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Abstract

The Rosenzweig-Porter random matrix ensemble serves as a qualitative phenomenolog-
ical model for the level statistics and fractality of eigenstates across the many-body lo-
calization transition in static systems. We propose a unitary (circular) analogue of this
ensemble, which similarly captures the phenomenology of many-body localization in pe-
riodically driven (Floquet) systems. We define this ensemble as the outcome of a Dyson
Brownian motion process. We show numerical evidence that this ensemble shares some
key statistical properties with the Rosenzweig-Porter ensemble for both the eigenvalues
and the eigenstates.
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1 Introduction

Many-body localization is known as a robust mechanism of ergodicity breaking in disordered
interacting quantum many-body systems that can be thought of as Anderson localization in
Fock space [1,2]. It is characterized by non-trivial properties, such as the violation of the
eigenstate thermalization hypothesis [3] and the persistent memory of an initial state, among
many others [4]. Significant progress towards an understanding of many-body localization
from both theoretical and experimental approaches has been witnessed during the last one
and a half decade [5-7].

Many-body localization can be mapped to single-particle localization on a Fock space lat-
tice [8], an approach which has been successfully utilized both analytically [9-14] and numer-
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ically [15-19]. Within the framework of this approach, obtaining analytical results is notori-
ously difficult due to strong correlations between disorder potentials [20,21]. It was therefore
realized that it is of interest to have simpler phenomenological models for many-body local-
ization that are analytically tractable while still capturing the essential properties [22-24]. A
profound example of such a model is the Rosenzweig-Porter random matrix ensemble [25].
This model was suggested as a qualitative phenomenological model for the level statistics and
fractality of eigenstates across the many-body localization transition [23], which separates a
many-body localized from a thermal phase. This proposal triggered considerable interest for
the Rosenzweig-Porter ensemble over the last years [26-35].

The notion of many-body localization extends to interacting periodically driven (Floquet)
systems [36-40], for which localization in Fock space has been investigated analytically very
recently [41]. While static systems are described by Hamiltonians, which are Hermitian, peri-
odically driven systems are described by Floquet operators, which are unitary. This raises the
arguably natural question whether a unitary (or circular since the eigenvalues lie on the unit
circle in the complex plane) analogue of the Rosenzweig-Porter ensemble can be constructed.

In this work, we propose a circular analogue of the Rosenzweig-Porter ensemble, which
we define as the result of a Dyson Brownian motion process [42]. We provide numerical
evidence that this circular analogue has similar features as the Rosenzweig-Porter ensemble
by investigating some key statistical properties of the eigenvalues and the eigenstates. Our
work might serve as a first step in constructing generalizations covering e.g. multifractality,
analog to recent physically motivated proposals for generalizations of the Rosenzweig-Porter
ensemble [29,43-46] and other Floquet models with multifractal eigenstates [47-50].

The structure of the paper is as follows. Sec. 2 reviews the Rosenzweig-Porter ensemble
and some of its properties. Sec. 3 discusses the construction of the circular Rosenzweig-Porter
ensemble. Sec. 4 numerically investigates a number of statistical properties of the circular
analogue. Sec. 5 closes the paper with conclusions and an outlook.

2 Rosenzweig-Porter ensemble

The Rosenweig-Porter (RP) ensemble [23], which was originally proposed in the context of
complex atomic nuclei [25], can be seen as generalization of the Gaussian orthogonal ensemble
(GOE) [51,52] with a preferential basis. The ensemble consists of real symmetric matrices H

of the form
€

VN

where N is the matrix dimension, H, is diagonal with elements sampled independently from
the Gaussian distribution with mean u = 0 and variance 02 = 1, and V is sampled from
the GOE. The GOE consists of real-valued symmetric matrices with the diagonal and upper
triangular elements sampled independently from the Gaussian distribution with mean y =0
and variance 02 = 2 (diagonal elements) or o2 = 1 (upper triangular elements). Interpreting
H as an Hamiltonian, the parameter ¢ ~ (O(1) can be viewed of as a perturbation strength. The
positive-valued parameter y controls the relative strength of the terms, and thus the properties
of the ensemble. Below, we outline a number of these properties, which we numerically explore
for the circular analogue in Sec. 4.

Level statistics provide a standard diagnostic for quantum chaos [3,51]. In the large-N
limit, the eigenvalues of the RP ensemble obey Wigner-Dyson level statistics for y < 2 [53],
which are typically observed for chaotic quantum systems. For y > 2 and in the same limit,
these statistics are Poissonian [53], as typically observed for integrable (non-chaotic) systems.
It is convenient to probe level statistics by the average ratio of consecutive level spacings

H=H,+ v, D
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[54,55]. Let E,, denote the eigenvalues of H sorted in ascending order, such that the spacings
s, of consecutive levels are given by s, = E,,; — E,,. The ratios r,, are defined as

s s
rnzmin(n—ﬂ,—n). 2

Sn Snt1

On average, the ratios of consecutive level spacings acquire the values 7 &~ 0.386 for Poissonian
and 7 ~ 0.530 for Wigner-Dyson (GOE) level statistics [55].

Next, we consider eigenstates of H taken from the middle of the spectrum. We focus on
the basis in which H,, is diagonal. We denote eigenstates of H and H,, by respectively [¢,,) and
In). Localization of an eigenstate |1),,) can be quantified by the inverse participation ratios

PRy = > [{ml,) | &)

with ¢ > 1/2. Asymptotically in N, the inverse participation ratios scale as N~~DPs where
D, is known as the fractal dimension with parameter q [30]. Eigenstates of the RP ensemble
are characterized by D, = 1 for y < 1, indicating that these are spread out over a finite fraction
of the Hilbert space as IPR, ~ N™. For 1 < y < 2, the eigenstates are fractal with Dg=2—r.
As D, does not depend on g, the eigenstates are fractal but not multifractal. For y > 2, the
eigenstates are characterized by D, = 0, which reflects that these eigenstates have significant
overlap with only O(1) basis states [23].

Eigenstates of the RP ensemble obey Breit-Wigner statistics [30], which are expected to ap-
ply rather generically to quantum many-body systems [56-59]. In the large-N limit, it follows

that
1

(. —E,(,?))Z 1 T2(E,)

[{ml3p )| ~ 4)

where the bar denotes an average over V in Eq. (1), E,, is the eigenvalue corresponding to the
eigenstate [v,,), Er(lo) = (Hgy),n, and the so-called spreading width T'(E,) is obtained through
Fermi’s golden rule as

7'[62

F(En) = Wp(En): (5)

where p(E,) = >, 6(E, — E;) is the density of states in the vicinity of the eigenvalue E,,.
Eq. (4) describes what is known as the shape of the eigenstates [59]. For 1 < y < 2, the
spreading width gives the width of the so-called mini-band [23,31,60]. In this energy window,
the eigenstate amplitudes |(v,|m)|? are on average of order N~P2 (where D, is the fractal
dimension D, for ¢ = 2), which is much larger than the value N ~! obtained when averaging
over all basis states.

3 Circular analogue

In this Section, we propose a unitary analogue of the RP ensemble, which we refer to as the
circular RP (CRP) ensemble. The starting point of our construction is the observation made in
Ref. [26] that the RP ensemble can be seen as the outcome of a finite-time stochastic process
for the matrix elements, referred to as a Dyson Brownian motion process [42]. Let M(t)
denote a time-dependent, real symmetric matrix of dimension N, which evolves stochastically
according to

dM(t) = Vdtx (6)

where dM(t) = M(t +dt) — M(t) and X is a GOE matrix sampled independently at each
infinitesimal time step dt. For the initial condition M(0) = H, with H, as given in Eq. (1),
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one finds M(t) = Hy + +/tV, where V is a sample from the GOE. From the solution M(t) is it
clear that the RP ensemble results at t = €2/N”. The GOE is invariant under transformations
of the basis [51,52]. Using this, one can obtain stochastic equations for the eigenvalues E,(t)
of M(t) perturbatively as

dE,(t) = VdtX,, +dt Y. % 7
m#n n(t)_ m(t)

and the stochastic equations for the corresponding eigenstates |1,,) as

dt K )?
dipa(1)) = Vdt mem() Z[En(t)_gm(t)]z"‘”"“”’ ®)

where the increments are given by dE,,(t) = E,(t+dt)—E,(t) and d |y, (t)) = |[¢,(t+dt))—,(1)).
Note that these equations are exact in the limit dt — 0. In the literature, the stochastic evolu-
tion of the eigenstates is known as the eigenvector moment flow [61,62].

To construct a circular ensemble, we follow an approach introduced by Dyson [42]. We
introduce S(t), which is a time-dependent symmetric unitary matrix of dimension N with
eigenvalues /%9, Such a matrix can be interpreted as the Floquet operator of a periodically
driven system obeying time-reversal symmetry. The matrix evolves stochastically according to

ds(t) =iV dtUT()XU(t), 9

where dS(t) = S(t + dt) — S(t), and U(t) is a unitary matrix defined via the decomposi-
tion S(t) = UT(t)U(t). The decomposition is defined up to transformations U — OU for real
orthogonal matrices O !, which can be absorbed in X as the GOE is invariant under basis trans-
formations. We propose the CRP ensemble as the outcome of the stochastic process described
by Eq. (9) at t = €2/N”. For the RP ensemble, M (0) is diagonal with uncorrelated elements.
This motivates us to analogously take

S(0) = diag(eiel(o),...,eieN(O)) (10)

with the phases 6,(0) sampled independently from the uniform distribution ranging over
[—m, ). This non-unique choice respects the uniform density of states as observed generi-
cally for Floquet operators. The phases evolve according to a stochastic equation that can be
obtained as

Xnm)*
de, (t)—\/_Xnn-kdt;Ztan TTo (0607 (11)

where d6,,(t) = 6,(t +dt)—0,(t).

Egs. (7) and (11) are known to yield the same statistics in the middle of the spectrum
and in the large-N limit, provided that the densities of states of M(t) and S(t) are the same
[63]. Heuristically, this can be understood by noticing that the summations are dominated
by contributions from the few most nearby levels, which are of the order of the density of
states, p(E,) ~ N. While there are O(N) additional terms in these summations, at the middle
of the spectrum the contributions from levels E,, > E, (6,, > 6,) and E,, < E,, (6, < 6,)
are respectively negative and positive, and therefore provide a contribution with an overall
sub-leading magnitude of O(+/N). The density of states of S(t) can be made equal to those
of M(t) by scaling the latter by 1/+/27. We therefore expect the spectral statistics of the RP

IThe set Ug(N) of symmetric unitary matrices of dimension N is isomorphic to U(N)/O(N), where U(N) denotes
the set of imaginary unitary matrices of dimension N, and O(N) denote the set of real orthogonal matrices of
dimension N. For a proof, see e.g. Proposition 2.2.4 of Ref. [52].
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for a given e at the middle of the spectrum to match those of the CRP with € — €/+/27. We
remark that M(t) has a density of states that remains constant during the Brownian motion
process for y > 1 [30].

The eigenstates |1),) of S(t) associated with the eigenvalues e!%(9) evolve stochastically
according to

dlip,(0)) = Vdt i IRGIEESY SO (),
24 2tan 1[6,(1) — On(1)] 2 £ 4tan? 1[6,(0)— 6,(0)]

(12)
where again d |, (t)) = |[¢,(t+dt))—|y,(t)). In line with the arguments for the eigenvalues,
one might expect that the RP and CRP have similar eigenstate statistics. We remark that no
explicit construction for the matrices resulting from circular Dyson Brownian motion processes
is known [63]. Moreover, we note that the CRP can not be constructed as S = e for H
sampled from the RP ensemble. Indeed, for example then the density of states of S would not

be uniform.

4 Numerical evaluation

The results below are obtained through a numerical evaluation of Eq. (9) up to t = €2/N? using
the algorithm described Ref. [52] (Sec. 11.2.1). We average over at least 10° eigenvalues or
eigenstates. In the results below, we take € = 1 and 10* time steps to reach t = €2/N7. We have
validated that our results are visibly indistinguishable from results obtained when taking the
number of time steps half as large, and found that no qualitative differences can be observed
when taking the number of time steps an order of magnitude smaller. The numerical evaluation
of Eq. (9) requires diagonalization or matrix-matrix multiplications in each step, making it is
computationally expensive. We therefore restricted to matrix dimensions N < 1000, which
still provide sufficient numerical evidence for the claims of this work.

We denote the eigenphases for samples from the CRP ensemble by 6,,. First, we consider
the average ratio of consecutive level spacings r. The ratios r, of consecutive level spacings
are defined in Eq. (2), with E, replaced by the phases 6,,. The left panel of Fig. 1 shows 7
as a function of y for several matrix dimensions. As discussed in Sec. 2, the RP ensemble is
characterized by 7 ~ 0.530 for ¥ < 2 (Wigner-Dyson) and 7 A~ 0.386 (Poissonian) for y > 2 in
the large-N limit, which is consistent with our results. The level statistics exhibit a first-order
(v =1) phase transition from Wigner-Dyson to Poissonian at y = y, = 2. For the RP ensemble,
a scaling collapse of T as a function of (y —y.)In(N)"” has been observed in Ref. [33]. The
right panel shows that this observation can be made as well for the CRP ensemble.

Next, we consider eigenstates of the CRP ensemble. We focus on the basis in which S(0) is
diagonal. We denote eigenstates of S and S, by respectively [,) and |n), with the eigenvalue
e!% corresponding to |1),). We first focus on the eigenstate inverse participation ratio IPR,
as given in Eq. (3). Asymptotically in N, the RP ensemble is characterized by IPR, ~ N~}
for y < 1, and IPR, = O(1) for y > 2 as discussed in Sec. 2. In the intermediate region
1 <y < 2, the eigenstates are fractal , and are characterized by IPR, ~ N —(2=1)_ Fig. 2 shows
the average IPR, (top panel) and N x IPR, (bottom panel) as a function of y, for the same
matrix dimensions as studied above. The results we obtain for the CRP ensemble are again
consistent with the large-N behavior for the RP ensemble.

Finally, we consider the shape of the eigenstates. The eigenstates of the RP ensemble obey
Breit-Wigner statistics [30]. For the CRP ensemble we aim to show [cf. Eq. (4)] that

VTR 1

|<m|¢n> |2 ~

, (13)
(6,—06) +12

5
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Figure 1: The average ratio of consecutive level spacing spacings r as a function of
vy (left panel) and (y — y.)In(N)/” with y, = 2 and v = 1 (right panel) for matrix
dimensions N = 250, 500, and 1000. Poissonian and Wigner-Dyson level statistics
are characterized by respectively ¥ ~ 0.386 and r ~ 0.530 (dashed lines).

Figure 2: The average of the inverse participation ratio IPR, (left panel) and the
value scaled by N (right panel) as a function of y for matrix dimensions N = 250,
500, and 1000.
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Figure 3: The average of |(m|y,)|* as a function of 6, — Gr(no) (markers), combined
with the evaluation of Eq. (13) with p = 1000/(27) (red solid lines) for N = 1000
with y = 0.5 (left panel) and y = 1.5 (right panel). Each of the curves is normalized
to unit area over the plotted range. Blue lines connecting the markers serve as a
guide to the eye.

where 91510) = 0,,(0) as introduced in Eq. (10). Fig. 3 shows the average |(m|v,,)|* as a function
of 9,1—9,(,10) for y = 0.5 (top panel) and y = 1.5 (bottom panel) for the largest matrix dimension
N =1000. The smooth curves show the evaluation of Eq. (13) with I" obtained from Eq. (5),
and the density of states is given by p = 1000/(27) ~ 159.2.

For y = 0.5 the expected spreading width has a value I' ~ 15.8, such that the resulting
Lorentzian shape has a width exceeding the width 27 of the spectrum, leading to a slight mis-
match with the observed results. For y = 1.5 the spreading width evaluates to I' ~ 1.6 x 1072,
which is comparable to the mean level spacing p~* ~ 6.3x 10™%. Eq. (4) relies on a continuum
approximation for the density of states [30]. Presumably due to this, the agreement between
our data and the expected results is not perfect, although qualitative agreement, and a pro-
nounced difference between the structures of the eigenstates for y = 0.5 and y = 1.5 is clearly
seen. To our knowledge, this characteristic of eigenstates has not been previously investigated
for unitary matrix ensembles.

5 Conclusions and outlook

We have proposed a unitary (circular) analogue of the Rosenzweig-Porter (RP) ensemble, de-
fined as the outcome of a Dyson Brownian motion process. We have numerically verified
that some key statistics of both the eigenvalues and the eigenstates of the circular analogue
match the behaviour of the RP ensemble. The circular analogue, therefore, can serve as a phe-
nomenological model for the level statistics and fractality of eigenstates as observed across the
many-body localization transition for periodically driven systems.

Motivated by, among other observations, the suggestion that eigenstates near the many-
body localization transition are multifractal [64-66], several generalizations of the RP ensem-
ble have been proposed [29,43-46]. It would be interesting to see if similar generalization
could be constructed for the circular RP ensemble, next to other Floquet models with mul-
tifractal eigenstates [47-50]. This might for example be achievable by considering stochas-
tic processes with correlated increments, which has been initialized for the RP ensemble re-
cently [67]. Second, the circular RP ensemble could potentially be of value in studies on ran-
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dom quantum circuits as a non-maximally random building block, analog to e.g. the proposal
made in Ref. [68].
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