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Abstract

The LHC Run 2 data-taking period was characterized by an increase in instantaneous
luminosity and center-of-mass energy. Several techniques have been deployed in the
CMS experiment to reconstruct and identify tau leptons in this environment. The Deep-
Tau identification algorithm is used to identify hadronically decaying tau leptons from
quark and gluon induced jets, electrons, and muons. Compared to previously used MVA
identification algorithms, the use of deep-learning techniques brought a noticeable im-
provement in the tau identification and rejection of contaminating sources. Low trans-
verse momentum topologies were addressed separately with a dedicated identification
algorithm, while machine learning techniques were implemented to improve the iden-
tification of the tau hadronic decay channels. These algorithms have been already used
for several published physics analyses in CMS. The algorithms are presented together
with their measured performances.
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1 Introduction

During the Run-2 of the Large Hadron Collider (LHC), which took place in 2015-18, the center-
of-mass energy and instantaneous luminosity of proton-proton (pp) collisions increased. These
increases provided the opportunity for probing new physics through precise measurement of
the Standard Model (SM) parameters or by directly searching for physics beyond the Standard
Model (BSM). Several BSM theories can be probed at the LHC through processes with tau
leptons in the final state [1–3]. Besides, various properties of the Higgs boson can be measured
through its decay to tau letpons [4–6], thanks to the large branching fraction of the decay and
the relatively clear signal taus provide in the detector.

Tau leptons decay hadronically (to hadrons and neutrinos) more than half of the times.
Identifying such decays is challenging since they can be faked by other objects such as quark
or gluon jets, especially with the higher luminosity and hence more soft pp interactions in the
Run-2 of the LHC. Needless to say, in order to exploit searching for new physics in tau final
state, we need to reduce such contamination to the greatest extent possible. In this note, we
report three techniques developed in CMS to improve tau identification: A deep convolutional
neural network (CNN) for identifying taus which decay hadronically (τh) from quark or gluon
jets, electrons and muons, a boosted decision tree to identify the decay modes of τh, and an
attention-based graph neural network to reconstruct 3-charged-prong decays of τh in low-pT
regime.

In section 2, we illustrate the algorithm used in CMS to reconstruct τh. In section 3, the
techniques developed for improving τh identification are presented, and finally, the last section
contains conclusion.

2 τh reconstruction in CMS

CMS employs particle-flow (PF) [7] algorithm in order to reconstruct individual physics ob-
jects: neutral and charged hadrons, muons, electrons, and photons. To this end, the PF algo-
rithm uses an optimized combination of the information from all CMS subdetectors (see [8]
for more information on the CMS detector). The objects which are reconstructed by the PF
algorithm are called PF candidates. More complex objects such as τh, which usually consist of
multiple PF candidates, are reconstructed by means of dedicated algorithms.

In CMS, τh candidates are reconstructed with the Hadron-Plus-Strip (HPS) algorithm [9–
11]. As the first step, the algorithm uses a hadronic jet as a seed. These jets are reconstructed
by clustering PF candidates using the anti-kT algorithm [12,13] with distance parameter 0.4.
All PF candidates within a cone size of ∆R = 0.5 (where ∆R =

p

∆η2 +∆φ2 and η is pseu-
dorapidity) around the jet axis are considered for the next steps. For each jet, at most one τh
is eventually reconstructed; only the highest-pT τh is kept if more than one passes all of the
HPS requirements.

Next, neutral pions (π0) and charged hadrons (h±) are reconstructed from the jet con-
stituents. To reconstruct neutral pions, the 4-momenta of all photons and electrons within a
"strip" in η−φ space are added. PF charged hadrons are selected as charged hadron candi-
dates. Based on the number of π0 and h± candidates, a decay mode is assigned to the τh.

Further conditions are applied to the reconstructed τh. The candidate is rejected if it con-
tains reconstructed π0 or h± outside the signal cone defined by∆R= 3/pT (GeV) with respect
to the τh axis. The signal cone is bounded between 0.05 and 0.1. In addition, charge and
mass conditions are imposed on the τh and intermediate resonances, respectively, to ensure
the compatibility of τh with a genuine hadronic tau decay.
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3 τh identification techniques

3.1 Deep CNN for τh identification (DeepTau)

An object whose kinematic quantities are similar to those of a τh candidate can pass the HPS al-
gorithm requirements and be misidentified as a τh. For example, quark and gluon jets can fake
any decay mode of τh while electrons and muons can be misidentified mainly as 1-charged-
prong decays of τh . In order to improve the identification of genuine τh , CMS has developed a
deep convolutional neural network, named DeepTau, in which low-level and high level features
of τh are combined to achieve the optimal performance.

There are a total of 47 high-level features in the network. These features include τh candi-
date properties, such as its four-momentum, its compatibility with primary vertex, the number
of charged and neutral particles used to reconstruct τh , as well as general event properties
such as the estimated pileup density.

To define low-level features, two overlapping grids centered on τh axis are defined in η−φ
space. The inner (outer) grid contains 11 × 11 (21 × 21) cells with cell size of 0.02 × 0.02
(0.05× 0.05) which covers the signal (isolation cone), see Fig. 1. For each cell, seven object
types are considered: PF candidates including muons, electrons, photons, charged and neutral
hadrons along with muons and electrons from standalone reconstruction algorithms, which
provide more information about the objects. In each cell and for a given object type, only the
highest-pT object is retained. In total, 188 features are extracted from each cell.

A summary of the network architecture is shown in Fig. 2 . For the low-level features,
in each cell from inner or outer grid, the associated features are pre-processed using four
neural networks: Three for incorporating the features of electrons and photons combined,
muons, and hadrons, independently, and one for concatenating and combining their outputs.
The pre-processing step reduces the number of features per cell from 188 to 64. At this step,
there are 64 grids of size 11 × 11 and 64 of size 21 × 21. Each of these grids are fed into a
convolutional neural network (CNN) which eventually reduces the grid to a single value. In
parallel to low-level features, the 47 high-level features are pre-processed in a neural network
with 57 outputs. Finally, a neural network with 5 dense layers is used to combine high- and
low-level features. This network receives 64× 2 low-level and 57 high-level features as input
and four scores corresponding to τh , muons, electrons and hadronic jets as output.

Figure 1: The grids used in DeepTau
for low-level feature extraction.

Figure 2: The architecture of DeepTau [14].

The final discriminator is defined as

Dα(y) =
yτ

yτ + yα
(1)
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The loss function includes a regular cross-entropy term in addition to two binary focal-loss
terms. The training was performed with NAdam algorithm.

The performance of the DeepTau discriminator for identifying τh against jets is shown in
Fig. 3. The performance is studied using two processes dominated with quark and gluon jets
in the final state, namely t t̄ and W+jet. The DeepTau discriminator significantly outperforms
the previous ones used in CMS in all working points. We observed similar enhancement when
using DeepTau for discriminating τh against muons and electrons. More information about
DeepTau and its performance can be found in [15].

Figure 3: The receiver operating characteristic (ROC) curves comparing the perfor-
mance of the DeepTau and previous MVA discriminants in identifying τh against jets.
In the left (right) plot, t t̄ (W+jet) sample is used for hadronic jet production [15].

3.2 τh decay mode identification (MVA decay mode)

The unprecedented amount of pp collision data that the experiments at the LHC have recorded
during Run-2 data-taking period enables precise measurement of fundamental Standard Model
parameters in the processes containing tau leptons in the final state. Some of these measure-
ments require a strong identification power of τh decay modes because their observables are
decay mode sensitive, for example the measurement of the CP structure of Higgs-tau Yukawa
coupling [5].

Although the HPS algorithm, combined with the DeepTau discriminator, can provide pure
samples of τh, the HPS is not particularly optimized for decay mode identification. As an
example, the HPS algorithm consolidates τ → ππ0 and τ → π2π0 1 into a single recon-
structed decay mode, meaning that only one strip is reconstructed. To improve decay mode
identification, we developed two classifiers targeting 1- and 3-charged-prong decays, indepen-
dently, using boosted decision tree (BDT) algorithm from XGBoost library. The decay modes
reconstructed with these classifiers are called MVA decay mode, in which MVA stands for mul-
tivariate analysis. The HPS algorithm is already very effective in identifying the number of
charged prongs in a τh decay, which means that our classifier primarily targets finding the
number of π0. Therefore, it is sensible to have separate classifiers based on the number of
charged prongs in the decay.

The main 1-charged-prong decays of τh are τ → a1 → ρπ0 → π2π0, τ → ρ → ππ0,
and τ→ π. They differ by the number of π0 in the final state and the number and types of

1In this section, neutrinos are not shown for simplicity as they either do not interact with or are not practically
detectable in our detector.
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intermediate resonances. We exploited these differences as features in the classifier to improve
decay mode identification. The main features include the invariant masses of the reconstructed
strip as well as the reconstructed ρ meson, the kinematic and angular quantities associated to
the τh decay products, and the decay mode reconstructed by the HPS algorithm (HPS decay
mode).

A similar approach is taken for the 3-charged-prong decay classifier, in which the dominant
decays are τ→ a1→ ρ0π→ 3π and τ→ 3ππ0. Likewise, the invariant mass, kinematic and
angular quantities along with the HPS decay mode are incorporated into the features of the
classifier. Thanks to the presence of more pions in the final state compared to the 1-charged-
prong case, several features associated to different combinations of pions are also added to
the classifier. Both classifiers have multiple outputs each representing the score for one of the
decay modes. An “other” output category is also added to each classifier to collect a small
fraction of objects not similar to the other categories.

Fig. 4 compares the performance of MVA and HPS decay modes. The purity of all decay
modes has improved by 10 to 55%-points and the efficiency of the decay modes containing at
least one π0 in the final state has enhanced by 5 to 40%-points. The efficiency of 3π decay
mode is retained, while it is reduced by 7%-points in the π decay mode. For the first time
in CMS, a collection of τ→ π2π0 decay with decent efficiency and purity is provided. More
information on the classifier can be found [16].

Figure 4: The purity (left) and efficiency (right) of τh decay modes reconstructed as
MVA (blue) and HPS (orange) decay modes. The τh candidates used for producing
the figures are collected from H → ττ decay with one tau decaying to a muon and
neutrino and the other to a τh [16].

3.3 Low-pt tau reconstruction

There has been recently a growing interest for lepton universality tests through measuring
the decay rate of B mesons. τh from such decays are mainly produced in low transverse
momentum regime (pT < 10 GeV), as shown for the Bc → J/ψτν decay in Fig. 5 (left). The
HPS algorithm is not efficient in this pT regime as the strong magnetic field of the CMS detector
largely spread τh decay products in the η−φ plane and hence they are not contained within
the cone of a seeding jet (see section 2). Therefore, we used a machine learning algorithm
to identify low-pT 3-charged-prong decays without using jets for seeding. This algorithm is
optimized for B meson decay studies but could potentially be extended to other analyses with
low-pT τh in the final state.

In this reconstruction algorithm, firstly all PF charged pions are collected. After that, the
tracks not originating from the vicinity of primary vertex (PV) are removed from the collection.
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The PV is defined as the closest proton-proton (pp) collision point to the extrapolation of J/ψ
direction in the Bc → J/ψτν decay. This choice is analysis-specific but it provides optimal
efficiency for selecting the pp collision from which Bc is produced.

Even after vertex requirement, a large number of charged pions are left, which are mainly
from soft interactions in the pp collisions. In order to reduce this contamination, an attention-
based graph neural network (ABCNet) [17] is employed. The benefit of graph neural nets for
such analyses is that the data is treated the same way as they are recorded by the detector.
Moreover, this network takes advantage of attention-based mechanism to improve local feature
extraction, leading to a more efficient architecture. The input variables to the network are
the 4-momentum of charged pions, their distance from PV and their charge. ABCNet assigns
a probability to each of the charged pions for originating from a real τh decay. Pions are
required to have an ABCNet score (probability) of more than 0.1443, which corresponds to
80% efficiency.

And finally, among the charged pions which survive the previous conditions, there are
different ways to choose three to be a candidate for τh. In order to find the right combination,
the highest-pT τh candidate which satisfies the following conditions is chosen:

• τh vertex compatibility of more than 10%

• More than 3σ significance for τh vertex flight length with respect to the PV

• The sum of the ABCNet scores of the three pions be above 2.3

The first condition is a score showing the goodness of fit to the pion tracks and the second
one is the distance between the vertex of the reconstructed three charged pions and the PV,
divided by their vertex reconstruction uncertainty.

The efficiency of identifying charged pions originating from a real τh decay as a function
of generator-level visible τh pT is shown in Fig. 5 (right). The efficiency is defined as [18]:

ε=
Tau is reconstructed and three charged pions are the right combination

All events with 3-charged-prong tau at the generator-level
(2)

The new algorithm significantly outperforms the HPS algorithm in low-pT regime. This promis-
ing result opens a window to the analyses of B meson decays with tau final state. More infor-
mation on this algorithm can be found in [18].

4 Conclusion

The large amount of data taken during Run-2 of the LHC and recorded by the CMS experiment
provides a great opportunity for measuring the SM parameters and probing BSM physics, in
particular in processes with tau leptons in the final state. In order to achieve optimal sensitiv-
ity, one needs to maximize the power of identification and reconstruction of taus. In this note,
we summarized the techniques developed in CMS for identifying and reconstructing hadronic
decays of taus (τh). A deep convolutional neural network was designed for identifying τh,
which showed a significant improvement in discriminating τh against hadronic jets, electrons
and muons. In addition, a boosted decision tree algorithm was developed to identify decay
modes of τh. This algorithm enhanced the purity in all decay modes and increased the ef-
ficiency in decay modes with at least one π0 in the final state. Besides, in order to identify
3-charged-prong decays of τh in the low-pT regime, we used an attention-based graph neu-
ral network which remarkably enhanced the identification efficiency compared to the existing
method.
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Figure 5: Left: The generator-level distribution of τh pT in the Bc → J/ψτν with
τ → πππ (+π0). Right: The efficiency, as defined in Eq. 2, for identifying τh as
a function of τh pT when using modified HPS algorithm – with distance parameter
increased from 0.4 to 0.8 – (in red), and when using dedicated low-pT τh reconstruc-
tion algorithm (in blue). The black points show the efficiency for reconstructing all
three PF charged pions [18].

Author contributions The classifiers for τh decay mode finding, as described in section 3.2,
are initiated, trained, and developed to the final stage by the author.
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