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Abstract

Neural-network quantum states (NQS) have been shown to be a suitable vari-
ational ansatz to simulate out-of-equilibrium dynamics in two-dimensional sys-
tems using time-dependent variational Monte Carlo (t-VMC). In particular,
stable and accurate time propagation over long time scales has been observed
in the square-lattice Heisenberg model using the Restricted Boltzmann ma-
chine architecture. However, achieving similar performance in other systems
has proven to be more challenging. In this article, we focus on the two-leg
Heisenberg ladder driven out of equilibrium by a pulsed excitation as a bench-
mark system. We demonstrate that unmitigated noise is strongly amplified by
the nonlinear equations of motion for the network parameters, which causes
numerical instabilities in the time evolution. As a consequence, the achievable
accuracy of the simulated dynamics is a result of the interplay between network
expressiveness and measures required to remedy these instabilities. We show
that stability can be greatly improved by appropriate choice of regularization.
This is particularly useful as tuning of the regularization typically imposes
no additional computational cost. Inspired by machine learning practice, we
propose a validation-set based diagnostic tool to help determining optimal
regularization hyperparameters for t-VMC based propagation schemes. For
our benchmark, we show that stable and accurate time propagation can be
achieved in regimes of sufficiently regularized variational dynamics.
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1 Introduction

In recent times, the application of machine learning methods to problems in quantum
physics has received considerable interest [1]. Examples include the use of neural networks
for quantum state reconstruction [2], quantum control [3] and feedback [4], as well as
classifying phases of matter [5–7]. Due to their success in approximating high-dimensional
nonlinear functions in machine learning applications, neural networks were proposed in
2017 as a variational ansatz for the quantum wave function [8]. These neural-network
quantum states (NQS) have been applied to a wide variety of problems in quantum many-
body physics, including spin [8–23], bosonic [11, 24] and fermionic [25, 26] systems, as
well as quantum computation [27, 28] and dissipative systems [29–32]. One particular
research area where NQS could prove important in the near future are non-equilibrium
quantum many-body problems, which are of interest across research fields, reaching from
quantum simulators with cold atoms and trapped ions [33,34] via arrays of Rydberg atoms
[35], and photonic platforms [36] to laser-driven quantum materials [37]. The theoretical
investigation of such scenarios is restricted by a lack of computational methods that allow
researchers to reliably simulate driven correlated systems, in particular in two dimensions.
NQS provide a promising candidate wave function for the purpose of investigating out-of-
equilibrium dynamics, in part due to their ability to capture high-entanglement [38] and
topological states of matter [9, 10], which may serve to complement other approaches, in
particular those based on tensor network states [39].

Typically, NQS are time propagated using time-dependent variational Monte Carlo (t-
VMC) [8,40,41]. So far, this has been studied in the literature primarily in the context of
quenches in the spin-1/2 Ising and Heisenberg models in both one and two dimensions [42–
47]. In many cases, achieving numerical stability has been identified as the key challenge for
the reliable simulation of quantum dynamics [42–44] and also for ground state optimization
using imaginary time propagation [19]. In contrast, the capability of the NQS ansatz to
represent the relevant dynamical quantum states was not found to be a limiting factor.
However, the general question which types of states can be represented well by a given
network architecture and the scaling of the required network size is still a matter of active
research [20,23].

In this work, we are concerned with understanding and separating different sources of
instabilities that can prevent t-VMC time propagation to reach dynamical states even when
they can in principle be captured by the variational ansatz. To this end, we take a closer
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look at dynamics in the antiferromagnetic 2D Heisenberg model, which has previously
been studied with t-VMC on a 2D square lattice geometry. There, stable time propagation
has been demonstrated using the well-established restricted Boltzmann machine (RBM)
architecture [45–47]. We compare this setting to the same Hamiltonian on a two-leg
(L × 2) ladder geometry, which features significantly more complex quantum dynamics
and which we find to be much more sensitive to numerical instabilities. This is true
already for very small systems which are still accessible by exact numerical time evolution
(exact diagonalization, ED) which provides us with reliable data to benchmark the RBM
dynamics.

We demonstrate that the observed instabilities arise primarily as a result of stochastic
error, which is amplified through the generally ill-conditioned variational equations of
motion. The stability of the propagation can be improved by reducing noise through
means such as increasing the number of Monte Carlo samples or reducing the simulation
time step, but this comes at the cost of increasing the required computational resources.
However, we show that regularization of the equation of motion also helps to mitigate
the effects of noise without significant additional computational cost and highlight the
strong effect of regularization parameters on the quality of the resulting trajectory. Taking
inspiration from machine learning terminology, this effect can be described as overfitting
to stochastic noise, which leads to poor reliability of the time stepping procedure. As in
machine learning, this type of overfitting can be detected and quantified by validating the
optimized time step on independently sampled data, leading us to introduce a validation-
set variational error and show that it can help identify unstable regimes and thus optimize
regularization hyperparameters.

The main contributions of this work are therefore (i) presenting the two-leg Heisenberg
model as a particularly challenging system to simulate using NQS with t-VMC, making
it a useful benchmark case; (ii) the analysis of different sources of error and the effect
of regularization on t-VMC propagation in this model; and (iii) the introduction of a
validation-set error for quantifying error due to overfitting to stochastic noise.

This article is structured as follows: In Section 2 we define the driven Heisenberg
model used as reference in the rest of this paper, in Section 3 we show the influence of
regularization on stability and accuracy of the NQS dynamics, and in Section 4 we discuss
how this can be quantified using a validation-set approach. Finally, in Section 5, we
conclude and provide an outlook on future work.

2 Model and methods

We study excitations in the two-dimensional antiferromagnetic (AFM) Heisenberg model
(working in units with ~ = 1),

Ĥ(t) = J0
∑
{i,j}∈N

ĥij + J0 ∆x(t)
∑

{i,j}∈Nx

ĥij (1)

where

ĥij =

3∑
µ=1

σ̂µi σ̂
µ
j , (2)

denotes the local Heisenberg coupling acting on each bond with the Pauli matrices σ̂µi ,
µ ∈ {1, 2, 3}, and exchange coupling strength J0 > 0. Here, the outer sum runs over the
nearest-neighbor bonds N of a finite-dimensional rectangular lattice L of size N = Lx×Ly
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Figure 1: (a) Ladder and square lattice geometry for the 2D AFM Heisenberg model.
The colors indicate the A and B sublattices of the bipartite model. In the ladder geom-
etry, periodic boundary conditions (PBC) in the x direction are imposed. In the square
geometry, PBC are imposed in both directions. (b) The Heisenberg system is driven out
of its ground state by modulating the x-bond coupling in a single pulse with shape ∆x(t)
[Eq. (3)], here displayed for Ap = 0.20, tp = 0.987J−10 , ωp = 8.0J0, and σp = 0.4J−20 .
(c) Oscillations of the x and y bond spin-spin correlations Cx/y(t) [Eq. (4)] caused by the
pulse for both geometries as computed from the exact time-evolved state. (d) Overlap of
the initial state |Φ0〉 obtained from ED with the exact time-evolved state |Ψ(t)〉 = Û(t)|Φ0〉
for varying pulse amplitude Ap and both geometries. The other pulse parameters are the
same as in panel (b).
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Figure 2: Restricted Boltzmann machine architecture used as a variational quantum
state with N visible units corresponding to the lattice size and a hidden unit density α.
A detailed description of the ansatz is given in Appendix A.

[Fig. 1(a)] and Nx/y ⊆ N denotes subset of x/y bonds. We will consider two different
lattice geometries: the square lattice with side length L := Lx = Ly and the ladder
geometry with L := Lx, Ly = 2 sites. In both cases, periodic boundary conditions in x
direction are assumed. For the square lattice, we also impose periodic boundary conditions
in the y direction.

Starting from the ground state at t = 0, we study the time evolution of the system
under an excitation created by a pulsed modulation of the exchange coupling along the x
direction of the lattice (which is the long direction in the ladder system), which has the
form [Fig. 1(b)]

∆x(t) = Ap sin(ωpt) exp

(
−(t− tp)2

2σp

)
for t ≥ 0. (3)

This driving is physically motivated and can be viewed as a single-cycle THz pulse polar-
ized along x which drives the exchange coupling through a Raman process [45, 48]. The
y direction coupling is kept constant. In addition to the energy, we compute the average
nearest-neighbor bond correlation

Cν(t) =
1

N

∑
{i,j}∈Nν

3∑
µ=1

〈σ̂µi σ̂
µ
j 〉 (4)

along the ν = x, y direction as an observable. To obtain reference data, we have simulated
the time evolution under this pulse through exact (ED) propagation. The resulting dy-
namics are shown in [Fig. 1(c)]. In both systems, the pulse causes oscillations that persist
after the pulse. However, while our driving protocol causes only singlet excitations on
the square lattice, the ladder model exhibits both singlet and triplet excitations [49–51]
and we indeed observe more complex and irregular dynamics in the time-dependent bond
correlations. For equal amplitude Ap of the x-bond modulation, the ladder system is more
strongly affected [as evidenced by the higher distance to the initial state [Fig. 1(d)].

As a variational ansatz, we employ the restricted Boltzmann machine (RBM) with
complex-valued weights θ ∈ CM (Fig. 2) as a parametrization of the quantum wave func-
tion lnψθ(s) mapping basis spin configurations to the corresponding log-probability am-
plitudes. The translation symmetries of the lattice are enforced in the manner described in
Refs. [8,45], which reduce the number of variational parameters to M = α(N + 1), where
α is the hidden unit density. The translation group of an N = L×L lattice with periodic
boundary conditions contains N distinct operations. In the ladder geometry, the notion

5



SciPost Physics Submission

of periodic boundary conditions only applies to the long direction; however, we include
the reflection symmetry along the short direction, so the total order of the translation
symmetries is still N . The network architecture is fully described in Appendix A.

The time propagation is done using time-dependent variational Monte Carlo (t-VMC)
[8, 40], which corresponds to numerically solving the equation of motion of the time-
dependent variational principle (TDVP)

S(θ(t)) θ̇ = −iF (θ(t), t), (5)

where θ̇ = dθ(t)/dt, using a stochastic estimate of the quantum Fisher matrix (QFM)

Sij(θ) = E[Θ∗iΘj ]− E[Θ∗i ]E[Θj ], (6)

and energy gradient

Fi(θ, t) = E[Θ∗iH(t)]− E[Θ∗i ]E[H(t)], (7)

with log-probability derivatives Θi(s) = ∂i lnψθ(s) and local energy H(t)(s) = 〈s|Ĥ(t)|ψθ〉
〈s|ψθ〉 .

The expectation values E[ · ] are taken with respect to the Born probability distribution
∼ |ψθ( · )|2. Further details on the t-VMC propagation scheme are provided in Appendix B.
The initial ground state is prepared by minimizing the energy of a randomly initialized
RBM using stochastic reconfiguration [41].

3 Stability and regularization

In this section, we will highlight jump-like numerical instabilities that we find to arise pri-
marily due to stochastic noise from VMC sampling that enters into the nonlinear equation
of motion (5), leading to missteps where the simulation diverges from the physical trajec-
tory in an irrecoverable fashion. We will then show how regularization of the equation of
motion can stabilize the dynamics without requiring a change in time step or an increase
in Monte Carlo samples.

3.1 Numerical instabilities from unmitigated noise

We first highlight the practical challenge posed by the highly nonlinear and stochastic
t-VMC equation of motion, by demonstrating how a change in lattice geometry of an
otherwise unaltered physical model can affect the stability of the NQS propagation.

In previous works [45–47], it has been shown that the dynamics of the Heisenberg
model on a square lattice can indeed be successfully simulated using t-VMC with RBM
quantum states. We obtain equivalent results for our pulsed driving [Fig. 3(d)–(f)]. The
main manifestation of the error as compared to the exact dynamics is a continuous decay of
amplitude of the resulting oscillations, which is visible from the averaged nearest-neighbor
correlation Cx(t). Increasing the width of the network, i.e., the hidden unit density α, both
improves the accuracy of the initial (ground) state and reduces the loss of accuracy over
the course of the time evolution (data not shown). This shows that the decay is the result
of accumulated TDVP error and can be reduced by an increase in network size, which is
in agreement with results for a square pulse excitation presented in Ref. [45]. However,
this behavior is markedly different for the ladder geometry (with otherwise unchanged
system parameters), where instabilities quickly occur during t-VMC evolution already for
weak pulse strengths Ap > 0.02 [Fig. 3(a),(b)]. Notably, the observed instabilities violate
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Figure 3: Time-dependent per-site energy change Ē(t) = [〈Ĥ(t)〉 − E(0)]/N and aver-
age x-bond correlation C̄x(t) = Cx(t) − Cx(0) for the 8 × 2 ladder [panels (a)–(c)] and
4 × 4 square geometry [panels (d)–(f)] and varying pulse strengths Ap. The trajectories
have been obtained from t-VMC evolution using MCMC [panels (a),(d)] and EMC [pan-
els (b),(e)] sampling as well as results based on full summation of the equations of motion
[panels (c),(f)]; see Sect. 3.1 for details. The dashed lines show ED results for reference.
In all cases using a symmetric RBM with hidden unit density of α = 10 has been used.
The initial state is the approximate ground state of the respective system obtained by
stochastic reconfiguration and is the same for panels (a)–(c) and (d)–(f), respectively. In
all cases, the equation of motion is evaluated by singular-value decomposition of S and
applying a diagonal shift of ε = 10−3 (see Sect. 3.2 and Appendix D) for regularization.
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energy conservation, a property that is inherent to the TDVP equation of motion for
a static Hamiltonian. Therefore, their origin has to be numerical. In order to better
understand which sources of error in the t-VMC method contribute to these instabilities,
we compare three different propagation schemes:

1. t-VMC propagation where the components of the equation of motion are estimated
stochastically using Markov chain Monte Carlo (MCMC) with the Metropolis algo-
rithm, which is the standard propagation method for NQS [8,41] [Fig. 3(a),(d)];

2. autocorrelation-free “exact” Monte Carlo (EMC), where samples are directly drawn
according to the Born distribution |ψ( · )|2 without using the Metropolis algorithm
[Fig. 3(b),(e)]; and

3. time propagation based on full summation of the t-VMC equation of motion over all
spin configurations, which provides a reference free of stochastic noise [Fig. 3(c),(f)].

In the Metropolis MCMC scheme, updates to the spin configuration are proposed based
on exchanges of spin pairs which preserve the total magnetization and thus the restriction
of the ansatz to the zero-magnetization sector. The EMC scheme can only be applied
to small systems accessible to ED, because it relies on the knowledge of the full Born
distribution. Here, it is used strictly as a benchmark to uncover the influence of noise on
the dynamics while ruling out errors due to non-convergence of the Metropolis sampling1.
The full summation scheme is similarly limited to small systems with tractable Hilbert
space. We have used a second-order Runge-Kutta method (Heun’s method) for time
propagation in all cases, using two evaluations of the equation of motion (5) per time step,
a fixed step size of δt = 0.002 and Ns = 7000 Monte Carlo samples for EMC and t-VMC.
Here and in all other MCMC simulations presented in this work, a number of Monte Carlo
steps equal to the system size N is performed between each of the Ns samples included
in the chain in order to reduce the autocorrelation between successive samples. While
there is a visibly increased level of noise with the MCMC sampling, divergences occur at
similar time points of the evolution for both approaches. In the full summation results
at the same driving strengths, the energy jumps are absent and the dynamics are more
accurately reproduced on the ladder with pulses Ap ≤ 0.10 [Fig. 3(c),(f)]. We note that
even in the absence of stochastic noise, the time evolution shown here fails to accurately
capture the ladder dynamics for stronger excitations, as can be seen from the Ap = 0.15
trajectory. Furthermore, we note that the likelihood of instabilities can be reduced by
lowering the integrator time step, which, however, increases the computational cost of the
simulation.

In any case, the occurrence of jump-type instabilities is significantly more likely in the
presence of Monte Carlo noise. This is true both for MCMC and EMC, showing that
the instabilities are not just a result of failed convergence of the Markov chain sampling.
Indeed, a noisy energy gradient alone is sufficient to cause the observed divergences when
combined with the t-VMC equation of motion for NQS. We show this in an idealized
picture as follows: Consider Eq. (5) without any stochastic sampling but with an artificial
term of proportional Gaussian white noise added to the energy gradient2. This provides

1Note that autocorrelation-free Monte Carlo sampling is practically possible beyond the ED regime for
NQS architectures based on autoregressive networks [52], though this is quite different from the benchmark
implementation considered here.

2We note that the proportional Gaussian noise model of Eq. (8) is indeed a simplification. An analysis
in Ref. [44] shows that the actual noise level varies between components of the energy gradient and depends
on the quantum geometry of the ansatz (through the QFM spectrum) as well as the energy fluctuations.
However, already the simple proportional model used here does exhibit the jump-like instabilities when
subjected to noise amplified through the equation of motion.
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Figure 4: (a) Time evolution of the nearest-neighbor coupling term C01 =
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using the TDVP equation of motion evaluated by full summation with added artificial noise
[Eq. 8]. We show results for the dynamics on the 4×4 lattice with pulse strength Ap = 0.20
for an RBM with hidden unit density α = 10. For each value of the noise strength η, five
independent trajectories are shown as faint lines. The opaque lines indicate the median
of the respective curves. (b) Empirical standard deviation between the set of curves in
panel (a) grouped by noise strength η.
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and with varying time step δt at a fixed noise level of η = 10−3.
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a direct way to control the noise level without affecting other steps in the propagation.
Specifically, we solve

Sθ̇ = −i(F + ξ) (8)

where ξ is a random vector with components drawn from a complex normal distribution
with mean E[ξi] = 0 and variance Var[ξi] = |ηFi|2. The parameter η determines the
relative noise strength and the standard error in each component is proportional to |Fi|.
The equation of motion is solved using the same second-order Heun scheme used for the
t-VMC simulation and at a fixed time step of δt = 0.002. In Fig. 4(a) we show resulting
trajectories for varying noise levels η. For each value of η, five independent trajectories
are shown. In the absence of instabilities, the standard deviation of the trajectories at
first grows with increasing noise [Fig. 4(b)]. After a time of the order of the pulse length,
the spread of the trajectories stabilizes at a value that is independent of η. For η ≥ 10−3,
jump instabilities occur within the simulation time. Whereas for η = 10−2 all trajectories
show this instability already around t = 1 J−10 , the jumps happen more sporadically and
at later times for η = 10−3, with only two of the trajectories exhibiting a jump before
t = 6 J−10 . Reducing the integrator time step decreases the frequency of instabilities in a
similar fashion, as is shown in Fig. 5.

This idealized experiment shows that random noise in the gradient can be amplified
through Eq. 5. Together with the highly non-linear nature of the phase space of the NQS
ansatz (compare Ref. [19]), this can cause jump-type instabilities like we have observed in
the t-VMC propagation, instead of a gradually increasing spread of the trajectories that
would be expected for a more regular ansatz and equation of motion. Both a reduction in
noise level and time step reduce the likelihood of instabilities.

In agreement with observations made for other systems [19, 44], we find that the ex-
pressive capabilities of the network are not a limiting factor. For individual time points,
the exact quantum state shown in Fig. 3 can indeed be represented to good accuracy by
an RBM of width α = 10. See Appendix C for detailed results.

Beyond the data shown here, we have observed RBM states with fewer parameters to
be generally more stable. This, however, comes at the cost of decreased accuracy over time,
as representational error accumulates (cf. Ref. [45]). The numerical instability present in
larger network thus counteracts the benefits of increased expressiveness, making it par-
ticularly important to find ways of alleviating this effect without significant increase in
computational cost. We further note that while the ladder system is particularly sensitive
to the types of instabilities discussed here, they can also occur in the square lattice geom-
etry. We have observed this both in the artificial noise model (Fig. 4) and for a driving
strength increased beyond Ap = 0.30 (data not shown). Therefore, while the Heisenberg
ladder is a very suitable benchmark system for these types of numerical issues, the obser-
vations made here can be expected to apply to a broader class of systems, especially when
they are driven far out of equilibrium on short time scales.

In the next section, we will discuss how the choice of regularization scheme affects the
stability of the dynamics.

3.2 Influence of regularization

The formal solution of the TDVP equation (5) is given by

θ̇ = −iS+F (t) (9)

where S+ denotes the Moore-Penrose pseudoinverse of the QFM [8,42,44,46]. Computing
the pseudoinverse can be done by singular-value decomposition (SVD), which is equivalent
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Figure 6: Infidelity of the time-evolved variational state compared to the exact trajectory
for varying regularization (in the form of the SVD threshold λ). The trajectories have
been computed using t-VMC with EMC [panels (a)–(c)] and Metropolis [panels (d)–(f)]
sampling. The columns correspond to a weak excitation Ap = 0.02 [panels (a),(d)] and a
moderate excitation Ap = 0.10 [panels (b),(e)] in the 8 × 2 ladder, as well as a stronger
excitation Ap = 0.20 in the 4×4 square lattice [panels (c),(f)]. The initial E(t = 0) of order
10−5 is the approximation error of the variational ground state. The time propagation
has been computed using t-VMC with EMC sampling with Ns = 24000 samples for the
ladder [panels (a),(b)] and Ns = 11200 for the square lattice [panel (c)]. We have used the
symmetrized RBM ansatz with a hidden unit density of α = 10.

to the eigendecomposition in this case. This is because S is a covariance matrix and there-
fore positive semi-definite, i.e., all eigenvalues are nonnegative. Then, in the eigenbasis of
S = V diag({ζj}Mj=1)V

†, the TDVP equation reduces to

ζj [V
†θ̇]j = −i[V †F ]j . (10)

We order the eigenvalues of S by magnitude ζ1 ≥ ζ2 . . . ≥ ζM in the following and denote
the smallest nonzero eigenvalue by ζr. Then, for all nonzero eigenvalues corresponding
to j ≤ r, we have [V †θ̇]j = −iζ−1j [V †F ]j . The directions in the null-space of S do not
contribute to the physical dynamics; changes of θ in those directions only affect gauge
degrees of freedom of the quantum state. In order to obtain the minimum-norm solution,
these are set to zero, i.e., [V †θ̇]j = 0 for j > r.

In practice, the numerical solution of this equation is complicated by the fact that
NQS typically possess a non-exponential but still large number of variational parameters
compared to more traditional variational wave functions and further allow for redundancy
in the parametrization of a specific quantum state. As a consequence, the QFM is singular,
and the nonzero part of its spectrum typically spans many orders of magnitude [43,44,53].
Therefore, the linear system (5) has a high condition number κ(S) = ζ1/ζr which, in
particular, means that small perturbations in the right-hand side F (t) can be strongly
amplified in the solution θ̇ of the equation of motion (EOM), causing the jump instabilities
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Figure 7: Relative change in energy and x-bond correlation as defined in Fig. 3 for a
selection of trajectories shown in Fig. 6 with different regularization strengths λ.

we have empirically observed above. For this reason, it is necessary to regularize the EOM
in order to stabilize the dynamics while preserving the physical accuracy of the resulting
trajectory. Typically, this is done by truncating eigenvalues below a threshold λ in Eq. (9).
Specifically, ζi is treated as zero when ζi ≤ λζ1. The effective condition number of S is
then bounded by κ ≤ λ−1. While we focus on this regularization scheme in the remainder,
our analysis also applies to a broader class of regularization schemes. In particular, the
application of a diagonal shift to S and a signal-to-noise ratio based regularization scheme
proposed in Ref. [44] are briefly discussed in Appendix D.

Naturally, there is a trade-off between stability and accuracy: Too much regularization
will suppress crucial parts of the physical dynamics, while the system is susceptible to
instabilities without or with only weak regularization. This can be seen in Fig. 6, where we
show the infidelity of the time-dependent quantum state relative to the ED time evolution
of the system,

E(t) = 1− |〈ΨED(t)|ψθ(t)〉|2
〈ΨED(t)|ΨED〉〈ψθ(t)|ψθ(t)〉

, (11)

for varying regularization strength λ. Specifically for the weak pulse [Fig. 6(a)], we can
clearly see a separation of three regimes: an over-regularized regime (for λ ≥ 10−4), where
the dynamics are stable but inaccurate; an intermediate stable regime where the physical

12



SciPost Physics Submission

observables are accurate and the regularization still sufficient to stabilize the dynamics;
and an unstable regime (λ ≤ 10−8) where jump instabilities occur within the simulation
time frame. While for the weak pulse the stable regime spans several orders of magnitude,
it becomes smaller with increasing strength [Fig. 6(b)]. By contrast, on the square lattice
the dynamics remain stable and largely unaffected by the regularization strength over a
wide range of λ even at a pulse strength of Ap = 0.20 [Fig. 6(c)]. These results have been
obtained with EMC sampling, but the same behavior can be observed for the practically
relevant case of Metropolis sampling, which is shown in Fig. 6[(d)–(f)]. In this case, the
stable regime of regularization becomes smaller for the ladder system. Figure 7 shows
the expectation values of energy and bond correlations for several trajectories. These ob-
servables show how in the over-regularized regime, numerical stability comes at the cost
of physical errors which manifest here in an incorrect reproduction of the oscillation fre-
quencies. At the same time, the square lattice system is almost unaffected by Metropolis
sampling, except at very low thresholds. Notably, for both EMC and MCMC sampling
strategies, the dynamics converge to a stable trajectory at a much lower number of Monte
Carlo samples than in the the ladder system. This hints at an increased sampling complex-
ity of the low-lying ladder excitations in accordance with the higher physical complexity
of the ladder excitations, an observation which is corroborated by our results in the next
section.

Altogether, our results highlight the delicate balance between stability and accuracy
of the dynamics in the presence of stochastic noise and the resulting necessity to fine-tune
regularization hyperparameters to reach the optimal regime. From the comparison of
ladder and square geometry, we have further seen that the extent of this behavior depends
strongly on the details of the system.

4 Overfitting to noise and validation error

In order to choose an optimal regularization for a given system and excitation scheme, it
is important to have access to appropriate diagnostics. While the error relative to ED as
shown in the previous section provides a straightforward way to assess the quality of the
solution, this option is restricted to small benchmark systems. Here, we therefore propose
an alternative diagnostic which is more generally applicable.

The local truncation error resulting from a single time step in the variational approx-
imation is quantified by the TDVP error [8, 44]

r2(t) =

[
D(ψ[θ(t) + θ̇ δt], Ût+δt,tψ[θ(t)])

D(ψ[θ(t)], Ût+δt,tψ[θ(t)])

]2
. (12)

Here, D( · , · ) denotes the Fubini-Study distance and Ût′,t is the unitary time evolution
operator from t to t′. The equation of motion (5) can be derived by locally minimizing
the numerator of Eq. (12). The denominator provides a rescaling of the error to account
for the varying exact distance between points along the trajectory. This quantity can be
estimated to second order in δt as [44]

r2(θ̇;S, F, δE) = 1 +
θ̇†(Sθ̇ + iF )− iF †θ̇

(δE)2
(13)

where (δE)2 = Var[Ĥ(t)] and the other quantities are defined as in Eq. (5).
While capturing loss of accuracy due to the variational approximation, the TDVP error

does not account for effects caused by the stochastic noise affecting the equation of motion
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and thus its solution. In order to account for this additional source of errors, we take
inspiration from a standard practice of machine learning: the use of a so called validation
error to detect failure to generalize beyond the training data caused by overfitting to a
specific sample [54]. Adapted to our present purpose, we consider the specific realization
of spin configurations used to estimate the EOM as the training set. Solely optimizing
the parameter update for this realization bears the risk of overfitting, in which case the
solution may be optimal only on the training set but performs badly on independent
estimates of the same EOM. In order to detect this, we can compute two updates θ̇(i),
i = 1, 2, from independently drawn samples (separately estimating S(i), F (i) for both).
While the resulting θ̇(i) and corresponding error estimates

r2tr,i = r2(θ̇(i);S(i), F (i), δE(i)) (14)

are identically distributed, the error of the update θ̇(2) with respect to the independently
estimated equation of motion S(1)θ̇ = −iF (1) can be used to quantify the generalization
properties of the parameter derivative. This procedure is illustrated in Fig. 8. Specifically,
we define the validation TDVP error as

r2val = r2(θ̇(2);S(1), F (1), δE(1)). (15)

Crucially, r2val can be estimated using only quantities that are accessible as part of the
t-VMC computation. This makes it feasible to use the validation error as a diagnostic
for the degree of overfitting and thus reliability of the TDVP solution in systems where a
comparison to ED data is no longer possible. If the solution of the EOM is deterministic,
we have θ̇(1) = θ̇(2) and consequently r2val = r2tr,i. Otherwise, the validation error will be

larger, indicating the amount of “overfitting” of the update θ̇(1) to noise present in the
sample. We note that the error estimates are themselves affected by noise in both EOM
and energy variance. This is alleviated by considering the integral

R2
tr/val(t) =

∫ t

0
r2tr/val(t

′) dt′ (16)

or, if the local quantity is needed, by averaging over additional realizations of r2val. De-
spite its ad-hoc nature, we find that this definition of a validation error provides a useful
way of quantifying how the regularization scheme affects the solution of the EOM in the
presence of noise. Figure 9 shows the integrated TDVP and validation error for weak and
moderate driving. While the bare TDVP error is insensitive to the Monte Carlo error and
corresponding instabilities3, a clearly discernible effect is present in the validation error
which therefore shows a much better qualitative agreement with the reference ED error
(compare Fig. 6). Note that we show here the error for EMC sampling because, while the
utility of the local validation error is not limited to this case, the integrated curves are
strongly affected by local perturbances present in the MCMC data.

Figure 10 shows the local TDVP and validation error over a range of thresholds at
various times during the duration of the pulse. Here we can see that the unstable regimes
of regularization indeed correspond to an increased validation error r2val compared to r2tr,
which is consistent with their interpretation as being a consequence of overfitting to noise
in the Monte Carlo update, while in the stable regions almost no overfitting error is
observed, indicating a high degree of consistency between updates. Furthermore, this
behavior is not uniform over time: For Ap = 0.10, overfitting occurs particularly strongly

3While R2
tr does increase for small λ eventually in Fig. 9, this only happens after the jumps in the

corresponding trajectories have already occurred, in contrast to R2
val which detects hints of the instability

already before that point.
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Figure 10: Comparison of the TDVP error r2tr and the validation error r2val on a logarithmic
scale for varying regularization strength in the form of the SVD threshold λ at different
points in time for (a) a weak Ap = 0.02 and (b) stronger driving amplitude Ap = 0.10 on
the 8× 2 ladder system. The TDVP error has been computed here by taking variational
states |ψθ(t)〉 from the stable λ = 10−6 trajectory [Fig. 6(d),(e)] and then performing a
single step δt = 0.002 at each displayed time and for each λ using Metropolis sampling with
Ns = 28 ·103 samples. We show here the average error over five independent realizations of
the validation error, with error bars indicating the standard deviation, in order to account
for variance in the error estimate itself.

at the waning edge of the pulse. The degree of overfitting and its sensitivity to the
regularization strength is significantly lower for the weaker excitation. Note that the
absolute magnitude of the TDVP error is not directly comparable between different pulse
strengths. This is because the denominator of Eq. (12) depends on the distance between
|ψ(t)〉 and |ψ(t + δt)〉 which decreases with decreasing driving strength and goes to zero
for vanishing dynamics. Therefore, r2 measures the error relative to the magnitude of the
physical dynamics which puts the observed higher values of r2tr/val for the weaker excitation
strengths into perspective. Data for the validation error relative to the baseline TDVP
error can be found in Fig. 11. The validation error also provides some insight into the
behavior of the propagation depending on the number of Monte Carlo samples, which we
briefly show in Appendix D.

We note that the region of increased overfitting coincides with a region where the exact
quantum states, while being representable to a fidelity below 10−3, appear to be harder
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Figure 11: Validation error relative to the TDVP error for the data shown in Fig. 10.
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to learn using a supervised scheme than states at other times (see Appendix C). However,
we would like to stress it is still possible to achieve stable and accurate propagation in
this region by suitable tuning of regularization and sample size, showing that an abso-
lute inability of the RBM ansatz to represent those states is not the issue. The precise
relationship between the difficulty of supervised optimization, sampling complexity, and
generalization error remains an important question for further research, also in comparison
with other works [23].

In summary, we have demonstrated that the sensitivity of the ladder system to the
regularization scheme as well as the need for a high number of Monte Carlo samples
to accurately estimate dynamics especially around the end of the THz pulse is indeed
captured by the proposed TDVP validation error. These effects can thus be seen as a
consequence of a lack of generalization of the derivative estimate θ̇ or overfitting to an
insufficiently representative sample of spin configurations.

5 Conclusions and outlook

We have presented the time propagation of the Heisenberg model on the two-leg ladder
as a key benchmark for neural-network-based methods to simulate quantum many-body
dynamics. In line with other studies, we have found that RBM quantum states are in
principle capable of representing the relevant quantum states during the simulated time
evolutions, although important open questions remain regarding the relationship between
learnability and sampling complexity of an NQS. However, the combination of (i) numeri-
cal instabilities already in small systems and (ii) tunability between relatively well-behaved
dynamics on the square lattice and the much more challenging dynamics on the ladder
make this model system a suitable case study for t-NQS. Moreover, larger-scale ladders
can also be simulated with tensor network states, which makes Heisenberg ladders an
ideal drosophila for more detailed comparisons between different systematically improv-
able variational ansätze and propagation schemes beyond system sizes accessible to exact
diagonalization.

We have shed light on the delicate balance between stabilizing regularization and
physical accuracy of the variational time evolution in the presence of stochastic noise
inherent in the t-VMC approach. In particular, motivated by the interpretation of these
instabilities as a consequence of overfitting to Monte Carlo noise in the equation of motion,
we have introduced a validation-set approach as a quantitative diagnostic of the noise-
based error. We have demonstrated that this validation error can be used to aid in the
optimization of relevant hyperparameters and can help identifying critical regions where
the propagation becomes particularly sensitive to noise. While this is particularly relevant
for NQS dynamics, the validation-set approach can be applied to t-VMC simulations using
other variational states as well as ground state optimization based on imaginary-time
propagation.

The specific validation error introduced here is based on a second-order approximation
of the TDVP error, which can be computed from quantities directly available during
standard t-VMC runs. However, it is itself susceptible to noise and numerical instabilities.
Therefore, while we have shown its capability of quantifiying the influence of regularization
and highlighting regions of particularly unstable dynamics, finding a more robust measure
of the error may be a useful line of future research.

The ability of quantifying the generalization error in t-VMC propagation also opens up
the possibility of devising an adaptive scheme to control regularization hyperparameters
and Monte Carlo sampling in order to achieve stable dynamics without the need for manual
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fine tuning. This is particularly relevant for general NQS software frameworks such as
netket [55] which strive to be usable in a wide range of physical settings.
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A Variational ansatz

In our simulations, we employ the translation-invariant RBM ansatz as introduced in
Ref. [8]. Explicitly,

lnψθ(s) =

Nh∑
j=1

ln cosh [W̃s+ b̃]j . (17)

Here, the full weight matrix W̃ ∈ CNh×N and hidden bias b̃ ∈ CNh are defined in terms
of a smaller number of independent parameters W ∈ Cα×N and b ∈ Cα, ensuring that
ψ(τ(s)) = ψ(s) for all N lattice translations τ . We refer to the independent parameters
collectively as θ = (W, b) ∈ CM . This ansatz reduces the number of variational parameters
to M = α(N + 1) where α = Nh/N is the hidden unit density. Thus, the dimension
of the parameter space grows only linearly in the system size for the symmetric RBM
ansatz. Note that RBM wave functions can include another term, the visible bias ã ∈ CN ,
as ψa,θ(s) = eã

>s ψθ(s). When enforcing translation invariance in the manner described
above, only one component of the visible bias ãi = a ∈ C remains independent which is
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redundant in the zero magnetization sector and therefore not included in our variational
ansatz.

In addition to enforcing translation symmetry, we restrict the state space of the model
to the zero magnetization subspace of the full Hilbert space. Thus, the ansatz wave
function is only evaluated for spin configurations satisfying

∑
j sj = 0 and ψθ(s) = 0

is assumed otherwise. For N sites, the dimension of the full Hilbert space is 2N , the
zero-magnetization subspace has dimension

(
N
N/2

)
. Note that the driving is compatible

with both the translation symmetry and zero magnetization constraints. Furthermore,
all of our calculations were performed in a computational basis taking into account the
sign structure of the AFM ground state, which is a standard approach for the Heisenberg
model [57–59] and helps circumvent the difficulty of learning states with a nontrivial sign
structure, which is a more challenging task for NQS [17, 18]. Specifically, this is done as
follows: Let {|s〉 | s ∈ {±1}N} denote the σ̂z eigenbasis, so that σ̂zi |s〉 = si|s〉. In the AFM
phase, the Heisenberg model has a nondegenerate ground state

|Φ0〉 =
∑

s∈{±1}N
Φ0(s)|s〉 (18)

which is part of the zero eigenspace of the magnetization M̂ z =
∑

i∈L σ̂
z
i . On a bipartite

lattice where the sites are partitioned into disjoint subsets A and B [compare Fig. 1(a),(b)],
the ground state coefficients have the form

Φ0(s) = (−1)$(s)A0(s) (19)

where A0(s) ∈ R>0 is real and nonnegative. The parity $(s) =
∑

i∈A si is determined by
the magnetization on the A sublattice. This property is known as Marshall’s sign rule [60]
and makes it possible to represent the ground state by a real nonnegative wave function
in the computational basis |sc〉 =

∏
i∈A σ̂

z
i |s〉, which significantly improves convergence

of the NQS ground state optimization as the network only needs to learn a trivial sign
structure.

B Time propagation

In t-VMC [40, 41], the time propagation of the variational ansatz is based on the time-
dependent variational principle (TDVP). The equation of motion for the vector of varia-
tional parameters θ ∈ CM is given by dθ(t)/dt = θ̇, where θ̇ is the solution of the linear
system Eq. (5). The quantities involved in this equation are the quantum Fisher matrix
(QFM)

Sij(θ) =
〈∂iψθ|∂jψθ〉
〈ψθ|ψθ〉

− 〈∂iψθ|ψθ〉〈ψθ|∂jψθ〉〈ψθ|ψθ〉2
(20)

and the energy gradient

Fi(θ, t) =
∂〈Ĥ(t)〉
∂θ∗i

=
〈∂iψθ|Ĥ(t)− 〈Ĥ(t)〉|ψθ〉

〈ψθ|ψθ〉
. (21)

Here, ∂i = ∂/∂θi denotes the complex partial derivative with respect to θi. Geometrically,
the QFM accounts for the local curvature around |ψθ〉 on the manifold of variational states.
This is analogous to the role of the Fisher information matrix for classical probability
distributions [28], which is used in natural gradient descent [61]. The QFM only depends
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Figure 12: (a) Infidelity [Eq. (11)], (b) energy, and (c) spin-spin correlation Cx for α = 2
and α = 10 RBM states obtained from supervised learning of the amplitudes along the
exact trajectory at an excitation strength of Ap = 0.10. For each time point, the best-
fidelity results among five independently optimized states are displayed. See Appendix C
for further details.

on the form of the variational ansatz and the location in parameter space but not on the
Hamiltonian. Still, analysis of its structure and, in particular, its spectrum can give insight
into the quantum properties and phase diagram of the system for the RBM ansatz [53].

In t-VMC, both QFM and gradient are estimated as stochastic expectations values E[ · ]
with respect to the Born probability distribution ∼ |ψθ( · )|2 as written in Eqs. (6) and
(7). The resulting equations of motion are valid for a complex differentiable (holomorphic)
mapping θ 7→ ψθ between the parameters and the quantum wave function. This is indeed
satisfied by the symmetric RBM ansatz.

In order to obtain the ground states used as initial states for the time propagation,
we have used stochastic reconfiguration [8,41], which is based on an approximation of the
imaginary-time Schrödinger equation in the manner of Eq. (5).

C Representability of the trajectory

Even though wider RBMs are necessary in order to better follow the true dynamics via
TDVP-based propagation, the states along the trajectories considered here are in general
not significantly harder to learn by an RBM than the ground state. In order to test
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this statement, we fit RBMs with α = 2 and α = 10 to the exact states along the ED
trajectory |Ψ(t)〉 in the ladder system using a supervised learning approach. The results
presented here have been computed using the supervised learning implementation available
in NetKet [55]. Specifically, for each given time t, we minimize the negative log-overlap
loss

Lt(θ) = − ln
〈ψθ|Ψ(t)〉〈Ψ(t)|ψθ〉
〈ψθ|ψθ〉〈Ψ(t)|Ψ(t)〉 (22)

using the known probability amplitudes of the exact states that we have obtained from
ED. Starting from an approximate ground state, we have run a natural-gradient based
optimization [61] targeting this loss function for n = 1000 steps at a constant learning
rate of γ = 0.01. This corresponds to a parameter update

θ(i+1) ← θ(i) − γ gt(θ(i)) (23)

with the loss gradient gt(θ) which is the least-squares solution of the linear equation

S(θ) gt(θ) = ∇θLt(θ). (24)

The QFM S(θ) is defined in the same way as in the main text. In practise, we evaluate
the loss Lt(θ) on batches of spin configurations {s(i)}Bi=1 of size B = 1000 per step, which
are randomly drawn from a uniform distribution over all zero-magnetization configura-
tions on the lattice. Note that this update equation is of the same form as in stochastic
reconfiguration (SR) [41]. This is because SR is a special case of the natural gradient
descent approach applied to the energy expectation value as opposed to a general loss
function [28]. The optimization is performed independently for each time t. Results for
the final infidelity, energy, and spin-spin correlation are shown in Fig. 12. For each time
point, the best-fidelity state has been selected from five independent optimizations from
the same initial state and with the same parameters4. Already at a small hidden unit
density of α = 2, the trajectory can be represented with an infidelity of the order of 10−3

with good accuracy in energy and spin correlations. For a wider network at α = 10 and
starting from a well-converged initial state at E = 10−5, the trajectory can be captured
with infidelity below 10−3 throughout, although a peak of infidelity is clearly visible around
t∗ ≈ 1.65. The location of this peak matches the region of increased overfitting and thus
instability observed in Sect. 4 (compare Fig. 10). However, even though the peak region
is more prone to instabilities, it can still be passed by t-VMC if the time propagation is
sufficiently stabilized (compare Fig. 7). Thus, the increased final infidelity of the learned
excited states is not necessarily an indication of an absolute inability of the RBM ansatz
to capture them more accurately but may also be attributed to an increased difficulty of
the optimization.

Altogether, these results provide an upper bound on the minimal infidelity achievable
by an optimal RBM representation of the dynamic states at a given size and thus indicate
that the representability of the time-evolved states is not the key limitation here. There-
fore, an improved time propagation scheme should be expected to be able to reach the
accuracy of the supervised learned states.

4In the region of peak infidelity around t∗ defined below, the optimization of the α = 2 RBM frequently
became unstable after reaching the minimal energy, leading to an increased energy after 1000 steps com-
pared to the actual achievable minimum. Therefore, for the results presented here, the iteration has been
stopped early after 10 successive steps without reduction of the loss in this region. The optimization of
the α = 10 RBM did not have this issue.
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Figure 13: Infidelity of the time-evolved variational state compared to the exact trajectory
for (a) the diagonal shift regularization with varying strength ε and (b) the signal-to-
noise (SNR) ratio based regularization of Ref. [44] with varying threshold λSNR. The
trajectories have been computed using t-VMC with EMC at a moderate excitation strength
of Ap = 0.10 in the 8×2 ladder geometry using the symmetrized RBM ansatz with a hidden
unit density of α = 10.

D Alternative regularization schemes

There are many ways to regularize the linear equation of motion (5) to reduce its suscepti-
bility to noise. We have focused here on the conceptually simple method of truncating the
QFM spectrum at a relative threshold as described in Sect. 3.2. Alternatively, the EOM
can be regularized by adding a diagonal shift S̃ = S + εI with ε > 0. This is typically
done for ground state optimization (see, e.g., Refs. [8, 42, 46]), but can in principle also
be applied to the time-dependent case. Since S is Hermitian and positive semi-definite,
the spectrum of the shifted S̃ is bounded from below by ε, making the matrix invertible
and bounding the condition number by κ(S̃) ≤ (ζ1 + ε)/ε. Therefore, a shift significantly
larger than machine precision also serves to improve the condition number and stabilize
the propagation in a fashion similar to the SVD cutoff. This can be seen in Fig. 13(a)
which shows a similar behavior of the shift regularization when compared to the thresh-
old in Fig. 6. A more sophisticated regularization strategy has recently been proposed in
Ref. [44]. This approach truncates parts of the equations of motion akin to the singular
value threshold above but taking into account the strength of VMC noise in different com-
ponents of the energy gradient. Specifically, directions in the S eigenbasis are discarded
based on a softened cutoff λSNR of the signal-to-noise of the corresponding component of
the energy gradient which can be estimated from the t-VMC data. When applying this
approach to the ladder geometry, we have found a behavior similar to the other methods
discussed above as a function of varying λSNR [Fig. 13(b)]. This highlights that the trade-
off between stability and physical accuracy we have discussed and the need for reliable
diagnostics is relevant beyond the simple regularization scheme used in the main text.
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E Validation error and Monte Carlo sample size

While sensitive to the regularization, the Monte Carlo error in the update θ̇ is of
course also dependent on the number of samples used in the estimate of the equation of
motion. The fewer samples are used, the higher the generalization error with respect to
the full Hilbert space will be. As with the regularization, this behavior is strongly system
and excitation dependent. For the square lattice geometry, convergence with respect
to the sample size occurs quickly compared to the ladder system, where a much higher
number of samples is needed to obtain reliable estimates. This indicates a higher sampling
complexity of the ladder states compared to the well-behaved singlet magnon excitation in
the square lattice, as is qualitatively captured by the validation error. This is demonstrated
in Fig. 14, which shows the TDVP and validation error, and Fig. 15, which shows the
relative validation error, as a function of sample size for both geometries and different
driving strengths. We see a clear overfitting behavior which is especially strong around
the waning edge of the pulse, as is similarly observed in the regularization dependence
in Section 4, and which is only suppressed by increasing the number of samples up to
∼ 28 · 103 for the ladder5. In contrast, convergence of the validation error in the square
lattice system occurs much faster, even for the stronger excitation shown here.
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