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Abstract

Lattice determinations of the Standard Model expectation for the leading order hadronic
vacuum polarization contribution to the anomalous magnetic moment of the muon are
now sufficiently precise that further progress requires the inclusion of contributions
from strong and electromagnetic isospin-breaking effects. We provide a continuum,
SU(3) chiral perturbation theory based estimate of the former, using flavor-breaking
hadronic τ decay sum rules to determine a crucial input higher-order low-energy con-
stant. Implications of the form of this result are also discussed.
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1 Introduction

The 3− 4σ discrepancy between the BNL E989 result [1–3] and Standard Model (SM) ex-
pectation for aµ, the anomalous magnetic moment of the muon, has been the subject of much
ongoing attention. Interest in this discrepancy was increased further by the release of the
FNAL E989 result [4] which produces a new world average > 4σ from the SM expectation. 1

1For a detailed review of the current experimental and theoretical situation, see Ref. [5].
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Uncertainties in the determinations of hadronic contributions (in particular the leading-
order hadronic-vacuum-polarization (LO HVP) and hadronic light-by-light contributions) cur-
rently dominate the uncertainty on the SM expectation. This paper focuses on the LO HVP
contribution, aLO,HV P

µ , and ongoing attempts to reduce the uncertainty on this quantity.
There are currently two approaches to determining aLO,HV P

µ in the SM, one “dispersive”,
based on experimental e+e−→ hadrons cross-sections, and one employing the lattice.

In the dispersive approach, aLO,HV P
µ is obtained as a weighted integral over the inclu-

sive hadro-production cross-section ratio R(s). The weight in question is exactly known and
decreases monotonically with hadronic invariant squared mass, s, strongly emphasizing the
low-s region, with ∼ 73% of the full contributions coming from the ππ exclusive mode.
A current practical complication is the long-standing discrepancy between BaBar [6, 7] and
KLOE [8] results for the e+e− → π+π− cross sections, which subsequent determinations by
CMD2 [9–11], BESIII [12], CLEO-c [13] and SND [14] have so far failed to resolve.

In the lattice approach, an alternate representation of aLO,HV P
µ , as a weighted integral

with respect to Q2 = −s, with exactly known weight, of the Q2 = 0-subtracted version,
Π̂EM (Q2) = ΠEM (Q2)−ΠEM (0), of the vacuum polarization of the electromagnetic (EM) cur-
rent two-point function, ΠµνEM (Q) [15, 16]. Since ΠµνEM (Q) can be measured on the lattice,
lattice determinations of Π̂EM (Q2), and hence aLO,HV P

µ are also possible [17]. Progress on
this approach has been rapid, with recent updates from all of BMW [18,19], ETMC [20–22],
RBC/UKQCD [23–25], FNAL/HPQCD/MILC [26, 27], Mainz [28], PACS [29] and Aubin et
al. [30]. The current best lattice result, from BMW [19], has a precision of 0.8%. Further
improved, sub-% precision determinations are expected from various lattice groups in the
near future. At sub-% precision, evaluations of strong and EM isospin-breaking (IB) contri-
butions are mandatory. These receive both quark-line-connected and quark-line-disconnected
contributions. The latter are considerably more numerically challenging on the lattice.

This paper focuses on aSIB
µ , the strong IB (SIB) contribution to aLO,HV P

µ . A number of
lattice results exist for the connected part [19, 21, 23, 25, 26], but only one, from BMW [19],
for the disconnected part. The BMW results show a strong cancellation between connected
and disconnected contributions, as anticipated from the partially quenched chiral perturba-
tion theory study of the ππ contributions reported in Ref. [25].This cancellation, and the
numerical effort involved in evaluating disconnected contributions, motivate looking for an
alternate continuum determination. This paper provides such a determination, using the Eu-
clidean integral representation of aLO,HV P

µ and the SU(3) chiral perturbation theory (ChPT)
representation of the SIB contribution to Π̂EM (Q2). Sec. 2 provides relevant background and
notation, and Sec. 3 details of the required ChPT representation and our final result.

2 Background and notation

With J a
µ = q̄λ

a

2
γµq the flavor octet of light-quark vector currents, the light-quark (u, d, s) part

of the EM current, J EM
µ , has the standard decomposition into I = 1 and 0 (a = 3 and 8) parts,

J EM
µ = V 3

µ+V 8
µ /sqr t3. The subtracted EM vacuum polarization has the related decomposition,

Π̂EM (Q
2) = Π̂33(Q2) +

2
p

3
Π̂38(Q2) +

1

3
Π̂88(Q2) (1)

into pure isovector (ab = 33), pure isoscalar (ab = 88), and mixed isospin (ab = 38) parts.
SIB is induced by the I = 1, O(md − mu) part of the QCD mass operator, and hence, to
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O(md −mu), occurs only in the 38 part of Π̂EM . The SIB contribution to Π̂EM (Q2) is thus

Π̂SIB(Q2) =
2
p

3
Π̂38

QC D(Q
2) . (2)

The QC D subscript, which denotes the O(md −mu) QCD contribution, will be dropped below.
In the weighted Euclidean integral formulation of Refs. [15,16],

aLO,HV P
µ = −4α2

∫ ∞

0

dQ2 f (Q2)Π̂EM (Q
2) , (3)

with α the EM fine structure constant and f (Q2) an exactly known kernel. Replacing Π̂EM (Q2)
by Π̂SIB(Q2) on the RHS of Eq. (3) produces the analogous representation of aSIB

µ . For use in
what follows, we also define the auxiliary quantity

aSIB
µ [Q

2
max]≡ −4α2

∫ Q2
max

0

dQ2 f (Q2)Π̂SIB(Q2) . (4)

and the analogous auxiliary quantity aLO,HV P
µ [Q2

max]. f (Q2) diverges as 1/
p

Q2 as Q2→ 0 and
falls rapidly with increasing Q2, creating a peak in the integrand of the integral for aLO,HV P

µ

at very low Q2 ' m2
µ/4 – so low that Π̂EM (Q2) is very well approximated as linear in Q2 in

the region up to and including the peak. The Q2 dependence of f (Q2) is thus such that the
location of the peak is essentially just that of the peak in the product Q2 f (Q2). This will, for
the same reason, be true of the location of the peak in the integrand for aSIB

µ . This raises the
possibility that aSIB

µ might be estimated using the ChPT representation of ΠSIB(Q2).
The convergence of aLO,HV P

µ [Q2
max] to aLO,HV P

µ with increasing Q2
max was investigated for

the dominant I = 1 contribution using a highly physical dispersive model for Π̂33(Q2) con-
structed from precision non-strange τ decay data in Refs. [32,33]. ∼ 82%, ∼ 92% and ∼ 94%
of the full contribution was found to arise from the regions Q2 < 0.10 GeV 2, Q2 < 0.2 GeV 2

and Q2 < 0.25 GeV 2 ' m2
K , respectively. For reasons discussed in detail in Sec. IIB of

Ref. [31], we expect a similarly rapid approach to the Q2
max → ∞ limit for aSIB

µ . With the
region 0 < Q2 < 025 GeV 2 ' m2

K plausibly in the range of validity of SU(3)F ChPT, a de-
termination of aSIB

µ [0.25 GeV 2] obtained using ChPT for Π̂SIB(Q2) is thus expected to miss
only ∼ 6% of the total contribution to aSIB

µ , provided the ChPT representation employed is
accurate in this integration region.

The dispersive model of Refs. [32,33]was also employed to explore the accuracy of the use
of ChPT in the low-Q2 region for the analogous I = 1 (33) contribution to aLO,HV P

µ . Using the
next-to-next-to-leading-order (NNLO) form so that important ρ-region spectral contributions
first encoded in the NNLO low-energy constant, C93, are included, one finds an estimate for
a33
µ [0.25 GeV 2] which overshoots the Q2

max = 0.25 GeV 2-truncated dispersive model result
by ∼ 4.8% and is only ∼ 1.5% below the full Q2

max →∞model result. The 4.8% overshooting
is a result of the NNLO form missing small yet-higher-order contributions of the ρ peak to
the curvature of Π̂EM (Q2) with respect to Q2, and naturally works in the opposite direction to
the undershooting produced by truncating the integral at Q2

max = 0.25 GeV 2. A qualitatively
similar cancellation of chiral-order-truncation and Q2

max ' 0.25 GeV 2 truncation effects is
expected for the SIB case [31]. We will thus take the ChPT-based result for aSIB

µ [0.25 GeV 2] as
our estimate for aSIB

µ , and assign what should be a conservative 10% error for the uncertainty
produced by the combination of the truncation in chiral order and truncation of the integral
for aSIB

µ at Q2
max = 0.25 GeV 2.

3



SciPost Physics Submission

3 Results

The NNLO representation of Π38, worked out in Ref. [36], implies

Π̂SIB(Q2) =
1

2

�

m2
K0 −m2

K+
�

QC D

�

2iB̄(m̄2
K ,Q2)

Q2 −
1

48π2m̄2
K

+

8iB̄(m̄2
K ,Q2)

f 2
π

 

i

2
B̄21(m

2
π,Q2) + iB̄21(m̄

2
K ,Q2) +

log
�

m2
πm̄4

K/µ
6
�

384π2 − Lr
9(µ)

!

�

, (5)

where (m2
K0 − m2

K+)QC D is the non-EM contribution to the kaon mass-squared splitting, m̄2
K

is the non-EM part of the average kaon squared mass, fπ ' 92 MeV is the pion decay con-
stant, Lr

9 is the usual renormalized NLO LEC of Gasser and Leutwyler [35], µ is the chiral
renormalization scale. B̄(m2,Q2) and B̄21(m2,Q2) are standard subtracted, equal-mass, two-
propagator loop functions, whose explicit forms are given in Ref. [31]. The first and second
lines of Eq. (5) contain the sums of NLO and NNLO contributions, respectively.

In what follows, we take Lr
9(µ = 0.77 GeV ) = 0.00593(43) from Ref. [37], and evaluate

(m2
K0−m2

K+)QC D using the FLAG 2019 result [38], 0.79(7), for the parameter, εD, which char-
acterizes the breaking of Dashen’s theorem [39]. As is well known, there is an O(α(md+mu))
ambiguity in the separation of strong and EM effects. 2. Our SIB result corresponds to the
FLAG choice of separation scheme and can be directly compared to lattice SIB results in the
literature. With the above input, we find, to NNLO, the contributions

h

aSIB
µ (0.25 GeV 2)

i

N LO
= 0.073× 10−10

h

aSIB
µ (0.25 GeV 2)

i

NN LO
= 0.552(37)× 10−10 . (6)

The absence of an NLO pion loop contribution and smallness of the integrated NLO contribu-
tion reflects the exact NLO-level cancellation between connected and disconnected contribu-
tions from ππ intermediate states noted in Ref. [25].

The sum of the NLO and NNLO contributions in Eqs. (6), 0.625(37)× 10−10, is consid-
erably smaller than estimates of the contribution from the ρ-ω interference region obtained
by integrating the IB part of the ππ cross section obtained from fits to those cross-sections.
This is no surprise, since the effects of resonances, integrated out in forming the effective chi-
ral Lagrangian, show up first in the chiral expansion of Π̂SIB(Q2) as tree-level contributions
proportional to Q2 and one factor of (md − mu). Since two further momentum factors are
required in the relevant effective operator to produce the transverse kinematic tensor factor
in the SIB two-point function ΠSIB

µν (Q), such an effective operator will involve four derivatives
and one power of the quark mass matrix, and hence be NNNLO in the chiral counting. To in-
corporate numerically relevant ρ-ω interference (and higher) region contributions, one must
thus include also tree-level NNNLO contributions.

Fortunately, (i) such tree-level NNNLO contributions involve only a single NNLO LEC com-
bination (associated with NNNLO operators number 944 and 945 in the basis of Ref. [40]),
and (ii) this same combination also determines the only NNNLO tree-level contribution to
the ChPT representation of the flavor-breaking (FB) difference of non-strange (flavor ud) and
strange (flavor us) vector current polarizations, the spectral functions of which can be ex-
tracted from inclusive differential hadronic τ decay distributions [41]. The relevant NNNLO
LEC combination, denoted δC (1)93 in Ref. [34], can thus be determined by an inverse-moment
finite-energy sum rule (IMFESR) analysis of hadronic τ decay data. This was done initially,
with older input, in Ref. [34]. We have rerun this analysis, employing updated information on

2See, e.g., Secs. 3.1.1 and 3.1.2 of the 2019 FLAG report [38] for a discussion.
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exclusive-mode strange τ branching fractions [42], updated OPE input [38, 44, 45], and the
recently updated version of the I = 1, vector spectral function detailed in Ref. [43]. Further
detail is provided in Ref. [31]. The updated IMFESR analysis produces an updated result for
the slope of the FB polarization combination with respect to Q2 at Q2 = 0, which in turn,
assuming the NNNLO tree-level term dominates contributions beyond NNLO, produces the
updated result

δC (1)93

�

m2
K −m2

π

�

= 0.00534(37) GeV−2 , (7)

to which we assign a 30% uncertainty to reflect possible yet-higher-chiral-order corrections.
The corresponding tree-level NNNLO contribution to Π̂SIB(Q2),

�

Π̂SIB(Q2)
�

NNN LO,LEC
=−

8

3
Q2
�

m2
K0 −m2

K+
�

QC D
δC (1)93 , (8)

produces an additional contribution to aSIB
µ of

h

aSIB
µ

i

NNN LO
'
h

aSIB
µ (0.25 GeV 2)

i

NNN LO
= 2.69(18)× 10−10 . (9)

As expected, since it encodes numerically important resonance region contributions, this is
significantly larger than the sum of NLO and NNLO contributions. It is also similar in size to
phenomenological fit based estimates of contributions from the ππ ρ-ω interference region,
but has the advantage over such estimates of including all contributions, from this and other
regions, up to the order considered in the chiral expansion.

0 0.1 0.2 0.3
Q

2
 [GeV

2
]

-1.0×10
-4

-5.0×10
-5

0.0

C
on

tr
ib

ut
io

ns
 to

 Π
38

(Q
2 )

NLO
NNLO
NNNLO LEC

0 0.1 0.2 0.3
Q

2

max
 [GeV

2
]

0

1

2

3

4

a µSI
B
(Q

2 m
ax

) 
x 

10
10

NLO
NNLO
NNNLO LEC
SUM

Figure 1: Left panel: NLO, NNLO and NNNLO LEC contributions to Π̂38(Q2), with
errors as described in the text. Right panel: The Q2

max dependence of the NLO,
NNLO and NNNLO LEC contributions and NLO+NNLO+NNNLO LEC sum to aSIB

µ as
a function of Q2

max , with error (as described in the text) shown only on the sum.

In the left panel of Fig. 1, we display the Q2 dependence of the NLO, NNLO and NNNLO
LEC contributions to Π̂38(Q2). It is relevant to note that, though the loop functions which
determine the NLO and NNLO contributions are not strictly linear in Q2, they are numerically
very close to being so in the region of Q2 of interest to the determination of aSIB

µ . Adding the
NLO, NNLO and NNNLO LEC contributions, we obtain as our final estimate for aSIB

µ ,

aSIB
µ = 3.32(4)(19)(33)(81)× 10−10 , (10)

where the first error results from the uncertainty on the input for Lr
9, the second from the un-

certainty on δC (1)93 quoted in Eq. (7) (dominated by uncertainties in the experimental strange
hadronic τ decay distributions), the third from our 10% estimate for the combined uncer-
tainty associated with the truncation of the integral for aSIB

µ at Q2
max = 0.25 GeV 2 and neglect

of contributions beyond NNLO to the curvature of Π̂SIB(Q2) with respect to Q2, and the fourth
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from our 30% estimate for the uncertainty in δC (1)93 induced by possible higher-chiral-order
contributions to the slope of the FB polarization at Q2 = 0 obtained from the updated version
of the FB IMFESR analysis of Ref. [34].

The central values of the NLO, NNLO and NNNLO LEC contributions to aSIB
µ [Q

2
max], to-

gether with the corresponding NLO+NNLO+NNNLO LEC sum, are shown as a function of
Q2

max in the right panel of Fig. 1. The error band on the total, which shows the quadrature
sum of the LEC-uncertainty-induced NNLO and NNNLO LEC errors plotted in left panel, is
dominated by the fourth of the uncertainties detailed above.

4 Conclusion

We have obtained a continuum, ChPT-based estimate of aSIB
µ , the SIB contribution to the

anomalous magnetic moment of the muon. A key ingredient in this analysis is the determi-
nation of the crucial NNNLO LEC, δC (1)93 , from an FB IMFESR analysis of hadronic τ decay
data. Our result, aSIB

µ = 3.32(90)× 10−10, agrees within errors with the only full lattice re-
sult, 1.93(1.20)×10−10, obtained by summing the connected and disconnected contributions
reported in Ref. [19]. The dominance of our result by the contribution of the NNNLO LEC
δC (1)93 makes clear that, as for aLO,HV P

µ , aSIB
µ is dominated by resonance region contributions.

As such, we expect small (few to several percent) finite volume (FV) effects on the lattice for
the full connected+disconnected SIB sum. While FV effects for aLO,HV P

µ at this level are not
negligible on the scale of the current target aµ precision, they are completely negligible, on
this same precision scale, for the much smaller aSIB

µ contribution. This is true only for the
connected+disconnected SIB sum and not for the separate connected and disconnected parts,
where significant FV effects have, e.g., been observed for the separate connected contribution.

Finally, given the dominance of the result for aSIB
µ by the NNNLO contribution proportional

to δC (1)93 , and the linear-in-Q2 behavior of this contribution, it would be of interest for future
lattice studies to quote results for dΠ̂SIB(Q2)/dQ2 at Q2 = 0, a result which can be otained
from the t4 time moment of the lattice two-point function at zero spatial momentum [46].

Funding information KM and RL are supported by grants from the Natural Sciences and
Engineering Research Council of Canada.
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