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Abstract

In the framework of precision experiments, the search for electric dipole moments and
the precise determination of magnetic dipole moments (g-2) have since long been of
prime interest. Hadronic decays offer the best accuracy, since only the kinematic in-
formation carried by a single neutrino per decay is lost. Thus, they reveal more easily
precious information on the helicity of the initial tau lepton. However, in contrast to one-
or two-body hadronic final states, the description of hadronic multi-body final states de-
pends on the model for the hadronic current. In this work, we determine how the choice
of a hadronic model impacts the extraction of tau electric and magnetic dipole moments.

Introduction

In light of the recent result on the anomalous magnetic moment of the muon (g−2)µ [1], the
study of the magnetic moments µτ of the tau lepton receives new attention motivated by the
mass of the tau lepton being about 17 times larger than the mass of the muon. In addition,
electric dipole moments like dτ are a key observable to search for effects of new physics, as
well.

Both µτ and dτ may be studied measuring to high precision the production and subsequent
decays of τ±-pairs in e+-e−-collisions at B-factories. Since the tau lepton has many different
decay modes with none of them being dominant, the inclusion of the largest number of decay
channels is required to statistically improve the precision of such measurements.

For most of the dominating decay modes like (πν) or (`ν`ντ), we can construct the decay
amplitudes from first principles. However, the amplitudes for hadronic multi-body final states
depend on modelling the hadronic systems. Hadronic decays are particularly suited since they
include only a single escaping neutrino in contrast to leptonic decays with two neutrinos (ντ
and ν`) missing in the final state. The latter results in large uncertainties in the reconstruction
of the total event kinematics. The inclusion of hadronic decays (37% branching fraction),
however, requires their very good understanding in order to reduce systematic uncertainties
connected to their modelling. This is particularly true for hadronic multi-body (n> 2) decays,
which make up about 40% of all hadronic decays [2]. Since for the measurement of the electric
and magnetic moments the full τ±-pair event is studied, the inclusion of multi-body final states
improves the exploitation of available data sets, presently mostly constrained to final states of
(e±νeντ), (µ±νµντ), (π±ντ) and (ρ±ντ), commonly used for such measurements [3].
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The choice of the model for hadronic multi-body final states is not unique and we must
thus estimate the impact of the differences between the true model and the analysis model on
the measurement of the tauon electric and magnetic moments.

This article is structured as follows: in Sec. 2 we introduce the form factors F2 and F3 and
construct the spin-density matrix for the production of τ±-pairs. In Sec. 3, we elaborate on
the effects of the escaping neutrinos on the determination of F2/3. In Sec. 4, we introduce
the hadronic model required for hadronic multi-body final states. In Sec. 5, we construct so-
called optimal observables used to extract the value of F2/3 from data and use them to study
the impact of the hadronic model on the measurement of F2/3, as described in Sec. 6 using
simulated data.

Form factors

The coupling of τ±-pairs to the photon field is described by:

−eūλ−Γ
µvλ+ , (1)

where uλ− and vλ+ are the usual Dirac-spinors of the tauons with helicities λ± and the Γµ is
given by:

Γµ = F1(q
2)γµ +

iF2(q2)
2mτ

σµνqν +
F3(q2)
2mτ

σµνγ5qν, (2)

where qµ is the total four-momentum. F1(q2) is the Dirac form-factor and F2(q2) is the Pauli
form-factor. F2/3 are connected to the electric and magnetic dipole moments via:

F2(q
2 = 0) + 1=

2mτ
eQτ

µτ and F3(q
2 = 0) =

2mτ
eQτ

dτ. (3)

The amplitude for the τ±-pair production in e+-e−-collisions is then given by:

Aλe−λe+λ−λ+
=

e2

q2
· v̄λepγµuλe−

· uλ−Γ
µvλ+ , (4)

where λe− and λe+ are the helicities of the beam particles. From this amplitude, we can con-
struct the spin-density-matrix for the τ±-pair, which for the case of unpolarized e+ and e−

beams is given by:

χλ−λ+λ′−λ′+ =
1
4

∑

λe±

A∗λe−λe+λ−λ+
Aλe−λe+λ

′
−λ
′
+
. (5)

Non-zero values of the form factors F2/3 change the spin-density matrix and thus the spin-
correlations of the produced τ±-pair. The changes to the spin-density matrix elements related
to ℜ/ℑ(F2/3) are shown as function of the cos(θ ) in Fig. 1, where θ is the production angle
of the τ− with respect to the incoming electron. The varying symmetry properties of the
spin density matrix elements can be seen, and only ℜ(F2) changes the total production cross-
section1. For most form factors and spin combinations, extreme forward and backward angles
as well as 90 degrees provide no sensitivity. Here, production angles around±45 degrees seem
most important.

Since tauons decay before crossing any detector element, spin-correlations of the τ±-pair
can only be accessed through the angular distributions of the τ± decay products. In this work,

1Comparing the spin-density matrix contributions to the ones given in Ref. [5], we find similarities between the
contributions from O(α3) and F2, resulting in the bias observed in Ref. [5].
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we focus on such spin correlations in τ±-pair production2 and the corresponding intensity
distribution I of the decay products of both τ± is constructed via:

I =
∑

λ
(′)
±

χλ−λ+λ′−λ′+ · D
−
λ−λ

′
−
· D+
λ+λ

′
+
, (6)

where D±
λ±λ′pm

are the spin-density matrices for the τ± decays.

Figure 1: Contributions from the form-factors F2/3 to the τ±-pair production spin-
density matrix as function of the production angle cos(θ ). Contributions from the
real and imaginary parts of F2/3 are on the left and right, respectively. The influence
of F2 and F3 are shown on the top and bottom row. Real and imaginary parts of the
spin-density matrix are shown as red and blue lines, respectively. The vertical axis
range is the same for all 10 plots of one contribution and is indicated on the leftmost
sub-plot. Entries below the diagonal are omitted, since they are hermitian conjugates
of the upper-diagonal entries.

Effects of neutrino kinematics

In principle, all decay modes of the τ-lepton are suitable for the determination of the form
factors F2/3. Simple accuracy studies similar to studies presented in Sec. 6 show that the
accuracy for the form-factors F2/3 is similar for all combinations of the dominant τ± decay
modes. This, however, requires the final-state kinematic information to be complete, and thus
the intensity distribution I given in Eq. (6) can simply be calculated.

However, since in every decay at least one neutrino is escaping, calculating the intensity
distribution is no longer possible and unmeasurable degrees of freedom have to be integrated

2In this process, the kinematic range for the measurement of F2/3(q2) is limited to q2 > 4m2
τ
.
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Table 1: Decrease of accuracy due to the loss of kinematic information due to escap-
ing neutrino kinematics for 16 combinations of τ± decay modes. The numbers are
based on sets of 106 simulated events.

τ− mode τ+ mode xδℜ(F2) xδℑ(F2) xδℜ(F3) xδℑ(F3)
π−ντ π+ν̄τ 1.09 1.60 1.61 1.06
π−ντ ρ+ν̄τ 1.11 1.19 1.19 1.10
π−ντ e+ν̄τνe 2.07 1.75 3.84 1.92
π−ντ µ+ν̄τνµ 2.06 1.72 3.73 1.92
ρ−ντ π+ν̄τ 1.11 1.19 1.19 1.10
ρ−ντ ρ+ν̄τ 1.11 1.26 1.15 1.10
ρ−ντ e+ν̄τνe 2.03 1.79 3.18 1.92
ρ−ντ µ+ν̄τνµ 2.04 1.79 3.17 1.92
e−ντν̄e π+ν̄τ 2.09 1.81 3.97 2.04
e−ντν̄e ρ+ν̄τ 2.03 1.75 3.32 1.82
e−ντν̄e e+ν̄τνe 3.45 2.28 21.83 3.33
e−ντν̄e µ+ν̄τνµ 3.73 2.28 11.72 3.29
µ−ντν̄µ π+ν̄τ 2.07 1.79 3.92 2.02
µ−ντν̄µ ρ+ν̄τ 2.03 1.72 3.25 1.83
µ−ντν̄µ e+ν̄τνe 5.83 2.28 12.26 3.31
µ−ντν̄µ µ+ν̄τνµ 3.11 2.32 14.41 3.27

out. In events, where only a single neutrino escapes in each tau decay—making two in total—a
two-fold kinematic ambiguity arises for the direction of the tauons that has to be averaged in
the calculation of I. For this, both τ− and τ+ must decay hadronically. For every τ± decaying
leptonically, an additional integration has to be performed:

I →
∫∫∫

I dφ dcosθ dm2
νν̄, (7)

where mνν̄ is the invariant mass of the escaping (νν̄)-system and θ and φ the polar and
azimuthal angle of the τ neutrino within this system.

This loss of kinematic information decreases the accuracy for the form factors F2/3 de-
pending on the particular combination of decay channels used. This reduction in accuracy is
summarized in Table 1, comparing the accuracies δ obtained with integrated and with fully
known kinematic information:

xδℜ/ℑ(F2/3) =
δintegratedℜ/ℑ(F2/3)

δknownℜ/ℑ(F2/3)
. (8)

The averaging of the two-fold ambiguity for hadronic decays thus leads to a small decrease in
accuracy, while the integration given in Eq. (7) for leptonic decays has a much larger effect,
in particular for ℜ(F3).

Thus, an increase of the usable data set of hadronic decays would improve the accuracies
for F2/3. In this work, we discuss the inclusion of the multi-body final-state with the highest
branching fraction of 9.31% [2]: τ±→ π∓π±π±+ν. Since this decay mode can be combined
with all available decay modes of the opposite-sign τ, its inclusion would increase the number
of available purely hadronic events by a factor 1.57.
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Hadronic current model for tau decays

The spin-density matrices D±
λ±λ

′
±

used in Eq. (6) for the decays of the τ± are constructed via:

D±
λ±λ

′
±
= A±∗λ±

A±
λ′±

, (9)

where A±
λ±

is the amplitude for the decay of a τ± with helicity λ± into a particular final-state.
For τ− decays into hadronic final-states, this amplitude is given by:

A−λ−
∝ ūνγµ(1− γ5)uλ− Jµhad = `λ−µJµhad, (10)

where Jµhad is the hadronic current describing the hadronic dynamics of the decay. For decays
into a single π− or ρ− and an escaping ντ, the corresponding hadronic currents are given by:

Jµ
π−
∝ pµπ and Jµ

ρ−
∝ BWρ(p

2
ρ)

�

ηµν −
pµρpρν

p2
ρ

�

�

pνπ− − pν
π0

�

. (11)

BWρ(s) describes the dynamic amplitude of the intermediate ρ(770) resonance, subsequently
decaying into two pions. Since this only acts as a scalar factor in the hadronic current, it
cancels in the construction of the optimal observables defined in Eq. (14) and thus does not
affect the measurement of F2/3.

The formulation of the hadronic current in terms of final-state particle momenta for multi-
body final-states3 is not straightforward and requires modelling of the hadron dynamics. In
this work, we study the decay τ− → 3π± + ντ and model the hadronic current within the
isobar model, following previous analyses [4] and [6]. In the isobar model, the total hadronic
current is composed of several partial waves, which each corresponds to a particular set of
quantum numbers J PC for the three-pion system, which subsequently decays into a π− and
another known resonance finally decaying into π+ +π−, hereafter called the isobar.

Jµ3π =
∑

w∈{waves}

cw jµw. (12)

The complex-valued coefficients cw encode the strengths and relative phases of the individual
partial waves, while the partial-wave currents jµw encode their specific dependence on the
final-state four-momenta. A detailed formulation of the jµw can be found in Ref. [6]. Besides
the isobar model presented here, there are other models for Jµ3π, e.g. RχT models [7] also
commonly used.

Optimal observables

The tau lepton form factors F2/3(q2), which contain the here sought after physics observables
µτ and dτ only enter in the description of the spin density matrix for the τ± pair production
[see eq. (5)]. We may thus single out their effect on the intensity I by rewriting equation 6:

I = ISM +
∑

x∈{ℜ/ℑ(F2/3)}

x · Ix , (13)

3multi-body final states discussed here only contain three observed hadrons and do not refer to higher multi-
plicities making up ≈ 30% of multi-hadron decays. However, the question of hadronic models is also present in
the case of higher multiplicities.
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where ISM is the standard model intensity distribution and Ix are the specific intensity dis-
tributions corresponding the non-zero real and imaginary parts ℜ/ℑ(F2/3). Since the form
factors F2/3 are known to be small, quadratic terms in the form factors are neglected.

Each observable (form factors and thus the dipole moments) depends on specific relations
among the measurable quantities of the final state particles. Using this expansion, we can
define four optimal observables OOx , one for each of the four x ∈ {ℜ/ℑ(F2/3)}, being optimally
sensitive to the form factors [8]:

OOx =
Ix

ISM
. (14)

Using these observables, the form factors can be extracted via the expectation values of the
corresponding OOx obtained for a given data-set:

〈OOx〉= ax · x + bx , (15)

where the coefficients ax and bx are determined from simulations.

Studies using simulated data

We now study the impact of the hadronic model on the determination of F2/3 using the optimal
observables defined in Sec. 5. For this we construct a hadronic toy model consisting of the
following nine partial waves:

a1[ρπ]S a1[ρπ]D a1[ f2π]P
a1[σπ]P a1[ f0π]P π1[ρπ]P
π[σπ]S π[ f0π]S π[ρπ]P

(16)

where the naming scheme X [ξπ]L denotes a three-pion resonance X (the hadronic system)
decaying into an isobar ξ and a pion with relative orbital angular momentum L. The subse-
quent decay of the isobar ξ into two pions is implied and in turn described by a set of known
decay amplitudes. Each resonance X represents a set of quantum numbers J PC .

For the model, we used partial-wave coefficients cw loosely inspired by a partial-wave anal-
ysis of the three-pion final state in Ref. [9]. The dominant wave in this model is the a1[ρπ]S
wave, as is expected following previous analyses [4]. Using our toy model, we generated data
sets with 106 τ±-pair events, where the τ− decays into (3π± + ντ) according to the model
described above, while the τ+ decays into (π++ ν̄τ). In total, we generated four toy data sets,
where one of each of the four ℜ/ℑ(F2/3) takes the value of 0.01, while the other three values
remain 0.

In a first study, we analyze the pseudo data using the same hadronic model as used for
the simulation and extract the form-factors. We found no bias and an accuracy comparable to
the other hadronic decay modes (π− + ντ) and (ρ− + ντ) for the same number of events is
obtained. For 106 simulated events, we find:

δℜ(F2) = 0.0006; δℑ(F2) = 0.0007;
δℜ(F3) = 0.0009; δℑ(F3) = 0.0005,

(17)

In a second study, we analyzed the same simulated data sets but now using a simplified model
for the hadronic current, namely now only comprising the a1[ρπ]S wave. To quantify the
similarity of two hadroic models, we define the model overlap ωm,m′ of two models m and m′

for the hadronic current as the normalized product of the total hadronic currents Jµm, contracted
with the corresponding leptonic current `µ

λ−
and integrated over the full Lorentz invariant
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Table 2: ℜ(F2) extracted from a simulated data set with an input value of
ℜ(F2) = 0.01, analyzed with a single de-tuned partial wave. The statistical uncer-
tainties of all values shown are 0.0007.

De-tuned wave a1[ρπ]S a1[ρπ]D a1[ f2π]P a1[σπ]P a1[ f0π]P
ℜ(F2) 0.0178 0.0168 0.0144 0.0169 0.0143
De-tuned partial wave π1[ρπ]P π[σπ]S π[ f0π]S π[ρπ]P
ℜ(F2) 0.0147 0.0186 0.0162 0.0180

phase space (LIPS):4:

ωm,m′ =

�

�

�

�

∫

dLIPS
�

Jµm`λ−µ
�∗ �
`λ−νJνm′

�

�

�

�

�

�

�

Nm ·Nm′
�

, (18)

with the leptonic current `µ
λ−

defined in Eq. (10). The model-overlap of ωtrue,ana of the simpli-
fied model with the model used for simulation was 78%.

For this study, we also re-determined the coefficients ax and bx defined in Eq. (15) so
that they correspond to our simplified analysis model. Repeating our analysis with a wrong
hadronic model results in the following values for ℜ/ℑ(F2/3):

ℜ(F2) = 0.0529± 0.0008; ℑ(F2) = 0.0118± 0.0008;
ℜ(F3) = 0.0086± 0.0012; ℑ(F3) = 0.0079± 0.0005,

(19)

while the true value for these quantities is always 0.01. We find, that ℜ(F2) is largely over-
estimated, while the effect in ℑ(F2) is not very large. ℜ(F3) and ℑ(F3) suffer an under-
estimation, which, however, is less than for ℜ(F2). If the true value is set to 0, the bias in
ℜ(F2) persists, while we observe no bias for ℜ/ℑ(F3) in this case.

We now repeated this procedure with different de-tuned analysis models for every individ-
ual partial wave given in Eq. (16). For this, we scale up one individual partial wave coefficient
cw [see Eq. (12)] from the true model such, that the model overlap ωtrue,ana drops to 95%,
while keeping the remaining coefficients at their nominal values. Doing so, we find that the
values obtained for F3 and ℑ(F2) are consistent with the input values, regardless of the wave
scaled. Thus, the extraction of these three quantities appears to be rather robust with respect
to changes in the hadronic model.

In the case of ℜ(F2), we observe a significant bias due to the mismatch between generator
and analysis hadronic model. This bias depends on the individual partial wave that is scaled
in the particular study and is given in Tab. 2.

In a final study, we de-tuned the a1[ρπ]S-wave such that the model-overlapωtrue,ana = 99%.
In this case, we obtain:

ℜ(F2) = 0.0112± 0.0007; ℑ(F2) = 0.0102± 0.0007;
ℜ(F3) = 0.0097± 0.0009; ℑ(F3) = 0.0103± 0.0005.

(20)

Thus, we find that a proper model for the hadronic current Jµ3π alleviates possible bias in the
determination of ℑ(F2) and F3, while the bias in ℜ(F2) remains significantly larger than the
uncertainty, even for a model overlap very close to unity. Since ℜ(F2) is the only quantity that
alters the total cross-section (see Fig. 1), it might be advisable to neglect the spin-information
of the decays and only use the total τ±-pair production cross-section. Doing so, we find for
the same simulated data introduced above:

ℜ(F2) = 0.0108± 0.0015. (21)

4The overlaps are the same for λ− = ±1/2. The normalization factors Nm ensure ωm,m = 100%.
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Even though the accuracy for ℜ(F2) is worse by a factor of two, this result is independent of
a hadronic model and thus is not affected by model bias. Including only the spin-information
from the (π+ + ν̄τ) decay does not improve the accuracy given in Eq. (21). This is expected,
sinceℜ(F2) only affects the correlation of both τ± spins. However, the measurement of the to-
tal cross-section requires that all radiative corrections are known and is typically very difficult,
since it introduces new sources of systematic uncertainties.

Evaluating the distributions from Fig. 1 for each partial wave, we could not single out
particular waves being specifically more sensitive to the observation of EDM or MDMs than
others. The scheme of optimized variables would, however, take into account such possible
effects.

Conclusion

We studied the determination of the tauon form factors F2 and F3 using simulated (3π±+ντ)×
(π+ + ν̄τ) τ±-events. We find the 3π± hadronic final-state to give an accuracy on the form-
factors comparable to other hadronic channels, assuming the model for the hadronic current
Jµ3π to be perfect. Thus, this decay channel will help to significantly increase usable data for
purely hadronically decaying τ±-pair events. For a simulated data set of 106 events, we obtain
an accuracy for µτ and dτ of:

δℜ(µτ) = 3.46× 10−18ecm δℑ(µτ) = 3.58× 10−18ecm
δℜ(dτ) = 4.66× 10−18ecm δℑ(dτ) = 2.61× 10−18ecm.

(22)

However, the model for Jµ3π is not known a priori and all models currently used, e.g. the isobar
model or RχT models [4,6,7], are based on assumptions, a perfect hadronic model is currently
not available. Thus, we extended our study to hadronic models for Jµ3π that differ from the
true model and found a small bias in the extraction of F3 and ℑ(F2), while ℜ(F2) is heavily
over-estimated.

The observed bias results in an under-estimation ofℜ/ℑ(F3), which in turn vanishes as the
analysis model approached the true model. The bias in ℜ(F2), however, remains significant
even at a model overlapωtrue,ana = 99% and thus seems to prohibit the use of the 3π± channel
in a determination of ℜ(F2). However, since ℜ(F2) alters the total τ± pair production cross-
section, we may ignore spin effects for such final states and still determine ℜ(F2). Ignoring
spin-correlations decreases the accuracy by a factor of two, but removes the strong model-
dependence.

Finally, we stress that a good knowledge of the hadron dynamics of multi-particle τ± decays
is prerogative for their inclusion in precision measurements like F2/3(q2). A simple approxima-
tion of the hadronic current by the dominating a1→ [ρπ]S contribution does not suffice, since
according to current knowledge it only describes around 70% of the τ→ 3π+ν intensity [4].
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