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Abstract

In this work, we provide an analytical proof of the robustness of a form of topological entan-
glement under a model of random local perturbations. We define the notion of topological
purity and show that, in the context of quantum double models, this quantity does detect
topological order and is robust under the action of a random shallow quantum circuit.
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Introduction

Topological order[1] is a novel kind of quantum order that goes beyond the paradigm of symmetry
breaking. Its role is prominent in condensed matter theory as well as in quantum computation.
In particular, topological order can be employed to construct various models for robust quantum
memory and logic gates[2, 3]. Topologically ordered states show patterns of non local quantum
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entanglement that cannot be detected by a local order parameter. However, the long-range quantum
entanglement leaves its mark in the reduced density matrix, and a series of papers have shown that
topological order can be detected by the topological entropy[4–6]: a topological correction to the
area law for the entanglement entropy. In particular, topological entanglement entropy has been
employed to characterize the ground state of different models[7–17].

The presence of topological entanglement entropy is not identical with topological order: there
are in fact spurious examples of topologically trivial states that nonetheless exhibit a non-zero
topological entropy[18–21]. However, topological entanglement entropy is at least a very impor-
tant probe of topological order. One important question is: if a topologically ordered state with
non-zero topological entropy belongs to a gapped phase, is the topological entanglement entropy
robust within that phase? In other words, if one perturbs the Hamiltonian whose ground state
possesses topological order without closing a gap, will the topological entanglement entropy stay
constant, or, at least, nonzero? There are rigorous proofs of the robustness of a quantum phase
(i.e. the gap is not closing) that contain a topologically ordered state[22], but would that mean that
the topological character of that state is preserved throughout the state, as revealed, for instance,
by the topological entanglement entropy?

For specific forms of the perturbation, one can prove that the topological entanglement en-
tropy is robust, see, [23] and [24]. From the numerical point of view, several results have shown
such robustness under local perturbations of the Hamiltonian [25–29]. Other works have shown
the robustness of topological entanglement entropy under small deformation of partition geom-
etry. Quantum field theory arguments[5] suggest that topological entanglement entropy should
always be robust within a phase, but an analytical proof for its robustness in lattice models is still
lacking[30–32]. A remarkable result[33] exploits conditional independence of quantum states to
prove robustness of topological entanglement entropy in 2D gapped system at the first order in
perturbation theory; although the proof works fairly good for quantum double models, it is also
limited to specific details of the perturbation.

In this work, we provide an analytic proof of the robustness of topological order under a
noise model consisting of shallow circuit with random local unitaries. To this end, we construct a
notion of topological subsystem purity that captures the same long-range pattern of entanglement
of topological entanglement entropy, and we show that such topological purity is constant if the
circuit is shallow compared to some relevant size of the subsystem.

We work in the framework of quantum double models on the cyclic group Zd introduced by
Kitaev in [2], and define the topological purity (TP), which is related to the topological 2−Rényi
entropy defined in [34]. There are many reasons to use purity instead of entanglement entropy
in order to argue about questions about quantum many-body systems. Unlike the Von Neu-
mann entanglement entropy (whose measurement requires a complete state tomography of the
system[35]), the 2−Rényi entropy is directly related to the purity which is an observable and
can be measured directly[36–39] as it is the expectation value of the swap operator over two
copies of the system[40]. This quantity contains substantial information about the universal
properties of quantum many-body systems[41] and it is able to reveal the topological pattern of
entanglement[23, 34]. This property makes purity also amenable analytical treatment[42–47].

To prove the robustness of topological order by the topological purity we introduce, as a noise
model, a set of quantum maps whose action on a state is based on local random (shallow) quantum
circuits. We find that the topological purity distinguishes two phases of states, attaining two differ-
ent constant values. When the circuit depth is comparable with the subsystem size, the long-range
pattern of entanglement that is responsible for topological order can be changed and the topolog-
ical purity can change value. The phase is then indeed the orbit of the so defined set of quantum
maps through a reference state. The proof is obtained thanks to two key non trivial facts: (i) the
subsystem purity (i.e. the purity of the reduced density matrix in a subsystem) of the ground state
of Zd quantum double models only depends on the geometry of the subsystem boundary, while
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the topological purity only depends on the subsystem topology, and (ii) the action of the specific
noise model we work with can be regarded as the evolution of that boundary. Since the maps are
shallow, their action will result in a local deformation of the subsystem boundary that does not
alter their topology, and, by (i), this will result in an exactly constant topological purity. Similarly,
we show that the topological purity of a topologically trivial state is zero and that it cannot be
changed by our noise model.

The main idea of this work is the following. One defines subsystemsA,B,C such that the pair
(AB,BC) is in some sense topologically equivalent to the pair (B,ABC). In a similar fashion
as the topological entropy, the ratio of the purities

Ptop(σ) :=
PAB(σ)PBC(σ)

PB(σ)PABC(σ)

is non trivial (< 1) in a topologically ordered states σ and detects the topological pattern of en-
tanglement in such states. Then we consider a random quantum circuit Uk =

∏k
i=1 UX̃i with k

gates acting on the qubits of the system. Every gate UX̃i acts on the qubits in X̃i. Now, after the
action of Uk the pure state of the system is mapped as σ → σk into another pure state. For every
subsystem Λ, its purity will be PΛ(σk). By (. . .)

k
denote the average over the unitaries composing

the circuit Uk. One can then define the quantity

P̃ =
PAB(σk)

k
PBC(σk)

k

PB(σk)
k
PABC(σk)

k
(1)

We will show that the above products (and ratios) of the average purities after randomizing over
the unitaries in the circuit still show exactly the same topological pattern of entanglement, as long
as the number k of gates in the circuits is smaller than the relevant sizes of the system, namely
the smallest of the length scales involved in the definition of the subsystems A,B,C. In order to
make the proof, we show that the quantity P̃ can be seen as a functional on pairs of states. We will
show that under the action of a unitary noise model based on shallow quantum circuits, the pattern
of topological entanglement is preserved.

The paper is organized as follows: in Sec.1 we review Zd quantum double models; in Sec.2
we introduce the notion of topological purity and discuss how it is connected with other measures
of topological entropy; in Sec.3.1 we introduce the noise model and finally Secs.3.2 and 3.4, will
be devoted to the rigorous proof of our result and will be rather technical.

1 Quantum Double models on Zd

Quantum double models are exactly solvable models defined on a lattice[2]. Consider the cyclic
finite group Zd with |Zd| = d and local Hilbert spaces Hi ' Cd and the total Hilbert space given
by the tensor product of N local Hilbert spaces, namely H =

⊗N
i=1Hi placed at the bonds of a

square lattice (V,E), see Fig.1. The dimension of the total Hilbert space is thusD = dN . Without
loss of generality for what concerns the calculation of topological entanglement entropy [48], we
consider quantum double models on a torus. Let B ≡ {|n〉 |n = 0, . . . , d− 1} be an orthonormal
basis in Hi ' Cd. For each local Hilbert space Hi we introduce the operators L̃, T̃ (j) defined
through their action on the ket |n〉:

L̃m |n〉 = |n+m〉 , T̃ (m) |n〉 = δmn |n〉 (2)

where L̃m := L̃L̃ · · · L̃ m times and the addition is modulo d. Consider the enlarged operators
Li := L̃i ⊗ 1lH\i and T (m)

i := T̃
(m)
i ⊗ 1lH\i acting non trivially only on the site i ∈ V . Define the
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Figure 1: A system of spins on square lattice, plaquette and star are denoted respectively by p and
v.

following operators acting non trivially on the subset v ⊂ V , sketched in Fig.1:

Am(v) =
∏
i∈v

Lmi , B(p) =
∑

m1,m2,m3,m4
m1+m2+m3+m4=0, mod d

T
(m1)
i1

T
(m2)
i2

T
(m3)
i3

T
(m4)
i4

(3)

note that B(p)(plaquette operator) and A(v) = d−1
∑d−1

m=0Am(v)(star operator) are projectors.
At this point, the Hamiltonian of the quantum double model reads:

HQD =
∑
v

(1l−A(v)) +
∑
p

(1l−B(p)) (4)

and the ground state manifold L is given by:

L = {|ψ〉 ∈ H|A(v) |ψ〉 = |ψ〉 , B(p) |ψ〉 = |ψ〉}. (5)

To represent the ground state in terms of the spin degrees of freedom, let us introduce G the
group generated by all the Am(v) operators, defined as G = 〈{Am(v) |m = 0, . . . , d − 1, v =
1, . . . , N/2}〉. The state |ψGS〉 defined as

|ψGS〉 =
∏
s

A(s) |0〉⊗N = d−N/2
∏
s

d−1∑
m=0

Am(s) |0〉⊗N = d−N/2
∑
h∈G

h |0〉⊗N (6)

is a state in L, as it can be readily checked. Other basis states in L can be constructed by the use
of non contractible loop operators[2]. The topological order in this model can be detected by the
entanglement entropy in the ground state manifold. Consider a bipartition in the Hilbert space,
namelyH = HΛ ⊗HΛ̄ and compute the reduced density matrix ρΛ[34]:

ρΛ = tr Λ̄Ψ0 =
|GΛ̄|
|G|

∑
h∈G/GΛ̄,h̃∈GΛ

h−1
Λ |0〉 〈0|

⊗N hΛh̃Λ (7)

where Ψ0 ≡ |ψGS〉 〈ψGS | and we introduced GΛ := {g ∈ G| g = gΛ ⊗ 1lΛ̄} and GΛ̄ := {g ∈
G| g = 1lΛ⊗gΛ̄} that are normal groups in G, and the quotient groups G/GΛ and G/GΛ̄. Follow-
ing [34] we can prove that ρ2

Λ =
|GΛ||GΛ̄|
|G| ρΛ and thus the purity is given by PΛ(ρ) =

|GΛ||GΛ̄|
|G| , i.e

one can argue that the purity is counting the number of independent operators Am(v) acting non
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trivially on both regions Λ and Λ̄. Following [4], given a region Λ, the number ofAm(v) operators
acting on both subsystems Λ and Λ̄ is d|∂Λ|−n2−2n3 where |∂Λ| is the cardinality of the boundary
of Λ, i.e the number of sites in Λ̄ having at least one nearest neighbor inside Λ, and ni, for i = 2, 3,
is the number of sites in Λ̄ having i nearest neighbors inside Λ. Thus n2 + 2n3 is a geometrical
correction which depends on the shape of the region Λ. For example, if Λ is a convex loop (a rect-
angle) n2 = n3 = 0. So far we accounted for the number of star operators acting on both subsys-
tems, but not all of them are independent from each other because of the constraints on the ground
state manifold in (5), in particular the condition |ψGS〉 ∈ L ⇐⇒

∏
pB(p) |ψGS〉 = |ψGS〉.

Following [4, 6] and defining n∂(Λ) as the number of boundaries of Λ, we have that the number
of independent star operators is d|∂Λ|−n2−2n3−n∂(Λ), i.e for each boundary of Λ we have that the
number of independent star operators acting on both subsystems decreases of a factor scaling as
d−1. For Ψqd ≡ |Ψqd〉 〈Ψqd| being the ground state of the quantum double model on Zd, we thus
can finally write the following:

PΛ(Ψqd) = 2− log2 d|∂Λ|+ΓΛ (8)

where ΓΛ = γΛ +n∂(Λ)γ is the sum of a geometrical term γΛ = log2 d(n2 +2n3) which depends
on the shape of the boundary ∂Λ and a topological correction n∂(Λ)γ, due to the actual number
of independent star operators, only related to the topology of Λ. This topological correction γ ≡
log2 d is called topological entropy[4–6]. Eq.(8) is of fundamental importance for the reminder of
the paper: it is telling us that the purity of the reduced density matrix in the ground state manifold
of the topologically ordered quantum double model depends on the boundary ∂Λ only.

2 The topological purity

In this section, we show how the topological pattern of entanglement involved in topologically
ordered states[1] can be also found in a new quantity: the topological purity (TP). To understand
heuristically how this quantity works, let us first introduce the topological entropy. Consider the
state σ living in the Hilbert space H ≡ HA ⊗HB ⊗HC ⊗HD and the regions AB,BC,B and
ABC drawn in Fig.2 (a). The topological entropy is defined as

Stop(σ) = SABC(σ) + SB(σ)− SAB(σ)− SBC(σ) (9)

where SΛ(σ) labels the Von Neumann entropy of tr Λ̄(σ) where Λ̄ is the complement of Λ with re-
spect to ABCD. As it was shown in[34], also all the Renyi topological entropies give exactly the
same results for quantum double models. The definition of the topological entropy is equal to mi-
nus the quantum conditional information I(A;C|B)[49], which is a entropic quantity describing
tripartite correlations of quantum states.

Figure 2: (a) The graph configuration to define the topological entropy, i.e. I(A;C|B). l is
the feature size of this graph configuration and l ∼ O(N2), where N2 is the whole lattice size,
while r is radius of this topologically non trivial domain. (b) I(A;C|B) = 0 in this simple graph
configuration, even though there is long-range entanglement of the ground state.
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On the other hand, the purity of the state σ in the subsystem Λ is defined as PΛ(σ) :=
tr [(tr Λ̄σ)2], where Λ̄ is the complement of Λ.

In the same fashion of Eq.(9), we define the quantity

Ptop(σ) :=
PAB(σ)PBC(σ)

PB(σ)PABC(σ)
(10)

i.e. the ratio of purities of the reduced density matrix of a quantum state σ for the four subsystems
AB, BC, B and ABC. By definition,

− logPtop(σ) = − logPAB(σ)− logPBC(σ) + logPB(σ) + logPABC(σ) (11)

is just the topological 2-Rényi entropy. A topologically ordered state will feature Ptop(σ) < 1
while for a topologically trivial state Ptop(σ) = 1. In other words, the product (ratios) of purities
in Ptop show the topological entanglement pattern of a topologically ordered state.

Consider the domain ABC in Fig.2 (a), and the ground state of a quantum double model Ψqd

for which PΛ(Ψqd) = 2− log2 d|∂Λ|+ΓΛ for each Λ ∈ {AB,BC,B,ABC} and since |∂AB| +
|∂BC| = |∂B|+ |∂ABC|, Ptop is just given by the sum of the geometrical corrections

Ptop(Ψqd) = 2ΓAB+ΓBC−ΓB−ΓABC ≡ 2−2γ (12)

where −2γ ≡ ΓAB + ΓBC − ΓB − ΓABC is the topological entropy[6]. Note that, according
to the discussion in the previous section, all the geometrical corrections related to the shape of
the boundary ∂(ABC) are canceled by the choice of the partitions AB,BC,B,ABC, namely
γAB + γBC = γB + γABC , and the only surviving term is the topological correction that does not
depend on the shape of the boundary: it is a purely topological correction ∝ γ. This correction
is the mark of the topological phase. It is worth noting that the topological correction would not
be detected from Ptop if ABC was a simply connected region as the one sketched in Fig.2, see
also [6]. That is because, as shown in the previous section, the number of boundaries n∂(Λ) gives
the number of topological corrections γ to the purity PΛ of the related subsystem Λ. Specifically,
consider Fig.2 (b) first: we have n∂(AB) = n∂(BC) = n∂(B) = n∂(ABC) = 1, and thus
according to Eq.(12) we have 2γ − 2γ = 0, while for Fig.2 (a): n∂(AB) = n∂(BC) = 1 and
n∂(B) = n∂(ABC) = 2, thus 2γ − 4γ = −2γ.

We now exploit a standard trick based on the swap operator to express Ptop in terms of expec-
tation values. Let HV ' CD ' Cd⊗N be the D−dimensional Hilbert space of N qudits in a set
V . Here, the Hilbert space of the x−th qudit is denoted by Hx ' Cd. Let Λ ⊂ V be a subset
of these qudits and HΛ = ⊗x∈ΛHx the corresponding Hilbert space. Let T̃Λ be the order two
permutation (swap) operator on H⊗2

Λ and let TΛ = T̃Λ ⊗ 1lΛ̄ be its trivial completion on the full
H⊗2

Λ ⊗H
⊗2
Λ̄

.
The purity of the state σ in the bipartitionHΛ ⊗HΛ̄ is given by

PΛ(σ) ≡ tr Λσ
2
Λ = tr (σ⊗2TΛ) ≡ 〈TΛ〉σ⊗2 (13)

where σΛ := tr Λ̄σ. The above chain of relations is telling us that the purity is from both the
analytical point of view and the experimental point of view a quantity defined on two copies of
the Hilbert space H. In practice, in order to measure the purity of a quantum state σ in a given
bipartitionHΛ ⊗HΛ̄, one needs three steps: (i) to prepare two identical copies of σ, (ii) to build
the observable swap operator on the subspace Λ and finally, (iii) to take the quantum expectation
value of TΛ in σ⊗σ, namely 〈TΛ〉σ⊗2 . Similarly, in order to measure Ptop defined in Eq.(10), one
needs to repeat the steps (i), (ii) and (iii) for the four observables TAB, TBC , TB, TABC and then
combine them in the following way:

Ptop(σ) =
〈TAB〉σ⊗2 〈TBC〉σ⊗2

〈TB〉σ⊗2 〈TABC〉σ⊗2

(14)
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The quantity PΛ(σ) is the purity of σ when as a linear functional over σ⊗2, that is, product
states Ψ⊗2 of H⊗2 . We now extend this definition to arbitrary states Ψ ∈ H⊗2. We define
Topological purity (TP) the quantity

P̃top(Ψ) :=
〈TAB〉Ψ 〈TBC〉Ψ
〈TB〉Ψ 〈TABC〉Ψ

(15)

Obviously, for product states Ψ⊗2 of H⊗2 one has P̃top(Ψ) = Ptop(Ψ). With this result, if Ψqd is
the topologically ordered ground state of a quantum double model, its topological purity P̃top(Ψqd)
will be

P̃top(Ψqd) = 2−2γ (16)

On the other hand, if Ψtriv is a state belonging to a topologically trivial phase with no topological
entanglement entropy, it will also be true that

P̃top(Ψtriv) = 1 (17)

We have therefore established that the topological purity distinguishes these two states. In the
next section, we show how this new definition helps us to prove that this quantity is robust under a
quantum map based on a shallow quantum circuit. This protocol to detect topological order under
the noisy channel we defined is experimentally realizable on a quantum processor[50] using the
techniques based on randomized measurements[38, 40] .

3 Stability of topological purity

In this section, we establish a noise model based on quenched disorder, and show how the topo-
logical purity behaves under the noise model.

The noise model consists in a quantum channel RU based on (shallow) random quantum
circuits Uk. The quantum channel has as an input two copies of the initially topologically ordered
state Ψ:

RUk : Ψ⊗2 7→ RUk(Ψ⊗2) (18)

In the above, Uk is a random quantum circuit with k gates. The gates act on a subset of the qubits
on the graph Λ, that is, X̃i ⊂ Λ for i = 1, . . . , k. The random quantum circuit has thus the form

Uk =
k∏
i=1

UX̃i (19)

We say the map is based on quenched disorder because it acts as

RUk(Ψ⊗2) :=

∫
dµ(U |X̃1) . . . dµ(U |X̃k)U

⊗2
k Ψ⊗2U †⊗2

k (20)

Notice that the sequence S = (X̃k, . . . , X̃1) completely characterizes the map. For this reason,
we will also denote the above quantum channel byRS when we want to make explicit the depen-
dency on the sequence S. Operationally, this quantum channel maps the input state in a mixed
state obtained by collecting several outputs of the random quantum circuit. If the sampling is
good enough, the output state has the form Eq.(20). The output of the channel is now a mixed,
non-separable state in H⊗2 for which the topological purity Eq.(15) is well defined. From the ex-
perimental point of view, this is the purity one would measure in an experiment if the measurement
time-scales are much longer than the random fluctuations in the unitary noise.
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The reason why the quantum channelRUk allows us to prove the stability of topological purity
is that the evolution of Ψ⊗2 under RUk can be mapped - for the sake of computing subsystem
purities - in the evolution of the boundary of the subsystem, which we show in the next subsection.
Then, we show that such boundary evolution exactly preserves P̃top provided that the number of
gates k is smaller compared to the smallest length scale in the subsystems A,B,C,D, see Fig. 2.

3.1 Topological purity and phases

Let us now dive into the technical details of the noise model. Since the purity is defined on H⊗2,
we define a noise model on states living on two copies of the Hilbert space in the following way:
let X ⊂ V be a set of qudits with Hilbert space HX := ⊗x∈XHx and dX := dimHX . Let UX
be a local unitary operator operating on the region X , i.e. operating on all the qubits contained
in X . Let U⊗2

X be two copies of UX , then after operating on σ⊗2 with the unitary U⊗2
X , we have

σ⊗2 7→ U⊗2
X σ⊗2U †⊗2

X and the purity becomes

〈TΛ〉σ⊗2 7→ 〈TΛ〉U⊗2
X σ⊗2U†⊗2

X
≡ tr

(
TΛU

⊗2
X σ⊗2U †⊗2

X

)
(21)

We now choose UX to be a random unitary operator and define the following quantum map
acting on σ⊗2:

RX(σ⊗2) :=

∫
dµ(U |X)(UX)⊗2σ⊗2(UX)†⊗2 (22)

where dµ(U |X) is the Haar measure over the unitary group U(HX). Therefore, fixed X ⊂ V , the
map RX(·) randomizes over the action of the full unitary group on H⊗2

X . Thus, after the noise on
X , the purity becomes:

〈TΛ〉σ⊗2 7→ 〈TΛ〉RX(σ⊗2) ≡ tr
(
TΛRX(σ⊗2)

)
(23)

note that the above operation is no more acting independently on the single copies of H, but it is
entangling them in H⊗2. So far this is a single X noise model. In order to generalize it to more
than one single X domain, consider an ordered string of subsets S = {X̃1, . . . , X̃k} and random
unitary operators U⊗2

X̃i
, i = 1, . . . , k operating on the corresponding subset X̃i and acting on σ⊗2

in an ordered way, namely σ⊗2 7→ U⊗2
X̃k
· · ·U⊗2

X̃1
σ⊗2U †⊗2

X̃1
· · ·U †⊗2

X̃k
. We define the quantum map

randomizing over the action of these gates as:

RS(σ⊗2) := RX̃k · · ·RX̃1
(σ⊗2) (24)

where

RX̃i : O 7→ RXi(O) :=

∫
dµ(U |X̃i)(UX̃i)

⊗2O(UX̃i)
†⊗2, O ∈ B(H⊗2) (25)

As we remarked above, the string S completely characterizes the map. For each string of domains
S, the action of RS on a state of H⊗2 describes the average action of a given random quantum
circuit operating in the region X̃i ∈ S, therefore at this point we define the set S of all such strings:

S := {S = {X̃1, . . . , X̃k| X̃i ⊂ V, i = 1, . . . , k}, k ∈ N} (26)

It is straightforward to see that, for any subset S̃ ⊂ S , the action of RS on a state σ⊗2 varying
S ∈ S̃ creates an ensemble of states living onH⊗2 as follows:

ES̃(σ⊗2) := {RS(σ⊗2) ∈ B(H⊗2) |S ∈ S̃} (27)

8



SciPost Physics Submission

i.e. the ensemble of states ES̃(σ⊗2) contains all the states ΨS living inH⊗2 obtained by the action
ofRS varying S in a subset S̃ of S , defined in Eq.(26). Notice that each string of ordered domains
S describes a quantum circuit consisting of random gates with support on X̃i ∈ S.

Now we can enunciate the main result of this paper: in the following theorem we prove that the
topological purity attains a constant value in the ensembles of states obtained from both the ground
state of the quantum double model on Zd Ψqd and a topologically trivial pure state Ψtriv, provided
that the subset S̃ ⊂ S contains strings of domains S describing shallow quantum circuits. Since
this definition contains circuits with trivial action, this value is also the value of the topological
purity in the initial state.

Theorem. Let Ψqd be the ground state of a quantum double model and let Ψtriv be a pure, topo-
logically trivial quantum state. Let S̃l ⊂ S be the subset of all possible l−shallow strings de-
fined in Definition 4, then the topological purity is constant in the following ensembles of states:
ES̃l(Ψ

⊗2
0 ), ES̃l(Φ

⊗2), namely:

P̃top(ΨS) = 2−2γ , ∀ΨS ∈ ES̃l(Ψ
⊗2
qd ), (28)

and
P̃top(ΦS) = 1, ∀ΦS ∈ ES̃l(Ψ

⊗2
triv) (29)

In the above theorem, S̃l is a subset of S which will be rigorously defined in Sec.3.4; morally
a l−shallow string S ∈ S̃l is a string of domains describes a shallow random quantum circuit that
do not destroy the topological nature of Ψ⊗2

qd . Since we found that the TP gets a constant value
in two distinct ensemble of states, we claim that the topological purity is stable in the topological
ordered phase ES̃(Ψ⊗2

qd ) and in the topological trivial phase ES̃(Ψ⊗2
triv).

The proof of this theorem is in Sec.3.4. As we stated at the beginning of this section, the proof
descends from two facts:

(i) the purity dynamics generated by R purity averaged over the noise is equal results in a
boundary evolution for the subsystem. The purity of the output state is equal to the purity of the
initial state for the subsystem corresponding to the evolved boundary.

(ii) For a shallow map, the boundary evolves in a way that the topological purity stays exactly
constant.

We start proving the fact (i) in the next subsection. Subsection 3.3 will instead show fact (ii).

3.2 Purity dynamics under random quantum circuits

In this section, we show how, under the noise model defined by the quantum map Eq.(22), the
evolution of the purity becomes a boundary evolution for the purity in the initial state.

Consider a state σ and the swap operator TΛ defined in the region Λ. As shown in Sec. 3.1
the purity of σ in the region Λ is the expectation value of the swap operator TΛ computed on two
copies of the state σ, PΛ(σ) ≡ 〈TΛ〉σ⊗2 . Let RX be the quantum map defined in Eq.(22) and
consider the expectation value of TΛ in the state RX(σ⊗2); because RX(·) is an hermitian and
self-dual operator[51], we can equivalently write:

〈TΛ〉RX(σ⊗2) = 〈RX(TΛ)〉σ⊗2 (30)

i.e. the expectation value of the swap operator TΛ on the stateRX(σ⊗2) is equal to the expectation
value of the evolved swap operator RX(TΛ), i.e. the image of TΛ under the map RX(·), on the
original state σ⊗2. In practice, we are considering the Heisenberg picture for the evolution of the
swap operator. This point of view is convenient for us, because - thanks to the simple equation
(30) - the purity dynamics can be described as the dynamics of the boundary ∂Λ of the region Λ

9
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and thus can be described in terms of patching. First of all, let X ⊂ V be a domain and let us
compute the action of the map RX(·) on the swap TΛ. One can show[51]:

RX(TΛ) =

{
NdΛ\XTΛ\X +NdΛ∪XTΛ∪X , X ∩ ∂Λ 6= ∅, X ∩ ∂Λ̄ 6= ∅
TΛ, X ∩ ∂Λ = ∅

(31)

where NdΛ\X := (d2
X − d2

Λ∩X)d−1
Λ∩X/(d

2
X − 1) and NdΛ∪X := dX(d2

Λ∩X − 1)d−1
Λ∩X/(d

2
X − 1)

and dΛ∩X = dimHΛ∩X .

Figure 3: An illustration of the action of the superoperator RX on the swap operator TΛ with
support on the region Λ ⊂ V . In (a) the domain X has a non trivial overlap with the boundary
∂Λ and, according to Eq.(31), its action gives a linear combination of two domains, namely Λ \X
and Λ ∪X . In (b) the domain X ⊂ Λ is completely contained in Λ and its action is trivial. Note
that we neglected the prefactors NdΛ\X and NdΛ∪X , cfr. Eq.(31).

A simple representation of this action is provided in Fig.3. Note that we can compactly write
the above action as follows:

RX(TΛ) = (1− f(X,Λ))TΛ + f(X,Λ)[NdΛ∪XTΛ∪X +NdΛ\XTΛ\X ] (32)

where f : (X,Λ)→ R:

f(X,Λ) =

{
1, X ∩ ∂Λ 6= ∅, X ∩ ∂Λ̄ 6= ∅
0, X ∩ ∂Λ = ∅

(33)

Eqs. (31) and (32) are telling us that if X intersects the boundary of Λ, the expectation value
of TΛ on RX(σ⊗2) becomes the linear combination of the expectation values on the original state
σ⊗2 of swap operators with different boundaries, namely Λ ∪ X and Λ/X . If X is completely
inside or outside Λ, the expectation value is unchanged. In other words, the action of RX on the
swap TΛ results in a linear combination of two swaps defined in the patched regions Λ ∪ X and
Λ/X . Thus, thanks to the duality in Eq.(30) we can write the expectation value of RX(TΛ) on
σ⊗2 as a linear combination of the purity of σ in different domains:

〈RX(TΛ)〉σ⊗2 = (1− f(X,Λ))PΛ(σ) + f(X,Λ)[NdΛ∪XPΛ∪X(σ) +NdΛ\XPΛ\X(σ)] (34)

where PΛ(σ) = 〈TΛ〉σ⊗2 etc. Now, in order to generalize the above discussion to more than one
domain X , consider the action of the quantum map RS(·) defined in Eq.(24). Although RS(·) is
no more hermitian, we can exploit the duality as well and write:

〈TΛ〉RS(σ⊗2) =
〈
R†S(TΛ)

〉
σ⊗2

(35)

10
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where R†S(·) = RX̃1
· · ·RX̃k(·). As one can see the adjoint operator R†S(·) is always the same

operatorR(·) with a different ordering of the domains of S. Thus, defining the ordered subset

S̄ = {X̃k, . . . , X̃1 |X̃i ∈ S} (36)

we can write R†S(·) = RS̄(·). Here ordered means that, given X̃i, X̃j ∈ S̄ with i > j, the
map RX̃j (·) acts after the map RX̃i(·). In order to avoid confusion, let us re-define the subsets

as Xj = X̃k+1−j , so that S̄ = {X1, . . . , Xk |Xj = X̃k+1−j , X̃k+1−j ∈ S} and RS̄(TΛ) =
RXk · · ·RX1(·). By duality, the expectation value of RS(TΛ) is always a linear combination of
purities of σ:

〈TΛ〉RS(σ⊗2) = 〈RS̄(TΛ)〉σ⊗2 =
∑

Λα∈Y(k)(Λ)

mΛαPΛα(σ) (37)

where we defined the set of domains Y(k)(Λ) := {Λ,Λ∪X1,Λ∪X2, . . . ,Λ∪X1 \X2, . . . }; the
set of domains Y(k)(Λ) contains all the possible combinations of patching given by the domains
(patches) X1, . . . , Xk; in the r.h.s of (37) the coefficients mΛα depend on the particular choice of
the ordered string S and on the geometry of the region Λ. In order to make the notation clearer, let
us write the expression for k = 2 explicitly:

〈RS̄(TΛ)〉σ⊗2 ≡ 〈RX2RX1(TΛ)〉σ⊗2 = (1− f(X1,Λ))(1− f(X2,Λ))PΛ(σ)

+ (1− f(X1,Λ))f(X2,Λ)[NdΛ∪X2
PΛ∪X2(σ) +NdΛ\X2

PΛ∪X2(σ)]

+ f(X1,Λ)(1− f(X2,Λ ∪X1))NdΛ∪X1
PΛ∪X1(σ)

+ f(X1,Λ)(1− f(X2,Λ \X1))NdΛ\X1
PΛ\X1

(σ) (38)

+ f(X1,Λ)f(X2,Λ ∪X2)(NdΛ∪X1
NdΛ∪X2

PΛ∪X1∪X2(σ) +NdΛ∪X1
NdΛ\X2

PΛ∪X1\X2
(σ))

+ f(X1,Λ)f(X2,Λ \X2)(NdΛ\X1
NdΛ∪X2

PΛ\X1∪X2
(σ) +NdΛ\X1

NdΛ\X2
PΛ\X1\X2

(σ))

where S̄ = {X1, X2} andmΛ ≡ (1−f(X1,Λ))(1−f(X2,Λ)),mΛ\X1\X2
≡ NdΛ\X1

NdΛ\X2
f(X1,Λ)f(X2,Λ\

X2), etc. The model is completely general: once one has chosen the string S and the domain Λ
the functions f are completely determined to be either 0 or 1 according to the rules in Eq.(33). It
is worth noting that the ordering of the domains Xi ∈ S̄ is very important; consider X1, X2 ∈ S̄
and note it can be the case that X2 ∩ ∂(Λ/X1) 6= 0 while X2 ∩ ∂Λ = 0 and so in the if X2 acts
before X1 it does not have any effect, see Fig.4 for a pictorial proof.

Figure 4: The figure shows how different orderings of the same domains Xi ∈ S̄ can give
different results. In (a), S̄(a) = {X1, X2} and thus we have f(X1,Λ) = 1, f(X2,Λ \
X1) = 1, f(X2,Λ ∪ X1) = f(Λ, X2) = 0; therefore

〈
RS̄(a)

(TΛ

〉
σ⊗2

= NΛ\X1
PΛ∪X1(σ) +

NΛ\X1
NdΛ\X1\X2

PΛ\X1\X2
(σ) +NΛ\X1

NΛ\X1∪X2
PΛ\X1∪X2

(σ), cfr. Eqs. (33) and (39). In (b),

S̄(b) = {X2, X1} and thus we have f(X1,Λ) = 0, f(X2,Λ) = 1; therefore
〈
RS̄(b)

(TΛ

〉
σ⊗2

=

NΛ\X2
PΛ\X2

(σ) +NΛ∪X2PΛ∪X2(σ).

11
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3.3 Topology at a large scale: l−topology

After establishing the fact (i), we now see how the proof would work. A shallow map R will
deform the boundary of the subsystems A,B,C,D only locally, in a way that in the ratio Eq.(15)
there is an exact cancellation for the boundary modifications.

The boundary deformations induced by R are not strictly speaking topological, because they
can punch holes or glue disconnected parts. However, they can only punch holes and glue parts on
a short scale. For what we are concerned, only topological changes at a large scale are important.
For this reason, in the following we introduce the notion of topological equivalence by “small
scale patching”.

Consider a graph Γ = (V, E) and a subset of vertices (region) Λ ⊂ V ; we define the comple-
ment of Λ as Λ̄ := {x ∈ V |x 6∈ Λ}; then the (inner) boundary of Λ is defined as ∂Λ := {x ∈
Λ | (x, y) ∈ E, y ∈ Λ̄}. Λ has two (or more) disconnected boundaries if ∂Λ = ∂Λ1 ∪ ∂Λ2 and
one of the following properties is satisfied:

• Λ = Λ1 ∪ Λ2 and there is no path in Λ connecting Λ1 and Λ2.

• Λ̄ = Λ̄1 ∪ Λ̄2 and there is no path in Λ̄ connecting Λ̄1 and Λ̄2.

The above definitions immediately generalize to more than two, say n∂(Λ), disconnected bound-
aries. In the following the number of disconnected boundaries will be denoted as n∂(Λ).

An ε−patch is a simply connected region X ⊂ V of diameter diam(X) = ε. Considering a
region Λ ∈ V , the patching of Λ through X is defined as the map:

PX(Λ) :=

{
Λ ∪X, or
Λ/X

(39)

i.e. the action of patching whether adds something to the region Λ or subtracts it. The composition
of patching A by X1 and X2 can result in one of the following four combinations Λ ∪X1 ∪X2,
Λ ∪X1/X2, Λ/X1 ∪X2 and Λ/X1/X2. It is clear that by combining more ε−patches together
X = X1 ∪ · · · ∪Xnp one can create a patch X as large as one wants, resulting in Λ∪X or Λ/X .
Having introduced the notion of patching a region Λ ⊂ V , we can introduce a notion of distance
in the topology:

Definition 1 (ε−Topology). Two regions Λ1,Λ2 ⊂ V are ε−topologically equivalent Λ1
ε∼ Λ2 iff

PX(Λ1) ∼ Λ2, i.e. patching Λ1 with a ε−patch makes Λ1 topologically equivalent to Λ2.

The above definition naturally extends to a combination of more than one patch: two regions
Λ1,Λ2 ⊂ V are l−topologically equivalent Λ1

l∼ Λ2 iff PX(Λ1) ∼ Λ2 where diam(X) ≡
diam(X1 ∪ · · · ∪Xnp) = l. See 5 for a pictorial representation.

Figure 5: (a) Illustration of ε−Topology: Λ1 becomes topologically equivalent to Λ2 by a patch
of diameter ε, see Eq. (39). (b) Illustration of l−topology: in this case a combination of many
ε−patches is necessary to make Λ1 topologically equivalent to Λ2.

At this point, we want to formalize the notion of how some sets can contain the same points and
have the same shape locally, thus also having the same boundary length, and yet have a different

12
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number of disconnected boundaries. Consider the doubled graph Γ2 := (V 2, E2) and define the
set:

EΛ1Λ2 := {{x1, x2} |x1 ∈ Λ1, x2 ∈ Λ2, Λ1,Λ2 ⊂ V } (40)

where the elements {x1, x2} are non-ordered pairs of elements of Λ1 and Λ2; we define the bound-
ary ∂EΛ1Λ2 of EΛ1Λ2 as:

∂EΛ1Λ2 := {{x1, x2} |x1 ∈ ∂Λ1, x2 ∈ ∂Λ2} (41)

where |∂EΛ1Λ2 | := |∂Λ1| + |∂Λ2| and the number of disconnected boundaries n∂(EΛ1Λ2) :=
n∂(Λ1) + n∂(Λ2). At this point, we require that, considering four regions Λ1,Λ2,Λ3,Λ4, the two
sets obey EΛ1Λ2 = EΛ3Λ4 , that is: EΛ1Λ2 . Moreover, we require that EΛ3Λ4 are equal as sets and
their boundaries ∂EΛ1Λ2 , ∂EΛ3Λ4 are equal (as sets) with equal lengths |∂EΛ1Λ2 | = |∂EΛ3Λ4 |, see
Fig. 6, but they have a genuine topological difference, i.e. the number of disconnected boundaries
within the two sets is different (Fig. 6 (a)), as the following definition says:

Definition 2 (Genuine topological difference). Consider four regions Λ1,Λ2,Λ3,Λ4 and the two
sets EΛ1Λ2 , EΛ3Λ4 such that, EΛ1Λ2 = EΛ3Λ4 . If n∂(EΛ1Λ2) 6= n∂(EΛ3Λ4), the two sets enjoy a
genuine topological difference, i.e. EΛ1Λ2 6∼ EΛ3Λ4 .

See Fig.6 for an illustration of the above definition.

Figure 6: Pictorial representation of genuine topological difference. Consider the sets Λ1,Λ2,Λ3

and Λ4 sketched in both (a) and (b). In both (a) and (b) the sets EΛ1Λ2 and EΛ1Λ2 are equal
EΛ1Λ2 = EΛ3Λ4 . While (a) the sets show genuine topological difference EΛ1Λ2 6∼ EΛ3Λ4 ,
because n∂(EΛ1Λ2)−n∂(EΛ3Λ4) = 2; (b) the sets do not have any topological differenceEΛ1Λ2 ∼
EΛ3Λ4 , indeed n∂(EΛ1Λ2)− n∂(EΛ3Λ4) = 0.

With the notion of l−topology given in Definition 1 we can define:

Definition 3 (l−genuine topological difference). Consider four regions Λ1,Λ2,Λ3,Λ4 and the
two sets EΛ1Λ2 and EΛ3Λ4 such that EΛ1Λ2 6∼ EΛ3Λ4 and n∂(EΛ1Λ2) − n∂(EΛ3Λ4) = t. The
two sets EΛ1Λ2 and EΛ3Λ4 shows l−genuine topological difference iff for any l′−patch such that
l′ < l acting on Λ1,Λ2,Λ3,Λ4, the sets feature the same genuine topological difference, i.e.

n∂(PX(EΛ1Λ2))− n∂(PX(EΛ3Λ4)) = t (42)

where PX(EΛ1Λ2) := {{x1, x2} |x1 ∈PX(Λ1), x2 ∈PX(Λ2)}.

Example.— A specific example of l−topologically different sets is provided in Fig. 7. We
see that while by patching a region Λ1 one can change its topology, on the other hand if the four
sets Λ1,Λ2,Λ3,Λ4 shows genuine l−topological difference, no matter the patching on the four

13



SciPost Physics Submission

sets, the difference of disconnected boundaries will remain the same as long as the diameter of the
patch fulfills the condition l′ < l.

Figure 7: Pictorial representation of l−genuine topological difference. The typical size of the
sketched domain is l. (a) A l′ patch has been applied to the sets of domains EΛ1Λ2 and since
l′ < l the sets shows the same genuine topological difference, indeed n∂(EΛ1Λ2) = 3 + 2,
n∂(EΛ3Λ4) = 2 + 1 and n∂(EΛ1Λ2)− n∂(EΛ3Λ4) = 2, cfr. Fig. 6. (b) the sets are patched with a
patch whose size is l′ ≥ l which change the genuine topological difference, indeed n∂(EΛ1Λ2) =
1 + 3, n∂(EΛ1Λ2) = 2 + 2 and n∂(EΛ1Λ2)− n∂(EΛ3Λ4) = 0 6= 2.

3.4 Proof of the main result

We are finally ready to prove the main result of the paper. By virtue of fact (i), we can re-write
Eq.(15) for the topological purity of the state ΨS = RS(Ψ⊗2

0 ) in terms of expectation values of
evolved swap operatorsRS̄(TΛ) for Λ being AB,BC,B and ABC, namely:

P̃top(ΨS) =
〈RS̄(TAB)〉Ψ⊗2

0
〈RS̄(TBC)〉Ψ⊗2

0

〈RS̄(TB)〉Ψ⊗2
0
〈RS̄(TABC)〉Ψ⊗2

0

(43)

In the following definition, we give the notion of l− shallow string, which correspond to a
shallow quantum circuit:

Definition 4 (l−shallow string). Let S be a string of domains. S = {X1, . . . , Xk |Xi ⊂ V } is a
l−shallow string iff diam(X1 ∪ · · · ∪Xk) < l.

Let S be the set of all possible strings of domains defined in Eq. (26) and let S̃l ⊂ S be the
subset containing all possible l−shallow strings.

To prove the main theorem, we need to prove that, for any S ∈ S̃l, the topological purity
keeps constant to the value of the topological purity of the initial state, i.e. the ratio of expectation
values of evolved swap operators in Eq.(15) equals the ratio of expectation values of the initial
TAB, TBC , TB, TABC . We recall that, evolving a swap operator TΛ by RS , one deforms the do-
main Λ by patching. In particular we consider two states, the ground state of the quantum double
model and a topologically trivial state. If the initial state |Ψqd〉 ∈ L is the ground state of the
quantum double model (cfr. Sec.1 ) then P̃top(Ψ⊗2

qd ) = Ptop(Ψqd) = 2−2γ , while if the initial state
is a pure and topologically trivial state such as Ψtriv, then P̃top(Ψ⊗2

triv) = Ptop(Ψ
⊗2
triv) = 1.

Proof. Consider |Ψqd〉 ∈ L and a shallow string S ∈ S̃l defined in Definition 4. Let us com-
pute the topological purity of ΨS ≡ RS(Ψ⊗2

qd ) for S ∈ S̃l. According to Eq.(43) we can
directly compute the expectation values of the evolution of the swap operators TΛ for Λ =
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(AB,BC,B,ABC). Recalling Eq.(37) the expectation value of the evolved swap operator TΛ

is a linear combination of purities of Ψqd in domains Λα ∈ Yk(Λ):

〈RS̄(TΛ)〉Ψ⊗2
0

=
∑

Λα∈Yk(Λ)

mΛαPΛα(Ψqd) (44)

According to Eq. (8), any purity term PΛα(Ψ0), for Λα ∈ Yk(Λ) equals to

PΛα(Ψqd) = 2− log2 |d∂Λα|+ΓΛα (45)

where we recall that |∂Λα| is the boundary length of Λα and ΓΛα = γΛ + n∂(Λ)γ is the sum of a
geometrical term γΛ and a pure topological term n∂(Λ)γ only depending on the topological nature
of the state and proportional to the number of disconnected boundaries n∂(Λ) of the domain Λ.
Plugging Eq. (44) in Eq.(43) one obtains

P̃top(ΨS) =

∑
αmABαPABα

∑
βmBCβPBCβ∑

ηmBηPBη
∑

ζmABCζPABCζ
(46)

where we adopted a compact notation for the sum, namely
∑

α ≡
∑

ABα∈Yk(AB) and PABα ≡
PABα(Ψqd), etc.

Now, if the two sets E(ABC)(B) and E(AB)(BC) enjoy a genuine l−topological difference
E(ABC)(B) 6∼ E(AB)(BC), then the difference in the number of their boundaries remains un-
changed under any patches of diameter less than l:

n∂(E(ABC)(B))− n∂(E(AB)(BC)) = 2 (47)

Let us rewrite Eq. (46) as

P̃top(ΨS) =

∑
α,βmABαmBCβPABαPBCβ∑
η,ζmBηmABCζPBηPABCζ

(48)

As proven in Sec. 3.1, the action of the noisy map corresponding to the string S = {X1, . . . , Xk |Xi ⊂
V } on a swap operator TΛ results in a combination of purity of the initial state Ψ⊗2

0 computed in
all the possible patched regions with X1, . . . , Xk according to the rules in Eq. (37). Since we
assumed that S is a shallow string, we also have that the combination of patches can never creates
a patch of diameter bigger than l and thus the action of the noisy map keeps constant the genuine
l−topological difference of the initial domains ABC,B,AB,BC. This property is reflected in
the following: for any α, β the purity in the patched regions ABα, BCβ can be written as

PABαPBCβ = 2
−(|∂ABα|+|∂BCβ |)+(γABα+γBCβ )+γ(n∂(ABα)+n∂(BCβ)) (49)

then, there are two corresponding patched regions, ABCη and Bζ , such that E(ABCη)(Bζ) and
E(ABα)(BCβ) shows genuine topological difference E(ABCη)(Bζ) 6∼ E(ABα)(BCβ) and the number
of disconnected boundaries obeys to:

n∂(E(ABCη)(Bζ))− n∂(E(ABα)(BCβ)) = 2 (50)

thus we have |∂ABα| + |∂BCβ| = |∂ABCη| + |∂Bζ |, γABα + γBCβ = γABCη + γBζ and
n∂(ABα) + n∂(BCβ) = −2 + n∂(ABCη) + n∂(Bζ). The product of purities in Eq. (49) is
therefore equal to:

PABαPBCβ = 2−2γPABCηPBζ (51)

In order to conclude the proof, it is worth noting that the weights mΛ of purities, in Eq. (44), do
not depend on the number on the number of disconnected boundaries n∂(Λ), cfr. Sec. 3.2. Then,

15



SciPost Physics Submission

because the sets E(ABCη)(Bζ) and E(ABα)(BCβ) enjoy genuine topological difference, for any α
and β there exist η and ζ such that we have the following:

mABαmBCβ = mABCηmBζ (52)

Note that we have the equality because the sets E(ABCη)(Bζ) = E(ABα)(BCβ) are equal. Finally,
by grouping all the terms, we have:

P̃top(ΨS) = 2−2γ

∑
η,ζmBηmABCζPBηPABCζ∑
η,ζmBηmABCζPBηPABCζ

= 2−2γ = P̃top(Ψ
⊗2
qd ) (53)

The proof for Ψtriv being a pure and topologically trivial state is identical to the one presented
above, with the only difference that PΛα(Ψtriv) = 〈TΛα〉Ψ⊗2

triv
= 1 for any Λα ∈ Yk(Λ), cfr.

Eq.(37). This concludes the proof.

Remark. If the string S 6∈ S̃l is not a shallow string, then diam(X1 ∪ . . . Xk) > l and it can
be the case that the joint patch creates a hole in the donut shape of ABC or connects two far
apart regions (operations breaking the genuine topological difference), see Fig.7 (b) for a graph-
ical example. In that case, there exist ᾱ, β̄, η̄ and ζ̄ in Eq. (48) such that n∂(E(ABᾱ)(BCβ̄)) −
n∂(E(ABCη̄)(Bζ̄

) 6= 2 which would invalidate Eq. (51) for PABᾱ , PBCβ̄ , PABCη̄ and PBζ̄ ; that
would result in the failing of the grouping in Eq. (53), hence Ptop(ΨS) 6= 2−2γ .

4 Conclusions

In this paper, we addressed some questions regarding the stability of topological order under noisy
perturbations, but the path to find a general analytic proof is still long and tortuous. Working with
the ground state Ψ0 of quantum double models, we defined a new probe for topological order -
the topological purity P̃top - proving its robustness in two distinct phases, namely the topological
phase and the trivial phase. More precisely, as a noise model, we introduced a set of quantum
maps that mimics the evolution of local random quantum circuits. The two phases are indeed
created by the quantum maps as orbits of two initially distinct states, the ground state of quantum
double models Ψ0 and a pure, topologically trivial state. We found that the topological purity
attains two different constant values among such states, in particular P̃top = 2−2γ < 1 for the
topologically ordered phase and P̃top = 1 for the trivial phase. The dynamics of the topological
purity under such noise model can be mapped onto dynamics for the subsystems used to define
the topological purity, cfr. Sec.2. This property enabled us to prove our main theorem and to
provide many pictorial representations, giving the reader more intuition on the effects of the noisy
dynamics.

Despite the generality of the setup, in the sense that the noise model does not obey any par-
ticular symmetry or fine tuned feature, our result is not the final word regarding the stability of
topological order, and even more general and complete proofs are necessary to go further in this di-
rection. This paper opens a series of different questions that might be interesting to investigate, for
instance, whether the proof can be extended to non-abelian quantum double models, the difficulty
being that for non abelian groups the order of the group is in general hard to compute. Moreover,
an important open problem is whether the higher moments of the purity under random quantum
circuits obey some algebra that can be cast in the form of evolution of geometries. This would
open the way to, on the one hand, compute generic Rényi entropies for the evolved states and from
there the Von Neumann entropy, on the other hand, associating evolutions under a quantum map
to evolution of geometries would be a very useful tool for the study of topological phases away
from equilibrium.
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A Action of RX(·) on the swap operator

In this appendix, we review the calculations given in [51] to obtain Eq.(31). First, we recall the
definition of the quantum map RX(·) given in Eq.(22).

RX(·) =

∫
dµ(U |X)(UX)⊗2(·)(UX)†⊗2 (54)

where UX is a unitary operator acting onHX . The action of RX(·) over a swap operator TΛ is:

RX(TΛ) =

∫
dµ(U |X)(UX)⊗2TΛ(UX)†⊗2 =

trX(TΛ(1lX + TX))

2dX(dX + 1)
(1l+TX)+

trX(TΛ(1lX − TX))

2dX(dX − 1)
(1l−TX)

(55)
where we made use of the Haar average techniques[52, 53] to compute the integral. Before pro-
ceeding, it is important to make a remark on the role of the domains in this calculation, we have to
distinguish between two cases: the first one where X ⊆ Λ or X * Λ, and the second one where
X ∩ Λ 6= ∅ and X ∩ Λ 6= ∅. For the first case, when X ⊆ Λ, the Eq.(55) becomes

RX(TΛ) = TΛ\X
trX(TX(1lX + TX))

2dX(dX + 1)
(1l + TX) + TΛ\X

trX(TX(1lX − TX))

2dX(dX − 1)
(1lX − TX)

=
1

2
(TΛ\X(1lX + TX)− TΛ\X(1lX − TX)) = TΛ\XTX = TΛ (56)

where we used that the swap operator TΛ = TΛ\XTX , while if X * Λ we obtain:

RX(TΛ) =
1

2
TΛ(1lX + TX) +

1

2
TΛ(1lX − TX) = TΛ (57)

When instead X ∩ Λ 6= ∅ and X ∩ Λ 6= ∅, we obtain:

RX(TΛ) = TΛ\X
trX(TΛ∩X(1lX + TX))

2dX(dX + 1)
(1l + TX) + TΛ\X

trX(TΛ∩X(1lX − TX))

2dX(dX − 1)
(1lX − TX)

=
d2
Xd
−1
Λ∩X + dΛ∩XdX

2dX(dX + 1)
(TΛ\X + TΛ\TX)−

d2
Xd
−1
Λ∩X − dΛ∩XdX

2dX(dX − 1)
(TΛ\X − TΛ\XTX)

= NdΛ\XTΛ\X +NdΛ∪XTΛ∪X (58)

where we used that TX = TX/(Λ∩X)TΛ∩X and that TΛ∪X = TΛ\XTX Nd\X = (d2
X), with

NdΛ\X := (d2
X − d2

Λ∩X)d−1
Λ∩X/(d

2
X − 1) and NdΛ∪X := dX(d2

Λ∩X − 1)d−1
Λ∩X/(d

2
X − 1) and

dΛ∩X = dimHΛ∩X .
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