasi-localization of topological
defects [35], and time-crystalline behavior [36]. Recently, pre-thermal stabilization of time-
crystalline behavior has been also established for α > 2.0 [37]. Some of these phenomena
have been investigated in a range of experiments with trapped ions [38–42].

2.2 Full counting statistics

The full information on how the order melts after a quench is provided by the time evolution
of the full probability distribution function (PDF) of the order parameter. Our order parameter
is the longitudinal magnetization defined in a subsystem of length l

M(l) =
l
∑

i=1

S x
i (3)

Observables that are defined over a fixed subsystem relax locally in space unlike the global
observables [20] and also have thermodynamic behavior in l unlike localized observables.
Therefore observables of this kind are suitable choice to study the relaxation dynamics after a
global quantum quench. The probability that the observable defined in equation (3) will take
a value m in a certain state |Φ〉 is

Pl(m) = 〈Φ|δ(M(l)−m)|Φ〉=
∫ ∞

−∞

dθ
2π

e−iθm 〈Φ|eiθM(l)|Φ〉 (4)
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where Gl(θ ) = 〈Φ|eiθM(l)|Φ〉 is the generating function of the moments of Pl(m), and satisfy
the following properties: Gl(0) = 1, Gl(−θ ) = Gl(θ )∗, Gl(θ +2π) = (−1)l Gl(θ ). The first two
properties are trivial. The last one can be easily verified by exploiting the following identities

eiθM(l) =
l
∏

j=1

eiθSx
j , eiθSx

j = cos
�

θ

2

�

+ i sin
�

θ

2

�

σx
j (5)

thus implying

ei(θ+2π)M(l) =
l
∏

j=1

�

− cos
�

θ

2

�

− i sin
�

θ

2

�

σx
j

�

= (−1)l eiθM(l). (6)

Thanks to this periodicity, we can restrict the range of θ in equation (4) in the interval
−π ≤ θ < π. Finally, since m can take either integer or half integer values depending upon
whether l is even or odd, we can rewrite the PDF as

Pl(m) =

¨
∑

r∈Z G̃l(r)δ(m− r) if l is even,
∑

r∈Z G̃l(r +
1
2)δ(m− r − 1

2) if l is odd,
(7)

where

G̃l(r) =

∫ π

−π

dθ
2π

e−irθGl(θ ). (8)

The computational bottleneck of calculating the PDF is the generating function Gl(θ ) after
which Pl(m) is obtained by a simple Fourier transformation.

2.3 Quench Protocol and numerical details

The general quench protocol reads as follow (hereafter J = 1): (i) At t = 0 the system is
initialized in the ground state |ψi〉 of a certain point in the equilibrium phase space denoted
by a pair of parameters (αi , hi). (ii) The system is then suddenly quenched to a different point
in the parameter space, (α f , h f ), and it is evolved unitarily with the Hamiltonian H(α f , h f ),
accordingly to |ψt〉= e−i tH(α f ,h f ) |ψi〉 .

In order to accomplish the task we have used matrix product state (MPS) based Density
Matrix Renormalization Group (DMRG) algorithm [43–45], and we have initialized the sys-
tem in the ground state of the Hamiltonian H(αi , hi). For all cases considered, we have taken
the MPS bond dimension χ = 100, which turns out to be largely sufficient to get a represen-
tation of the exact ground state with sufficient precision (see Appendix B ). Notice that, in
the case of quenches starting from hi = 0 [cf. Sec. 3.1], the initial state admits an exact MPS
representation with χ = 2.

Thereafter, for the unitary time evolution we use the Time Dependent Variational Principle
(TDVP) algorithm [46, 47], with second-order integration scheme, to solve the local forward
and backward Schrodinger’s equations. In our numerical simulations we used a single-site
TDVP recipe and fixed the initial MPS bond dimension; we fixed the Trotter time-step to
d t = 0.05. There is a finite time step error of O(d t3) per time step and O(d t2) per unit
time [48].

We simulated the dynamics of systems with maximum size L = 200, and we measured our
observable for different subsystems l; nevertheless, the majority of the results we presented
correspond to the subsystem of size l = 100. Let us mention that the bottleneck of the simula-
tion is the local eigensolver in DMRG sweep, and the local exponential solver in TDVP sweep
for which we have used Lanczos algorithm [49] with full re-orthogonalization [50]. With
the MPS representation of the state |Φ〉, the generating function Gl(θ ) can be measured by

4



SciPost Physics Submission

sandwiching the product operator eiθM(l) and exploiting usual tensor-network techniques. We
have chosen the subsystem of size l to be at the center of the full system. Finally, the discrete
Fourier transform is used to compute Pl(m), using equation (7) with the range θ ∈ [−π,π]
and discretization step dθ = 0.01.

3 Results

We investigate the dynamics of the subsystem magnetization PDF after a quantum quench. We
consider two different classes of quantum quenches.

• We initialize the system at hi = 0 and quench the transverse field to finite h f for a given
value of interaction range.

• We initialize the system at α = 0 (fully connected) and quench the interaction range to
α = 10 (short range Ising) while fixing the transverse field. We also perform a similar
quench in opposite direction.

3.1 Quench along transverse field

Here we study the time evolution of the full PDF of the subsystem magnetization Ml(t) after
a quantum quench along the direction of transverse field h. We will keep our quench entirely
within the ferromagnetic region of the ground state equilibrium phase diagram [7, 27]. We
prepare our system in the ground state of the Hamiltonian (1) with h = 0, which is the Z2
symmetric GHZ state [51,52]

|ψi〉=
1
p

2
(|→, ...→,→,→ ...,→〉+ |←, ...←,←,← ...,←〉). (9)

Figure 1: PDF dynamics of subsystem magnetization after a quantum quench for
l = 100, α ∈ {0.0, 1.0,2.5} and h f ∈ {0.30,0.50} (in first and second rows respec-
tively).
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This state is characterised by a two-peak PDF, Pl(m) =
1
2(δm,l/2 +δm,−l/2), thus exhibiting

long-range ferromagnetic order. We suddenly quench the system to a final hamiltonian H(h f )
with 0< h f < hc(α), where hc(α) is the equilibrium ferromagnetic to paramagnetic transition
point at the given α. We then evolve the PDF of the subsystem magnetization with post quench
hamiltonian in real time with TDVP. The late-time behaviour of the PDF is observed to be
strongly dependent on the post quench parameters and the subsystem size l. In figure 1 we
show this dependence with few representative quenches. In the first row we see that the
dynamics is qualitatively the same for α ∈ {0.0,1.0} and h f = 0.30. In both cases we see
that the system strongly retains the initial long range ferromagnetic order throughout the time
evolution. Furthermore, we observe a peculiar oscillation in PDF with a return frequency along
the time axis. This behavior completely changes for α = 2.5 where the initial ferromagnetic
order starts to melts at later time signifying a completely different dynamics. In the second
row we observe a different quench dynamics for the same values of α, and a larger value
of the post-quench transverse field h f = 0.50. Here, the initial ferromagnetic order quickly
melts since the larger transverse field works against it. However, depending on the value of
interaction range, the time evolution of the PDF undergoes a qualitative change in its late time
dynamical behavior. For α = {0.0,1.0} the dynamics of the PDF is characterised by periodic
re-bouncing of probability streams which lead to a broad and flat distribution; for α= 2.5 this
behavior completely changes with PDF smoothly melting and eventually attaining a Gaussian

Figure 2: Contour plot of the late time PDF of subsystem magnetization after a
quantum quench as a function of subsystem size, for α ∈ {1.5,2.5}, h f = 0.40,
and time t = 25. The subsystem magnetization m has been rescaled to the range
m/l ∈ [−1.0, 1.0], due to this rescaling the intensity of the contour plot decreases
with increasing l and the colorbar readings doesn’t signify the actual value of PDF.
The second column shows PDF at four representative values of l. The symbols are
TDVP results and the lines are the Gaussian approximation 10. The inset shows the
dependence of DG on l.
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shape centered around zero.
Gaussification of the PDF is an important behavior because it signifies the complete melting

of the long range ferromagnetic order into a paramagnetic one. We expect Gaussification when
the linear dimension of the subsystem exceeds the correlation length of the steady state i.e.
l > ξ. The goodness of Gaussification is measured qualitatively by comparing the PDF with
the Gaussian approximation obtained with the first two moments

Pl(µ, t) =
1

p

2πσ2(t)
exp

�

−
(µ− m̄(t))2

2σ2(t)

�

(10)

where m̄(t) = 〈ψt |M(l) |ψt〉 and σ(t) = 〈ψt | (M(l) − m̄(t))2 |ψt〉 are the first two mo-
ments of our order parameter. Quantitatively the goodness of Gaussification can be measured
by defining a metric Distance to Gaussian (DG) as

DG =
√

√

∑

m

[P(m)− PG(m)]2 (11)

where P(m) is the PDF calculated numerically and PG(m) is the corresponding Gaussian
PDF approximated using 10. DG is the measure of how close (or far) is the PDF from the
Gaussian shape, DG = 0 implies a perfect Gaussian shape. This measure is used in [6] under
the name Distance to Thermalization (DT). DG might not be a proper metric for cases in which
the system does not relax to a steady state in the given time frame and shows oscillations, in
such cases we introduce the time averaged DG as

DGavg =
1

T − To

∫ T

To

DG(d t)d t (12)

where To is chosen to avoid the initial sharp drop in DG [cf. Fig. 4].
In figure 2 we plot the dependence of late time PDF of order parameter on subsystem size

l for two representative values of interaction range above and below α = 2.0 and h f = 0.40.

Figure 3: PDF of subsystem magnetization for α ∈ {1.5, 2.5}, h f = 0.25 (in first and
second rows respectively) at different time scales after the quantum quench. The first
two columns shows the contour plot of the rescaled PDF as a function of subsystem
size at times t ∈ {10,50}. The last column shows the PDF at times t ∈ {10, 35,50}
and subsystem size l = 100.
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We observe two characteristically different behavior of PDF in these two regimes. For α= 1.5
the PDF remains double peaked for all values of l and further, the two branches of PDF di-
verges with increasing l suggesting that in thermodynamic limit the initial memory of long
range order is strongly retained. For α = 2.5 the PDF is double peaked for smaller l, be-
comes flat for intermediate l and eventually becomes Gaussian for large l, suggesting that
in thermodynamic limit the initial memory of long range order completely melts. These two
characteristically different behavior of PDF above and below α= 2.0 is the basis of dynamical
quantum phase transition based on order parameter (DQPT-OP) as proposed in [31] according
to which h f ® 0.50, α = 2.0 marks the transition line between dynamical ferromagnet and
dynamical paramagnet.

Alternatively, it has been argued in [33] that DQPT-OP, based on prethermal values of order
parameter, persists well beyond α = 2.0 and is dependent on both initial and final quench
parameters. In figure 3 we performed quenches similar to figure 2 at a smaller value of final
transverse field, h f = 0.25 and for a longer timescale t = 50. At α = 1.5 we observe a
qualitatively similar behavior at all timescales and subsystem sizes, the initial ferromagnetic
order persists throughout the time evolution after a quantum quench and the PDF maintains
a distinct double peak at all times. At α = 2.5 we observe a completely different behavior,
while we observe long range ferromagnetic order at t = 10 for all the simulated system sizes,

Figure 4: PDF of subsystem magnetization after a quantum quench for l = 100,
α ∈ {0.0,1.0, 1.5,2.0} and h f ∈ {0.60,0.70}. The first two columns shows the evo-
lution of the PDF as a function of time t ∈ [0, 25]. The third column shows the time
evolution of DG (y-axis in log scale) and the last column shows the late time PDF
at time t = 25 for the mentioned parameters. The symbols are the TDVP results
whereas the corresponding full lines are the Gaussian approximation 10.

8



SciPost Physics Submission

at t = 50 the long range order start to melt. This behavior is more clearly observed in the
rightmost panel of the second row of figure 3 where the PDF for t = 10 shows a distinct double
peak which becomes less and less prominent with increasing time, together with a stream of
probability density travelling toward m = 0. Based on these observations we can argue that
for a fairly bigger system size and longer timescale we will observe a complete meltdown of
the initial long range ferromagnetic order and most possibly Gaussification of the PDF in this
regime. This translates to the lack of DQPT-OP beyond α= 2.0.

In figure 4 we explore the quench dynamics of PDF for h f > 0.50 at four different rep-
resentative values of α. Quenches in this region provides us with interesting ideas on the
dependence of PDF dynamics on the post quench parameters and the subsystem size. We see
that for the fully connected case of α= 0.0 the initial ferromagnetic order melts and after few
oscillation (which depends on h f ) broadens in shape. The time evolution of the metric DG
follows a similar pattern and at late times it oscillates and stays well above the zero signifying
no Gaussification. The system however retains some memory of initial ferromagnetic order as
can be seen from the PDF at t = 25 that shows two peaks at the edges for both values of h f . At
α = 1.0 we see two markedly different behavior of PDF at h f = 0.60 and 0.70. At h f = 0.60
although the late times PDF is flat and far from Gaussian we don’t observe any remnants of
initial ferromagnetic order while at h f = 0.70 we still observe some remnants of initial fer-
romagnetic order as shown by the peaks at the edges of late time PDF. These two different
behaviors shows the strong dependence of dynamics of PDF after quantum quench on the
depth of the quench. As the depth of the quench is increased more energy is injected into the
system due to which the system takes longer time to relax to a steady state and consequently
we observe more oscillations in the evolution of PDF. At α = 1.5 we observe Gaussification of
PDF at late times for h f = 0.60, however on increasing the quench depth to h f = 0.70 the
PDF becomes a flat for the same simulation time. In this case the time evolution of the metric
DG provides a clearer picture as for h f = 0.60 DG starts to relax to zero whereas for h f = 0.7
it oscillates and stays well above zero. Further increasing the interaction range to α= 2.0 we
observe clear Gaussification at both values of h f . The time evolution of DG also shows that the
system relaxes to a stationary state faster and to a lower value for h f = 0.60 than h f = 0.70.

In figure 4 we observed Gaussification only for higher values of α. For the simulation time
and subsystem size available to us we observed mostly flat distribution for smaller values of
α. Solely based on these observations we cannot make any claim about the Gaussification of

Figure 5: The PDF of subsystem magnetization after a quantum quench at time t = 25
for subsystem sizes l ∈ {10,20, 40,100} for two representative values of post quench
parameters α = 1.5, h f = 0.60, and α = 1.8, hf = 0.70. The symbols are the TDVP
results whereas the corresponding full lines are the Gaussian approximation 10. In
the inset we show the dependence of DG on the subsystem size.
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the PDF of our order parameter. However, studying the PDF for several values of subsystem
size l for selected post quench parameters allow us to make a stronger claim about the Gaus-
sification of PDF in the thermodynamic limit. In figure 5 we show the behavior of the PDF
for two representative quenches for different subsystem sizes at t = 25. For l = 100 we see
Gaussification for both quenches, however for smaller subsystem sizes we observe mostly flat
distribution far from Gaussian. The variation of DG with system size in the inset shows the ap-
proach to Gaussian with increasing system size. These flat distributions are qualitative similar
to the ones we saw in figure 4 for smaller α but with l = 100. For α = 1.8, h f = 0.70, l = 10
we even observe a strong remnants of initial ferromagnetic long range order shown by two
sharp peaks at the edges. Based on these observations we can argue that the flat distribution
is an intermediate distribution between the double peaked and Gaussian distribution. For a
sufficiently large subsystem size and long simulation time, we will observe Gaussification for

Figure 6: PDF dynamics of subsystem magnetization after a quantum quench as a
function of post quench transverse field h f at three representative values of interac-
tion range α = {1.5,2.0, 2.5}. The dotted lines are the lines of constant probability
at P(m) = 0.002, these lines don’t have any quantitative significance and is plotted
for better visualization of PDF. The first column shows the color plot of PDF at time
t = 25 at different values of h f and l = 100. The second column shows the PDF
at t = 25 at different h f , the symbols are the TDVP calculations whereas the lines
are the Gaussian approximation 10. The inset shows DGavg at corresponding values
of h f . The last column shows the finite size dependence of DGavg for four differ-

ent values of h f . DGavg is calculated by averaging over the final
�

3
5

�th
of the total

simulation time.
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smaller values of α. This observation is in line with DQPT-OP proposed in [31] which suggests
the dynamical critical point to be close to h f ≈ 0.50. The exact values of the dynamical crit-
ical points and the critical exponents are still an open question. This phenomenon has been
experimentally observed with trapped ion qubits [39].

In figure 6 we explore the dependence of Gaussification on the post quench transverse
field h f at three representative values of interaction range α = {1.5,2.0, 2.5}. For α = 1.5
we observe that the system moves towards Gaussian with increasing h f up to a certain point
which is marked by the dip in the color plot PDF versus h f in the first panel of the first row.
On increasing h f further the PDF moves away from Gaussian and broadens in shape. This is
observed more clearly in the second panel of the first row where we observe Gaussification only
for the intermediate values h f = {0.55, 0.60}. Although higher transverse field tend to destroy
the long range ferromagnetic order, we also inject a larger amount of energy in the system as
we increase the depth of the quench i.e. h f . This means a higher effective temperature [20]
and consequently the system requires a longer time and bigger subsystem size to eventually
relax to a Gaussian. The intermediate region is a region of compromise where we observe a
distinct Gaussian behavior of the PDF of our order parameter. The third panel shows that for
sufficiently large system size the PDF relax more and more towards Gaussian for all values of
h f . For α≥ 2.0 the PDF is Gaussian in the range of h f and simulation parameters considered,
however we still see the dip in the color plot signifying the region of better Gaussification.
This dip becomes less and less prominent with increasing α as shown by the plots for α= 2.5
in the third row.

3.2 Quench of the interaction range

Here we study the relaxation of the PDF of the subsystem magnetization Ml(t) following a
quantum quench in the direction of interaction range α. In particular we quench the system
from one extreme to the other; initializing at α= 0.0, which is the fully connected model, and
quenching to α = 10.0 which is almost the Ising model with nearest neighbor interactions,
and vice versa. The transverse field h is kept constant throughout the evolution. Apart from
looking how and if the initial ferromagnetic order melts at late time, we are also interested to
see if quenches in opposite directions are qualitatively equivalent. In Figure 7 we show these
quenches for four representative values of the transverse field h= {0.30,0.40, 0.48,0.60}. The
first thing we immediately notice is that the two peaks of the initial PDF are broader compared
to the cases where the system is initialized with h= 0. This is due to the fact that now the sys-
tem has been initialized closer to the equilibrium phase transition line where the PDF peaks are
broader and closer to each other. Remarkably, we do observe a completely different behavior
for the two different class of quenches. We see that for quenches starting from the fully con-
nected state and evolving according to the short-range Hamiltonian, the initial ferromagnetic
order melts for sufficiently large value of the transverse field. For h= {0.30,0.40} we observe
that the two branches of the PDF start to melt with time, as shown by the stream of probability
density branching out from the main PDF peak, although the initial ferromagnetic order effec-
tively remains throughout the evolution. For h = 0.48 we observe the complete meltdown of
the initial ferromagnetic order with some hints of Gaussification at late times. On the other
hand, for quenches starting from the ground state of the short-range Hamiltonian and evolv-
ing according to the fully connected Hamiltonian, we observe strong remnants of the initial
ferromagnetic order throughout the evolution with no sign of meltdown. We see that although
the PDF becomes more oscillatory with increasing h there is no change in the intensity of the
PDF branches with time. The last column shows the result for similar quenches but at h= 0.6,
these quenches are different from others in the sense that the point α= 10.0, h= 0.6 lies in the
paramagnetic regime of the equilibrium phase diagram. For quench from α= 0.0 to α= 10.0
we observe that the initial ferromagnetic order melts faster than before now that the system
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Figure 7: PDF dynamics of subsystem magnetization after a quantum quench along
the direction of interaction range, α. The first row shows the results for quenches
where the system is initialized at αi = 0.0 and quenched to a final α f = 10.0, the
second row shows the results for opposite condition. The quenches are performed
for three representative values transverse field h ∈ {0.30, 0.40,0.48, 0.60}.

is quenched to a point in paramagnetic regime in equilibrium phase diagram. The quench in
opposite direction is initialized at a paramagnetic point so the PDF begins as a Gaussian which
relaxes quickly. Interestingly, at intermediate times we observe an appearance of double peak
PDF signifying long range ferromagnetic order. This long range order is short lived and melts
quickly. However, the fate of the PDF in a long time limit is not very clear.

The two cases of α considered here are two extremes of the long-range Ising model. When
α = 10.0 the system is close to well known transverse field Ising model. This model does not
support any long-range order at finite temperature, thus it is not surprising to observe a melting
of the initial ferromagnetic order after the quench; indeed, the protocol injects a finite amount
of energy to the system, simulating a finite temperature environment. So while we quench
the system from one point in ferromagnetic region to another point in ferromagnetic region
in zero temperature equilibrium phase diagram, the system actually relax to a paramagnetic
point in a finite temperature phase diagram. On the other hand, the fully connected Ising
model supports long-range ferromagnetic order even at finite temperature [53–55] which is
presumably the reason why we observe strong remnants of the initial ferromagnetic order at
late time.

4 Conclusion and Outlook

We studied the dynamics of the PDF of the subsystem magnetization in the long-range Ising
model after a quantum quench. We constrained most of our quenches within the ferromagnetic
region of the equilibrium phase diagram as we expect non-trivial dynamics in this region. We
studied quenches along the transverse field and interaction range. We found that the dynamics
of the order parameter strongly depends on the post quench parameters. Based on these
observations we showed that for α > 2.0 the initial long range ferromagnetic order eventually
melts following a quantum quench in the direction of transverse field. This is signified by the
melting of the double peak PDF into a Gaussian one in the long time limit and for large system
sizes. For α≤ 2.0 however we see a strong remnant of the initial long range order for quenches
in the transverse field such that h f ® 0.50, where a double peak structure in the PDF remains
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throughout the time evolution. In the region above h f = 0.50 we observed Gaussification of
the order parameter PDF for increasing value of α. Gaussification of the order parameter PDF
in this region is dependent on the size of the subsystem (and eventually the size of the system
we can simulate) and the total simulation time, which greatly constrained our numerical work.
However, with a finite size analysis for some representative quenches, we can safely claim that
for sufficiently large system size and longer simulation time we expect Gaussification of the
order parameter PDF for all α following a quantum quench along the transverse field with
h f ≥ 0.50.

For quenches along the interaction range, we found qualitatively different dynamics of the
order parameter PDF, depending on the direction of the quench. While for quenches starting
form the fully connected state and evolving with short-range Hamiltonians we saw an effective
melting of the initial ferromagnetic order, we observed a complete persistence of the initial
order for quenches in the opposite direction.

Attaining Gaussification of the order parameter PDF after quenches from one point in the
ferromagnetic region of the zero temperature equilibrium phase diagram to another point
within the ferromagnetic region is a non trivial phenomenon, suggesting that the system re-
laxes to a paramagnetic point in the finite temperature phase diagram. These results open up
the possibility to further study the thermalization dynamics in the long-range Ising model. In
fact, the non-equilibrium results could be compared with a finite temperature analysis of the
model, by observing if the late-time subsystem magnetization after the quench converges to
the thermal expectation value corresponding to the effective temperature fixed by the initial
value of the energy density [20]. So far, mainly short range models have been investigated
in this perspective [10, 13]; for long-range models a clear pathway is to combine the present
analysis with matrix product density operator(MPDO) [56] based TDVP, modified to gener-
ate finite temperature states starting from the maximally mixed infinite temperature density
matrix [57,58].
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A Long range Ising Hamiltonian as an MPO

It is straightforward to represent a long range Hamiltonian with exponentially decaying inter-
action as an MPO [45]. Representing a long range Hamiltonian with power law decay requires
first representing the power law decay as the sum of exponential [59] and then representating
the sum of exponentials as an MPO [60]. The goodness of this representation depends on how
precisely do we represent the power law decaying function as the sum of exponentials which
is quantified by a metric Errorα,n

Errorα,n =
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−

n
∑

i=1

x iλ
r
i

�

�

�

�

�

(13)

where the number of exponentials in the sum n determines the precision of fitting. We
observe that for system size L = 200 the relative error is 10−7 or smaller [cf. Fig. 8] with
n= 14.
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Figure 8: Relative Error for representating the power law decay as the sum of expo-
nential for three representative values of interaction range α= {0.5,1.0, 2.5}.

B Convergence with bond dimension

To ensure the data generated by the simulations are correct we need to check the convergence
of the errors with increasing bond dimension. In TDVP the bond dimension is responsible for
projection error [48], which is a primary source of error. To check that the errors converge
with increasing bond dimension we compare the time evolution of subsystem magnetization
and relative errors for some representative cases of quantum quenches for χ = {40,60, 100} in
figure 9. Quenches along the transverse field show qualitatively similar behavior, the relative
error converges and becomes flat in a long time limit for all values of post quench parameter.
Furthermore, for times up to 25, which is the maximum time reached for most of the results
in the main text, the relative errors are smaller than 10−3. For quenches of the interaction
range with h = 0.40 we observe a similar behavior. For h = 0.48, the quench from αi = 10.0
to α f = 0.0 shows a markedly different behavior. The magnetizations at different χ maintains
a constant shift from one another right from t = 0 throughout the evolution. This is because
the point α= 10.0 and h= 0.48 is close to the critical point of the equilibrium phase diagram
where we see a logarithmic divergence of the entanglement entropy [61] and DMRG generate
a considerable relative error while initializing the system in the ground state. This initial error
simply gets propagated throughout the time evolution. The relative errors in opposite direction
behaves normally attaining a flat region after oscillations.
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Figure 9: Convergence of subsystem magnetization and relative errors with increas-
ing bond dimension, χ = 40 (blue), χ = 60 (red), and χ = 100 (black). The top
row is for α = {1.5,2.5} and h f = 0.30(colored dotted) , and h f = 0.60(colored
bold). The bottom row is for h = {0.40,0.48} and quench from α = 10.0 to α = 0.0
(colored dotted) α= 0.0 to α= 10.0 (colored bold)
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