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Abstract

We consider matter density effects in theories with a false ground state. Large and dense
systems, such as stars, can destabilize a metastable minimum and allow for the formation
of bubbles of the true minimum. We derive the conditions under which these bubbles
form, as well as the conditions under which they either remain confined to the dense
region or escape to infinity. The latter case leads to a phase transition in the universe at
star formation. We explore the phenomenological consequences of such seeded phase
transitions.
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1 Introduction

The rich and versatile physics of light scalar fields is behind their central role in many scenarios
that address the shortcomings of the standard models of cosmology and particle physics, such
as the nature of dark matter and dark energy, or the electroweak hierarchy and strong-CP
problems. A particularly interesting aspect of scalar dynamics is associated with the presence of
multiple minima of the scalar potential, leading to a plethora of phenomena like false vacuum
decay [1,2], early universe phase transitions [3,4], or vacuum selection of a small cosmological
constant [5–7] or a small electroweak scale [8–12]. Similar to the well-known case of finite
temperature, in which the coupling of the scalar field to a thermal bath changes the structure
of its potential and opens the door to transitions between different minima, in this work we
wish to explore the much less studied question of the fate of an in-vacuo metastable ground
state at finite density.

Finite density effects on scalar potentials have long been considered for the QCD order
parameters, see e.g. [13,14], as well as in the context of chameleon field theories, see [15] for
a review. Moreover, it has been recently shown that the potential of the QCD axion [16], and
of certain deformations thereof [17], changes in systems with large baryonic densities, such
as neutron stars. In these examples, the coupling of the scalar to a background matter density
(either total or a specific subcomponent), can displace the field away from its value in vacuum.
Here we go one step further and investigate how finite density effects on scalar potentials with
multiple minima can give rise to field displacements large enough to reach the value of a lower
energy minimum. This possibility could be realized in e.g. relaxion models [10], where the
scalar potential is a tilted cosine with its magnitude set by the QCD quark condensate or the
Higgs VEV, which are sensitive to densities as those found in stars.

To make the discussion of the physics as transparent as possible, in this paper we work with
a simple potential à la Coleman [1], that is a quartic function of a single scalar field φ, with a
Z2 symmetry φ→−φ, which is explicitly broken by a linear term, and with the scalar field in
vacuum sitting at the metastable minimum. The barrier separating the two minima is argued to
decrease with density, thus for sufficiently high densities the metastable minimum disappears,
leading to the formation of a non-trivial scalar profile within the dense system (which for
simplicity we model as a spherically symmetric compact object, i.e. a star). Inside this scalar
bubble, the field is displaced from its position in vacuum and, if the system is large enough,
it acquires a value that corresponds to the true minimum of the potential.1 Interestingly, we
find that depending on the density profile and evolution of the star, an instability takes place
such that the bubble permeates through the entire system, escapes and propagates to infinity,
on account of the fact that the scalar inside the bubble is in the preferred energy configuration
also in vacuum.

These seeded phase transitions could have catastrophic implications for our universe. Since
our main focus is on transitions to the true vacuum that are classically allowed, they take place
as soon as stars that are dense and large enough are formed. Such a late phase transition, at
redshifts no earlier than z ∼ 20, changes the vacuum energy with respect to that inferred from
measurements of the CMB. This allows us to place bounds on the parameters of the scalar

1A similar situation has been previously considered in [18], yet there the scalar field in vacuum lies at the true
minimum, therefore the scalar bubble remains confined within or around the star.
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potential that depend on the type of stars triggering the phase transition.2 Still, if the energy
difference between the two minima is sufficiently small, such phase transitions could be non-
lethal and potentially detectable with future cosmological and astrophysical observations.

The rest of the paper is organized as follows. In Sec. 2 we present the scalar potential we
take as case study and discuss how it can change at finite density. Sec. 3 is devoted to the
description of the essential properties of the systems of interest, i.e. the stars. Classical bub-
ble formation and dynamical evolution are discussed in Sec. 4, along with the derivation of
the conditions leading to bubble escape. In this section we also comment on quantum bubble
formation via tunneling assisted by finite density. In Sec. 5 we explore the main phenomeno-
logical consequences of a late-time phase transition and derive the corresponding constraints
on the scalar potential. Finally, we present our conclusions and outlook in Sec. 6. In several
appendices we discuss some supplementary approximations and the relevance of ultra-high
densities as well of gravitational forces on the bubble dynamics.

2 Scalar potential

The potential we consider is just the familiar quartic potential with a linear tilt,

V (φ) = − 1
3
p

3
Λ4

R

φ

f
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4
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�

φ2

f 2
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. (1)

ΛR and ΛB are the scales that control the size of what we denote as linear “rolling” and quar-
tic “barrier” terms respectively (numerical factors are introduced for notational convenience),
while f parametrizes the field distance between the two minima. The potential has two min-
ima as long as
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For 1−δ2� 1 the minima are located at φ± ' ± f , and in particular the metastable minimum
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and φ− is shallow. The difference between these two types of metastable minima is evident
from the mass of the scalar
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For a shallow minimum (δ2 � 1) the mass is parametrically suppressed with respect to the
usual expectation, which is instead reproduced in the case of a deep minimum (1− δ2� 1).
Another quantity of phenomenological interest, which is markedly different between shallow
and deep minima, is the height of the potential barrier,
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The suppression of the barrier in the case of minima with δ2 � 1 implies that even a small
perturbation of the potential can easily destabilize the scalar field.

Let us note that while shallow metastable minima might naively be deemed as tuned, they
naturally appear in relaxion models [10], where the barrier term is a periodic function of the

2The implications of these findings for relaxion models will be presented elsewhere [19]. Part of these results
have been advanced in [20] and later in [21,22].
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Figure 1: Potentials with shallow (left) and deep (right) minima in vacuum (solid)
and in medium for a density n slightly larger than critical (dashed).

scalar field, e.g. cos(φ/ f ), whose amplitude increases very slowly with each φ oscillation.
There, the first minima of the potential are found when the barriers get just large enough,
i.e. Λ4

B
≈ Λ4

R
, or in our notation δ2 � 1. The quartic potential we have taken as a case study

in Eq. (1) is a simplified version of the relaxion case.

2.1 Finite density

Finite density can impact a scalar potential in several ways, depending on how the scalar
couples to the matter fields that constitute the dense system. In general, density corrections
can be encoded as an additional term in the potential that explicitly depends on density, n,
and vanishes in vacuum, i.e. n= 0. For the sake of concreteness, in this work we focus on the
scenario where these corrections can be entirely encoded as a non-trivial density dependence
of the parameters of the potential Eq. (1). In particular, we consider the situation where the
barrier ΛB depends on density, and define the dimensionless quantity

Λ4
B
(n)

Λ4
B

≡ 1− ζ(n) , (5)

with ζ(n)¾ 0 and ζ(0) = 0.
This scenario is naturally realized when ΛB itself is determined by the vacuum expectation

value of an operator that is sensitive to finite density corrections. Perhaps the simplest example
in the SM is provided by the QCD quark condensate, that is Λ4

B
∝ 〈q̄q〉 ∼ Λ3

QCD
, which is well-

known to linearly decrease with (small) baryon density nb = 〈B†B〉 [13]. In the notation
of Eq. (5), this would imply, at leading order in density, that ζ(nb) ∝ nb/Λ

4
QCD

in systems
with a non-zero nuclear density, such as stars. The case of a ΛB proportional to any other
QCD condensate that is non-zero in vacuum and changes with baryon density, such as a gluon
condensate, belongs to the same class. Within the realm of SM operators, the only other
qualitatively different case is given by a barrier set by the Higgs VEV, that is Λ4

B
∝ 〈h2〉 = v2.

There, the coupling of the Higgs field to fermions, yψhψ̄ψ, displaces its expectation value
when in a (non-relativistic) ψ background, 〈ψ̄ψ〉 ' 〈ψ†ψ〉 6= 0. Considering once again a
system with a non-vanishing baryon density, the small displacement in the Higgs would lead,
at leading order, to ζ(nb)∝ nb/m

2
hv2. Let us note that Λ4

B
∝ 〈q̄q〉 is realized by the QCD-

axion [16, 17], as well as by those models of relaxation of the electroweak scale where the
relaxion is identified with the QCD-axion [10]. The case where the leading finite density effects
are due to a shift of the Higgs field, Λ4

B
∝ 〈h〉2, is found in non-QCD relaxion models [10], and
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it could arise as well in more general Higgs-portal models, e.g. [23]. A detailed discussion of
finite density effects in these versions of the relaxion is deferred for a future publication [19].
Going beyond the SM, we could, for instance, entertain the possibility that ΛB originates from
the confinement of a new QCD-like dynamics decoupled from the SM. Motivated by this case,
we should further consider the existence of dark compact objects, a.k.a. dark stars [24–32],
whose non-zero density can lead to a change of the scalar potential as in Eq. (5).

Because of the smaller barriers at finite density, the metastable minimum in vacuum is no
longer a minimum in a dense system as soon as the condition Eq. (2), with Λ4

B
→ Λ4

B
(1−ζ), is

not satisfied. The critical value of ζ above which this destabilization occurs is

ζc = 1−
Λ4

R

Λ4
B

= δ2 . (6)

It is evident from this expression that a shallow local minimum is more easily destabilized than
a deep one, since ζc � 1 for a shallow minimum while ζc ≈ 1 for a deep one. This is explicitly
shown in Fig. 1. For reasonable scenarios where ζ(n) increases with n, the critical density nc ,
defined by ζ(nc) = ζc , required for the local minimum to disappear is much lower for a shallow
than for a deep minimum. We limit our discussion to ζ(n)¶ 1, since otherwise the barrier term
changes sign and the scalar potential is no longer bounded from below. This makes the analysis
sensitive to higher-order terms in φ, which we have implicitly neglected; in other words, the
scalar dynamics becomes UV sensitive and therefore no longer predictive. In addition, note
that for what concerns the destabilization of the false vacuum, the relevant quantity is the
ratio between the rolling and barrier scales. Therefore, we could just as well have considered
a density dependent rolling term, Λ4

R
(n), as the source of the instability. However, as we show

in Sec. 4, the formation of a scalar bubble within a dense system of finite size, as well as
its evolution, mostly depends on the magnitude of the rolling term. For this reason, in this
work we keep ΛR density independent. Let us also point out that density is treated here a
background field that eventually depends on space and time, see Sec. 3. Although we are
phrasing our discussion of the fate of the metastable minimum in terms of a matter density, a
priori other space-time dependent background fields could lead to similar effects on the scalar
potential. An example where the role of density is played by a background electro-magnetic
field will be presented in [19].

As discussed above, for densities above the critical one, the scalar potential has a single
minimum. We denote this minimum as (φ+)n, such that it is clear that it is continuously
connected, as the density is taken to zero, to the stable minimum in vacuum, φ+. Let us
note that close to criticality, i.e. for ζ(n) ' ζc , the in-density potential has the same form as
a potential in vacuum with δ2 � 1, thus φ+n'nc

' 2 f /
p

3. For the same reason, just before
the critical density is reached, the in-medium metastable minimum is shallow and found at
− f /
p

3, regardless of its value in vacuum φ−. In contrast, far beyond the critical density, the
single minimum of the potential is found at

φ+n�nc
∼
�

1− ζc

1− ζ(n)

�1/3

f , (7)

which can be much larger than f if ζ→ 1. Whenever the scalar potential has two minima, be
these shallow or deep, at zero or non-zero density (obviously as long as n< nc), the difference
in the ground state energy between them is given by

∆Λ∼ −Λ4
R

, (8)

up to an irrelevant O(1) factor.
We would like to emphasize that while in this work we focus on a simple potential of

the form Eq. (1), the analysis presented in this section as well as subsequent sections can be
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applied as well to other types of potentials containing local minima separated by a density-
dependent barrier. Furthermore, even though we pay particular attention to the fact that at
finite density the scalar field can classically move to the true minimum of the potential, this is
not the only case of interest; such a change of minimum could be classically forbidden at finite
density as well, yet take place anyway due to a much shorter quantum-mechanical lifetime
than in vacuum (see Sec. 4.4).

Before concluding this section, a comment is in order regarding the UV sensitivity of the
scalar potential Eq. (1) and our assumptions on how it changes at finite density. Indeed, let
us consider the case that Λ4

B
= α〈h〉2, where α is just a proportionality factor. By closing

the Higgs loop and cutting it off at a scale Λh, we obtain a contribution to the barrier term
∆Λ4

B
∼ α(Λh/4π)2. We should then demand that this extra contribution does not erase the

instability of the local minimum at finite density, which means ∆Λ4
B
� Λ4

B
(nc)' Λ4

R
. This con-

ditions translates into an upper bound on the cutoff of the scalar theory, Λh� 4π〈h〉
p

1−δ2.
Note this is larger for potentials with a shallow metastable minimum than for those with a
deep minimum. Such a low cutoff does not endanger our analysis of the scalar field dynamics
at finite density as long as Λh � ES, where ES is the typical energy scale of the dense system.
Similar conclusions apply to the other possible cases concerning the density dependence of
ΛB, see the discussion below Eq. (5).3 Besides, already from the quartic scalar interaction in
Eq. (1), naturalness arguments indicate that new physics should appear at a scale Λφ ∼ 4π f
or below. Once again, we should demand that Λφ is significantly above ES.

3 Spherically symmetric dense systems

In this work we are interested in dense systems of finite size, in particular stars. We model
the star as a spherically symmetric (non-rotating) object with a density profile that in general
depends on radius and time, i.e. n(r, t). The profile satisfies (n′ = dn/dr),

n′(0, t) = 0 , n(RS(t), t) = 0 , (9)

such that the density profile is differentiable at the origin, r = 0, and that the star ends at a
finite radius, r = RS, respectively. In addition, we define a transition radius, r = RT, where the
critical density is reached,

n(RT(t), t) = nc . (10)

We recall that at densities above critical, the local minimum of the potential is lost.
Since the scalar potential at finite density is minimized at a different value than in vacuum,

minimization of the action forces the field to acquire a (spherically symmetric) non-trivial pro-
file within and around the star, φ(r, t). This is determined by the classical EOM (φ̇ = dφ/d t,
φ′ = dφ/dr and V,φ = dV/dφ)

φ̈ −φ′′ −
2
r
φ′ = −V,φ , (11)

where V = V (φ, n(r, t)), with the boundary conditions

φ′(0, t) = 0 , lim
r→∞

φ = φ− . (12)

In order to solve Eq. (11) one needs to know the density profile of the star, which generically
depends on non-trivial and in some cases not well-understood dynamics (e.g. the inner regions

3ΛB is insensitive to the UV if e.g. the barrier term arises from the coupling of the scalar to the QCD topological
charge, i.e. 1

f φGG̃, which gives rise to a potential sensitive to ΛQCD only. For instance, this is the case of the QCD-
relaxion, where we recall that the corresponding scalar potential is of the form cos(φ/ f ) instead of the simple
quartic function we are considering.
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of neutron stars). If there is a large separation of scales in the problem, we can, as a first
approximation, be agnostic of the details of the density profile, as we explain in the following.
The characteristic scale controlling the classical evolution of the scalar profile, either in time
or space, is determined by its potential. For the representative case that we are considering,
Eq. (1), the EOM for the dimensionless field φ̂ ≡ φ/ f can be written as

∂ 2φ̂

∂ t̂2
−
∂ 2φ̂

∂ r̂2
−

2
r̂
∂ φ̂

∂ r̂
= 1− 3

p
3

2
1− ζ
1− ζc

(φ̂2 − 1)φ̂ , (13)

where r̂ = µr, t̂ = µt, and

µ2 = 1
3
p

3

Λ4
R

f 2
∼
Λ4

R

f 2
. (14)

For densities sufficiently above the critical one, such that 1− ζ� 1− ζc , µ
−1 sets the typical

time and distance required for the scalar to move by ∆φ̂ = O(1). This is to be compared with
the characteristic scales of the dense system.

Let us first discuss time evolution, i.e. the formation of the star. The dimensionless quantity
µTS, where TS is the characteristic time scale of the dense system, gives us a rough idea whether
we can treat the evolution of the scalar field as effectively taking place in a nearly static, fixed
system, or whether the time dependence of the scalar profile is comparable to (or much slower
than) the typical time scale of the star. Indeed, for µTS � 1 the field reacts fast to changes
in the background density profile, therefore we can describe the scalar dynamics as a quasi-
static (or adiabatic) process, in which φ̇ and additional time derivatives can be neglected. On
the other hand, for µTS � 1 the field reacts slow compared to the evolution of the star, in
which case the evolution of the scalar profile can be described in a sudden (or non-adiabatic)
approximation, where the formation of the star can be treated as an instantaneous change
from vacuum to n(r) 6= 0 and φ starts “rolling” down the in-medium potential.

In the adiabatic limit, µTS � 1, the scalar profile can be found at any given time t = t̄
during the formation of the star by solving its time-independent EOM, within a fixed background
density n(r) = n(r, t̄).4 We shall consider simple density profiles that can be parametrized as

n(r) = no( t̄) g(r/RS( t̄)) , (15)

where the function g(x) fully encodes the radial dependence, with g(0) = 1 such that the
density at the center is set by no, g(RT) = nc/no, and g(1) = 0. While obtaining the specific
form of n(r) at a given t̄ is generically a complicated problem, the only quantities of qualitative
relevance for our analysis are RT, the radius below which the critical density is surpassed, that
is where the in-vacuo potential barrier disappears and the scalar can potentially be displaced
by O( f ), and∆RT = RS−RT, the size of the transition region towards the end of the star, where
the potential barrier reappears. We find that non-trivial dynamics take place when µRT ∼ 1,
and additionally when µ∆RT ∼ 1, see Sec. 4. The value of RT depends on the value of the
critical density, which in turn depends on how the scalar potential changes with density. For
typical density profiles in which the central density is significantly larger than the critical one,
one generically finds RT ∼ RS [33, 34]. This then implies that ∆RT ∼ RS as well. In addition,
since in practice each class of stars, e.g. neutron stars, white dwarfs, or main-sequence stars
like the Sun, covers a range of radii, we also expect to find a range of values for RT/RS and
∆RT/RS, where generically both ratios are O(1).

In this paper we concentrate on the adiabatic limit just described. Since a non-trivial scalar
profile develops when µRS ∼ 1, we focus on stellar processes where the relevant time scale

4In practice, numerically calculating these static bounce-like solutions is challenging since it requires a finely-
tuned boundary condition at the origin. More details on our numerical calculations can be found at the end of this
section.
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is TS � RS. As an example, let us discuss the interesting case of neutron stars, since they
exhibit the largest (baryonic) densities and the fastest dynamics, and assume that densities
prior to the birth of the neutron star are below the critical density, which to be concrete we
fix at nuclear saturation density, nc = n0 ≈ 0.16/fm3 ≈ (110MeV)3. The birth of a neutron
star follows from the gravitational collapse of the core of a massive star, which leads to a
supernova (SN) explosion, see e.g. [35,36]. While the details of this process are not completely
understood, it has been reliably inferred that densities reach and surpass nuclear saturation in
a time TS = TNS ∼ 1s. Within this time, the size of the core of the star in which densities have
exceeded n0 is an O(1) fraction of the total size of the final neutron star, i.e. RT ∼ RS = RNS.
Since the typical radius of a neutron star is RNS ∼ 10 km, we find RNS � TS, justifying the
quasi-static approximation. Similar conclusions can be reached for other types of stars, for
instance white dwarfs, with typical radii RWD ∼ 103 km and densities nWD ∼ MeV3, or the Sun
(R� ≈ 7× 105 km, n� ≈ 7× 10−9 MeV3). In any case, for completeness we briefly discuss the
regime µTS� 1 in App. E.

For the reader’s reference, the scale µ−1 is of order of the typical size of a neutron star for
e.g. the potential parameters

µRS ∼ 5
�

RS

10km

��

ΛR

10 eV

�2�1 TeV
f

�

. (16)

Several additional comments are in order. First, in the special case that the (central) den-
sity happens to be very close to nc , one naturally expects RT � RS, making the analysis more
sensitive to the specifics of the density profile. Second, since the reaction time of the scalar
gets suppressed by ζ− ζc , the adiabatic approximation naively fails at some arbitrarily small
time interval around the time in which ζ→ ζc .

5 Lastly, our study neglects the effects of tem-
perature altogether. This is a good approximation in most situations, yet for e.g. the Sun as
well as in SN explosions, temperature could be as important as density, i.e. T3 ∼ n. Neverthe-
less, we note that for the motivated cases in which Λ4

B
∼ Λ3

QCD
or Λ4

B
∼ v2, the effect of a finite

temperature would generically go in the same destabilizing direction as density, i.e. decreas-
ing the size of the potential barriers, reinforcing our conclusions regarding the formation and
escape of a scalar bubble.

Let us conclude this section by briefly discussing our numerical analysis. In order to verify
the theoretical results we present in Sec. 4, we have solved the time-dependent EOM presented
in Eq. (13) numerically, assuming simple dependencies, e.g. ζ∝ n(r, t). The initial conditions
for the scalar field are homogenous, i.e. φ(r, 0) = φ− and φ̇(r, 0) = 0. We implement a slow
evolution of the density profile from n(r, 0) = 0 to some final configuration Eq. (15) at t̄ = TS,
with g(x) = 1 − x2. Importantly, we fix µTS � 1, in agreement with the adiabatic limit.
We verify that the quasi-static solutions we find have negligible amounts of kinetic energy
compared to their gradient and potential energies. This quasi-static picture is maintained
up until an instability takes place, i.e. until our numerical simulations display an expanding
bubble that escapes from the star. Importantly, under our assumptions, the exact details of
the star formation do not affect the quantitative scaling we present in the next section for the
formation and escape of scalar bubbles.

5In a spatially homogeneous situation, the local condition that determines if the scalar is able to follow the
minimum of the potential can be expressed as φ̇ ¦ (dφmin/dn) ṅ, whereφmin ' φ− as long the metastable minimum
exists, and (φ+)n otherwise. However, if the system exhibits a non-trivial spatial dependence, that this condition is
satisfied does not imply that the scalar actually follows the minimum; it becomes crucial to consider the gradient
energy of the field, which impedes large field displacements. Besides, we note that right at the critical point,
n = nc , there is a discontinuous jump in φmin (from φ− to (φ+)n) and therefore dφmin/dn→∞; equivalently, at
the critical density µ→ 0, since ζ = ζc , thus µTS → 0. Time dependence can then become important, yet only if
the system is large enough to render the gradient energy negligible compared to kinetic energy the field acquires
rolling down the potential.
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4 Bubble formation and evolution

The formation of a non-trivial scalar profile induced by a star is effectively described, as justi-
fied in Sec. 3, by the quasi-static spherically-symmetric EOM for the scalar field, with a slowly-
varying background density profile. The bubble-like solution φ(r) can be found numerically
given a specific form for the density profile n(r). The simple analytic results presented in this
section have been explicitly verified by our numerical simulations.

A few simplifications allow us to analytically understand the dynamics of scalar bubbles at
finite density. The field profile minimizes the total energy,

E(R)' 4π

∫ R

0

dr r2
�

1
2
φ′2 +∆V (φ, n)

�

, ∆V (φ, n) = V (φ, n)− V (φ−, n) , (17)

where we have cut the integral at a radius R as an approximation to the full infinite space,
since the scalar field rapidly converges to its vacuum value φ− for r ¦ R. Indeed, for radii
larger than the transition radius, i.e. r > RT, densities are below critical and the potential is
minimized at approximately the same metastable minimum as outside of the star. In the initial
stages of the formation of the dense system, we expect the creation of a scalar proto-bubble with
R' RT, where the scalar field at its center, φ(0), has not yet reached φ+, the value associated
with the stable minimum of the in-vacuum potential, see Sec. 4.1. In other words, the field
displacement,∆φ(0)≡ φ(0)−φ−, satisfies∆φ(0)® φ+−φ− ≈ 2 f . This is because the star is
too small, in particular the (mean) energy density in the field gradient that would correspond
to a field displacement ∆φ(0) ∼ 2 f , which is 1

2〈φ
′2〉 ∼ (2 f /RT)2, is too large compared to

the (mean) potential energy difference within the proto-bubble, ε = |〈∆V 〉|. Only when the
star, by which we mean RT, grows large enough, it becomes energetically favorable to reach
φ(0)∼ φ+. Therefore, only when

�

2 f
RT

�2

® ε (18)

can a scalar bubble fully form. Interestingly, once the condition Eq. (18) is satisfied, the equi-
librium position R ' RT can be lost, meaning the bubble can be pushed towards the outer
region of the star, see Sec. 4.2. If such an instability takes place, the evolution of the bubble
is no longer quasi-static, but rather the minimization of the energy of the system becomes
a time-dependent problem that can be simply described by a time-dependent bubble radius,
R → R(t), which quickly approaches relativistic speeds. Depending on how fast the poten-
tial barrier reappears with radius, the instability cannot be stopped and the bubble expands
beyond the star. Specifically, we find that the bubble escapes if

∆σ

∆RT

® ε , (19)

where ∆σ is the difference between the tension of bubble wall at R' RT and R¦ RS. The fact
that the wall tension changes as it propagates through the star is one of the unique aspects of
the bubble dynamics at finite density. In particular, it gives rise to an extra force that prevents
the bubble from escaping the star unless ε is large enough. While for a bubble connecting to a
shallow metastable minimum the condition Eq. (19) is readily satisfied (given Eq. (18) is), it is
harder in the case of a deep minimum, because of the significant increase of the wall tension,
being eventually dominated by the large barriers of the potential in vacuum. The discussion
above is visualized in Fig. 2.

4.1 Formation: linear potential approximation

Let us start by considering the classical formation of a bubble in a star where the critical
density is reached. In order not to unnecessarily complicate the discussion, let us assume that
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Bubble escape

Figure 2: Quasi-static evolution of the in-density potential and scalar field profile,
from no star to, as the star grows, the formation of the proto-bubble, complete for-
mation of the bubble, and eventual bubble escape.
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the in-density potential can be well approximated by the rolling term only, i.e. that due to the
suppression of Λ4

B
(n) = Λ4

B
(1− ζ(n)) we can neglect the barrier term,

V (φ, n> nc)' −µ2 f φ , (20)

where recall that in Eq. (14) we have identified µ2 ∼ Λ4
R
/ f 2 as the scale that characterizes the

scalar profile. An exact solution to the scalar EOM with a linear potential is

φ(r) =
µ2 f

6
(R2

T
− r2) +φ− , r ¶ RT , (proto-bubble) (21)

with boundary conditions φ′(0) = 0 and φ(RT) = φ−. We then simply take φ(r ¾ RT) = φ−.
We find that the proto-bubble is of size R = RT and the field displacement at its center,
∆φ(0)≡ φ(0)−φ−, is given by

∆φ(0)
f

=
(µRT)2

6
. (22)

This situation is explicitly depicted in the second panel of Fig. 2. Eq. (21) constitutes a good a
priori description of the scalar profile as long as the system is small enough that the in-density
minimum, (φ+)n, is not reached, i.e.

∆φ(0)
(φ+)n −φ−

® 1 . (23)

We recall that in general (φ+)n > φ+, see the discussion around Eq. (7).
It is important to point out here that the quasi-static description of the proto-bubble can

break down as soon as φ(0) ∼ φ+, as we discuss in Sec. 4.2. In this regard, Eq. (22) implies
that any system, independently of its density profile or maximum density at its core, must have
a minimum size in order for φ(0)¦ φ+, given by

RT ¦ µ−1 , (24)

where we have neglected O(1) factors.
The solution Eq. (21) can be extended to the situation in which the in-density minimum

is reached somewhere inside the star, at r = Ri < RT. In that region the potential exhibits a
minimum, and consequently the scalar field remains pinned at (φ+)n. This is depicted in the
third panel of Fig. 2, where we have chosen a core density such that (φ+)n is only slightly
larger than φ+. The scalar profile is well approximated by

φ(r) =











(φ+)n r < Ri

−µ
2 f
6 (r − Ri)2 + (φ+)n Ri < r < RT

φ− r > RT

, (bubble) (25)

where in the intermediate region, r ∈ [Ri , RT], we have used the solution of the EOM with the
linear potential Eq. (20), shifted it by r → r − Ri , and required φ′(Ri) = 0, φ(Ri) = (φ+)n;
further matching to φ(RT) = φ− fixes the value of Ri , or equivalently the width of the bubble
wall

x ≡
RT − Ri

RT

'
p

6
µRT

√

√(φ+)n −φ−
f

. (26)

Of course, in order for Ri > 0, RT needs to be large enough as to allow the field to reach the
minimum at finite density. In other words, the requirement that x < 1 implies

RT ¦
p

6
µ

√

√(φ+)n −φ−
f

. (27)
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Figure 3: Scalar profile for µRT ¦ 1 on top of contours of the scalar potential.

A scalar field profile for which this condition is satisfied is shown in Fig. 3, for a choice of
central density not much larger than the critical density.

For an increasingly larger system, yet with with a core density fixed such that (φ+)n remains
constant, the bubble wall becomes thinner, i.e. x � 1 when µRT � 1. In this thin-wall limit,
the energy of the bubble, Eq. (17), can be approximated by a volume and a surface term [1],

E(R)' −
4π
3

R3 ε+ 4πR2σ , (28)

where ε is the (potential) energy difference between the in-density and in-vacuo field values,
while σ is the bubble-wall tension. For our simple scalar profile these read

ε= µ2 f ((φ+)n −φ−)¦ Λ4
R

, (29)

σ = 4
3

Ç

2
3((φ+)n −φ−)

p
ε¦ Λ2

R
f . (30)

In Eq. (28) we have traded RT with R, since we are assuming that during the formation of
the bubble its wall sits at R ' RT; in Sec. 4.2 we discuss under which circumstances such
an equilibrium is lost, i.e. R > RT. Also, we have implicitly assumed that (φ+)n is constant
below Ri , i.e. that the density does not significantly change for r < Ri . Both the inequalities in
Eqs. (29), (30) follow from (φ+)n > φ+, after neglecting O(1) factors. These correspond to the
minimum values of the potential energy and tension of a fully formed bubble. As expected, we
find ε¦ |∆V (φ+, n)|= −∆Λ, where recall that ∆Λ is the energy difference between the false
and true ground states, Eq. (8). In addition, let us point out that the condition Eq. (27) can
be understood from energy considerations, as the requirement that the (mean) field gradient
is small enough, 1

2〈φ
′2〉 ∼ ((φ+)n −φ−)2/R2

T
® ε. In this regard, note also that the tension is

dominated by the field displacement, σ ∼ ((φ+)n −φ−)2/(xRT) [37].
In App. A we reproduce the above scalings with a simpler linear profile approximation,

where we do not need to assume that the potential is well described by a linear slope only.
In particular, we can keep the subdominant barrier term and we find that, while leaving ε
unchanged, it gives a corrections to the tension of the bubble wall that scales as

∆σ

σ
∼
Λ4

B
(n)

Λ4
R

'
1− ζ(n)
1− ζc

. (31)
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This becomes negligible when ζ → 1, that is also when (φ+)n � φ+, see Eq. (7). On the
other hand, when the density is not much above critical, the correction is parametrically O(1).
Nevertheless, the most important effect of the potential barriers arises when we consider a
bubble whose wall is beyond the transition radius, i.e. R> RT, as we discuss in the following.

4.2 Dynamics: escape vs equilibrium

In the previous discussion we worked under the assumption of a nearly-static bubble, which
slowly grows with time only due to the increase in size of the star (or more accurately, due to
the increase in size of the transition radius RT where the critical density is reached). Here we
show that in fact this adiabatic description can break down as soon as the star is (dense and)
large enough that the field displacement inside it reaches the position of the true minimum in
vacuum.

There are several ways to understand the origin of this instability. Qualitatively, for the
potentials we are considering, finite density effects allow for the local minimum in vacuum to
be continuously (i.e. classically) connected to the true minimum. This is because the in-vacuo
potential barrier between them disappears in some region of the star (r < RT), see the right
panel of Fig. 4. Once this region is large enough such that ∆φ(0) ¦ φ+ −φ− ≈ 2 f , it may
become energetically favourable for the tail of the field profile, which extends outside the star,
to be pushed over the potential barrier. This effectively leads to a first-order phase transition
in the form of a bubble escaping the star. This is in contrast with other types of potentials with
metastable minima, such as that shown in the left panel of Fig. 4, where even at finite density
there is always a potential barrier between the two minima. This class of potentials does not
allow for a classical path connecting them, and therefore leads to a smooth cross-over to a
different in-density minimum.6

Let us note that the discussion is focussed on field displacements that are at least of the
order of the field separation between the local and true minimum in vacuum. This is because,
at least qualitatively, a bubble with (φ+)n ∼ φ+ captures all the non-trivial dynamics of the
phase transition. In the following we focus on such a case, which corresponds to maximal den-
sities of the order of the critical density. A discussion of the bubble dynamics for (φ+)n� φ+,
is deferred to App. D.

In order to quantitatively understand the dynamics of induced first-order phase transitions,
we resort to the description of the scalar bubble wall as a particle in d = 1 + 1 dimensions.
While this is a standard treatment when studying the dynamics of bubbles in vacuum or at
finite temperature (see e.g. [38]), here we adapt it to the finite density environment, crucially
including a position-dependent tension, σ(R). The Lagrangian for the time-dependent bubble-
wall position R(t) is given by

L= −M(R)/γ−V(R) , (32)

where γ = 1/
p

1− Ṙ2. In the thin-wall approximation, x � 1, where the particle description
best applies, we have

M(R) = 4π

∫ R

R(1−x)
dr r2

�

1
2
φ′2 +∆V (φ, n(r))

�

≡ 4πR2σ(R) , (33)

V(R) = −4π
3

R3∆Λ≡ −
4π
3

R3ε . (34)

Several comment are in order regarding the bubble mass and potential at finite density. First,
the bubble’s energy given in Eq. (28) is precisely the Hamiltonian associated with Eq. (32) in

6Even with non-vanishing barriers, finite density effects could lead to a significant increase in the tunneling
probability to the true minimum, thus seeding a quantum first-order phase transition. We discuss this possibility in
Sec. 4.4 since it is of relevance as well for our potential whenever densities remain below critical, i.e. n(r)< nc ∀r.
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Figure 4: Crossover (left) versus first order phase transition (right) induced by a
dense system (spherically symmetric and of finite size). For both cases the potential
is shown as a function of radius, with r/RS = 0 the center of the star. The black solid
lines illustrate the scalar profile starting from a given in-vacuo (r/RS > 1) minimum
and following it inside the star. For a first-order phase transition, the black line stops
where this minimum ceases to exist. The dashed line then illustrates the field profile
that connects to the minimum within the star. The profile unavoidably passes through
regions where dV/dφ 6= 0, implying there are effective forces acting on the field.
These forces give rise to the possibility that the initial scalar profile (black) classically
changes to a new minimum in vacuum (blue).

the static limit Ṙ= 0. Second, from the integral expression of M(R), it is clear that in the thin-
wall limit the bubble wall is only sensitive to the density at r = R. Therefore, as the bubble
moves through the star, its tension changes due to the changing density.7 Since the bubble is
born with R' RT, from Eq. (30) with (φ+)n ∼ φ+ we have

σ(R' RT)∼ Λ2
R

f . (35)

Recall that for the bubble to have been fully formed, RT needs to satisfy Eq. (27), which for
(φ+)n ∼ φ+ reads RT ¦ µ−1. Finally, V(R) is controlled by the potential energy difference
between the two sides of the bubble wall, which from Eq. (29) with (φ+)n ∼ φ+ is given by

ε∼ Λ4
R

. (36)

The equation motion of the bubble wall reads

σR̈γ3 = ε− γ
�

2σ
R
+σ′

�

, σ′ =
dσ
dR

. (37)

Since we are mainly interest in the dynamics of the bubble right after its formation, we con-
centrate on the non-relativistic limit, i.e. we set γ = 1. The right hand side of Eq. (37) is the
sum of forces (pressures) acting on the bubble wall. The potential energy difference between
the two sides of the wall pushes it outwards. The second and third terms are associated with
the tension of the wall, both pushing it inwards. In particular, the change in tension σ′ is pos-
itive, since densities decrease with R and in turn the potential barriers, controlled by Λ4

B
(n),

reappear and increase towards its vacuum value outside the star.

7We are implicitly assuming that the width of the wall is the smallest scale in the system. If this were not the
case, we would expect finite-size effects in the form of e.g. deformations of the bubble. However, these would
lead to at most O(1) corrections to our already approximate analytical results, leaving our qualitative conclusions
unchanged.
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Figure 5: Sketch of the relevant regions of star for what concerns the bubble-wall
tension. Dashed and dotted lines do not necessarily represent the functional form of
σ(R). In the green region the tension is dominated by the field displacement, while in
the red region the barriers come to dominate. Note that for ζc = δ2� 1 (i.e. shallow
minimum), there is in fact no red region.

In order to understand the behaviour of σ(R), let us first recall that when the bubble is
just formed, the tension is dominated by the field displacement, see Eq. (30). This implies
that only the contribution to the tension from the barrier, estimated in Eq. (31), leads to an
increasing tension with R. For bubbles connecting shallow minima, δ2 � 1, this increase is
small between RT and RS,

σ(RS)−σ(RT)∼ f Λ2
R
δ2 . (shallow) (38)

In contrast, for deep minima, δ2 ≈ 1, the tension goes from being displacement-dominated at
R ' RT, to barrier-dominated towards the end as well as outside of the star R ' RS. There we
can use the standard thin-wall approximation to compute the tension [1],

σ(r ' RS)'
∫ f

− f
dφ
Æ

2V (φ)'
2
3
Λ2

B
f , (deep) (39)

and σ(RS) − σ(RT) ' σ(RS). In addition, let us note that the bubble gets thinner when the
barrier term dominates the tension. The bubble wall tension, as a function of its location, is
schematically summarized in Fig. 5 for both the shallow and deep minimum cases.

Before moving to the detailed discussion of how the changing tension affects the dynamics
of the bubble wall, let us note that in Eq. (37) we have ignored the effect of the gravitational
force of the star on the bubble wall. In App. B we discuss such a force, showing that while for
neutron stars it could be quantitatively relevant at some stage during the expansion, it does
not qualitatively change the picture presented here.

Having established the behaviour of the tension from RT to RS, let us understand the dy-
namics of the bubble wall. Right after the formation of a thin-wall bubble at R ' RT ¦ µ−1,
the particle description Eq. (37) applies. One then automatically finds R̈ > 0 right before the
transition region, since we can simply assume that σ′ vanishes for R< RT, that is σ′(R−

T
) = 0.

The acceleration would remain positive in the limit that the force due to the change in tension
vanished for any R, σ′ → 0; in this limit the bubble would expand indefinitely, in particular
beyond the star. In the opposite limit, in which σ′ is very large just past the edge of the tran-
sition region, that is σ′(R+

T
)→∞, the wall could not expand and therefore it would remain

at an equilibrium radius R = Req = RT (and the bubble would only grows if RT kept increas-
ing). Clearly, a realistic situation lies in between these two limits, and it depends on how fast
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the density profile and thus the tension changes from RT to the end of the star. This discus-
sion gives us a qualitative understanding of why the bubble might generically be found in an
equilibrium position at RS > R > RT. In a similar fashion, we can understand under which
conditions the bubble escapes from the star. In the limit that the star has grown so large that
the transition region starts at a radius much larger than the one needed to form the bubble,
i.e. RT� µ−1, we have ε� 2σ(RT)/RT. Then, it follows from the equation of motion that the
bubble wall would continue to accelerate for R> RT as long as ε > σ′. In the opposite limit, in
which RT ' µ−1, we have ε→ 2σ(RT)/RT and the additional force due to σ′ would be enough
to forbid its expansion. These different limits lead us to the conclusion that for a sufficiently
large star, satisfying RT ¦ σ(RT)/[ε−σ′(RT)], the system is unstable and the bubble escapes if

ε¦ κσ′max , (40)

where σ′max is the maximum value of σ′ and κ= O(1). This condition is explicitly verified by
our numerical simulations as well as in App. C, where we investigate Eq. (37) in the simplest
case of a constant σ′, finding κ= 3. Once again, (a version of) this condition can be expected
to hold in general, on the basis that the standard force due to the surface tension becomes
irrelevant at large R, leaving the variation of the tension as the only relevant force to determine
if the bubble does or does not escape from the star.

4.3 Summary: formation and escape conditions

Given that the change in the wall tension is very different for a bubble connecting shallow or
deep minima in vacuum, let us explicitly summarize for each case the conditions under which
the bubble forms and escapes from the star.

For a shallow bubble, δ2� 1, we find as formation and escape conditions, respectively

RT ¦
f
Λ2

R

and ∆RT ¦
f
Λ2

R

δ2 , (shallow) (41)

up to irrelevant O(1) factors. Note that since σ′ is suppressed by δ2, as shown in Eq. (38), the
escape condition is easier to satisfy than the condition for formation. This is unless, contrary to
the expectation from generic density profiles, ∆RT is anomalously small. In terms of the mass
of the scalar in vacuum, Eq. (3), these two conditions read as mφRT ¦

p
δ and mφ∆RT ¦ δ5/2.

For a bubble connecting deep minima, δ2 ≈ 1, the rate of change of the tension is deter-
mined by the tension in vacuum, σ′ ∼ σ(RS)/∆RT, as shown in Eq. (39). Therefore, we find
the following conditions for the formation and escape of a deep bubble, respectively

RT ¦
f
Λ2

R

and ∆RT ¦
f
Λ2

R

1
p

1−δ2
, (deep) (42)

up to O(1) factors. As expected, it is generically much more difficult for a bubble connect-
ing deep minima to transverse the transition region and expand beyond the star. Besides,
while the condition for formation is formally the same as for shallow minima, let us recall
that ζc = δ2 ≈ 1 generically implies that much larger densities are needed in this case. In
terms of the mass of the scalar in vacuum, Eq. (3), the two conditions in Eq. (42) read as
mφRT ¦ 1/

p
1−δ2 and mφ∆RT ¦ 1/(1−δ2).

4.4 Classical vs quantum

To conclude this section, we wish to investigate the possibility that, even when the system is
not dense enough as to allow for a classical transition between the local and true minimum,
finite density could still lead to a much shorter quantum-mechanical lifetime of the metastable
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minimum compared to the one in vacuum. This is reminiscent of the idea that black holes
or compact objects can act as seeds for false vacuum decay, due to their strong gravitational
fields, see e.g. [39–43].

Indeed, up until this point we did not care about the lifetime of the false vacuum, implicitly
assuming that it was sufficiently large. The decay rate per unit volume is determined by the
bounce action, Γ/V = Ae−SB [1, 2]. In the case where the metastable minimum is deep, the
thin-wall approximation holds and the action is well approximated by SB ' (27/2)π2σ4/ε3,
which given the in-vacuo tension Eq. (39) and ε= −∆Λ' 2

3
p

3
Λ4

R
, results in

SB ' 27
p

3π2
�

f
ΛB

�4 1
(1−δ2)3

. (deep) (43)

Since δ2 ≈ 1 for a deep minimum, the bounce action is generically large and the decay rate
extremely suppressed. For a shallow minimum, we can estimate the action by considering
σ ∼∆φ2/∆R with ∆R∼∆φ/

p
ε, which leads to SB ∼ π2∆φ4/ε. We therefore find,8

SB ∼ 24π2
�

f
ΛB

�4

. (shallow) (44)

While for the same value of the ratio f /ΛB the bounce action is smaller in the shallow than
in the deep case, this is not the comparison we really care about. Instead, let us assume that
the local minimum is, for all practical purposes, stable in vacuum. This fact can dramatically
change in a dense system only in the case of a deep minimum (even before a classical transition
is allowed). This is clear since for a shallow minimum SB(n < nc) ' SB(0), while for a deep
one

SB(n< nc)
SB(0)

' [1− ζ(n)]2 , (deep) (45)

which is much smaller than one if ζ ≈ 1 (yet ζ < ζc = δ2). Certainly, the bounce action at
finite density can only be sufficiently small in absolute terms if ( f /ΛB)4 = 1/λ is small, which
drives us to the non-perturbative regime for the scalar quartic coupling λ. Nevertheless, this
issue could well be specific to the type of false vacua we are taking as case study, thus one could
imagine other scalar potentials where, being sensitive to finite density (either of SM degrees
of freedom or beyond, e.g. dark matter), their local minima have much smaller lifetimes in a
dense system. Additionally, let us note that the corresponding seeded nucleation of bubbles
of the true ground state would generically not take place during the formation of the star. On
the contrary, one would expect TB = 1/Γ � TS, while still being shorter than the the typical
lifetime of the star. This raises the possibility of a latent phase transition that could take place
at any time.

Finally, let us point out that in the computation of the bounce action at finite density, we
have assumed the system is large and homogeneous enough as for the effects of a non-trivial
density profile or a spatial boundary to be negligible. We can phrase this as the requirement
that R0 � RS, where R0 = 3σ/ε is the radius of the nucleated bubble. For a deep minimum,
this translates into mφRS� 1/(1−δ2), which coincides with the condition for the escape of a
deep, classically formed, bubble, see Eq. (42). It would be interesting to further study, beyond
these simple approximations, the process of quantum bubble nucleation in finite-size dense
systems [45,46].

8More refined estimates can be easily derived for potentials where the barrier is negligible, see e.g. [44]. Nev-
ertheless, our conclusions will not depend on such a refinement.
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5 Phenomenological implications

In this section we discuss the phenomenological consequences of the expansion, beyond the
dense object, of a bubble of the true vacuum. The main model-independent signature of such
a seeded phase transition is a change of the vacuum energy of the universe, Λ, or equiva-
lently a change of the cosmological dark energy density, ρΛ (with equation of state parameter
ω= −1).9

A particularly interesting trademark of these phase transitions is that they take place rel-
atively late in the history of the universe. As explained in the previous section, the bubble
forms, expands and eventually escapes along with the formation of the star. Therefore, if a
phase transition of this sort can happen, it took place at the onset of star formation. The first
stars were born around the epoch of galaxy formation, thus at redshifts z = zS ∼ 10 [47]. This
then implies that the universe underwent a change of ρΛ between recombination, z ∼ 103,
and the late universe, z ® 1. Note that we are assuming that at redshifts z ∼ 1 (associated
with late-time cosmological measurements) the universe already transitioned successfully to
the true ground state. The change in the dark energy content of the universe can thus best be
probed by comparing CMB measurements versus local measurements (SNe, baryon acoustic
oscillations or large-scale structure) of the expansion rate of the universe. Such a comparison
depends on the fate of the bubbles, for instance if the phase transition proceeds via a single
bubble or instead many bubbles are formed all over the universe (from as many stars) that
subsequently collide and transfer at least an O(1) fraction of the kinetic energy of their walls
into radiation. Providing a precise answer to this question is beyond the scope of this work.
Instead, below we work out simple cosmological constraints on how much the energy budget
of the universe can vary due to a late (z ∼ 10) phase transition, to confirm our intuition that
a change in the vacuum energy much larger than the current one is experimentally ruled out.

A too large change in vacuum energy leads to constraints on the parameters of the scalar
potential. To make this point clear, let us note that the change in vacuum energy is given by
∆Λ = −ε ∼ −Λ4

R
, and the rolling scale enters both the conditions for formation and escape

of a bubble of the true vacuum, see Eqs. (41), (42). Then, assuming the existence of stars
with densities above critical, n > nc , the condition for formation of a bubble with RT ∼ RS, as
expected for most stellar profiles, implies

−∆Λ¦
�

f
RS

�2

≈ Λ0 × 1015
�

f
10TeV

�2�10km
RS

�2

, (46)

where Λ0 ≈ (2.3meV)4 is the value of the vacuum energy inferred from ΛCDM, and we have
fixed RS to the typical radius of a neutron star as an example. If such type of bubbles could
have escaped from neutron stars, the corresponding change in the vacuum energy would be
in gross contradiction with experimental data. Note that a similar region of parameter space
is realized in e.g. relaxion models [10].

However, for much smaller values of f , or if we were to consider much larger astrophysical
bodies (the largest stars known have RS ∼ 103R�), astronomical structures, or even dense
objects beyond the SM (such as dark stars), the change in the dark energy density could be
much smaller. The corresponding nucleation of bubbles of the true vacuum and subsequent
phase transition could then be an experimentally viable and very interesting phenomenon,
which could be detected in the near future given the expected increase in precision of many
current and planned cosmological observatories.

Amusingly, if the phase transition proceeds via quantum tunneling, as we have argued
in Sec. 4.4, a recent creation of a true vacuum bubble could lead to other, more direct, ex-

9In the following we exclude the possibility of an adjustment mechanism for the cosmological constant. Such a
mechanism could interfere with the formation or escape of the bubble.
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perimental signatures: since the bubble interacts with SM matter, gravitationally at the very
least, the effects of a (non-percolated) bubble wall passing through Earth could potentially be
detected [48,49].

Let us finally point out that seeded phase transitions with ∆Λ ® Λ0 could impact our
understanding of the landscape solution to the cosmological constant problem. Originally
connected with the requirement for galaxies and stars to form [5], the cosmological constant
was predicted to lie within a range a couple of orders of magnitude larger than the value
actually observed as dark energy. In light of our late-time phase transitions, taking place
precisely because structures form, this discrepancy could well be an accident associated with
the sensitivity to finite density effects of a scalar potential with metastable minima (potentially
many of them as in [50]).

5.1 Cosmological constraints

While it is beyond the scope of this work to examine in detail the cosmological and astro-
physical constraints arising from a phase transition at the dawn of galaxy/star formation, let
us briefly comment on simple arguments why a large change in the energy content of the
universe is not experimentally viable.

From local measurements of the (accelerated) expansion of the universe, we know it
is dark energy dominated, and in particular ρr � ρΛ at z ® 1, where ρr is the energy
density in radiation. If we assume that, at redshifts zS ∼ 10, an O(1) fraction of the ki-
netic energy of the bubbles goes into radiation after they collide and percolate, then we find
ε=∆ρr(zS)� (1+ zS)4ρΛ0

≈ 104ρΛ0
, which is inconsistent with e.g. Eq. (46).

Still, it would be preferable to proceed with minimal assumptions regarding the fate of the
bubble. One relatively robust assumption is that today our Hubble patch is in the true vacuum,
while it was not prior to star formation, that is ρΛ(z > zS) 6= ρΛ0

. In this case, the most reliable
test is to contrast late versus early universe measurements, something that has been actively
pursued in recent years in light of the Hubble tension, the disparity between CMB and local
determinations of the Hubble constant (see [51, 52] for recent discussions). Of particular
relevance is the study in [53], where constraints on the size of an early dark energy content of
the universe at the time of recombination are derived. The bounds are given as a function of
the critical redshift zc where the dark energy starts to decay quickly, as 1/a6 (thus faster than
radiation). Such a behaviour decreases the impact of this non-standard energy component at
later times z < zc , which we take as a good approximation towards independence from the
fate of the bubble(s). Identifying zc = zS, the bound ρΛ(z > zS)¦ 102ρΛ0

is derived, two order
of magnitude stronger than the crude bound we derived before. Although we expect that a
proper analysis of the fate of the bubbles and its impact on cosmological observables would
yield even stronger bounds, in this work we will take

−∆Λ® 102 ×Λ0 (47)

to set constraints on the parameters of the scalar potential Eq. (1).
For the bound Eq. (47) to apply, the conditions for a bubble of the true ground state to

form and escape from the dense system must be satisfied. Let us recall that the first of these
conditions is that densities need to be above the critical density, i.e. n> nc , or more specifically

ζ(n)> 1−
Λ4

R

Λ4
B

, (48)

see Eqs. (2), (6). Since in this work we do not focus on any specific scenario for the function
ζ(n),10 we simply assume that stars exist with n> nc , and note that denser stars are typically

10Constraints on relaxion models, where ζ(n) can be explicitly computed, will be presented in [19].
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Figure 6: Region excluded by a density induced vacuum instability (shaded red) in
the plane ( f /RS

p
1−δ2, Λ4

R
/Λ0), where RS is the typical radius of the (type of) star

triggering the phase transition, i.e. where densities above critical are realized, n> nc .
The dashed line corresponds to the bound Eq. (47).

smaller. The other conditions concern the formation and escape of the bubble, which are
different for a shallow metastable minimum than for a deep one, see Eq. (41) and Eq. (42),
respectively. These depend on either RT or∆RT = RS−RT, which in turn depend on the density
profile of the star. We will take RT ∼ ∆RT ∼ RS as a generic expectation for stars where the
core density is not very close to the critical one, as discussed in Sec. 3. Under this assumption,
the strongest of the formation and escape conditions, for both shallow and deep minima, can
be written as

Λ4
R
¦

f 2

R2
S

1
1−δ2

. (49)

We show the region of parameter space where this condition is satisfied in Fig. 6. Since a
phase transition seeded by stars takes place in this region, the bound Eq. (47) applies, ruling
out the corresponding part of it. Note that for a bubble connecting deep minima, Eq. (49) can
be rewritten as Λ4

R
¦ Λ2

B
f /RS.

6 Conclusions

Could a phase transition have taken place in the universe due to the formation of stars? In this
paper we explored this question by studying how false vacua change at finite density. Similar
to the interactions with a thermal bath, the coupling of a scalar field to background matter
can give rise to significant deformations of the scalar potential, to the point that a metastable
minimum present in vacuum disappears at finite density. This leads to the formation of a non-
trivial scalar profile, a.k.a. a scalar bubble, where the maximum field displacement within is
controlled by the size of the dense system relative to the characteristic scale of the in-density
potential; if the star gets large enough, a classical path to a deeper minimum of the potential
becomes accessible. Interestingly, we found that when this occurs, the bubble, originally con-
fined within the star, can become unstable and expand beyond the star and extend to infinity!
By means of simple analytic arguments, we have shown that the bubble cannot be contained
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within the star if the energy difference between the minima is large compared to how fast the
potential barrier between them reappears towards the surface of the star. In other words, we
have shown that if certain conditions regarding the properties of the metastable minimum and
of the density profile are satisfied, stars can indeed act as seeds for a phase transition in the
universe.

Our analysis of the fate of a false vacuum at finite density has been based on a tilted quartic
potential, as in the classic work by Coleman [1]. This potential is characterized by the energy
difference between the local and true minimum, the height of the potential barrier between
them, and their separation in field space. Such a simple potential encodes the main features
of local minima present in many scenarios beyond the SM. Specifically, our work can, and
will [19], be extended to the relaxion [10], a mechanism to explain the smallness of the elec-
troweak scale that relies on a closely-packed landscape of local minima, with barriers between
that depend on the value of Higgs field thus sensitive to SM matter densities. Other scenar-
ios connected to the electroweak hierarchy problem or simply relying on the Higgs-portal,
e.g. [11, 12, 23, 54, 55], should be investigated as well in light of our findings. In this regard,
let us note that while we have focussed on scenarios where density affects the size of the po-
tential barrier between minima, the analysis could be carried over to more general situations,
e.g. by considering other scales to be density-dependent. Additionally, while we focused for
concreteness on matter density, one should also consider other non-trivial backgrounds, such
as an electro-magnetic field, as sources for the instability of the false vacuum [19].

Phase transitions triggered by dense systems such as stars must confront the experimental
constraints that arise from the change in the energy of the vacuum at late cosmological times,
z ∼ 10, when star formation begins. Indeed, on the one hand the change in the ground state
energy between the local and true vacuum is the key parameter that determines if a scalar
bubble formed in a dense and large enough star is able to escape and propagate to infinity.
On the other hand, early versus late cosmological measurements of the dark content of the
universe constrain such a change. Nevertheless, we have shown that if the field distance
between the minima is small enough or if the stars that can trigger the phase transition are
very large, the phase transition could have taken place consistent with current cosmological
data. Detailed cosmological and astrophysical constraints on these types of transitions, beyond
the simple and likely too conservative bounds we have derived, deserves further investigation,
in particular because of the relevance of scalar potentials with (many) false vacua for the
electroweak hierarchy or the cosmological constant problems.

Finally, even though we focussed on classical transitions between minima, we have also
shown how stars could act as a catalyzer where the tunneling probability of a false vacuum can
be greatly enhanced. Although of a different, quantum-mechanical origin, once formed the
dynamics of the corresponding scalar bubble would be described along similar lines as those
presented here. The possibility of a seeded vacuum decay leaves us with another question: is
it likely that a phase transition in the universe due to the formation of stars is soon to take
place?
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A Linear field profile approximation

The parametric dependence of the results in Sec. 4.1 can be reproduced by considering a
simpler, linear approximation for the scalar profile (recall ∆φ(0)≡ φ(0)−φ−)

φ(r) =











φ(0) r < Ri

φ(0)− ∆φ(0)RT−Ri
(r − Ri) Ri < r < RT

φ− r > RT

, (bubble; linear) (50)

and treating both φ(0) and Ri as variational parameters determined by the minimization of
the energy of the bubble E(φ(0), Ri), i.e. Eq. (17) with R= RT. Expressing it in terms of∆φ(0)
and the width x = 1− Ri/RT, the energy is given by

E(∆φ(0), x) = −E0
∆φ(0)

f

�

1− 3
2 x + x2 − 1

4 x3 − 3
8
α∆φ(0)

f x

�

1− x + 1
3 x2

�

�

, (51)

where E0 =
4π
3 µ

2 f 2R3
T

and we have defined

α≡
4

(µRT)2
. (52)

During the formation of the system, RT is small and therefore α � 1. Minimization of the
energy with respect to both ∆φ(0) and x yields x = 1 and

∆φ(0)
f

=
1
α

. (53)

Therefore, we find a proto-bubble (Ri = 0) in which the field displacement at the origin is
∆φ(0)/ f ∼ (µRT)2, which is the result of an optimal balance between the gradient and poten-
tial energies. Parametrically, this matches the result in Eq. (22), albeit with a different numeri-
cal coefficient. As soon as the slowly-growing star is large enough that the in-density minimum
(φ+)n can be reached, which happens when α ¶ f /((φ+)n −φ−), it should be energetically
favorable for the profile to develop a core where the scalar value is fixed to φ(0) = (φ+)n.
Then, minimization of the energy with respect to x leads to

x =
1
2

√

√α((φ+)n −φ−)
f

+O(α) , (54)

This matches the result in Eq. (26), except for a numerical factor. Likewise, the energy of the
bubble in the thin-wall limit α� f /((φ+)n−φ−) is given by Eq. (28) where ε and σ scale as
in Eqs. (29), (30) respectively, ε= µ2 f ((φ+)n −φ−) and σ = ((φ+)n −φ−)

p
ε.

The linear profile Eq. (50) has the advantage that it is simple to estimate the importance
of departures from the approximation of a linear potential, Eq. (1), we have worked under in
the main text. In particular, we can compute the effects of including the barrier term in Eq. (1)
at finite density, i.e. with ΛB → ΛB(n). While ε remains unchanged in the thin-wall limit, the
tension receives a correction

∆σ

σ
=
p

3
10

Λ4
B
(n)

Λ4
R

, (55)

where we have assumed that the bubble is thin enough as to probe a fixed density.
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B Gravitational force

In the equation of motion of the bubble, Eq. (37), we have neglected the gravitational force
that the star exerts on the wall. While this does not change the conclusions we derived in the
main text, it can lead to O(1) numerical changes of the bubble’s escape condition, at least for
the densest stars, i.e. neutron stars.

In the non-relativistic and weak-field limits, the gravitational force of the star on the bubble
wall per unit area (i.e. the pressure), is given by

FG(R) = −
1

8πM2
P

m(R)σ
R2

, (56)

where m(R) is the enclosed mass of the star andσ the wall tension. Using a simple estimate for
the neutron star number density n ∼ m3

n and radius RNS ∼
p

8πMP/m
2
n, obtained by equating

(Fermi-degeneracy) kinetic and gravitational energy densities and where mn is the neutron
mass, we find m(R)∼ 8πM2

P
R3/R2

NS
. Therefore, for a neutron star

NS : FG(R)∼
σR
R2

NS

, (57)

while for less dense stars the gravitational force is much smaller, i.e. for white dwarfs it is
suppressed by me/mp. This additional force leads to a modification of the bubble wall equation
of motion, in the non-relativistic limit (weak-field) and for R¶ RNS

σR̈' ε−
2σ
R

�

1+
R2

2R2
NS

�

−σ′ , (58)

which is subleading to the tension force except for R∼ RNS. Likewise, once if the bubble leaves
the star, the enclosed mass is the total mass of star and therefore for R¾ RNS

σR̈' ε−
2σ
R

�

1+
RNS

2R

�

, (59)

which once again introduces an O(1) change only when R∼ RNS.

C Linear tension approximation

The simplest modelling of σ(R), that is a constant σ′, allows us to analytically derive the
condition Eq. (40). Let us then consider a linear increase of the tension with R, starting at RT

and ending at RS = RT +∆RT, thus with σ′ = [σ(RS)−σ(RT)]/∆RT constant. The equilibrium
position of the bubble wall is determined by R̈(R= Req) = 0, and reads

Req =
2[σ′RT −σ(RT)]

3σ′ − ε
, RT > σ(RT)/σ

′ and 3σ′ > ε , (60)

where the inequalities ensure that this is indeed an equilibrium position, i.e. with E′′(Req)> 0,
where E(R) is the energy of the bubble (note that R̈∝−E′). For consistency, we should also
require Req ¾ RT, since that means that the bubble can in fact enter the transition region,
where σ′ 6= 0. This happens only if the star has grown large enough

RT >
2σ(RT)
ε−σ′

. (entry transition region) (61)
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This condition is equivalent to the requirement R̈(RT)≮ 0,11 and it only makes sense for ε > σ′.
If the condition Eq. (61) is not satisfied, it just means that Req = RT and the bubble is trapped
inside the star. In addition, note that whenever the bubble is able to enter the transition region
but the conditions in Eq. (60) are not satisfied, then the bubble automatically escapes the star,
since there is no stable radius R> RT for which R̈= 0 and E′′ > 0. If instead the conditions in
Eqs. (60), (61) are satisfied, then there is indeed an equilibrium position at Req > RT, which
increases as the star gets larger. This last fact generically leads to a smaller force from the term
2σ/R in Eq. (37). Eventually, the equilibrium condition is lost when the position of the wall
reaches the outer edge of the star, i.e. Req ¾ RS. This takes place when

RT >
3σ(RS)−σ(RT)− ε∆RT

ε−σ′
. (exit transition region) (62)

With the linear approximation for σ(R) we then conclude that, as long as the volume energy
of the bubble is larger than the rate of change of the tension, there is a minimum transition
radius such that the bubble can permeate through the transition region, Eq. (61), and another
for which the bubble can reach the surface of the star, Eq. (62). From that point outwards the
bubble expands throughout the whole universe, since R̈(R> RS)> 0. Moreover, we also learn
that if ε > 3σ′, the only equilibrium position is Req = RT, and this is lost as soon as the star is
large enough as to satisfy Eq. (61). Importantly, let us note that when ε > 3σ′, Eq. (61) is in
fact approximately the same as the condition for the formation of the bubble, Eq. (53), thus
in this case the formation and escape of the bubble take place simultaneously.

D Ultra-high densities

In Sec. 4.2 we centered our discussion of the bubble dynamics on the case where densities in
the core of the star, while above critical, are not much larger than nc . This is because a fully
formed bubble for which the field at its center is (φ+)n ∼ φ+ already allows for the possibility
of a classical phase transition to the true vacuum.

In this appendix we extend our analysis to the case of ultra-high densities, by which we
mean ζ → 1. In this situation, the only minimum of the in-medium potential is found at
(φ+)n� φ+, see Eq. (7). As we explain in the following, we find that the escape of a bubble
of the true vacuum can take place regardless of the scalar inside the star reaching the in-density
minimum of the potential, i.e. φ(0)< (φ+)n, but it is enough that the field displacement is at
least∆φ(0)¦ φ+−φ−. As a matter of fact, if the star is large enough as to allow φ(0)� φ+,
the correspondingly large field displacement inside the (proto)-bubble makes it easier for a
bubble to escape from the star.

The key point is that, for what concerns the possibility of a bubble of the true vacuum
escaping from the star, one only needs to focus on a “sub-bubble” with a field displacement
∆φsub = φ+ −φ− ≈ 2 f . The energy density of such a sub-bubble is simply εsub ∼ Λ4

R
, while

its tension scales as
σsub(RT)∼

Æ

∆φ(0) f Λ2
R

. (63)

The latter is enhanced by a factor (∆φ(0)/∆φsub)1/2 with respect to the naive expectation,
due to the higher potential energy difference of the large (proto-)bubble that contains the
sub-bubble, |〈∆V 〉| ∼ ∆φ(0)Λ4

R
/ f . This simple estimate holds as well if we assume that the

in-density minimum is reached, i.e. φ(0) = (φ+)n.
Such an enhancement of the tension facilitates the escape of the sub-bubble, since it de-

creases the contracting force associated with σ′ in Eq. (37). In particular, we now have

11This requirement does not depend on σ′ being constant, and the condition on RT in Eq. (61) holds in general
with σ′→ σ′(RT), under our approximation that σ′ turns on at RT.
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σ′sub ∼ [σ(RS)−σsub(RT)]/∆RT, which is smaller than when φ(0)∼ φ+, see Eqs. (38), (39); in
fact it could even be negative. Notice that instead the force associated with the surface tension
of the wall at the transition radius, 2σsub(RT)/RT, remains constant, since RT ∼

p

∆φ(0)/ f µ−1.
Therefore, the net result is that it is much easier for the escape condition Eq. (40) to be satis-
fied. The larger (proto-)bubble supporting the sub-bubble helps the latter permeate through
the entire star. The proper condition that determines if the sub-bubble of true vacuum expands
throughout the whole universe is then

RS ¦
2σ(RS)
ε

. (64)

We have explicitly verified this result via our numerical simulations. For a bubble connecting
shallow minima, δ2� 1, this condition translates into

RS ¦
f
Λ2

R

, (sub-bubble; shallow) (65)

a requirement that is automatically satisfied given that RS > RT. For a bubble connecting deep
minima, δ2 ≈ 1, we find instead

RS ¦
f
Λ2

R

1
p

1−δ2
. (sub-bubble; deep) (66)

This is similar to the escape condition for a deep bubble, Eq. (42), yet on RS instead of ∆RT.

E Sudden approximation

We have been assuming that the bubble, during either its formation or expansion through the
star, is always found in a nearly-static (Ṙ = 0) equilibrium position, with its radius evolving
slowly only because RT = RT( t̄) does, as the star is being formed. Only at the point where
equilibrium is lost, R̈ > 0 and the bubble is free to gain kinetic energy. This was justified in
Sec. 3 on the basis that the characteristic reaction time of the scalar field, µ−1, is much shorter
than the evolution time of the star TS. In this section we wish to comment on the opposite
situation, where µTS� 1.

In this limit, the star is formed instantaneously, with a large region r < RT where the in-
density potential allows for the scalar field to start classically rolling. If such a region was of
infinite extent, i.e. if the system was spatially homogeneous, the field would roll, accelerate,
and finally oscillate around the true minimum. However, in a finite-size system, one needs to
crucially take into account the contribution of the spatial gradient to the energy of the field
configuration. Indeed, φ moves in an effective potential V (φ) + 1

2φ
′2 that becomes large

towards the transition region, where the field must return to its vacuum value φ−. Therefore,
the sudden formation of the star and the corresponding gain of kinetic energy 1

2 φ̇
2 does not

automatically imply that a first order phase transition will proceed via the escape of a scalar
bubble from the dense system. As a matter of in fact, the situation is not much different that
in the quasi-static case, as we now explain.

Concerning the formation of the bubble, the main difference with respect to our discussion
in Sec. 4.1 can be phrased in terms of the maximal value that ∆φ(0) = φ(0)−φ−, the field
displacement at the center of the star, can take. Indeed, because of the kinetic energy the field
acquires by rolling down the in-medium potential, ∆φ(0) will generically be larger than what
found in Eq. (22) for the same RT, yet oscillating in time. Accordingly, the whole scalar profile
will necessarily oscillate in time as well. Then, if the size of star, specifically RT, is still not
large enough for φ(0) to reach φ+, the field value corresponding to the true minimum of the
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scalar potential in vacuum, then such an oscillating scalar profile remains trapped within the
star, in a sort of oscillon that, even after eventually losing its kinetic energy,12 remains as a
confined static bubble (see e.g. [56] for a recent discussion of such type of field configurations
in vacuum).

Otherwise, if ∆φ(0) ¦ 2 f , then whether the scalar bubble remains confined to the dense
region or escapes to infinity follows from the same analysis as in Sec. 4.2, yet with the prop-
erties of the bubble, i.e. the potential energy difference between the two sides of the bubble
wall and the tension, now oscillating in time.

We stress again that the main difference between the quasi-static and sudden scenarios
concerns the value of RT for which a given field displacement is attained. Another way to
interpret this fact is to compare, for the same value of RT, the dynamics of the bubble wall
between the two scenarios. Because of the larger field displacement in the sudden case, the
maximum values of ε(t) and σ(R, t) will both be larger, while σ′(R, t) will be smaller, than
in the quasi-static case. This situation resembles the quasi-static evolution of a bubble in the
limit that n � nc , discussed in App. D. Therefore, we could similarly conclude that in the
sudden approximation and for RT� µ−1, the condition that determines if the bubble expands
indefinitely is

RS ¦
2σ(RS)
ε

. (67)
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