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Abstract

We construct an approximately conserved current for 2 + 1 dimensional, Aris-
totelian (non boost invariant), fluid flow. When Aristotelian symmetry is
enhanced to Galilean symmetry, this current matches the enstrophy current
responsible for the inverse cascade in incompressible fluids. Other enhance-
ments of Aristotelian symmetry discussed in this work include Lorentzian,
Carrollian and Lifshitz scale symmetry.
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1 Introduction

Enstrophy is an approximately conserved quantity in two dimensional, incompressible,
fluid flow. Its existence is crucial for the appearance of the inverse energy cascade in
two dimensional turbulence [1] and its dynamics is used in modeling turbulent dependent
phenomena. While enstrophy is well understood in the context of incompressible fluid flow,
barotropic flow and relativistic fluids (see [2–5]), little is known regarding its existence for
more general flows with varying degrees of symmetry.

The goal of this work is to study enstrophy conservation for generic fluids in two
spatial dimensions with little symmetry. More precisely, we will consider fluids which
possess translation invariance in space and time, rotational invariance in space, and have
a well defined thermodynamic limit. We will refer to these fluids as non frame invariant
or Aristotelian fluids. The dynamics of such fluids is of interest due to its proximity to the
dynamics of flocking behavior [6]. Also, by an appropriate enhancement of symmetries, the
non frame invariant fluid equations of motion transform into a variety of boost invariant
or Lifshitz invariant fluid equations of motion [7–10].

In incompressible flow, the enstrophy current can be written in the form

Jµinc =
ω2

n
(1, ~v) (1)

with ~v the velocity field, n the particle number density, assumed to be constant, and
ω2 = ωijδ

ii′δjj
′
ωi′j′ where

ωij = ∂ivj − ∂jvi . (2)

Here and in what follows Greek indices µ, ν, . . . denote spacetime coordinates while Latin
indices i, j, . . . denote spatial coordinates. (Often, n, being constant, is omitted from
(1).) It is straightforward to check that (1) is conserved under the Euler equations and
is negative semidefinite once viscous corrections are introduced. In fact, there is not one,
but an infinite set of conserved enstrophy currents,

Jµ(α) = q
( s
n

) (ω2)α

n2α−1
(1, ~v) , (3)

with α a real number, s the entropy density and q an arbitrary function. (Equivalently,
one can combine powers of Jµ(α) into JµQ = nQ(s/n, ω2/n2)(1, ~v) with Q a generic function

of its arguments, and parameterize the enstrophy currents with the function Q.) These
currents can be further generalized in the presence of additional conserved U(1) charges,
or if the flow is barotropic. See, e.g., [5]. For α = 1 and q = 1 we obtain (1).

In this work we generalize (1) and show that a fluid flow whose dynamics is deter-
mined by space-time translation invariance, rotation invariance, and the requirement of a
thermodynamic limit possesses a family of conserved enstrophy currents of the form

Jµ = q
( s
n

) (Ω2
)α

s2α−1
uµ . (4)

Here uµ is an appropriate velocity field such that suµ is the leading contribution to the
entropy current and nuµ is a conserved U(1) current (which presumably exists). Also, q
is an arbitrary function of s/n and Ω2 a generalized squared vorticity whose form depends
on the underlying symmetries of the theory and whose value can be found in table 1 (and
its detailed derivation in section 3). We have intentionally kept the normalization of the
velocity field uµ vague since it depends on the type of symmetries we intend to keep. See
table 2 and section 3 for details. Curiously, Jµ with α = 0 and q = 1 is the entropy
current.
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We claim that the current (4) is conserved either for a particular class of equations of
state (summarized in table 2) which in the Galilean invariant limit reduce to the barotropic
condition, or for a generalized incompressible flow in which case (4) reduces to (1) when
Galilean invariance becomes a symmetry of the equations of motion.

Our work is organized as follows. In section 2 we identify sufficient conditions for the
existence of an enstrophy current in a flat background: that there exists a closed two-form
Ω satisfying iuΩ = 0 under the equations of motion (here iu is the interior product with
the velocity vector uµ). In section 3 we solve the condition iuΩ = 0 for Aristotelian fluids
by constraining the equation of state. In the same section we study various limits of the
enstrophy current once boost or scale symmetries are present. Later, in section 4 we solve
iuΩ = 0 in the incompressible limit. We end with a summary and brief discussion in
section 5. A brief review of Galilean and Carrollian invariant hydrodynamics is relegated
to the appendix.

2 A sufficient condition for the existence of an enstrophy
current

In this work we will be interested in constructing an enstrophy current which is conserved
in a flat background geometry. Since we are interested in dynamical systems which do
not necessarily possess any type of boost invariance (Lorentz, Galilean or other), we start
with a brief discussion of Aristotelian geometry which will help us ensure Aristotelian
covariance. It will also help us to ensure that our theory is coordinate invariant and
later, if the theory does possess boost invariance, to ensure compatibility of the isometries
of space-time with the symmetries of the equations of motion. After a brief discussion
of a non boost invariant geometry we will turn our attention to the construction of the
enstrophy current. As stated earlier, we will then argue that the existence of a closed
two-form Ω with iuΩ = 0 is sufficient to obtain an enstrophy current in a hydrodynamic
setting.

Consider a manifold equipped with an inverse metric hµν which is degenerate in the
sense that there exists an nµ such that hµνnν = 0. The manifold is also equipped with
a vector n̄µ which we refer to as the time direction and which we take, without loss of
generality, to satisfy nµn̄

µ = −1. We refer to hµν as the (inverse) spatial metric. In
Cartesian coordinates, the flat metric and time direction are given by

hµν = δµi δ
ν
j δ
ij , n̄µ = δµ0 . (5)

The barred notation used in the previous paragraph is to emphasize that n̄µ is not
obtained by raising the indices of nµ with the spatial metric. However, from hµν and n̄µ

we can construct γµν = hµν − n̄µn̄ν and its inverse γµν from which n̄µ = γµνnν . The
tensor γµν can also be used to define h̄µν = γµν + nµnν . Note that

n̄µh̄µν = 0 , Pµν ≡ hµαh̄αν = δµν + n̄µnν . (6)

Since there is no preferred choice of metric or connection on the manifold, we will use the
inverse metric

gµνA = hµν −Nn̄µn̄ν (7a)

to raise and lower indices. In an Aristotelian geometry we may take N to be 1 or 0
without loss of generality. In the limit where the spacetime symmetry is enhanced to
Lorentz invariance the metric must take the form

gµνL = gµνA

∣∣∣
N=1

= hµν − n̄µn̄ν . (7b)
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Likewise, the N = 0 metric corresponds to theories where the spacetime symmetry is
enhanced to (massive) Galilean invariance,

gµνG = gµνA

∣∣∣
N=0

= hµν . (7c)

The somewhat peculiar Carrollian symmetry is associated with a metric

gµνC = hµν − PµαMα
C n̄

ν − P ναMν
C n̄

µ + n̄µn̄νM2
C , (7d)

where Mµ
C is an auxiliary background field necessary to ensure Carrollian invariance [11]

and M2
C = Mα

CM
β
C h̄αβ. We will discuss these enhanced symmetries in section 3 when they

will be more relevant. We will often use gµν for the inverse metric to denote any one of
(7).

In a Riemannian geometry there is a unique torsion free, metric compatible connection.
This is not the case for Aristotelian, Galilean or Carrollian geometries. There, a well
defined connection requires the introduction of additional fields of which Mµ

C introduced
in the context of Carrollian geometries above is an example. Luckily, for the purpose
of this work, we only need to ensure that an appropriate metric compatible connection
exists. If gµν is invertible then we can use the Christoffel connection as our connection.

For metrics of the form gµνA

∣∣∣
N=0

we may use the Newton-Cartan connection

Γµνρ = −n̄µ∂νnρ +
1

2
hµσ

(
∂ν h̄ρσ + ∂ρh̄νσ − ∂σh̄νρ

)
, (8)

which is compatible with hµν and nµ and is torsion free as long as d(nαdx
α) = 0. For

the metric gµνC we may use the same connection (8) appropriately modified to include Mµ
C

terms, see [11], such that it is compatible with gµνC and nµ − h̄µαMα
C . We note that it

is also possible to construct a connection which is compatible with hµν and nµ and with
h̄µν and n̄µ. See Appendix A for details. In what follows we will assume the background
geometry to be torsion free.

A sufficient condition for

Jµe =
Ω2

s
uµ (9)

to be conserved is that
Sµ = suµ (10)

is conserved (∇µSµ = 0) and that

Ω2 = −Wµ
µ (11)

with
W ν

µ = ΩναΩαµ , Ωαβ = gαµgβνΩµν , (12)

such that
Ωµν∇α (uαΩµν) = 0 (13)

at least under the equations of motion.
Recall that the Galilean enstrophy current described in the introductory section is

conserved only in the absence of viscous terms. Therefore, the current Jµe in (9) should
be conserved in the absence of dissipative terms as well. In a hydrodynamic setting the
entropy current is always conserved in the absence of dissipative terms and is therefore al-
ways available in order to construct (10) with s the entropy density and uµ the appropriate
velocity field. In the presence of an additional conserved U(1) charge, Nµ = nuµ+ . . ., one
can construct a broad class of enstrophy currents of the form (4) which are conserved due
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to the conservation laws for Sµ, Nµ and equation (13). In the remainder of this section we
will describe an operative algorithm for constructing a two-form Ωµν which satisfies (13).
Indeed, as we will now show, in order to maintain (13) in a flat background geometry, it
is sufficient to require that Ω is closed and orthogonal to uµ

dΩ = 0 , (14a)

uαΩαβ = 0 , (14b)

at least under the equations of motion.
Given (14) we have £uΩµν = 0 with £u the Lie derivative in the u direction. Thus,

∇α (uαΩµν) = Ωµν∇αuα − Ωαν∇µuα − Ωµα∇νuα . (15)

It is convenient to decompose ∇µuα into components which are parallel and perpendicular
to vectors τ̄α and τα which satisfy τµτ̄

µ = −1, viz.,

∇µuα = τµτ̄
αS + Pα(τ)βτµj

β + τ̄αP γ(τ)µj̄γ +
1

d
Pα(τ)µΘ + Σα

µ , (16)

where
Pα(τ)β = δαβ + τ̄ατβ , (17)

d is the number of spatial dimensions, Σα
µτ̄

µ = Σα
µτα = 0, and Σα

α = 0. A straightfor-
ward computation yields

Ωµν∇α (uαΩµν) = S
(

2ταW
α
β τ̄

β − Ω2
)

+
1

d
Θ
(

2ταW
α
β τ̄

β + (d− 2)Ω2
)

+ 2
(

Σα
βW

β
α + j̄αP

α
(τ)βW

β
γ τ̄

γ + ταW
α
βP

β
(τ)γj

γ
)
. (18)

In order for (13) to hold, the right-hand-side of (18) must vanish under the equations
of motion. Let us consider each such term separately. To ensure that Wα

β τ̄
β vanishes, it

is convenient to choose τ̄µ ∝ uµ so that Wα
β τ̄

β = 0 as a result of Ωαβu
β = 0. The simplest

method by which we can set ταW
α
β = 0 is to use a non invertible gµν and then choose τα

as the (appropriately normalized) eigenvector of gµν with zero eigenvalue, gµντν = 0. If
we are insistent on choosing an invertible metric gµν then setting τα = gανu

ν will ensure
that ταW

α
β = 0. Such a construction is viable only if

gµνu
µuν = h̄µνu

µuν −Nnµnνuµuν (19)

has definite sign. Otherwise, some modifications to the normalization τατ̄
α = −1 may be

needed. Either way, (18) reduces to

Ωµν∇α (uαΩµν) = −SΩ2 + Θ

(
1− 2

d

)
Ω2 + 2Σα

βW
β
α . (20)

The second term on the right of (20) vanishes in 2 + 1 spacetime dimensions (d = 2).
The last term also vanishes for the following reason. Consider the tensor Ωα

β = gαµΩµβ.
By construction it has one zero eigenvalue associated with the eigenvector τ̄β. Let us
denote another eigenvector by pα. Skew symmetric matrices have either zero or imaginary
eigenvalues and their rank is even. Thus, since Ωµν is non vanishing, we must have
Ωα

βp
β = icpα with c 6= 0 and c ∈ R, and the third eigenvector of Ωα

β is (pβ)∗. Evaluating
Ωα

β and then Wα
β in terms of this orthogonal basis, it is straightforward to show that

Wα
β is proportional to Pα(τ)β. It follows that

Σα
βW

β
α = 0 (21)
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on account of tracelessness of Σα
β. Note that (21) is referred to as the absence of vortex

stretching in the context of incompressible fluid flow. See, e.g., [12].
Using (16), the coefficient of the first term on the right-hand-side of (20) evaluates to

S = τ̄µτα∇µuα . (22)

There are several instances under which S vanishes. If we use an invertible gαβ (so that
τα ∝ gαβu

β) and we also have uµgµνu
ν = c0 with uµ (and the constant, c0) real, then we

obtain S = 0. Otherwise, we end up with the equivalent constraints

uµτα∇µuα = 0 or uµuα∇µτα = 0 . (23)

Thus, the right-hand-side of (20) vanishes when the geometry is such that τα is covariantly
constant, or when we choose a geometry which is compatible with the dynamics of uα in
such a way that τα∇µuα = 0. Notice that, in a flat background, nµ = −δ0

µ in Cartesian
coordinates, which is covariantly constant.

To summarize, we have shown that equation (14) is sufficient to ensure (13) as long as
gµν is invertible and we can choose uµgµνu

ν = c0 with real uµ. Or, one of (23) is satisfied.
It now remains to compute under which conditions (14) is satisfied. We will solve this
condition in two instances. In section 3 we will look for the most general (first order in
derivatives) Ωµν and equation of state such that (14) is satisfied. In section 4 we will take
the incompressible (low Mach number) limit of the fluid equations and look for a solution
which does not rely on a particular class of equations of state.

3 Solving iuΩ = 0 by constraining the equation of state

Our task is now reduced to constructing an Ω satisfying (14) at least under the equations of
motion. We will be interested in solutions to the equations of motion in a flat background
where S in (22) vanishes and in the absence of any external forces. In such a background,
the equations of motion of an inviscid fluid in the absence of any type of boost symmetry
are given by [7],

0 = ∂0vi + vk∂kvi +
1

ρ
∂iP +

vi
ρ

(
∂0ρ+ ∂k

(
vkρ
))

,

0 = ∂0s+ ∂i
(
svi
)
,

0 = ∂0n+ ∂i
(
nvi
)
.

(24)

Here vi is a velocity field as seen in the lab frame, s, n and ρ are the entropy density,
a conserved U(1) charge density, and the kinetic mass density respectively. The latter
is related to the momentum density covector Pi via Pi = ρδijv

j . The entropy density s
is conjugate to the temperature T and the charge density n is conjugate to a chemical
potential µ. The pressure, P , is related to the remaining hydrodynamic variables via

dP = sdT + ndµ+
1

2
ρdv2 . (25)

We emphasize that viscous terms are absent from (24). An analysis of viscous correc-
tions to (24) can be found in [8–10]. Since we are interested in an approximate conservation
law for the enstrophy, valid when viscous terms are negligible, it is sufficient to consider
(24). A full derivation of (24) can be found in [7]. In brief, translation invariance implies
the existence of a stress tensor. Insisting that in thermodynamic equilibrium the energy
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flux, momentum flux and charge flux move with the same velocity, and that the free energy
can be identified with the pressure leads to (24). It is interesting to contrast (24) with
the equations of motion in [6] valid under the same symmetry group but in the absence of
thermodynamic equilibrium.

It is convenient to define the velocity vectors vµ and v̄µ satisfying

v̄µ = h̄µνv
ν , vµnµ = −1 , (26)

(so that
vµ = (1, vi) , v̄µ = (0, vi) , (27)

in the coordinate system (5)) and

Θ = ∇µvµ , aµ = vα∇αv̄µ , ñ = n/s , (28)

and split the derivatives into transverse and parallel components such that

∇ν = D⊥ν − nνD , n̄µD⊥µ = 0 . (29)

In this notation the equations (24) take the form

0 = aµ +
1

ρ
D⊥µ P +

v̄µ
ρ

(ρΘ + vν∂νρ) ,

0 = Dñ+ vµD⊥µ ñ ,

0 = Ds+ sΘ + vµD⊥µ s .

(30)

Note that vµaµ = 1
2v

ν∂νv
2 with v2 = vµvν h̄µν and that n̄µaµ = 0.

We have made a distinction between the velocity vµ which we have introduced in (27)
and the velocity uµ that appears in, say, (10). In the later part of this work we will find
that the natural velocity field uµ which appears in thermodynamic quantities, as in, e.g.,
(10), is proportional to, if not equal to, vµ. (For instance, in a Lorentz invariant system
uµ = vµ/

√
1− v2 while in a Galilean invariant system it is natural to use uµ = vµ.)

Recall that our goal is to find an Ω that satisfies (14) under the equations of motion.
To this end, let us start with the ansatz

Ω = d(fv̄) + d(gn) , (31)

where v̄ = v̄µdx
µ, n = nµdx

µ, and f and g are arbitrary functions of s, ñ = n/s and v2.1

In the presence of an external gauge field we could add to (31) its associated field strength.
Equation (31) ensures that Ω is closed. It remains to find the constraints on the pressure
and on f and g so that Ωµνu

ν = 0 under the equations of motion. Under the assumption
that uµ ∝ vµ this amounts to solving Ωµνv

ν = 0.
The computation we wish to carry out is now straightforward though somewhat tech-

nical. In what follows we will highlight its salient features. First, we found it convenient
to replace the pressure P with the potential G,

G+ P = sT + µn (32)

in which case we have

dG = Tds+ ndµ− 1

2
ρdv2 . (33)

1It is somewhat unfortunate that we have used both n = nµdx
µ and n the charge density in the same

sentence. We hope that this notation does not confuse the reader and that the appropriate choice of n is
clear from context.
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Next, we note that the equation of motion for aµ in (30) can be dotted with vµ to obtain

Θv2 +
1

2
Dv2 +

v2

ρ
Dρ+

1

ρ
vαD⊥αP +

1

2
vαD⊥α v

2 +
v2

ρ
vαD⊥α ρ = 0. (34)

Thus, we can use the equations of motion (30) to get rid of aµ, Dv2, Dñ and Ds. Since
Dv2 drops out of (34) if ∂v2G+2v2∂2

v2G = 0, we will focus, for now, on generic expressions
for G and treat ∂v2G+ 2v2∂2

v2G = 0 as a special case.
After some algebra, it is possible to show that, under the equations of motion

Ωµνv
ν =

∑
a

Ba
µβa (35)

where

B1
µ = (v2nµ + v̄µ)v ·D⊥s , B2

µ = (v2nµ + v̄µ)v ·D⊥ñ , B3
µ = (v2nµ + v̄µ)v ·D⊥v2 ,

B4
µ = (v2nµ + v̄µ)∇ · v , B5

µ = nµv ·D⊥s+D⊥µ s , B6
µ = nµv ·D⊥ñ+D⊥µ ñ ,

B7
µ = nµv ·D⊥v2 +D⊥µ v

2 . (36)

Thus, Ωµνv
µ = 0 reduces to βa = 0. Our strategy for solving these equations is as follows.

First we solve βa = 0 with a = 5, . . . , 7 algebraically for ∂sg, ∂ñg and ∂v2g. We then
construct from the above solutions additional equations κ1 = 0, κ2 = 0 and κ3 = 0 by
requiring that mixed partial derivatives of g are compatible.

Assuming that f 6= 0 (since if f = 0 implies that g is constant in which case we get
the trivial solution on account of the torsionless condition ∂µnν − ∂νnµ = 0) we find from
β1 = 0 that

f = f1(s, ñ)∂v2G or G = G1(s, ñ) + sG2(ñ, v2) . (37)

We refer to these two branches of solutions as branch A and branch B respectively. For
branch A one finds that the above solution automatically sets β2 = β3 = 0. One can then
solve β4 = 0 which gives

f1 =
1

sξ(ñ)
, (38)

with ξ an arbitrary function of ñ. The remaining non trivial equations are κ2 = 0 and
κ3 = 0. The solution to the former is

G = H
(
sξ(ñ), v2

)
+ η(s, ñ) , (39)

with H an arbitrary function of its two variables. The solution to the remaining κ3 = 0 is

η = η1 (sξ(ñ)) + sη2(ñ) . (40)

It is then straightforward to go back and solve βa = 0 for a = 5, . . . , 7 for g and obtain
(after some relabeling)

f =
∂v2H

sξ
, g =

v2

sξ
∂v2H −

1

2
∂sξH , G = H + sη , (41)

where the arguments of the various functions are

H = H(sξ, v2) , ξ = ξ(ñ) , η = η(ñ) , (42)

and we have removed a constant, g0, from g since it does not contribute to Ω. Notice that
in this case we have

P = −H + sξ∂sξH . (43)
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Since sη2 is not absolutely convex it does not contribute to the pressure.
The strategy for solving the B branch is similar to that of the A branch. One finds

that the B branch splits into two branches. One of them is a special case of the A branch
solution. The other is given by

f = f(v2), g = v2f(v2)− 1

2

∫ v2

f(x)dx, G = −P0 + sJ(ñ, v2) . (44)

In this case we find that
P = P0 . (45)

It remains to treat the special case ∂v2G + 2v2∂2
v2G = 0 in which case Dv2 becomes

an independent variable. This case can be solved by the same method as the generic case
and one finds that it leads to several branches of solutions all of which coincide with or
are a special case of (41). At the end of the day, we find that (41) is valid for any H as
long as ξ 6= 0 and ∂v2H 6= 0 and (44) is valid whenever ∂v2G+ 2v2∂2

v2G 6= 0.
In the absence of additional symmetries we have from (24) and (10) that uµ = vµ. In

this case, for general values of N in (7a) we find

uµgµνu
ν = N − v2 . (46)

Since the right-hand-side of (46) is not sign definite we can not enforce (23) and then the
resulting enstrophy current can not be conserved.2 Thus, we are forced to set N = 0 in
order to obtain a non trivial enstrophy current. The resulting enstrophy current is then
given by (4) with

Ω2 = ΩµνΩρσh
µρhνσ , (47)

and uµ = vµ. Note that the contributions to Ω coming from g in (31) drop off from the
expression for Ω2 due to the non torsion condition dn = 0 and hµνnν = 0. We have
summarized our results in tables 1 and 2.

While our result for the enstrophy current is very general, it is interesting to study
its behavior in several limiting cases where the Aristotelian symmetry is lifted to one
with some boost invariance. In particular, following [7], we will be interested in equations
of state where Lorentz invariance, Galilean invariance, Carrollian invariance or Lifshitz
invariance are present. We now turn our attention to these non generic cases.

3.1 Recovering the Galilean invariant solution

We can use our generic results (41) or (44) to construct a Galilean covariant enstrophy
current so long as we restrict the above solutions to those which possess Galilean sym-
metry and also ensure that the resulting expression for the enstrophy current transforms
covariantly under Galilean boosts.

Recall that the Galilean group is generated by the (massive) Bargmann algebra. To
enhance the generic fluid equations of motion to those of a Galilean invariant fluid [13–18],
one has to relate the kinematic mass term ρ to the mass density of the fluid [7]

ρ = mn (48)

2Note that we may also attempt the following: in place of (10) we can use Sµ = σuµ where uµ is chosen
such that uµ ∝ vµ with a proportionality constant such that uµgµνu

ν = c0. With this choice of uµ we
will get S = 0 in (22) and so, should be able to construct an enstrophy current as in (4) with s replaced
by σ (and n replaced by ν with Nµ = νuµ). The problem with this construction is that there may exist
solutions where locally v2 > N and also v2 < N . For such configurations, if we normalize the velocity uµ

to take a constant value then we will end up with a complex valued velocity field, c.f., (46). When we will
discuss Lorentzian symmetry we will see that the a construction of the type described in this footnote is
viable.
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where n the particle number density and m is the mass.
For the solution in (41) the identification given in (48) implies

−2∂2
vH(sξ, v2) = mn . (49)

This is a differential equation for both H and ξ and can be solved by integrating over v2

and expanding in a power series in s and ñ. We find

H = HG(sñ)− 1

2
msñv2 , ξ = −mñ

2f0
, (50)

which gives us

f = f0 , g =
1

2
f0v

2 +
f0

m
H ′G , G = HG(sñ) + sη(ñ)− 1

2
msñv2 , (51)

and a barotropic pressure term

P (n) = −HG(n) + nH ′G(n) . (52)

The result (52) leads to the known approximately conserved enstrophy current which exists
in compressible barotropic flow.

Solving (48) for (44) yields

f = f(v2) , g = v2f(v2)− 1

2

∫ v2

f(x)dx , G = −P0 + sJG(ñ)− 1

2
mnv2 . (53)

We will see shortly that while (53) solves (49) and (14) it does not allow for a Galilean
covariant enstrophy current.

In order to construct a Galilean covariant enstrophy current we need to identify a
Galilean covariant velocity field, uµG, and ensure that Ω2 is a scalar under Galilean boosts.
Let us start with the former. The natural velocity field to use in a Galilean invariant
theory is one which transforms covariantly under a change of reference frame. By this
we mean the following: if uµG(~v) specifies the velocity of a particle moving with velocity
~v, then it must be the case that when we transform to a coordinate system moving at
constant velocity ~v0 relative to the first,

Gµν(~v0)uνG(~v) = uνG(~v + ~v0) , (54)

with Gµν(~v0) representing a Galilean boost to the reference frame moving at velocity ~v0.
Equation (54) implies that

uµG = vµ . (55)

Of course, (55) could have been obtained by considering the change in the particles coordi-
nates Xµ(τ) relative to the Galilean invariant proper time, or by taking the small velocity
limit of a relativistic velocity field.

Next, consider Ω2 = hµαhνβΩµνΩαβ. If Ω2 is a scalar it should be invariant under
Galilean transformations. Recall that a Galilean transformation on dynamical fields is a
coordinate transformation of the type (104) while a Galilean transformation on the back-
ground fields h̄µν and n̄µ involves, in addition, a Milne transformation. The latter ensures
that, as opposed to the situation in an Aristotelian geometry, there is an equivalence
class of time directions: n̄µ1 ∼ n̄µ2 , if nµn̄

µ
1 = nµn̄

µ
2 = −1. Thus, in particular, for a flat

background geometry, we find that

h̄µν −−−−−→
Galilean

h̄µν + 2λ2nµnν (56)

10
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where λµ is the boost parameter (e.g., in Cartesian coordinates λµ = (0, ~v0)) and λ2 =
λµλνh

µν . See appendix A for a concise summary or [14,19–25] for an extended discussion.
Thus, while uµG = vµ transforms covariantly under Galilean boosts, ūGµ = v̄µ = h̄µνv

ν

does not, implying that Ωµν is not Galilean covariant.
A resolution to a problem of this type can be found in [14]. In Galilean invariant

theories the Christoffel connection is not the unique, symmetric, metric compatible one.
Rather, in order to define such a connection one needs, at the very least, to introduce an
additional one formAGµ dx

µ. This one form is often identified with the gauge field associated
with the inherent U(1) symmetry which leads to mass conservation in Galilean theories.
Metric compatibility then implies that AGµ does not transform covariantly under Galilean
transformations. Despite that, in [14] it was shown that gauge invariant combinations
constructed out of AGµ + h̄µνu

ν
G + 1

2nµv
2 are Galilean covariant.

So far, we have considered vanishing external sources for both the stress tensor and
conserved U(1) currents, and we may continue to do so by choosing a flat connection. The
discussion in the previous paragraph suggests that in a Galilean invariant theory, (31)
must be replaced by

Ω = d

(
fG
(
v̄ +AG +

1

2
nv2

))
+ d(gGn) , (57)

which forces fG = f0, a constant, on account of gauge invariance. (Recall that fG and gG

are functions of the entropy density, charge density and velocity field and that n = nαdx
α.)

Since we can always choose a gauge where AG = 0, we are free to use our generic results
as long as we restrict f to be a constant. Surprisingly, this is precisely the solution given
in (51) with g = 1

2f0v
2 + gG and gG = f0H

′
G/m. One can also choose f to be a constant

in (53) in which case (53) becomes a special case of (51).
Let us summarize our findings. A Galilean equation of state implies that (51) or (53)

are valid expressions for constructing Ωµν . In order for Ωµν to be Galilean covariant we
must use f = f0 in which case (53) becomes a special case of (51). In order to construct Ω2

we use the Galilean invariant metric hµν (or gµνA with N = 0) which yields (47). Ω2 is then
a scalar on account that the transformation of Ωµν under Galilean boosts is proportional
to nµ, which therefore vanishes when contracted with hµν . Finally Galilean invariance
also enforces that the velocity field in (4) is given by uµG with (55).

3.2 Recovering the Lorentz invariant solution

Following [7], the fluid equations given in (24) are Lorentz covariant whenever

ρ =
sT + µn

1− v2
. (58)

Inserting the first branch of solutions, (41), into (58) we find that (41) is restricted to take
the form

H = HL

(
sξ

γ

)
− sξ, η = ξ , (59)

with γ = 1/
√

1− v2. In terms of f , g and G the first branch of solutions becomes (after
some relabeling)

f = −1

2
γH ′L(sLξ(ñ)) , g = f , G = HL (sLξ(ñ)) , (60)

where we have defined
sL = s/γ (61)

11



SciPost Physics Submission

and we note that we may write

ñ =
nL
sL

. (62)

Indeed, as shown in [7] and as we will see shortly, sL and nL = n/γ are the relativistic
expressions for the entropy density and U(1) charge.

Going to the second branch of solutions, (44), we find that it takes the form

f = f(v2) , g = v2f(v2)− 1

2

∫ v2

f(x)dx , G = −P0 + sLJL(ñ) , (63)

under (58).
The Lorentz invariant metric is the Minkowski metric, or gµν with N = 1. The natural

velocity field for a Lorentz invariant theory is given by

uµL = γvµ (64)

in which case the inviscid entropy current and charge current take the form Sµ = sLu
µ
L

and Nµ = nLu
µ
L respectively. Clearly

ūLµ = gµνu
µ
L = γv̄µ + γnµ (65)

is also Lorentz covariant. Thus, the expression for Ωµν given in (31), should reduce to

Ω = d (fLūL) (66)

with
fL = f/γ, (67)

(and ūL = ūLµdx
µ) if it is to be Lorentz covariant. The second branch of solutions, (63),

does not meet this criterion (unless fL is constant) but the first branch of solutions, (60),
does. Thus, Ωµν takes the form given in (66) with (67) and (60). To construct (4) we use

Ω2 = ΩµνΩρσg
µρ
L gνσL (68)

with gµνL given in (7b) and uµ = uµL given in (64). In this case, gµνu
µ
Lu

ν
L = −1 and therefore

S in (22) clearly vanishes.
In a relativistic setting it is often convenient to work with temperature and chemical

potential instead of entropy density and charge density,

Tγ = TL =
∂G

∂sL
, µγ = µL =

∂G

∂nL
. (69)

It is straightforward to show that

TL
µL

= −ñ+
ξ(ñ)

ξ′(ñ)
, (70)

implying that ñ is a function of TL/µL. Further, if we decompose

fL = TLfr , (71)

then

fr = − 1

2ξ − ñξ′
(72)

is also a function of TL/µL.

12



SciPost Physics Submission

To obtain a simple expression for the pressure consider

HL(x) =

∫ x P (Q(−2y))

y2
dy , (73)

where Q(P ′(x)) = x. Note that P = −G+sLTL+µLsLñ is the pressure. In these variables
we find that

Q(sξ) = TLfr (74)

implying

P = P

(
TLfr

(
TL
µL

))
(75)

which matches earlier results obtained for relativistic fluids [2, 5].

3.3 Carrollian symmetry

Carrollian invariance [26, 27] is perhaps the least familiar form of boost invariance. The
Carrollian algebra can be obtained by taking the c → 0 limit of the Lorentzian algebra.
That is, it describes dynamics when the lightcone degenerates to a line. The most natural
way to interpret this limit is by considering the limiting case of Lorentz transformations
whose velocity parameter is much larger than the speed of light. To be explicit, consider

t→ t′ =
t− ~β·~x

c√
1− β2

, ~x→ ~x′ =
~x− ~βct√

1− β2
. (76)

Often, we attribute these transformations to the dynamics of a massive particle: By
identifying the velocity of the particle with the boost parameter required to bring it to a
reference frame where it is stationary (in space) we obtain ~β = ~v/c. Following [27], we
may use the same technique to identify ~β = c~v/v2 for tachyonic particles by equating the
velocity of the tachyon with the boost parameter required to bring it to a reference frame
where it is stationary in time. Taking the c/|~v| → 0 limit of these transformations leads
to Carrollian boosts

t′ = t− ~v

v2
· ~x , ~x′ = ~x . (77)

We comment that it is also possible to take the c→ 0 limit of the Lorentz transformations
associated with subluminal velocities by scaling the velocity with c2 (~v → c2~v/v2) as c is
taken to zero resulting also in (77). See, e.g., [28, 29]. This limit is potentially associated
with the dynamics of massive particles trapped inside the lightcone that has shrunk to the
t axis. We also note that, curiously, the Carrollian algebra allows for a particular type of
central extension in 2 + 1 dimensions, [30], whose implications on hydrodynamics has not
been worked out, at least as far as we know. It would be interesting to see whether this
central charge relates to enstrophy.3 We leave this direction to future work.

In order to have Carrollian covariant fluid equations we must set (see [7])

ρ = −sT + µn

v2
. (78)

The first branch of solutions (41) now reads

G = HC(sCξ(ñ)) , f =
1

2

H ′C(sCξ(ñ))√
v2

, g = 0 , (79)

3We thank W. Sybesma for pointing this out to us.
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and the second branch of solutions (44) is given by

G = −P0 + sCJC(ñ) , f = f(v2) , g = v2f(v2)− 1

2

∫ v2

f(x)dx . (80)

where sC =
√
v2s. (Note that (80) satisfies ρ+ 2v2∂v2ρ = 0 even though we assumed that

it should not vanish. Nevertheless, it is still a solution to iuΩ = 0.)
As was the case for the Galilean theory, to ensure that the enstrophy current is Carrol-

lian covariant we must identify a Carrollian covariant velocity field uµC and show that Ω2

behaves as a scalar under Carrollian transformations. There are many equivalent ways of
constructing a Carrollian covariant velocity field. Following the discussion for the Galilean
covariant theory, we will determine uµC by requiring that it is compatible with Carrollian
addition of velocities.

~v′ =
~v

1− ~v · ~v0|~v20 |
, (81)

where ~v0 is the boost parameter of the Carrollian transformation. It is now straightforward
to show that

uµC(vi) =
1√
v2

(
1, vi

)
=

vµ√
v2

(82)

is the unique vector that satisfies

Cµν(~v0)uνC(~v) = uµC(~v′) , (83)

with Cµν a Carrollian transformation with boost parameter ~v0. (The same result can
be obtained by considering the c → 0 limit of the Lorentz invariant uµL = ∂Xµ

∂τ where

dτ =
√
−c2dt2 + |d~x|2). It follows that

ūC µ = h̄µνu
ν
C =

(
0,

vi√
v2

)
=

v̄µ√
v2

(84)

transforms covariantly under Carrollian boosts.
To determine whether Ω2 is a Carrollian scalar we must first determine the Carrollian

transformation laws of the geometric data h̄µν , n̄µ, hµν and nµ. Similar to the situation
in a Newton-Cartan geometry, the geometry associated with Carrollian invariant theories
is determined by the set h̄µν , n̄µ and nµ where all nµ’s satisfying nµn̄

µ = −1 are equiva-
lent. This equivalence is made manifest by introducing a Carrollian version of the Milne
transformation, [11], which we will refer to as a C-Milne transformation for short.4 In
analogy to the situation in Newton-Cartan geometries, a Carrollian boost is a combina-
tion of a coordinate transformation and a C-Milne transformation. Likewise, h̄µν (and
n̄µ) are Carrollian covariant while hµν (and nµ) are not. We conclude that if we construct
Ω2 from the inverse metric hµν , it is bound to behave non covariantly under Carrollian
transformations. We refer the reader to Appendix A for a concise summary of Carrollian
geometry or to [11] for an extended discussion.

While hµν and nµ are not Carrollian covariant, we may construct a modified inverse
metric h̃µν = hµν −Mµ

C n̄
ν −Mν

C n̄
µ +M2

C n̄
µn̄ν and a modified one-form ñµ = nµ− h̄µνMν

C

which are Carrollian covariant. Here Mµ
C is an additional vector field available in geome-

tries associated with Carrollian symmetry, similar to the gauge field AGµ which appears in
Newton-Cartan geometries. It originates in the ambiguity in defining a symmetric, metric
compatible connection. The transformation laws for this additional field, Mµ

C , are given

4What we refer to as a Carrollian version of the Milne transformation was termed a local Carrollian
transformations in [11]. Our construction of these transformations is somewhat different from that of [11].

14



SciPost Physics Submission

in (130) and (131). Using these transformation laws it is straightforward to check that,
indeed, h̃µν and ñµ are covariant tensors under Carrollian transformations. By replacing
hµν with h̃µν and nµ with ñµ throughout this section, (and by replacing the connection
(8) with an h̃µν compatible one), Ω2 will be a Carrollian scalar.

Going back to (31) we find that f and g must be such that (31) takes the form

Ω = d (fC ūC) + d (gC(n−MC)) (85)

where fC = f(sC , ñ)
√
v2 and ūC = uC µdx

µ. This is naturally satisfied by the first branch

of solutions, (79), and also by the second branch of solutions, (80), once we set f = f0/
√
v2.

Note that by doing so, the second branch of solutions is a special case of the first. One
can now follow the same analysis as in the relativistic case to obtain fC = TCfc(TC/µC)
and P = P (TCfc(TC/µC)) with TC = T/

√
v2 and µC = µ/

√
v2.

Let us summarize. The Carrollian covariant 2-form Ω = Ωµνdx
µdxν satisfying (14) is

given by (85). If we raise its indices using the Carrollian covariant metric h̃µν then Ω2 is
invariant under Carrollian boosts.

3.4 Lifshitz symmetry

Apart from enhancing the (spacetime) translation and (spatial) rotation invariant dy-
namics to a boost invariant one, it is also possible to add a scaling symmetry. Lifshitz
symmetry is a scaling symmetry whereby the time and space coordinates are scaled dif-
ferently, t→ λzt, ~x→ λ~x. Once again, following [7], Lifshitz scale symmetry implies that

dP = zG+ (z − 1)ρv2 (86)

with d the number of space dimensions (d = 2 in this work). Equation (86) amounts to

G = s
2+z
2 G0

(
ñ, v2s1−z) . (87)

This implies that in a Lifshitz invariant theory the solution to (14) takes the form (41)
with

H = −sξ(ñ) + (sξ(ñ))
2+z
2 h

(
v2 (sξ(ñ))1−z

)
, η = ξ , (88)

or (44) with

J = (v2)
z

2(z−1) j(ñ) , P0 = 0 , (89)

for z 6= 1. When z = 1 the solution (44) is trivial. (Curiously, if we set z = −2 then
P0 6= 0 is allowed.)

One can now impose Lifshitz invariance in addition to boost invariance. Lorentz in-
variance is compatible only with z = 1 scaling leading to

fL = −3

4

√
sLξ(ñ)H0 , g/γ = fL , G = (sLξ(ñ))3/2H0 , (90)

where H0 is a constant and we have omitted constant terms in g which do not contribute
to the enstrophy current. Galilean invariant fluids are compatible only with z = 2 (this
follows by requiring both (86) and (48) as has been pointed out in [7, 31]) leading to

f = f0 , g =
1

2
f0v

2 +
2f0H0

m
n , G = n2H0 −

1

2
mnv2 . (91)

Finally, equations (14) are satisfied by Carrollian invariant Lifshitz fluids if

fC =
1

2

(2 + z)

(1 + z)
(sCξ(ñ))

1
1+z H0 , g = 0 , G = (sCξ(ñ))

2+z
1+z H0 . (92)

A summary of these results can be found in tables 1 and 2.
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4 Solving iuΩ = 0 for incompressible flow

Strictly speaking, all fluids are compressible. Yet, most day-to-day fluid flows, from the
stream of water in a garden hose to automotive aerodynamics, are described by the incom-
pressible Navier-Stokes equations. Indeed, under the assumption of subsonic or low Mach
number flow, the Galilean invariant compressible fluid equations of motion reduce to the
incompressible Navier-Stokes equations. This limiting behavior makes the latter a robust
and well studied approximation of a wide variety of commonplace physical phenomena.

Of particular relevance to the current work is that incompressible Galilean fluid flow
supports an enstrophy current regardless of the equation of state. As we will see shortly,
the low Mach number limit of non frame invariant fluids also leads to incompressible flow
which also supports an enstrophy current independent on the equation of state.

To start, let us consider the fluid equations (30) with the rescaling

vi → V0v̂
i , t→ L0

V0
t̂ , x→ L0x̂ , (93)

where hatted quantities are dimensionless. Inserting (93) into (30) we find

0 = âµ +
1

V 2
0

1

ρ

((
∂P

∂s

)
n, v2

D̂⊥µ s+

(
∂P

∂n

)
s, v2

D̂⊥µ n

)
+

1

ρ

(
∂P

∂v2

)
s, n

D̂⊥µ v̂
2 +

ˆ̄vµ
ρ

(
ρΘ̂ + v̂ν ∂̂νρ

)
0 = D̂n+ nΘ̂ + v̂µD̂⊥µ n

0 = D̂s+ sΘ̂ + v̂µD̂⊥µ s .

(94)

where hatted quantities are dimensionless versions of their unhatted counterparts, viz.,
Θ̂ = ∇̂ · v̂.

The speed of sound of the fluid may be computed by considering linearized perturba-
tions of a uniform, equilibrated, configuration (see [7]). At low velocities it is given by

V 2
s =

1

ρ

((
∂P

∂s

)
s

s+

(
∂P

∂n

)
s

n

)
. (95)

Expanding the equations of motion and dynamical variables, s, n and v̂i around small
M = V0/Vs we find

0 =

(
∂P (0)

∂s(0)

)(0)

n

D̂⊥µ s
(0) +

(
∂P (0)

∂n(0)

)(0)

s

D̂⊥µ n
(0)

0 = D̂n(0) + n(0)Θ̂(0) + v̂(0)µD̂⊥µ n
(0)

0 = D̂s(0) + s(0)Θ̂(0) + v̂(0)µD̂⊥µ s
(0)

(96)

where we have defined,

s = s(0) +M2s(2) + . . . , n = n(0) +M2n(2) + . . . , v̂2 = V 2
0

(
v̂(0)
)2

+ . . . , (97)

and

P = P (0)
(
s(0), n(0)

)
+M2

(
P (2)

(
s(0), n(0); s(2), n(2)

)
+ V 2

s P
(2)
v2

(
s(0), n(0)

)(
v̂(0)
)2
)

+. . . .

(98)
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Further assuming that the particle number is constant to leading order in M ,

D̂n(0) = 0 , D̂⊥µ n
(0) = 0 , (99)

implies that
Θ̂(0) = 0 , D̂⊥µ s

(0) = 0 , D̂s(0) = 0 , (100)

and therefore that ρ(0) and P (0) are constant as well. The leading order equations for the
velocity field now become

0 = â(0)
µ +

1

ρ(0)

(
D̂⊥µ P

(2)
)

+
P

(2)
v2

ρ(0)
D̂⊥µ

(
v̂(0)
)2

,

0 = Θ̂(0) .

(101)

Note that (101) is a set of 3 equations for three unknowns: v̂(0)i and P̂ (2).
We can now go through an analysis similar to that of the previous section, in order to

obtain an enstrophy current which is independent of the equation of state. That is, look

for an f(ŝ(2), n̂(2),
(
v̂(0)
)2

) and a g(ŝ(2), n̂(2),
(
v̂(0)
)2

), defined in (31), which solve (14b)
under the equations of motion (101). We find

f = f(v2) , g = f(v2)v2 +

(
P

(2)
v2

ρ(0)
− 1

2

)∫
f(v2)dv2 . (102)

The result presented in (102) is inline with the known behavior of incompressible Galilean
invariant fluids once we enforce f = f0 a constant due to Galilean invariance. The velocity
field of a relativistic fluid flowing subsonically is usually too low to exhibit relativistic
effects and so it is less interesting from a physical standpoint. It is even less clear how
subsonic Carrollian flow would manifest.

5 Summary

Our main result in this work has been to provide an operative technique to compute a
putative enstrophy current in 2 + 1 dimensional flow with varying amounts of symmetry.
We used our technique to compute the enstrophy current of a non frame invariant fluid both
for a generic flow, in which case the enstrophy current exists only for special equations
of state, and for incompressible flow where the equation of state is unconstrained. By
taking various limits of this result we managed to recover or discover how the enstrophy
current behaves in Galilean, Lorentz and Carrollian invariant fluids and in fluids with an
additional Lifshitz scale symmetry. Our results are summarized in tables 1 and 2.

Carrollian invariance is perhaps the least familiar limit of Lorentz invariance. Recall
that the Carrollian invariant frame transformation is obtained by taking the c→ 0 limit of
Lorentz transformations for tachyonic observers moving at superluminal velocities. Going
on a slight detour, we note that it is also possible to take the Carrollian limit, where
the lightcone collapses to the time axis, in such a way that velocities of massive particles
vanish sufficiently fast so as to retain some of their dynamics. If we take the c = 0 limit
of Lorentz transformations associated with observers moving at subluminal velocities and
make the replacement ~v → ~νc2 then we obtain a Carrollian transformation. It would
be interesting to find a dimensionless control parameter about which this limit could be
expanded. In any case, in this limit we are describing the dynamics of observers trapped
inside the lightcone. (Note that one can take the same type of limit to describe tachyonic
observers trapped on the t = 0 plane when taking the Galilean, c→∞, limit.)
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Flow type f ūµ

Non frame invariant (I) 1
sξ

(
∂G
∂v2

)
(0, vi)

Non frame invariant (II) f(v2) (0, vi)
Galilean f0 (0, vi)

Lorentzian − 1
2

(
∂G
∂x

) ∣∣∣
x=sξ

1√
1−v2 (−1, vi)

Carrollian 1
2

(
∂G
∂x

) ∣∣∣
x=sξ

1√
v2

(0, vi)

Incompressible f(v2) (0, vi)

Table 1: Values of f and ūµ which determine Ωµν = ∂µ(fūν) − ∂ν (fūµ) from which
a conserved enstrophy current can be constructed and the equation number where the
value of f was determined. Here, G is a free energy related to the pressure, P , via
G+ P = sT + nµ with s and n the entropy density and charge density, and T and µ the
temperature and chemical potential. The explicit expression for G in each of the above
cases can be found in table 2. Of particular relevance to us is its dependence on sξ where
ξ is an arbitrary function of ñ = n/s.

Keeping track of factors of c one finds that the velocity field associated with particles
trapped inside the shrinking lightcone is given by uµ = (1, 0, 0, 0)+O(c2) and ūµ = O(c2).
However, when taking the same c → 0 limit of the stress tensor for subluminal fluid
motion one finds a non trivial dependence on velocity vi due to cancellation of factors of
c2 in the stress tensor and in subleading components of uµ and ūµ. The dynamics of such
gasses have been described in [28]. Since the Carrollian invariant velocity field in this
case is constant, uµ = (1, 0, 0, 0), it is not clear if there is a sense in which there exists an
enstrophy current even in this somewhat degenerate setting.

So far, we have only considered an approximately conserved enstrophy current. In
Galilean invariant fluids the enstrophy current given by (1) has a negative definite diver-
gence once dissipative corrections are taken into account [12]. This property, together with
energy conservation, leads to an inverse energy cascade in 2+1 dimensional turbulence [1].
It is unclear at this point whether one can systematically construct an Aristotelian en-
strophy current with a sign-definite divergence. If such a construction exists, it will shed
light on the role of enstrophy in 2+1 dimensional turbulent flow with varying symmetry.

The existence of a relativistic enstrophy current in 2 + 1 dimensional flow, implies the
existence of a dual quantity in a holographic description of fluid flow in 3 + 1 dimensional
gravity. Like entropy, the gravitational manifestation of enstrophy may persist beyond
asymptotically AdS black brane geometries. We leave such issues for future work.
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Flow type G uµ gµν

Non frame invariant (I) H(sξ(ñ), v2) + sη(ñ) (1, vi) hµν

Non frame invariant (II) −P0 + sJ(ñ, v2)† (1, vi) hµν

Galilean HG(sñ) + sη(ñ)− 1
2msñv

2 (1, vi) hµν

Lorentzian HL(sξ(ñ)) (1,vi)√
1−v2 hµν − n̄µn̄ν

Carrollian HC(sξ(ñ)) (1,vi)√
v2

hµν‡

Non frame invariant Lifshitz (I) (sξ(ñ))
2+z
2 h

(
v2 (sξ(ñ))1−z

)
(1, vi) hµν

Non frame invariant Lifshitz (II) (z 6= 1) −P0 + s
(
v2
) z

2(z−1) j(ñ) (1, vi) hµν

Galilean Lifshitz (z = 2) n2H0 − 1
2mnv

2 (1, vi) hµν

Lorentzian Lifshitz (z = 1) (sξ(ñ))
3
2 H0

(1,vi)√
1−v2 hµν − n̄µn̄ν

Carrollian Lifshitz (sξ(ñ))
2+z
1+z H0

(1,vi)√
v2

hµν‡

Table 2: Constraints on the form of the free energy G, the velocity field, uµ and
Ω2 = ΩµνΩρσg

µρgνσ needed in order to construct a conserved enstrophy current Jµ =

q
(
s
n

) (Ω2)
α

s2α−1 u
µ. Here, G is a free energy related to the pressure, P , via G + P = sT + nµ

with s and n the entropy density and charge density, and T and µ the temperature and
chemical potential. We have also used the shorthand ñ = n/s. We have not included an
entry for incompressible flow where the equation of state is arbitrary and the velocity field
and inverse metric take on their non frame invariant, Lorentz invariant, Galilean invariant,
or Carrollian invariant form.
† J must satisfy ∂v2G+ 2v2∂v2G 6= 0.
‡ This is the expression for the inverse metric after setting MC = 0. Otherwise the inverse
metric is given by (7d).

A Boost invariance

In this section we briefly review some salient features of Galilean and Carrollian boost
invariance paraphrasing the results of [14,25] and [11].

A.1 Galilean boosts

The Lorentz group is, by definition, represented by those coordinate transformations under
which the Minkowski metric is invariant. In a similar vein, a representation of the Galilean
group may be defined as those transformations under which the flat spatial metric and
its accompanying geometric data remain invariant. Recall that an Aristotelian geometry
is given by a degenerate inverse metric, hµν , satisfying hµνnν = 0, and a preferred time
direction n̄µ normalized such that n̄µnµ = −1. From these one may construct the metric
h̄µν as discussed in section 2. A flat Aristotelian geometry, in Cartesian coordinates, is
given by (5).

A Newton-Cartan geometry is also equipped with a degenerate inverse metric hµν and
its associated eigenvector nµ, but instead of a time direction one considers an equivalence
class of time directions n̄µ where n̄µ1 ∼ n̄µ2 as long as n̄µ1nµ = n̄µ2nµ = −1. In addition,
Newton-Cartan geometry possesses additional data without which a unique, symmetric,
metric compatible and Galilean covariant connection can not be specified. The minimal
requirements for defining such a connection is to introduce a covectorMG

µ which transforms

appropriately under Galilean boosts. Often, MG
µ is identified with the gauge field AGµ
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associated with particle number conservation. In what follows we will elaborate on the
equivalence class associated with time directions mentioned above and on the roles played
by MG

µ and AGµ .
To make the equivalence n̄µ1 ∼ n̄µ2 manifest we allow the geometric data to transform

under a Milne transformation parameterized by a covector ψν ,

n̄µ −−−−−−→
G−Milne

n̄µ + hµνψν . (103a)

The prefactor ‘G’ is a reminder that we are referring to the Galilean version of the Milne
transformation, distinct from its Carrollian version to be discussed in the next section.
The transformation (103a) implies

h̄µν −−−−−−→
G−Milne

h̄µν + nµP
α
ν ψα + nνP

α
µ ψα + ψ2nµnν , (103b)

with ψ2 = hµνψµψν , and Pµν = δµν + n̄µnν . The inverse metric hµν and its eigenvector nµ
are taken to be inert under Milne transformations.

As mentioned earlier, the Galilean group can be represented by those coordinate trans-
formations xµ → x′µ(x) and Milne transformations with parameter ψν which keep the flat
Cartesian Newton-Cartan geometric data (5) invariant. The Galilean boosts are a subset
of these transformations satisfying

x′µ = (t, ~x− ~v0 t) , ψµ = (0, ~v0) , (104)

with constant ~v0. In general coordinates, Galilean boosts are given by

Gµν ≡ ∂x′µ/∂xν = δµν + hµαλαnν , ψµ = λµ , (105)

where λµ is spacetime dependent and reduces to λµ = (0, ~v0) in a Cartesian coordinate
system.

Coordinate transformations associated with Gµν defined in (105) act on tensors in the
standard way,

Tµ1...µpν1...νq −−−−−−−→
Coordinate

Tµ1...µpν1...νq + λ̄µ1nαT
α...µp

ν1...νq + · · ·+ λ̄µpnαT
µ1...α

ν1...νq

− nν1 λ̄αTµ1...µpα...νq − · · · − nνq λ̄αTµ1...µpν1...α + . . .

(106)

where we have defined λ̄µ = hµαλα and the last . . . denote nonlinear terms in λ, e.g.,

Tµν −−−−−−−→
Coordinate

Tµν + λ̄µnαT
αν + λ̄νnαT

µα + λ̄µλ̄ν(Tαβnαnβ)

Oµν −−−−−−−→
Coordinate

Oµν − nµλ̄αOαν − nν λ̄αOµα + nµnν(Oαβλ̄
αλ̄β) .

(107)

We define a tensor to be Galilean covariant if it transforms as in (106) under Galilean
boosts, (105). Thus, nµ and hµν are Galilean covariant (and also invariant under Galilean
transformations). Contrarily, n̄µ and h̄µν do not transform covariantly under Galilean
boosts. Instead we find

n̄µ −−−−−→
Galilean

n̄µ , h̄µν −−−−−→
Galilean

h̄µν + 2λ2nµnν , (108)

where λ2 = λαλβh
αβ.

As opposed to a Lorentzian geometry, in Newton-Cartan geometry, metric compati-
bility (with respect to hµν and nµ) does not uniquely specify the symmetric part of the
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connection Γρµν . In the torsionless case, a computation similar to the one carried out in [14]
leads to

ΓµGνρ = −n̄µ∂ρnν +
1

2
hµσ

(
∂ν h̄ρσ + ∂ρh̄νσ − ∂σh̄νρ

)
+ hµσn(νFρ)σ (109)

with FG = dM(G). In order to ensure that the covariant derivative associated with (109)

is compatible with Galilean invariance we must associate to MG
µ a Milne transformation

of the form

MG
µ −−−−−−→

G−Milne
MG
µ + Pαµ ψα +

1

2
nµψ

2 . (110)

We note in passing that Galilean covariance of the new connection (109) can be made
manifest by rewriting it in the form

ΓµGνρ = −ñµ∂ρnν +
1

2
hµσ

(
∂ν h̃ρσ + ∂ρh̃νσ − ∂σh̃νρ

)
, (111)

where

ñµ = n̄µ − hµσMG
σ , h̃µν = h̄µν − nµPαν MG

α − nνPαµMG
α + (MG)2nµnν , (112)

and (MG)2 = MG
µ M

G
ν h

µν . It is straightforward to check that ñµ and h̃µν are Milne
invariant and therefore also Galilean covariant. For completeness we note that one may
use (112) to define the connection

Γ̃µGνρ = −ñµ∂ρnν +
1

2
hµσ

(
∂ν h̃ρσ + ∂ρh̃νσ − ∂σh̃νρ

)
+

1

2
hµσnρ£ñh̃σν , (113)

which generates a Galilean covariant connection compatible with nµ, hµν , ñµ and h̃µν .
Often one considers the Galilean group associated with the massive Galilean, or Bargmann,

algebra. In that case the background geometry includes an additional gauge field AGµ as-
sociated with the U(1) symmetry responsible for particle number, or mass, conservation.
This gauge field transforms as a covector under coordinate transformations associated with
Galilean boosts,

AGµ
Coordinate−−−−−−−→ AGµ − nµ

(
AG · λ̄

)
, (114)

as a connection under U(1) gauge transformations,

AGµ −−−−→
Gauge

AGµ − ∂µΛ , (115)

and if we use AGµ in place of MG
µ to specify the connection, as is often done in the literature,

then it transforms inhomogenously under Milne transformations,

AGµ −−−−−−→
G−Milne

AGµ + Pαµ ψα +
1

2
nµψ

2 . (116)

As observed in [14], AGµ = 0 is invariant under the combination of a Galilean boost
(105) and a gauge transformation (115) with parameter

Λ =

∫ (
λµ +

1

2
λ2nµ

)
dxµ , (117)

where
∂µ∂νΛ− ∂ν∂µΛ = 0 . (118)

In a torsionless background, the latter condition is satisfied if λµ and nµ are covariantly
constant.
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Of particular importance to this work is the Galilean velocity field uµG = ∂xµ/∂t which
transforms as a vector under coordinate transformations associated with Galilean boosts,

uµG −−−−−−−→Coordinate
uµG + λ̄µ (uG · n) = uµG − λ̄

µ (119)

and is inert under Milne transformations,

uµG −−−−−−→G−Milne
uµG . (120)

While uµG transforms as a vector under Galilean boosts (105), ūGµ = h̄µνu
ν
G and u2

G do
not,

ūGµ −−−−−→
Galilean

ūGµ − λµ − nµλ2 ,

u2
G −−−−−→

Galilean
u2
G + λ2 − 2(ū · λ̄) .

(121)

The Galilean covariance of ūGµ is spoiled by the nontrivial Milne transformation prop-
erties of h̄µν given in (103). While ūGµ is not a Galilean covariant vector, it is straight-
forward to check that gauge invariant expressions constructed out of the combination
AGµ + ūGµ + 1

2nµu
2
G are Galilean covariant (see, e.g., [14]). This is the reason that in (57)

we replaced d(fGūG) with the Galilean covariant expression f0d
(
AGµ + ūGµ + 1

2nµu
2
G

)
with f0 a constant.

A.2 Carrollian boosts

The Carrollian equivalent of Newton-Cartan geometry includes a degenerate metric h̄µν
satisfying h̄µν n̄

µ = 0, an equivalence class of normals n1
µ ∼ n2

µ, and an extra field Mµ
C

associated with the Carrollian connection. As was the case in Newton-Cartan geometry,
the equivalence class between normals may be made manifest by introducing a Carrollian
version of the Milne transformation which leaves h̄µν and n̄µ invariant and transforms nµ
as

nµ −−−−−−→
C−Milne

nµ + h̄µνφ
ν , (122a)

implying
hµν −−−−−−→

C−Milne
hµν + n̄µP ναφ

α + n̄νPµαφ
α + n̄µn̄νφ2 , (122b)

where φ is a generic spacetime dependent parameter and φ2 = φµφν h̄µν . The prefactor
’C’ in (122) and throughout this section is used to distinguish the Carrollian version of
the Milne transformation from its Galilean counterpart.

The Carrollian group is represented by coordinate transformations x → x′(x) and
Carrollian-Milne (C-Milne for short) transformations with parameter φµ which keep the
flat Carrollian geometry invariant. In general coordinates, Carrollian boosts, which are a
subset Carrollian transformations, are given by

Cµν ≡
∂x′µ

∂xν
= δµν − n̄µh̄ναβα , φµ = βµ , (123)

where βµ is a covariantly constant parameter. In flat Cartesian coordinates, where

h̄µν = δiµδ
j
ν δij , nµ = −δ0

µ , (124)

the parameter βµ reduces to a constant, βµ = 1
v20

(0, ~v0), and (123) reduces to

xµ = (t, ~x) −−−−−−−→
Coordinate

(
t− ~v0 · ~x

v2
0

, ~x

)
, φµ =

1

v2
0

(0, ~v0) . (125)
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We define a tensor to be Carrollian covariant if

Tµ1...µpν1...νq −−−−−−−→
Carrollian

Tµ1...µpν1...νq − n̄µ1 β̄αTα...µpν1...νq − · · · − n̄µp β̄αTµ1...αν1...νq

+ β̄ν1 n̄
αTµ1...µpα...νq + · · ·+ β̄νq n̄

αTµ1...µpν1...α + . . .
(126)

where we have defined β̄µ = h̄µνβ
ν and the last ellipses denote terms which are quadratic

in βµ. Similar to the Galilean case, h̄µν and n̄µ are Carrollian covariant but nµ and hµν

are not
nµ −−−−−−−→

Carrollian
nµ , hµν −−−−−−−→

Carrollian
hµν + 2β2n̄µn̄ν , (127)

where β2 = h̄µνβ
µβν .

To obtain a Carrollian covariant connection one can go through a construction analo-
gous to the one which lead to (111). We will not go through it in detail but merely quote
the end result. The connection

ΓµCνρ = −n̄µ∂ρñν +
1

2
h̃µσ

(
∂ν h̄ρσ + ∂ρh̄νσ − ∂σh̄νρ

)
, (128)

with

h̃µν = hµν − PµαMα
C n̄

ν − P ναMα
C n̄

µ + n̄µn̄νM2
C , ñµ = nµ − h̄µαMα

C (129)

is Carrollian invariant given that

Mµ
C −−−−−−−→Coordinate

Mµ
C − n̄

µ(MC · β) . (130)

and

Mµ
C −−−−−−→C−Milne

Mµ
C + Pµαφ

α +
1

2
n̄µφ2 . (131)

Similar to the Galilean case, the Carrollian geometry also admits a tilde’d connection

Γ̃µCνρ = −n̄µ∂ρñν +
1

2
h̃µσ

(
∂ν h̄ρσ + ∂ρh̄νσ − ∂σh̄νρ

)
+

1

2
h̃µσñρ£n̄h̄σν , (132)

which is compatible with h̃µν , hµν , n̄µ and nµ.
The Carrollian velocity field uµC is Carrollian covariant. It transforms covariantly under

Carrollian coordinate transformations (123),

uµC −−−−−−−→Coordinate
uµC − n̄

µ(uC · β) , (133)

and is invariant under C-Milne transformations

uµC −−−−−−→C−Milne
uµC . (134)

Since h̄µν transforms covariantly under Carrollian boosts, so does ūC µ = h̄µνu
ν
C . The

covector nµ is not Carrollian covariant but the C-Milne invariant combination ñµ defined
in (129) is. This justifies the use of d(fC ūC) + d(gC ñ) in the definition of a Carrollian
covariant Ωµν in (85).
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