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Abstract

We present aspects of a gravitational theory that interpolates between JT gravity, and a gravity

theory with a fixed boundary Hamiltonian. For this, we consider a matrix integral with the insertion

of a Gaussian with variance σ2, centered around a matrix H0. Tightening the Gaussian renders the

matrix integral less random, and ultimately it collapses the ensemble to one Hamiltonian H0. This

model provides a concrete setup to study factorization, and what the gravity dual of a single member

of the ensemble is. Perturbatively around infinite σ we find that the JT gravity dilaton potential is

modified, and ultimately the gravity theory goes through a series of phase transitions, corresponding

to a proliferation of extra macroscopic holes in the spacetime. A good gravitational description at

small values of σ remains elusive. Furthermore, we observe that in the Efetov model approach to

random matrices, the non-averaged factorizing theory is described by one simple saddle point.
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1 Introduction

The conventional AdS/CFT correspondence dictates that one single conformal field theory is dual to a

single string theory in anti-de Sitter spacetime [1, 2]. A prime example of the correspondence involved

N “ 4 super Yang-Mills theory in four dimensions on the boundary side and superstring (field) theory

on AdS5 ˆS
5 on the bulk side, but there are also examples in other dimensions [2–4]. By now, however,

there are also examples in low dimensions where a single bulk theory is not dual to one single boundary

theory, but to an ensemble of theories [5–28]. The most notable, is the duality between JT gravity in

two dimensions and a certain random matrix ensemble [5].

In recent years, it has been a puzzle how to reconcile these two seemingly different incarnations of

the AdS/CFT correspondence. In particular, what the role of averaging is, and what the bulk dual of a

single member of the ensemble is. It is important to emphasize that the older examples of AdS/CFT are

derived from string theory and, in principle, those examples are UV complete; unlike theories like JT

gravity, which are not, but see for instance [29] for a recent attempt to embed JT in string theory. We

also want to mention the recent works [30–32] for a fascinating and extremely concrete example within

AdS3/CFT2, where some of these questions were addressed. Note as well that in higher dimensions,

there are only a few marginal and relevant couplings one could imagine averaging over, if one wants to.

One way of thinking about this puzzle, is that the averaging is just a reflection of the ignorance of

UV physics, and in particular JT gravity can only be used to compute self-averaging quantities reliably.

Another, compatible, perspective is that when one considers a UV complete theory of quantum gravity,

the UV details of the theory, such as branes, strings, higher-spin fields etcetera, get encoded in specific

couplings of the effective low energy bulk description. For example this could result in JT gravity with

many specific couplings turned on.

The idea would be that this second type of theory is a more realistic toy model of quantum gravity,

analogous to selecting one member of the ensemble. In the present paper we investigate in more detail

what such a theory would look like. In other words we focus on the question, what is the gravity dual

of one single member of the ensemble?

To make progress on that question we consider a deformation of random matrix ensembles (with

a known gravitational interpretation) and insert a Gaussian with variance σ centered around a target

Hamiltonian H0. Upon tightening the Gaussian, the matrix integral localizes around H0, and at σ “ 0

we have picked out H0 from the matrix ensemble. By an appropriate double scaling of this theory, we

study the effects of the insertion of such a Gaussian on JT gravity.
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1.1 Less random matrices

More concretely, the matrix model we consider is,1

Zpσ,H0q “

ˆ
dH exp

ˆ

´LTrV pHq ´
L

2σ2
TrpH0 ´Hq

2

˙

. (1.1)

This integral interpolates between the original matrix ensemble at σ “ 8

Zp8,H0q “

ˆ
dH exp

ˆ

´ LTrV pHq

˙

, (1.2)

and the system with Hamiltonian H0 - which will be referred to as the target Hamiltonian - when σ “ 0

Zp0,H0q “

ˆ
dH δpH ´ H0q exp

ˆ

´ LTrV pHq

˙

. (1.3)

This follows since appropriately normalized tight Gaussians are distributionally identical to Dirac deltas,

lim
σÑ0

ˆ

L

2πσ2

˙LpL`1q{4

exp

ˆ

´
L

2σ2
TrpH ´ H0q

2

˙

“ δpH ´ H0q . (1.4)

Morally, the point is that random matrices are less random when their potential is very sharply peaked

around some target H0 eigenvalues; the uncertainly on the position of the random eigenvalues is strongly

reduced, because a strong external force is attracting them to the target H0 eigenvalues.

Expanding out (1.1), and dropping an overall constant that cancels in all observables, one obtains,

Zpσ,H0q “

ˆ
dH exp

ˆ

´LTr

ˆ

V pHq `
1

2σ2
H2

˙

´
L

σ2
TrpH0Hq

˙

. (1.5)

This is just a matrix integral with potential V pHq`H2{2σ2 coupled to an external field H0, which has

been studied extensively in the literature [33–51].

The question now is, what is the two dimensional quantum gravity of these models? Famously,

minimal string theories are obtained by double scaling finite dimensional matrix integrals near the

spectral edge E0 of the leading order density of states [52–54] - the double scaling procedure involves

sending E0 to infinity and simultaneously sending L to infinity in such a way that the spectral density

near the edge, remains finite.2 JT gravity can be obtained as a further pÑ8 limit of the p2, pq minimal

strings [5, 56–59], and concordantly is also a double scaled matrix integral [5].

Except for providing a remarkably complete matching between all genus amplitudes – not previously

achieved for minimal strings, due to a lack of precise formulas for conformal blocks – perhaps the most

1 Note that we can multiply this with arbitrary overall normalization constants whenever we see fit, these cancel out in
all observables.
2 Equivalently, in the older matrix model literature one would send L Ñ 8 and tuning simultaneously to the critical

point of the matrix model [55].
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important insight in [5] was the realization that the random matrix H should literally be interpreted as

the Hamiltonian of the boundary dual to JT dilaton gravity. This invites to instead view the minimal

string theories as bona fide theories of 2d quantum gravity, interpreting the worldsheets as spacetimes.

Remarkably they too can be rewritten as dilaton gravities, and the random matrix again gains physical

significance as the random Hamiltonian [56,57]; not just an abstract field in a nonperturbative definition

of quantum gravity.

This gives immediate gravitational motivation for considering our model (1.1). Our goal is to

understand this theory (1.1) for finite values of σ, and follow as much as possible how it transitions

from random to non-random.

1.2 Summary, structure and main lessons

The summary and structure of the rest of the paper is as follows.

We start by investigating the simplest possible example, the finite dimensional Gaussian matrix

integral. By using techniques of [36, 37, 40] we can exactly compute the spectrum, and spectral corre-

lation, for any value of σ. It is satisfying to visually see this theory transition from completely random

to entirely non-random, as summarized in Fig. 2 and Fig. 3.

Ultimately we are interested in continuum gravity, so we try to extract geometric lessons from these

exact manipulations. Our main observations are the following:

1. The wormhole geometry in the completely averaged theory σ “ 8, approaches diagonal delta

functions near the completely fixed theory σ “ 0, as factorization requires. This resonates well

with earlier discussions about how gravitational systems could factorize [11, 12, 60], see section

2.2.

2. Nonperturbative effects in matrix integrals are best captured via another, dual matrix integral

known as the Efetov model [61,62]. It has an interesting saddle point structure that for example

explains the plateau via the Andreev-Altshuler instanton [62, 63]. There are new saddle points

for finite σ. These are one to one with solutions of the spectral curve equation

y “
4E

a2
´

4

La2

L
ÿ

i“1

1

y ´ xi{σ2
,

2

a2
“

2

b2
`

1

2σ2
, (1.6)

for the Gaussian model with an external field (2.1) [47]. Here xi are the eigenvalues of the target

Hamiltonian H0. The gravitational interpretation of these new saddles involves D-branes, much

like the interpretation of the Andreev-Altshuler saddle itself; this is an invitation to universe field

theory [18], where D-brane effects have natural gravity interpretations. Notably, one universal

saddle point S “ 0 governs the non-random theory at σ “ 0. See section 2.3.

3. At small σ the matrix integrals develops L narrow cuts with only one eigenvalue in each of them,
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on average. Zooming in on a tight semicircle, there still is random matrix universality, however

there are deserts between these tiny cuts where the spectrum and spectral correlations essentially

vanish. The theory becomes less-random because of these deserts. See section 2.3.

4. We find a dispersion relation for each observable, expressing the completely fixed theory for

σ “ 0 as the completely random theory at σ “ 8, plus non-self averaging contributions associated

with other poles in the complex σ plane. This explains how the averaged geometry is always

contained in the non-averaged theory. This is analogous to [60], especially when applying this to

the Efetov model. This model can be thought of as the GΣ theory of SYK but now for matrix

integrals. See section 2.4. The gravitational interpretation of the other poles remains largely

unclear, see section 6.

5. By studying the ribbons graphs, one observes a tendency for huge holes to form when σ becomes

small, see section 2.5. In gravity this is the tearing of spacetime observed in [64], see section 4.

Next we are interested in investigating how the JT dilaton gravity path integral changes upon tuning

the Hamiltonians from random matrices (1.2) to non-random matrices (1.3). The endgame is capturing

what gravitational systems with a single boundary dual might look like and which new ingredients can

appear. Therefore we will study (1.1) in the double scaling limit focusing on three regimes. We obtain

the following main results (see also Fig. 1):

1. For large σ, the external matrix H0 results in a deformation of the JT gravity dilaton potential

of the type discussed in [65,66], and applied later for example in [57,67,68]

I “ ´
1

2

ˆ
d2x

?
g rΦ pR` 2q ` 2UpΦ, σ,H0qs . (1.7)

The explicit expression for the dilaton potential as function of σ and the eigenvalues of the target

Hamiltonian H0 is presented in (3.39). This can be viewed as JT gravity with many local operators

inserted. The take away is there are perfectly sensible theories of dilaton gravity which are slightly

less random than JT gravity, see section 3.

2. We investigate how the system transitions from large to small σ, and find that a phase transition

in the matrix integral occurs, structurally similar to the one discussed in [64]. On the far side of

the transition, the spacetimes are utterly destroyed by the proliferation of huge holes, we call this

the tearing phase of gravity, following [64], see section 4.

3. We explain that fixing the whole Hamiltonian H is overkill if one is interested only in factorization

[5, 8, 10–12]. Instead, one could keep most of the eigenvalues of H random, and only gradually

fix some eigenvalues of H towards eigenvalues of H0, by tuning σ. In such a scenario, one treats

most of the target Hamiltonian H0 as random, resulting in a two-matrix integral [69–73], and one

5



Figure 1: Phase diagram of the matrix integral (1.1) and its gravitational interpretation as a function of
σ. On the far right (blue region), we have σ “ 8 and our matrix model is that for JT gravity. We also
added the saddle for the Efetov sigma model in the Gaussian model at σ “ 8. As we move away from
σ “ 8 we enter in the orange region, where the matrix model is deformed by (ghost) brane insertions that
are labelled by the eigenvalues xi of the target Hamiltonian H0 (the different shades of orange on the small
boundaries is supposed to represent that). The spectral density is given as well in this region with αk given
in 3.31. As σ is decreased further in the orange region the model goes through a series of tearing phase
transitions [64], which is manifested geometrically by very large boundaries ending on the brane. Decreasing
σ further results in the breakdown of various approximations we had made in section 3 and the model seems
to enter a branched polymer phase, see section 6. At σ “ 0 the theory is completely fixed to H “ H0.
Remarkably, the Efetov model localizes on one universal saddle S “ 0 in this regime.

fixes some eigenvalues of H0 to x1 . . . xn by considering the partition function

Zpσ, x1 . . . xnq “

ˆ
dH

ˆ
dH0 Tr δpH0 ´ x1q . . .Tr δpH0 ´ xnq

exp

ˆ

´LTrV pHq ´
L

2σ2
TrpH0 ´Hq

2

˙

. (1.8)

Integrating out the matrix H0 and working at small σ, this results to leading order in eigen-

branes for the matrix H [11], but with a Gaussian smearing that is reminiscent of the Gaussian

peaks in the finite dimensional matrix integral of section 2. Each of the eigenbranes represents a

macroscopic hole in spacetime. Subleading corrections involve ever more macroscopic boundaries,

surprisingly. See section 5.

We close off in section 6 with a discussion on lessons for higher-dimensions, the gray region in Fig.

1, and present open questions.
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2 Gaussian matrix integral

The Gaussian matrix integral coupled to an external matrix H0 is given by (1.5)

Zpσ,H0q “

ˆ
dH exp

ˆ

´
2L

a2
Tr
`

H2
˘

`
L

σ2
TrpH0Hq

˙

,
2

a2
“

2

b2
`

1

2σ2
. (2.1)

Here b indicates the edge of the spectrum at large L for the undeformed theory [62,74], this gets shifted

due to the Gaussian deformation. We introduced 2{a2 to compactify some formulas down the road.

We would like to compute the spectrum of this theory

ρpEq “ Tr δpE ´Hq , (2.2)

and moments of the spectrum, like the spectral correlation ρpE1qρpE2q, which measures the correlation

between different eigenvalues of H. We achieve this by first computing the real-time partition

Zpitq “ Tr
`

eitH
˘

, (2.3)

or, more particularly, the ensemble average xZpitqy with the probability distribution given in (2.1); and

then Fourier transforming to obtain spectral correlators, for example:

xρpEqy “ xTr δpE ´Hqy “

ˆ `8

´8

dt

2π
e´iEt xZpitqy . (2.4)

One novelty is that the term TrpH0Hq breaks the UpLq invariance of standard matrix integrals.

When we go to an eigenvalue basis for the random Hamiltonians

H “ U ΛU : , Λ “ diagpλ1, . . . , λLq , (2.5)

the integral over Haar random unitaries U does not decouple, and we need to explicitly compute that

integral too. Here we are interested in computing expectations values of only UpLq invariant observables

like (2.2) or (2.3). In these cases, fortunately, the unitary integral can be done exactly using a beautiful

result by Harish-Chandra and - decades later - by physicists Itzykson and Zuber [75,76].

To see how this works, let’s consider some generic UpLq invariant observable F pHq. Diagonalizing

H, and including the Jacobian [74] this becomes

xF pHqy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L

a2

L
ÿ

i“1

λ2
i

¸

∆pλq2F pλq

ˆ
dU exp

ˆ

L

σ2
Tr
`

H0 U ΛU :
˘

˙

, (2.6)
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which features the famous Vandermonde determinant

∆pλq “
L
ź

iăj

pλi ´ λjq . (2.7)

The unitary integral is the sole modification to the matrix model as compared to the undeformed case.

This can be computed using the Harich-Chandra formula [75,76]

ˆ
dU exp

ˆ

L

σ2
Tr
`

H0 U ΛU :
˘

˙

“

ˆ

σ2

L

˙LpL´1q{2 L´1
ź

n“1

n!
1

∆pxq∆pλq
det

ˆ

exp

ˆ

L

σ2
xiλj

˙˙

. (2.8)

Here xi are the eigenvalues of H0. Using more modern techniques one derives this by noticing that this

unitary group integral is one-loop exact and the Duistermaat-Heckman theorem applies [77,78].

Extracting the constant prefactor from the partition function (2.1) and using the symmetries of the

integrand under exchanging eigenvalues, one obtains

xF pHqy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L

a2

L
ÿ

i“1

λ2
i `

L

σ2

L
ÿ

i“1

xiλi

¸

∆pλq

∆pxq
F pλq . (2.9)

The effect of the deformation is thus to change the potential for the eigenvalues in two ways, first by the

explicit term in the exponential, coupling the eigenvalues of H to those of H0, and second by replacing

∆pλq2 with ∆pλq{∆pxq. Despite appearances perhaps, there is still quadratic level repulsion [62,74] in

this ensemble; the cluster function T pE1, E2q retains a quadratic maximum, see Fig. 3.

Notice that this trivially extends to other potentials V pHq instead of the quadratic Gaussian.

Now we only need to work out the eigenvalue integral. In the Gaussian case this is straightforward,

but nevertheless gives a lot of insight into what changes the coupling to the external matrix H0 causes.

One major change is that the spectral density should interpolate between a sum of delta functions and

the semi-circle. Another important change is that as σ becomes small, spectral correlation becomes

smaller. To show this, we now compute the spectral density and spectral correlation. See also [36,40].

2.1 Spectrum

As announced we first compute the real-time partition function, which from (2.9) becomes

xZpitqy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L

a2

L
ÿ

i“1

λ2
i `

L

σ2

L
ÿ

i“1

xiλi

¸

∆pλq

∆pxq

L
ÿ

j“1

eitλj . (2.10)

The integral over the eigenvalues λi can be done explicitly using the result

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L

a2

L
ÿ

i“1

λ2
i ` L

L
ÿ

i“1

qiλi

¸

∆pλq 9 exp

˜

La2

8

L
ÿ

i“1

q2
i

¸

∆pqq . (2.11)
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The normalization constant drops out, when we do the same integral for the denominator of (2.10). In

our calculation qi “ xi{σ
2` itδij{L, so that the ratio of Vandermonde determinants ∆pqq{∆pxq becomes

∆pqq

∆pxq
9

L
ź

iăk

xi ´ xk ` itσ2δij{L´ itσ2δkj{L

xi ´ xk
“

L
ź

p‰j

ˆ

1`
itσ2{L

xp ´ xj

˙

. (2.12)

The terms in the first product are one except when i “ j or k “ j. Combining everything, including a

similar integral for the denominator of (2.10), one finds

xZpitqy “
L
ÿ

j“1

exp

ˆ

itxj
a2

4σ2
´ t2

a2

8L

˙ L
ź

i‰j

ˆ

1`
itσ2{L

xi ´ xj

˙

, (2.13)

As consistency check, the normalization works out because xZp0qy “ L.

This looks rather unpleasant for manipulations, due to the sum and product. This improves when

exchanging the sum over j for a contour integral around all eigenvalues xj of H0

xZpitqy “
L

itσ2

˛
H0

du

2πi

L
ź

i“1

ˆ

1`
itσ2{L

u´ xi

˙

exp

ˆ

´
σ2

2L
t2

1

1` 4σ2{b2
` itu

1

1` 4σ2{b2

˙

, (2.14)

where the subscript H0 on the contour integral indicates the collection of small contours around each

eigenvalue xi of H0. Each pole generates one term in the sum. The spectral density is then the Fourier

transform of (2.14)

xρpEqy “

ˆ 8

´8

dt

2π

L

itσ2

˛
H0

du

2πi

L
ź

i“1

ˆ

1`
itσ2{L

u´ xi

˙

exp

ˆ

´
σ2

2L
t2

1

1` 4σ2{b2
` it

ˆ

u
1

1` 4σ2{b2
´ E

˙˙

.

(2.15)

In the extremal regimes of σ we deduce the following behavior:

1. For σ small, we expand the product over i. The order σ0 term in the product does not contribute,

because is has no poles, and thus the leading contribution comes from the σ2 term in the product.

Furthermore we can approximate the exponent for σ2 ! b2; in total we then obtain

xρpEqy “

ˆ 8

´8

dt

2π

˛
H0

du

2πi

1

u´ xi
exp

ˆ

´
σ2

2L
t2 ` itpu´ Eq

˙

“

ˆ

L

2πσ2

˙1{2 L
ÿ

i“1

exp

ˆ

´
L

2σ2
pE ´ xiq

2

˙

“

L
ÿ

i“1

δpE ´ xiq , (2.16)

where the last line uses the definition of Dirac deltas (1.4) for σ “ 0. This is indeed the expected

spectral density for a system with non-random Hamiltonian H0.

2. for σ large we rescale uÑ uσ2 and expand around large σ, this effectively pushes all poles towards

the origin u “ 0. The product over i then simplifies and becomes independent of the eigenvalues

9



of H0. Then we can furthermore enforce the large L limit, using a limit representation of ex

xZpitqy “
L

it

˛
0

du

2πi

ˆ

1`
1

L

it

u

˙L

exp

ˆ

´
b2

8L
t2 ` itu

b2

4

˙

“
2L

itb

˛
0

du

2πi
exp

ˆ

itb

2

ˆ

1

u
` u

˙˙

, (2.17)

in the second equality we again rescaled uÑ 2u{b for convenience. This contour integral can be

done by using the generating function of the Bessel functions,

exp

ˆ

ibt

2

ˆ

u`
1

u

˙˙

“

`8
ÿ

k“´8

piuqkJkpbtq . (2.18)

The contour integral over u picks out the k “ ´1 term in the sum and we recover the known

genus zero partition function of the Gaussian matrix integral [79]

xZpitqy “
2L

tb
J1pbtq . (2.19)

Fourier transforming this gives the semicircle [62,74], with implicit Heaviside

xρpEqy “
2L

πb2
pb2 ´ E2q1{2 . (2.20)

To summarize, at large σ we obtain the standard result for the undeformed Gaussian matrix integral,

whereas for small σ we obtain a sum of delta functions. This is of course no surprise, but helps to

understand the full result (2.15).

We are especially interested in understanding how the system transitions from the completely ran-

dom result (2.20), to the delta spikes (2.16). One approach is to expand around both large and small σ.

Those regimes are discussed at length in the double scaled regime, with the corresponding gravitational

interpretation, in respectively section 3 and section 5; we choose not to repeat that exercise here.

Instead we exploit the strengths of the finite dimensional theory. It is rewarding to just plot ρpEq

for several values of σ and L “ 8, see Fig. 2. At both extreme values of σ we find the expected result,

whereas at intermediate values of σ the oscillations in the spectral density are large, eventually resulting

in regions where the eigenvalue support is exponentially small.

Below in section 2.3 and 2.4 we comment on potential nonperturbative gravitational interpretations

associated with these oscillations, and the transition as a whole. An important role seems to be played

by extra saddle points in the Efetov model formulation [61,62] of the Gaussian matrix integral and by

poles of observables, as function of σ. We have not yet succeeded in double scaling these particular

aspects and consider this an important open problem, see section 6.

However, let us first perform a similar analysis for the spectral correlation, which is relevant for the

factorization problem.
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Figure 2: Spectrum ρpEq for L “ 8 and σ “ 3, 1{2, 1{10 (left to right); it transitions from the semicircle
(orange) to a sum of deltas on the eigenvalues of H0. For intermediate values of σ there are heavy oscillations.
The sharper the peaks and valleys in the spectrum, the less random the matrix integral.

2.2 Eigenvalue correlation and factorization

To compute the eigenvalue correlation, we first consider the spectral form factor. Using (2.9), one finds

xZpit1qZpit2qy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L

a2

L
ÿ

i“1

λ2
i `

L

σ2

L
ÿ

i“1

xiλi

¸

∆pλq

∆pxq

L
ÿ

j“1

eit1λj
L
ÿ

k“1

eit2λk

“ xZpipt1 ` t2qqy `
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L

a2

L
ÿ

i“1

λ2
i `

L

σ2

L
ÿ

i“1

xiλi

¸

∆pλq

∆pxq

L
ÿ

j‰k

eit1λj`it2λk (2.21)

Using (2.11) with qi “ xi{σ
2 ` it1δij{L ` it2δik{L we perform the integral over eigenvalues; the ratio

∆pqq{∆pxq becomes in this case

∆pqq

∆pxq
9

ˆ

1`
ipt1 ´ t2qσ

2{L

xj ´ xk

˙ L
ź

i‰pj,kq

ˆ

1`
it1σ

2{L

xj ´ xi

˙ˆ

1`
it2σ

2{L

xk ´ xi

˙

. (2.22)

The eigenvalue integral of the off-diagonal j ‰ k terms in (2.21) therefore becomes

L
ÿ

j‰k

exp

ˆ

ipt1xj ` t2xkq
a2

4σ2
´ pt21 ` t

2
2q
a2

8L

˙ˆ

1`
ipt1 ´ t2qσ

2{L

xj ´ xk

˙ L
ź

i‰pj,kq

ˆ

1`
it1σ

2{L

xj ´ xi

˙ˆ

1`
it2σ

2{L

xk ´ xi

˙

Notice as check that xZp0qZp0qy “ L2. Introducing contour integrals, this is reorganized further into

L

it1σ2

˛
H0

du1

2πi
exp

ˆ

it1u1
a2

4σ2
´ t21

a2

8L

˙ L
ź

i“1

ˆ

1`
it1σ

2{L

u1 ´ xi

˙

(2.23)

L

it2σ2

˛
H0

du2

2πi
exp

ˆ

it2u2
a2

4σ2
´ t22

a2

8L

˙ L
ź

j“1

ˆ

1`
it2σ

2{L

u2 ´ xj

˙

pu1 ´ u2 ` ipt1 ´ t2qσ
2{Lqpu1 ´ u2q

pu1 ´ u2 ` it1σ2{Lqpu1 ´ u2 ´ it2σ2{Lq

11



“ xZpit1qy xZpit2qy `

˛
H0

du1

2πi
exp

ˆ

it1u1
a2

4σ2
´ t21

a2

8L

˙ L
ź

i“1

ˆ

1`
it1σ

2{L

u1 ´ xi

˙

1

u1 ´ u2 ´ it2σ2{L
(2.24)

˛
H0

du2

2πi
exp

ˆ

it2u2
a2

4σ2
´ t22

a2

8L

˙ L
ź

j“1

ˆ

1`
it2σ

2{L

u2 ´ xi

˙

1

u1 ´ u2 ` it1σ2{L
.

This expression simplifies further when one Fourier transforms to the spectral correlation

xρpE1qρpE2qy “

ˆ `8

´8

dt1
2π

e´iE1t1

ˆ `8

´8

dt2
2π

e´iE2t2 xZpit1qZpit2qy . (2.25)

Within the double contour integral in (2.24), we can shift the time variables as t1 Ñ t1` ipu1´u2qL{σ
2

and t2 Ñ t2´ ipu1´u2qL{σ
2; this factorizes the double contour integral. Combining this, with the first

term in (2.21) and with the first term in (2.24), one finally arrives at the elegant answer

xρpE1qρpE2qy “ δpE1 ´ E2qKpE1, E1q `KpE1, E1qKpE2, E2q ´KpE1, E2qKpE2, E1q , (2.26)

where the all-encompassing kernel is derived to be

KpE1, E2q “

ˆ 8

´8

dt

2π

L

itσ2

˛
H0

du

2πi

L
ź

i“1

ˆ

1`
itσ2{L

u´ xi

˙

exp

ˆ

´t2
a2

8L
` it

ˆ

u
a2

4σ2
´ E2

˙

` upE1 ´ E2q
L

σ2

˙

.

(2.27)

On the diagonal E1 “ E2 this kernel reduces to the spectrum (2.15). In the usual GUE matrix model,

this kernel is an important object, because all spectral correlators can be expressed as sums of products

of these kernels [74]. This conclusion extends to the matrix model with an external field (1.1), the two

point function (2.26) is just the simplest example [33,36,37,40].

Following Mehta [74], we introduce the smooth part of the eigenvalue correlation RpE1, E2q and the

eigenvalue covariance T pE1, E2q, using (2.26) these become

RpE1, E2q “ KpE1, E1qKpE2, E2q ´KpE1, E2qKpE2, E1q

T pE1, E2q “ KpE1, E2qKpE2, E1q . (2.28)

These quantities were plotted for several values of σ and L “ 8 in Fig. 3. These figures are important

for understanding how the system gradually achieves factorization, as discussed below.

As before, it is instructive to analyze the extremal regimes of σ analytically. We obtain the following

behavior:

1. For σ small, we expand the product over i. The order σ0 term in the product does not contribute,

because there are no poles, and so the leading contribution comes from the σ2 term in the product,

just as for the one-point function. Furthermore approximating the exponent for σ2 ! b2, one

12



Figure 3: Spectral correlation RpE1, E2q (top) and spectral covariance T pE1, E2q (bottom) for L “ 8 and
σ “ 5, 1, 1{10 (left to right). The covariance T pE1, E2q is only significant close to the diagonal axis, nearby
eigenvalues repel; it interpolates between a ridge and the diagonal deltas. The theory factorizes, because the
covariance drops to zero everywhere, except on the location of the eigenvalues of H0 where it produces the
required delta contact terms. The correlation RpE1, E2q has a quadratic zero on the diagonal, testimony to
quadratic level repulsion.

obtains

KpE1, E2q “

ˆ 8

´8

dt

2π

˛
H0

du

2πi

L
ÿ

i“1

1

u´ xi
exp

ˆ

´
σ2

2L
t2 ` itpu´ E2q ` upE1 ´ E2q

L

σ2

˙

(2.29)

“

ˆ

L

2πσ2

˙1{2 L
ÿ

i“1

exp

ˆ

´
L

2σ2
pE2 ´ xiq

2 `
L

σ2
xipE1 ´ E2q

˙

. (2.30)

The spectral covariance (2.28) for small σ then becomes, after simply inserting the kernels

T pE1, E2q “

ˆ

L

2πσ2

˙ L
ÿ

i,j“1

exp

ˆ

´
L

2σ2
pE2 ´ xiq

2 ´
L

2σ2
pE1 ´ xjq

2 ´
L

σ2
pE1 ´ E2qpxj ´ xiq

˙

“ δpE1 ´ E2q

L
ÿ

i“1

δpE1 ´ xiq , (2.31)

where in the last equality we enforced the limit σ “ 0.
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2. For large σ, the connected term in (2.24) simplifies by first rescaling ui Ñ 2uiσ
2{b and then taking

the large L limit. This again simplifies the product over i and j, the result is

˛
0

du1

2πi

˛
0

du2

2πi

1

pu1 ´ u2q
2

exp

"

ibt1
2

ˆ

u1 `
1

u1

˙

`
ibt2
2

ˆ

u2 `
1

u2

˙*

. (2.32)

Expanding this out into powers of u1 and u2, by using (2.18), one obtains

˛
0

du1

2πi

˛
0

du2

2πi

1

u2
2

8
ÿ

n,m“0

ˆ

u1

u2

˙nˆu1

u2

˙m `8
ÿ

j,k“´8

piu1q
jpiu2q

kJjpbt1qJkpbt2q . (2.33)

The contour integral then picks up the terms with j “ ´n ´m ´ 1, and k “ n `m ` 1 and we

obtain

xZpit1qZpit2qy Ą
8
ÿ

l“0

pl ` 1qp´1ql`1Jl`1pbt1qJl`1pbt2q . (2.34)

Taking the Fourier transform before doing the sum, one recover the known wormhole contribution

for the undeformed Gaussian matrix integral (with implicit Heavisides such that the square roots

remain real)

T pE1, E2q “
1

2π2

b2 ´ E1E2

pE1 ´ E2q
2
pb2 ´ E2

1q
´1{2pb2 ´ E2

2q
´1{2 . (2.35)

When the eigenvalues are close together this gives the universal answer

T pE1, E2q “
1

2π2

1

pE1 ´ E2q
2
. (2.36)

Notice as consistency check also that this wormhole is order L0.

We thus find that the wormhole in the completely averaged theory, ultimately becomes the diagonal

delta functions (2.31) in the completely fixed theory. Of course, to find the delta functions one would

have to include perturbative and nonperturbative corrections in L. One might wonder what the genus

zero contribution to (2.31) is, i.e. the actual wormhole. Looking ahead, the results of section 2.3 suggest

an educated guess

T pE1, E2q
guess
“

1

2π2

L
ÿ

i“1

4σ2{L´ pE1 ´ xiqpE2 ´ xiq

pE1 ´ E2q
2

p4σ2{L´ pE1 ´ xiq
2q´1{2p4σ2{L´ pE2 ´ xiq

2q´1{2 .

(2.37)

Indeed as we discuss below, the genus zero spectrum becomes L tight semicircles centered around each

target eigenvalue xi and the above guess comes from treating each semi-circle independently. If two

eigenvalues found themselves in the same semicircle, they would obviously still repel one another.

On a basic level one can notice, just from the plots, that RpE1, E2q always has a quadratic zero on

the diagonal E1 “ E2; this means that if we look close enough, the quadratic Vandermonde repulsion
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is sill there. No matter how exotic one chooses an external potential for charged particles, at any finite

σ ą 0 there is always a distance scale where the electric repulsion between the particles wins, and one

can forget the details of the external potential.

Another strong piece of evidence comes from the kernel (2.27). One can prove that, when the

energies E1 and E2 are close enough together, this always reduces to the sine kernel

KpE1, E2qKpE2, E1q “
sin2pπρpE1qpE1 ´ E2qq

π2pE1 ´ E2q
2

, (2.38)

but now featuring the deformed spectrum [33,36,40]. Of course, the smaller σ, the closer together the

eigenvalues must be for this formula to make sense. One should look on scales much smaller than the

width 4σ{L1{2 of the tiny semicircles, but since the spectral density there is also huge, there should

be a regime where one finds the universal wormhole answer (2.36). Here, the wormhole contribution

should have only support on tiny regions centered around the target eigenvalues xi; this logic suggests

something like (2.37) makes sense.

This resonates well with earlier discussions about how gravitational systems can achieve factorization

[11, 12, 60]. Factorization happens because the eigenvalue covariance T pE1, E2q approaches a sum of

delta functions on the diagonal, on a technical level. Indeed, the connected correlation is

xρpE1qρpE2qy ´ xρpE1qy xρpE2qy “ δpE1 ´ E2q xρpE1qy ´ T pE1, E2q , (2.39)

and this must vanish in non-random theories; this is clearly visible in Fig. 3.3 In essence, the wormhole,

which we define to include perturbative and nonperturbative corrections, becomes equal to the diagonal

deltas when tuning towards σ “ 0. See also section 5.

Most of the magic in this regard sits in the simplest observable, the spectrum. For any gravitational

theory where the spectrum is sharply peaked, to good approximation, we know where all eigenvalues are;

concordantly, the theory is almost non-random. This translates to the spectral covariance vanishing

almost anywhere, except on the diagonal and close to these distinct points (where the spectrum is

peaked). This is sufficient to obtain a factorizing theory since, according to (2.39), it means the

connected correlation vanishes

xρpE1qρpE2qy “ xρpE1qy xρpE2qy . (2.40)

2.3 Universal saddle for non-averaged gravity

The purpose of this subsection is working toward a gravitational interpretation for the theory at finite

values of σ, we want to understand how one sees the peaks and valleys in figure 2 and figure 3 emerge.

In particular, we want to highlight fundamental differences between the calculations in the completely

3 Remember that xρpEqy itself also goes to delta functions in the non-averaged theory, see (2.16).
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averaged, and non-averaged cases.

In terms of the u contour integrals, the difference is whether we do perturbation theory around poles

at the origin u “ 0 or immediately take residues at u “ xi. By resumming the perturbative expansion

around the origin u “ 0, one ultimately finds the contributions from all the poles; therefore, expanding

around σ “ 8 and looking at the effects of high-order terms, is a sensible way to investigate the theory

at finite σ. We do this in the double scaling gravity limit in section 4, and observe that spacetimes is

shredded by many extra macroscopic boundaries [64], whenever the high-order terms become relevant.

Here we take a different path. There is a language where the transition from large to small σ can be

conveniently studied using saddle points. Nonperturbative effects in matrix integrals are best captured

by another, dual matrix integral, sometimes known as the Efetov model [61,62]. This has an interesting

saddle point structure in which the plateau in the spectral form factor can be explained by a saddle

known as the Andreev-Altshuler instanton [6, 62,63,80].

For this model one considers products of K determinants in the matrix integral, then writes the de-

terminants as Grassmann integrals, does the Gaussian integral overH; and uses a Hubbard-Stratanovich

transformation with an auxiliary KˆK Hermitian matrix S, to perform the Grassmann integrals. The

result of these steps, for the undeformed Gaussian matrix integral (2.1) with σ “ 8, is [5, 62,80,81]

C

K
ź

i“1

detpEi ´Hq

G

“

ˆ
dS detpE ´ iSqL exp

ˆ

´
2L

b2
Tr
`

S2
˘

˙

. (2.41)

Upon double scaling, this becomes the Kontsevich matrix integral [6, 82,83].

One might wonder whether, in the case of an external matrix H0, one can derive similar expressions.

Fortunately, it is not difficult to see that this is indeed the case; one just diagonalizes H0 in (2.1) (by

a unitary rotation of H), and then proceeds precisely as in the standard calculation. Omitting the

detailed derivation, one finds

C

K
ź

i“1

detpEi ´Hq

G

“

ˆ
dS

L
ź

j“1

det
`

E ´ xja
2{4σ2 ´ iS

˘

exp

ˆ

´
2L

a2
Tr
`

S2
˘

˙

. (2.42)

As check, notice that when σ “ 8, we trivially recover (2.41). However, when σ “ 0 (and thus a “ 0),

the theory localizes on S “ 0. We may then simply evaluate the other pieces of the integrand on-shell,

this results immediately in the correct non-averaged answer

C

K
ź

i“1

detpEi ´Hq

G

“

L
ź

j“1

K
ź

i“1

pEi ´ xjq “
K
ź

i“1

detpEi ´ H0q . (2.43)

Using the u integral, the non-average answer corresponds with a complicated contour integral around

the eigenvalues xi. Using the Efetov model however, the non-averaged answers is obtained already from

one saddle point at S “ 0. Perturbative expansions of the u integral are on similar footing as the genus
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expansion. High-order effects in the genus expansion encode the transition from ramp to plateau, but

in the Efetov model this transition follows from a simple saddle point approximation [62]. The Efetov

model is clearly the easiest language to capture nonperturbative effects in gravity, and the transition

from large to small σ is one of those effects.

Therefore let us investigate the saddle points of the Efetov model (2.42) is more detail, for simplicity

let us consider only one determinant, where S becomes one real parameter

xdetpE ´Hqy “

ˆ `8

´8

dS exp

˜

´
2L

a2
S2 `

L
ÿ

i“1

ln

ˆ

E ´ xi
a2

4σ2
´ iS

˙

¸

. (2.44)

More determinants do not result in more interesting structure. The saddle point equation is

4L

a2
iS “

L
ÿ

i“1

1

E ´ xia2{4σ2 ´ iS
. (2.45)

The solutions determine the genus-zero resolvents of the matrix model [62,80]. To see this, notice that

BE detpE ´Hq “ RpEq detpE ´Hq . (2.46)

with RpEq the resolvent. Applying this identity to the Efetov model

BE xdetpE ´Hqy “

ˆ `8

´8

dS
L
ÿ

i“1

1

E ´ xia2{4s2 ´ iS
exp

˜

´
2L

a2
S2 `

L
ÿ

i“1

ln

ˆ

E ´ xi
a2

4σ2
´ iS

˙

¸

, (2.47)

and evaluating the integral to leading order on the saddle points (2.45); one sees that the leading order

resolvent is indeed proportional to the Efetov saddle points

xRpEqy “
4L

a2
iS , (2.48)

with S a solution to (2.45). Using the relation between the genus zero resolvent and the spectral curve

of the matrix model [5], we find that the saddle point equations of the Efetov model, are equivalent to

the spectral curve equations for our matrix model (1.1) with an external field. That spectral curve can

be found in [47]

y “
4E

a2
´

4

La2

L
ÿ

i“1

1

y ´ xi{σ2
, (2.49)

which is indeed the same as (2.45), if one uses the relation between RpEq{L “ V 1pEq ´ y [47].

For the undeformed theory σ “ 8 there are two solutions to (2.45)

xRpEqy “
2L

b2
E ¯

2L

b2
pE2 ´ b2q1{2 , iS “

E

2
¯

1

2
pE2 ´ b2q1{2 (2.50)

This is respectively the physical sheet of the resolvent for the Gaussian matrix integral, because there
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it decays as L{E at large E, and the second sheet; obtained by going through the branchcut. The

spectrum is computed on the first sheet and gives the standard semicircle (2.20), from (2.50). Note

that this saddles have real and imaginary parts in the allowed region.

Crucially however, for finite values of σ, the spectral curve has L ` 1 solutions, corresponding to

the different sheets of the resolvent for the matrix model with an external field [47]. When lowering σ,

the other saddles will become competitive, and we believe they account for the heavy oscillations seen

in the middle panel of Fig. 2 [62].4

Let us now discuss these other saddles both at large and small σ in more detail. Solving (2.45) near

σ “ 8 also reveals L´ 1 extra non-physical saddle point solutions

iS “ E ´
q

σ2
,

L
ÿ

i“1

1

q ´ xib2{4
“ 0 , (2.52)

on top of the standard saddles (2.50), which change only slightly near σ “ 8.

In the other extreme regime, close to σ “ 0, the solutions to (2.45) (using (2.48)) can be described

as follows. The solution on the physical sheet is given by

xRpEqy “
L
ÿ

i“1

L

2σ2
pE ´ xiq ´

L

2σ2
ppE ´ xiq

2 ´ 4σ2{Lq1{2 , (2.53)

again because it decays as L{E at large E and leads to a spectrum that consists of L tight semicircles

centered around each of the target eigenvalues xi, as announced already around (2.37). To leading

order in small σ2{L this is the saddle S “ 0 announced below (2.42).

There are L other solutions, where one of the relative signs in (2.53) is positive. These correspond

to the second sheets of the same resolvent, having travelled through one of the L tiny branchcuts of

width 4σ{L1{2. These L solutions behave for large E as pE ´ xiqL{σ
2. To leading order in small σ2{L

these saddle points are iS “ E ´ xi. In total this gives L` 1 solutions. We note that the leading order

spectrum, coming from the saddle S “ 0

xρpEqy “
L

2πσ2

L
ÿ

i“1

p4σ2{L´ pE ´ xiq
2q1{2 , (2.54)

already reproduces the delta functions (2.16) when σ “ 0, the iS “ E´xi saddles seem to be redundant.

We will indeed argue below that this is the case at the completely non-random point σ “ 0.

4 A detailed analysis of these effects requires defining the resolvent via

xRpEqy “ lim
MÑE

BE

B

detpE ´Hq

detpM ´Hq

F

. (2.51)

Introducing inverse determinants replaces the bosonic matrix S with a supermatrix, but the essence is unaffected: one
needs to consider the other saddles for finite σ.
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In light of [80] note that S “ 0 is the regime where the sigma model action vanishes and the

universal features of a random matrix theory disappear, which makes sense if the saddle point S “ 0

corresponds with the non-averaged theory. Notice also that products of determinants trivially factorize

when the integral localizes on S “ 0.

We want to know which of these saddles are actually on the integration contour for different values

of E, and which saddles near σ “ 0 flow towards which saddles near σ “ 8.5

Remarkably, the physical saddle S9E´pE2´ b2q1{2 flows towards the S “ 0 saddle. To appreciate

this, consider some large energy E that lies outside all cuts for any σ. At σ “ 8 and for energies in the

forbidden region, only the saddle S9E ´ pE2 ´ b2q1{2 lies on the integration contour [62]; we checked

within a simple example in appendix A that this remains true near σ “ 8. Similarly we checked that

near σ “ 0, only the S “ 0 saddle lies on the integration contour. Since E by assumption never leaves

or enters any cut, the saddle S9E ´ pE2 ´ b2q1{2 near σ “ 8 must connect continuously to the S “ 0

saddle near σ “ 0. We therefore think of S “ 0 also as the physical saddle.

The fun starts when considering energies E that leave the spectral cut when changing σ. Say that

for σ ă σc, E lies inside some cut, and that it lies outside all cuts for σ ą σc. At this critical σ we

hit a (anti-)Stokes line and one saddle seizes to contribute, taking us from a real oscillating region in

the determinant to an exponentially decaying one. The reverse phenomenon happens when E enters

a cut, another saddle starts contributing such that we obtain a real and oscillating determinant again.

At small enough σ the cuts are tiny, hence most E will be outside the cut and only the S “ 0 saddle

contributes. We checked these statements explicitly for some simpler case where H0 has L{2 eigenvalues

z and L{2 eigenvalues ´z, see appendix A.

Near σ “ 0, as discussed above, the L additional saddles besides S “ 0 are given by iS “ E ´ xi.

These other saddles (both close to σ “ 0 and 8) are problematic for the simple reason that they are

purely imaginary and would give a contribution that is exponentially enhanced with energy E squared.

Based on this intuition and the simple example in appendix A, we therefore expect these saddles to not

lie on the integration contour when E is not inside any cut. When E is inside some cut, we expect only

the physical saddle (on the physical sheet) and the saddle where we went through the cut, in which

E lies, to contribute (recall below (2.53) that this is how you generate the non-physical saddles). We

have checked this explicitly in simple examples like the one discussed in appendix A, leaving a more

detailed check for the generic case to the future. 6

Notably at σ “ 0 there are no cuts. The takeaway message remains that the completely non-random

point σ “ 0 is described completely by one saddle point S “ 0 in the Efetov model, which flows towards

the physical saddle point S9E ´ pE2 ´ b2q1{2, at the random matrix theory point σ “ 8.

5 We thank Steve Shenker for discussion on this.
6 As an aside, we note that when two branch-points hit the real energy axis, the spectrum develops two E1{3 edges. The

physics near this edge is described by the Pearcey kernel or the Kontsevich matrix integral with a S4 potential [45]; and
corresponds with the p3, 1q minimal gravity. When the eigenvalues of the external matrix are allowed to be complex, other
edges can appear [45]; but here they do not.
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2.4 Dispersion relation

The raison d’être of random matrices, is that the completely averaged description approximates many

features of individual draws H0 of the system extraordinary well [62,74]; whilst being an exponentially

simpler description. This shines through in the gravity dual: the bulk description of completely random

systems σ “ 8 can be as simple as JT gravity [5], and the dual to eigenvalue repulsion are wormholes.

If one thing is certain it is that the gravity dual to some non-averaged system is much more complex,

likely having some bulk action that is much more complicated that the JT gravity one. Nevertheless,

one expects the wormhole to still be there and one question that has been raised [60] is how it can be

seen in the non-averaged answer.

Since we have precise formulas for all correlation functions in the matrix model as function of σ, we

can ask how the averaged contribution at large σ is encoded in the small σ behaviour.7 This should help

to understand what contributions one needs to include in order to go from, a non-factorizing theory

to a factorizing one. The idea is to analytically continue σ to the complex plane and use the following

identity
1

2πi

˛
0

dσ

σ
F pσq `

1

2πi

˛
8

dσ

σ
F pσq `

1

2πi

ÿ

σi

˛
σi

dσ

σ
F pσq “ 0 , (2.55)

where the σi denote all non-analyticities of F pσq - this could include branchcuts. The contour integral

around all non-analyticities obviously vanishes. The residues for the first two terms give

F p0q “ F p8q ´
1

2πi

ÿ

σi

˛
σi

dσ

σ
F pσq (2.56)

Here F pσq can be any correlation function, for example we could insert the wormhole T pE1, E2q from

(2.24). Then the statement is that the diagonal deltas F p0q in some non-averaged theory (2.31), equals

the wormhole F p8q from the completely averaged theory (2.35), plus corrections from other poles that

wash out upon averaging.

This is similar to the conclusions of [60], though with saddles instead of poles; a fortunate coincidence

is the similar role played by the parameter σ in that paper. There is also vaguely similar flavor to some

of the discussion about poles as corresponding with geometries in [32].

To make things super concrete in a simple example, take the L “ 1 case of (2.1), also known as the

Gaussian integral

Zpσ, h0q “

ˆ `8

´8

dh exp

ˆ

´
2

b2
h2 ´

1

2σ2
ph´ h0q

2

˙

. (2.57)

The exact partition function in this theory is

F pσq “
A

e´βh
E

“ exp

ˆ

β2σ2 ´ 2βh0

2p1` 4σ2{b2q

˙

, (2.58)

7 We thank Onkar Parrikar for discussion on this
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which indeed is (2.13) for L “ 1. This interpolated between the averaged result

F p8q “ exp

ˆ

b2β2

8

˙

, (2.59)

which smoothly decays with time; and the non-averaged result, which highly oscillates with time

F p0q “ e´βh0 . (2.60)

We also see that F pσq has essential singularities at σi “ ˘ib{2, which we need to account for in (2.56).

The infinitely many contributions coming from this term will, when combined with the averaged F p8q,

reproduce the the non-average result F p0q. To see this, we expand the exponential in F pσq (2.58) and

explicitly compute the sum of the residues at σi “ ˘ib{2

1

2πi

ÿ

σi

˛
σ“σi

dσ

σ
F pσq “

ÿ

σi

8
ÿ

k“1

b2k

8kpk ´ 1q!k!
Bk´1
σ

˜

ˆ

β2σ2 ´ 2βh0

σ ` σi

˙k
1

σ

¸

σ“σi

“ F p8q ´ F p0q . (2.61)

One can check that this indeed agrees with the difference between the non-average and average answer,

for instance by doing a Taylor expansion in β. Clearly both F p0q and the contribution from the essential

singularities are oscillating, and therefore non-self-averaging, for Lorentzian times.

There is a similar pattern for generic L, see for example (2.15) The only non-analyticities seem to

appear when σi “ ˘ib{2, in which case there is an essential singularity. There are an infinite number of

contributions coming from these singularities which conspire with the average answer to give something

factorizing.

The challenge, much like for the results of [60], is to find a gravity interpretation for the contributions

from these other poles. This is far from obvious. We believe that a good place to start, would be taking

F pσq to be the Efetov model (2.42). This model is the most natural language to study non-perturbative

effects in gravity, it being basically an open universe field theory, and it might be manageable to give

gravitational meaning to the poles there. Another avenue, would be to interpret σ directly in gravity.

Based on [60], perhaps it is similar to the ΣLR in the GΣ formulation of SYK, since our σ also tells us

whether we are in a self-averaging or non-self-averaging region.

In the remainder of this work, we return to investigating the gravitational theory at finite σ directly.

We start with a discussion on ribbon graphs.

2.5 Ribbon graph intuition

Another way to get geometric intuition about matrix integrals, is to think about the ribbon graphs; or

Feynman diagrams [84]. These are not that interesting in the pure Gaussian case, so let us temporarily

consider a matrix integral with quartic interactions (B.1).

The external matrix coupling is weighed with 1{σ2 and is therefore expensive at large σ, concordantly
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Figure 4: Ribbon graph of quartic matrix model with coupling TrpH0Hq (left), the insertions of the external
field H0 (blue dots) are like leaves on a tree. For the gravity interpretation one must perform the unitary
integral (right), giving a double sum over Wick contractions or permutations of which we show two examples
(orange and red). The new vertices are weighed by Weingarten functions and traces of H0, because of the
Weingarten functions the orange contraction dominates for large L, as explained in detail in section 3.

there are barely insertions of the H0 matrix in this regime. In terms of the ribbon graph, these insertions

are vertices on which the ribbon graph ends, like the leaves of a tree; see Fig. 4. In the opposite regime

of small σ, there are many such H0 insertions [38].

This picture is however incomplete. As further discussed in section 5, these insertions of the matrix

H0 have no immediate gravitational interpretation; which is reserved for ribbon graphs that are built

exclusively out of the field H. For that, we need to perform the integral over random unitaries (2.8) in

(1.5); we diagonalize H “ U ΛU : and conveniently expand the exponential as

ˆ
dU exp

ˆ

L

σ2
Tr
`

H0 U ΛU :
˘

˙

“

8
ÿ

n“0

1

n!

ˆ

L

σ2

˙n ˆ
dU Tr

`

H0 U ΛU :
˘n
. (2.62)

These unitary integrals can be computed order per order using Weingarten functions [85,86]

ˆ
dU Tr

`

H0 U ΛU :
˘n
“

ÿ

σ,τPSn

TrσpH
nqTrτ pH

n
0 q Wgpστ´1, Lq , (2.63)

which features a double sum over permutations in Sn. The notation for the traces should be intuitively

clear

TrσpH
nq “

ź

αi

Tr
´

H lpαiq
¯

, (2.64)

where αi are the cycles of σ and lpαiq is the length of each cycle. The basic point is that in (2.63) one

obtains all types of single-trace and multi-trace combinations of H. For example, the quartic matrix

model acquires, when including the external field, all types of local vertices TrpHmq; but also all multi-

trace nonlocal vertices, like pTrpHpqqq. The Feynman rules for these vertices, are set by combinations of

TrpHn
0 q. In conclusion, the external matrix determines the coupling constants of the deformed theory.
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Figure 5: Discretized worldsheet for a quartic matrix integral with deformations, showing the quartic ribbon
graph (blue) and the dual graph (black) which contains polygonic holes (orange) due to the deformations.
The quartic interactions (black dots) are weighted by τ4 (as defined in B), the extra vertices (blue dots)
from the deformations are weighed by traces of H0.

This remains true for double-scaled gravitation theories as we discuss in section 3.

As discussed in section 3, single trace deformations of the matrix integral potential TrpHmq dominate

at large σ. To see the related spacetimes, we must consider the dual graph. For the quartic matrix model

this dual graph consists of squares, associated with the original interactions; and additional polygons

representing the deformations TrpHmq, each polygon is weighed by a coupling constant TrpHm
0 q.

When we compute the partition function of the quartic theory with these deformations, the extra

polygons are not interpreted as contributing to the Euler character; the topological expansion is one in

powers of τ4, the quartic coupling constant for the undeformed theory, see equation (B.2). Therefore

those polygons correspond with boundaries or holes of the spacetime [64], see Fig. 5.

Holes with order one valency become microscopic in the double-scaling limit, and correspond with

local operators, or conical defects in gravity; holes with very high valency correspond with macroscopic

boundaries in gravity. At large σ the holes are isolated, meaning that the extra vertices are not adjacent,

and holes with high valency are suppressed. For small σ though, the extra holes can become adjacent;

they can therefore condense and become macroscopic; also isolated large holes are no longer suppressed.

This changes the spacetimes drastically, effectively tearing them up [64]. See section 4.

In the following sections we clarify how these statements translate to the double scaling limit, where

the theory describes two dimensional dilaton gravity, as explained in section 1.
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3 Deformed dilaton gravity

In the remainder of this work we study the effect of the external matrix H0 in the double scaling limit,

and therefore in two dimensional gravity theories. This is a subtle endeavour, since L is strictly infinite

and naively, say, (2.14) becomes independent of σ. This means that, to find continuum limits with

nontrivial dependence on H0, one must simultaneously carefully scale σ too.

In this section we will describe one such scaling, relevant for large σ, where one can treat the external

matrix in (1.5) as a perturbation, allowing us to investigate the effects of fixing H ever so slightly.

The situation for small σ is more mysterious. As discussed in section 2.3, the matrix integral

develops many tiny cuts, making it is unclear what double scaling precisely means. We will make a

compromise in section 5 and instead study a setup where only part of H0 is non-averaged, but most of

this external matrix is random. In the resulting two-matrix model, we can find a continuum description

for small σ.

We now start our investigation for large σ. For convenience, we give the matrix integral (1.5) again

Zpσ,H0q “

ˆ
dH exp

ˆ

´LTrV pHq ´
L

2σ2
Tr
`

H2
˘

`
L

σ2
TrpH0Hq

˙

, (3.1)

and diagonalize H “ U ΛU :. Since we are interested in trace class observables, the integral over Haar

random unitaries is always the same one,

ˆ
dU exp

ˆ

L

σ2
Tr
`

H0 U ΛU :
˘

˙

. (3.2)

Previously we evaluated this integral exactly using the Harish-Chandra-Itzykson-Zuber formula [75,76].

Throughout this section, however, we are interested in working close to infinite σ and treat (3.2)

perturbatively in 1{σ2. The exact formula (2.8) is not naturally suited for such an expansion.

To obtain an approximation at σ " 1, it is more efficient to instead use the trick

B

exp

ˆ

L

σ2
Tr
`

H0 U ΛU :
˘

˙F

“ exp

˜

8
ÿ

n“1

1

n!

Ln

σ2n

B

Tr
`

H0 U ΛU :
˘n
F

conn

¸

, (3.3)

where the average denotes the Haar integral. This is an application of the general identity in statistics

log xexppxqy “
8
ÿ

n“1

1

n!
xxnyconn . (3.4)

In physics we know this for example from the calculation of D-brane partition functions where xxnyconn

would be the sum of all connected worldsheets with n boundaries ending on the D-brane, and the 1{n!

is because the boundaries are indistinguishable [5,87]. The rewrite (3.3) is exact, if the sum converges.

Whether it does or not, is an interesting question. In the approximation which we make here, we will
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Figure 6: Illustration for integrals over unitaries. The wires represent summation over indices and integrating
over random unitaries inserts a complete sets of wires. Weingarten functions Wgpαβ´1, Lq weight each bra-
ket combination and are the inverse of the matrix of overlaps between wire states, which is the Gramm matrix
L#pα¨β´1q [85] with #pαq the number of cycles in the permutation α. Dominant large L configurations are
diagonal contractions (middle) with identical bras and kets, whereas subleading configurations correspond
with multi-trace operators (right).

see momentarily that it does converge, but this might no longer be the case when we transition to

smaller σ, we comment on this in section 4 and 6.

As mentioned around (2.63), correlators of the Haar random ensemble are expressed in terms of

Weingarten functions Wgpσ, Lq, which are known explicitly [85,86]. We consider here the double scaling

limit, where L is sent to infinity. One may then use the large L behavior of the Weingarten functions, to

prove [12] that the leading large L correlators of the Haar random ensemble, go to the Wick contractions

of an ensemble of independent Gaussian complex variables with variance L.

Using this leading large L behavior it is quite straightforward to compute each of the terms in (3.3),

taking into account the discussion around (2.63)

Ln

σ2n

B

Tr
`

H0 U ΛU :
˘n
F

conn

“
1

σ2n
pn´ 1q! TrpHn

0 q TrpHnq (3.5)

´
1

L

1

σ2n

n
ÿ

m“1

pm´ 1q!pn´m´ 1q! TrpHn
0 q TrpHmq Tr

`

Hn´m
˘

` . . . ,

where the factorial counts the number of fully connected Wick contractions and we used TrHk “ Tr Λk,

see Fig. 6 for a graphical representation of these calculations. The subleading corrections come from

the Weingarten functions Wg pσ, Lq where σ has multiple cycles, hence the emergence of multi-trace

operators. In making this approximation, we have assumed that in the double scaling limit, all traces

should not be interpreted as scaling with L. This is self-consistent concerning the TrpHn
0 q; to implement

the double scaling limit we will be urged below to scale these with the nth power of the spectral edge,

and indeed with no extra overall L associated with each trace.

The scaling of the TrpHnq is harder to establish, the procedure that we will use to analyze the double

scaled scaled theory is insensitive to their scaling as long as multi-trace operators TrpHn1qTrpHn2q are

negligible in the action. We assume here they are subleading at large σ, and comment on their potential
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significance for smaller σ in section 6. in the remainder of this work we continue with (3.5).

Inserting (3.5) in (3.3) results in a deformed matrix integral

Zpσ,H0q “

ˆ
dH exp

˜

´LTrV pHq ´
L

2σ2
Tr
`

H2
˘

`

8
ÿ

n“1

1

n

TrpHn
0 q

σ2n
TrpHnq

¸

“

ˆ
dH exp

˜

´LTrV pHq ´
L

2σ2
Tr
`

H2
˘

´

L
ÿ

i“1

Tr log
`

σ2{xi ´H
˘

¸

(3.6)

“

ˆ
dH

1

detpσ2{H0 b 1´ 1bHq
exp

ˆ

´LTrV pHq ´
L

2σ2
Tr
`

H2
˘

˙

, (3.7)

up to irrelevant normalization factors. This can be viewed as a matrix integral with potential V pHq `

H2{2σ2, with a stack of ghost-branes inserted, which are represented by the inverse determinant [5,83].

Before we embark on double scaling of this matrix model, let us first study how the finite L resolvent

and spectral density are modified in the presence of inverse determinants.

3.1 Deformed resolvent and spectral density

The resolvent of a matrix model is defined as

RpEq “ Tr

ˆ

1

E ´H

˙

, (3.8)

and by taking the discontinuity across the real axis it gives the spectrum,

RpE ` iεq ´RpE ´ iεq “ ´2πiρpEq , (3.9)

whose normalization is determined by the total number of eigenvalues in the game

ˆ `8

´8

dE ρpEq “ L . (3.10)

We are interested in the saddle point solution for ρpEq; the genus zero spectral density. The saddle

point equations for a matrix integral with potential W pHq are [88]

LW 1pEq “ 2

 `E0

´E0

dλ
ρpλq

E ´ λ
“ RpE ` iεq `RpE ´ iεq . (3.11)

This should be satisfied only on the support of the saddle point solution for ρpEq, which we will assume

is a single connected region r´E0, E0s. We will consider the eigenvalues of H0 to come in pairs ˘xi and

so the full matrix potential (3.6) is even. This choice will clearly not affect the behavior near one of the

edges, but it simplifies calculations because the spectrum becomes symmetric. The equation of motion

(3.11), together with the constraint (3.10), are sufficient to solve for RpEq and concordantly ρpEq.
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Figure 7: Contours and their deformation relevant for computing (3.14). In blue the initial contour C and
in orange the deformed one.

Indeed, imposing that RpEq has a discontinuity only on the interval r´E0, E0s, that it decays as L{E

towards infinity, but has no poles elsewhere in the complex plane, one can invert (3.11) and find [5,89]

RpEq “ ´
L

4πi

˛
C

dλ

λ´ E
W 1pλq

d

E2 ´ E2
0

λ2 ´ E2
0

, (3.12)

with C a contour around the spectral cut r´E0, E0s. Since this formula is linear in W , we can simply

focus on the part of the potential coming from the inverse determinants separately (3.6)

δW 1pλq “ ´
1

L

L
ÿ

i“1

1

σ2{xi ´ λ
. (3.13)

The contribution to the resolvent from this deformation, denoted by δRpEq, is then [68]

δRpEq “ ´
1

4πi

˛
C

dλ

λ´ E

L
ÿ

i“1

1

λ´ σ2{xi

pE2 ´ E2
0q

1{2

pλ2 ´ E2
0q

1{2
. (3.14)

We see that the integrand could potentially have poles on the spectral cut. We assume that σ4{x2
i ą E2

0 ,

such that all poles are outside the cut, see Fig. 7. This is identical to the convergence criterion of

(3.3). Surprisingly, as discussed in section 4, this criterion σ4{x2
i ą E2

0 is always satisfied within the

approximation (3.6).

We now deform the contour C around the poles at infinity, E and σ2{xi. The residue at infinity

vanishes because δW 1pλq goes like 1{λ towards infinity. Combining the remaining residues, we obtain

δRpEq “
1

2

L
ÿ

i“1

1

E ´ σ2{xi
´

1

2

L
ÿ

i“1

1

E ´ σ2{xi

pE ´ E0q
1{2

pσ2{xi ´ E0q
1{2

pE ` E0q
1{2

pσ2{xi ` E0q
1{2

. (3.15)

This expression is regular at the naive poles σ2{xi because the residues vanish. Taking the discontinuity,
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one finds that the correction to the spectral density is given by

δρpEq “ ´
1

2π

L
ÿ

i“1

sgnpxiq

σ2{xi ´ E

pE2
0 ´ E

2q1{2

pσ4{x2
i ´ E

2
0q

1{2
. (3.16)

Here the square roots are to be interpreted as positive – we have extracted the explicit minus associated

with the square root in the denominator of (3.12) and (3.15) when σ2{xi lies to the left of the spectral

cut [5, 68]. Note that in our case of interest where the eigenvalues of the target Hamiltonian come in

pairs ˘xi, the spectral density remains even, and the spectral density has decreased. This is consistent

with the deformation in the potential (3.6) [64]

Tr δW pHq “
1

L

L{2
ÿ

i“1

Tr log
`

σ4{x2
i ´H

2
˘

, (3.17)

which is also even and negative – obviously a shallower potential with the same number of eigenvalues

filling it, gives a shallower and broader equilibrium sea of eigenvalues, therefore E0 will have increased.

The full spectral density is thus given by

ρpEq “ ρV pEq ´
1

2π

L
ÿ

i“1

sgnpxiq

σ2{xi ´ E

pE2
0 ´ E

2q1{2

pσ4{x2
i ´ E

2
0q

1{2
, (3.18)

with ρV pEq the spectral density coming from V pHq `H2{2σ2 [68], which we compute explicitly for a

quartic potential in appendix B. Note that at large σ the second term goes away and we are back to the

original matrix model defined by V pHq. The above spectral density still contains one free parameter

E0, which is fixed by the normalisation condition 3.10. For instance, if we take V pHq to be quartic like

in appendix B, E0 needs to satisfy,

E2
0

4τ

ˆ

1´
3

4
τ4E

2
0

˙

´
1

2L

L
ÿ

i“1

ˆˆ

1´ E2
0

x2
i

σ4

˙´1{2

´ 1

˙

“ 1 . (3.19)

For σ “ 8, this reduces to the constraint (B.6) for a quartic matrix integral. Notice also the divergence

when σ4 hits x2E2
0 , with x the larges eigenvalue of H0; we return to this in section 4.

3.2 Double scaling

We are now ready to double scale our matrix model and interpret H0 in gravity. Luckily, the deformation

of the potential is just a bunch of inverse determinants and the procedure for how to double scale this

is well-known [54,90]. We find it useful to review that here, especially since it will help us understand

how to scale the parameters coming from the coupling to H0, namely the eigenvalues of H0 and σ.

The orienting discussion about branes will not be entirely rigorous, but we emphasize that our

methods used to derive (3.30) are completely rigorous and consistent with results obtained using the
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string equation technology, which we discuss below in subsection 3.3 .

To start, it is useful to express the ghost-branes in terms of critical potentials [54].8 This can be

done using the following surprising identity [54,83]

Tr

ˆ

1

y ´H

˙

´
L

y
“

8
ÿ

q“1

1

yq`1
TrpHqq

“

8
ÿ

k“1

py ` E0q
´k´1{2py ´ E0q

´1{2 Tr
´

pH ` E0q
k´1{2pH ´ E0q

1{2
¯

`
, (3.20)

which holds for any choice of the constant E0. The subscript ` means one should expand in powers

of 1{H and keep only the terms with positive powers of H in the resulting expansion. The Trp. . .q` in

this expression are the critical potentials, or rather their derivative, V 1pHq. To prove this one explicitly

does the binomial expansions in 1{H and rearranges the resulting sums to collect all terms multiplying

TrpHqq, for fixed q. The remaining double sum for fixed q equals 1{yq`1.

To double scale one then takes the constant E0 to be the spectral edge, and considers energies close

to this spectral edge

H Ñ ´E0 `H , y Ñ ´E0 ` y , (3.21)

where E0 is sent to 8 whilst the new energies H and y remain finite. This double scaling then results

in9

Tr

ˆ

1

y ´H

˙

´
L

y
ds
“

8
ÿ

k“1

Ok´1 y
´k´1{2 , Ok “ Tr

´

Hk`1{2
¯

`
. (3.22)

Applying the same logic to a stack of inverse determinants one obtains [83]

1

detpY b 1´ 1bHq
ds
“ exp

˜

8
ÿ

k“0

Ok tkpY q

¸

, tkpY q “
1

k ` 1{2
TrpY q´k´1{2 . (3.23)

up to an overall normalization constant that drops out in (3.6). Here, the operators Ok are known to

correspond in the closed string worldsheet description with insertions of physical closed string operators,

like the closed string tachyon vertices Tj of minimal strings [56,57,91–95].

The inverse determinant in our theory (3.6) has Y “ σ2{H0. Since H0 is the target Hamiltonian, we

should scale it in precisely the same way as the random Hamiltonians and zoom in on target eigenvalues

xi close to the spectral edge. The scaling of Y in (3.21) is fixed by demanding that the double scaled

inverse determinant gives something nontrivial, together this demands we scale σ and the xi like

σ Ñ E0 ` σ , xi Ñ ´E0 ` xi , (3.24)

8 These are potentials that give rise to an Em`1{2 spectral edge in the double scaling limit.
9 This is the point in this derivation which is not rigorous, in the scaling (3.21) one secretly assumes that only order one

eigenvalues of the shifted H contribute. Whilst intuitively true, in formula (3.20) it is not clear that large eigenvalues of
H are suppressed in the term pH ´ 2E0q

1{2.
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so that the coupling constants in (3.23) are given by

tkp2σ ` H0q “
p´1qk`1{2

k ` 1{2
Tr p2σ ` H0q

´k´1{2 . (3.25)

If we now scale the theory with potential V pHq ` H2{2σ2 to the critical point corresponding to the

p2, pq minimal string, the matrix integral (3.6) is a deformation around that by turning on the couplings

tkp2σ ` H0q. In principle it is possible to translate these deformations (3.23) to linear deformations of

the minimal string worldsheet action I

Itotal “ I ´
8
ÿ

j“0

Tj τjpY q , (3.26)

with these operators Tj implicitly integrated over the worldsheet. One could then rewrite these actions

as dilaton gravity [56–58] and take the p Ñ 8 limit to obtain a deformation of the JT gravity action

(1.7).

In practice though, this is hard. The map between tkpY q and τjpY q is in general complicated, due

to contact terms [91,95]. Moreover because the sum runs over all j, we require not just the commonly

studied tachyons,10 but all physical closed string operators Tj – including those in the ground ring, and

those with higher ghost numbers [93,94]. These are much more mysterious, and seldom studied.

However, if we are interested in JT gravity, there is a much more efficient way of computing (1.7)

that sidesteps the detour via the minimal string worldsheet formulation [65,66,68]. The idea is to scale

the theory with potential V pHq ` H2{2σ2 immediately to the critical point corresponding with JT

gravity. We then simply solve the matrix integral (3.6) with the deformation due to the ghost-branes,

meaning we calculate the genus zero spectral density – this completely specifies all genus amplitudes

in matrix integrals [5,48,96]. Thanks to [49,66] one can immediately map deformations around the JT

gravity genus zero spectrum, to deformations of the dilaton gravity potential (1.7).

Let us return to the quartic matrix model. We will first tune the couplings so that the undeformed

theory is tuned to criticality as τ4M
2
0 “ g “ 2{3p1´2κ{M0q. One could just double scale to the precise

spectral edge E0 of the deformed theory, however we want to understand to which degree E0 changes

with the deformation. Therefore, we should instead double scale to the spectral edge of the undeformed

theory (B.2), here denoted M0

E Ñ ´M0 ` E, E0 ÑM0 ´ E0, xi Ñ ´M0 ` xi, σ ÑM0 ` σ . (3.27)

In particular this means,
σ2

H0
Ñ ´M0 ´ p2σ ` H0q , (3.28)

10 These correspond to the primary operators in the corresponding minimal model.
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with xi the eigenvalues of H0. Applying this to (3.16), one finds the spectral density

ρpEq “
2eS0

π

ˆ

κpE ´ E0q
1{2 `

2

3
pE ´ E0q

3{2

˙

´
1

2π

8
ÿ

i“1

pE ´ E0q
1{2

pE ´ E0q ` p2σ ` xi ` E0q

1

p2σ ` xi ` E0q
1{2

.

(3.29)

Notice that the deformation still vanishes for σ “ 8. We can expand this out as

ρpEq “ ρV pE ´ E0q ´
1

2π

8
ÿ

k“0

pE ´ E0q
k`1{2 αk`1p2σ ` H0 ` E0q . (3.30)

where we have the coefficients

αkp2σ ` H0 ` E0q “ p´1qk`1 Trp2σ ` H0 ` E0q
´k´1{2 . (3.31)

This result makes sense, because the whole point of inserting branes – here parameterized by σ and xi

– is that these can take us from any one minimal model to any other, or any deformation in between.

Indeed the above is the most general expression for a double scaled spectral curve. Clearly the result

(3.30) is valid for an arbitrary undeformed double scaled spectral curve, including that for JT gravity.

Note that the deformation parameters blow up when an eigenvalue of σ2{H0 approaches the spectral

cut. We connect this to the work of [64] in section 4.

Finally, one can determines E0 by directly double scaling the constraint (3.10) or (3.19) and using

(3.27) one obtains

0 “ 2E0pE0 ` 2κq ` e´S0
8
ÿ

i“1

1

p2σ ` xi ` E0q
1{2
“ 2E0pE0 ` 2κq ´ e´S0α0p2σ ` H0 ` E0q . (3.32)

3.3 JT gravity

So far we have focused on the quartic matrix model, but from our discussion it is clear this works for

any potential for the p2, pq minimal string theories and by extension to p “ 8 also for JT gravity.

As an alternative to the above manipulations one could also employ the string equation technology

which originates from the orthogonal polynomial approach to matrix models. This has the advantage of

allowing a non-perturbative and numerical analysis [97], but the disadvantage of being more abstract.

At any rate, it presents a useful check on the results of section 3.2.

The string equation is a differential equation for a function upxq, which can be used to compute any

correlation function [98,99]. For the p2, pq minimal string theories, the string equation takes the form,

x “
ÿ

k

TkRkrus ” Frus (3.33)

with Rkrus the Gelfand-Dickii functionals, which to leading order in the genus expansion go as uk. The
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parameters Tk are analogous to those we defined earlier in (3.23) and for the minimal string theories

they take particular values, for instance see appendix B of [94] or [57]. We also defined F as the RHS of

the string equation for convenience. It is not worthwhile for the present discussion to repeat or review

the derivation of the string equation, but see [55] for a review. Let us denote by FV , the term in the

RHS of the string equation coming from the potential without ghost-branes.

It is a simple application of the technology of [98, 100] to determine the effect of the ghost-branes.

To leading order this gives the string equation,11

x “ FV puq ´
1

2
e´S0α0p2σ ` H0 ` uq , (3.34)

with α0 given in (3.31). The equation for E0 is obtained by setting u “ E0 and x “ 0. This matches

exactly with (3.32) when we use Fpuq “ u2 ` 2κu, the undeformed p2, 3q minimal string with non-zero

cosmological constant. The density of states can then be computed using

ρpEq “
eS0

2π

ˆ E

E0

du
BuFpuq
?
E ´ u

, (3.35)

and we reproduce (3.30). This provides a check of the derivation in section 3.2. In the case of JT, we

can use the results of [57] to find

?
E0

2π
I1p2π

a

E0q ´
1

2
e´S0α0p2σ ` H0 ` E0q “ 0 . (3.36)

From these expressions we find that E0 is negative, as anticipated around (3.17). In fact, it is subleading

in eS0 and to leading order

E0 “ α0e
´S0 , (3.37)

where α0 is negative. To leading order, the spectral density for JT therefore takes the form

ρpEq “
eS0

4π2
sinh

´

2πpE ´ E0q
1{2

¯

´
1

2π

8
ÿ

k“0

Ek`1{2 αk`1p2σ ` H0q . (3.38)

3.4 Gravitational interpretation

With the preparatory work out of the way, we can discuss the gravitational interpretation of slightly

fixing a member of the matrix integral ensemble. There are two ways to interpret our results; an

open string picture which involves branes and the spacetime ending on it and a closed string picture,

which captures our deformation as changing the dilaton gravity action. Both of them provide us with

interesting insights as to what happens when one tries to collapse the matrix ensemble to one member.

11 The effect of branes scale with e´S0 whereas the higher genus corrections start at e´2S0 .
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Figure 8: Contributions to xZpβ1qZpβ2qy in our gravity theory deformed by the external field H0. The blue
boundaries are asymptotic boundaries, whereas the orange ones are boundaries come from the ghost branes
and are labelled by the eigenvalues of H0 (not explicitly drawn here).

Open universes

We have learned that at large σ, the effect of the external matrix H0 is just inserting a bunch of ghost-

branes (3.7). In the double scaling limit there are infinitely many such branes, one for each eigenvalue

of H0. From a geometric point of view, this means that when we compute a certain observable,

say the partition function xZpβqy, the sum over topologies includes spacetimes that not just have a

large asymptotic boundary, but many other boundaries as well, since the spacetime can end on the

ghost-branes. The boundary conditions on the brane side are of the FZZT type in the language of

minimal string theory [5, 83, 101, 102], and on the (classical) level of JT simply fixed energy boundary

conditions [58].

For two point functions xZpβ1qZpβ2qy, the presence of the branes gives rise to an explicit realisa-

tion of the idea of broken cylinders [103]; configurations which are disconnected and have some other

boundary condition in the middle. The full sum over topologies is not yet factorizes, because σ remains

large, but it does indicate other contributions that might eventually take over and cause the two-point

functions to factorize, see Fig. 8 for an illustration. Specifically, in this case one can see that the

increasing number of brane boundaries weakens the geometric connection between the two asymptotic

boundaries.

Notice also that our stack of ghost branes in the matrix potential is in spirit similar to the recently

considered effective matrix model for dynamical end-of-the-world branes [68], those are D-branes with

fixed mass Cardy state in open string parlance.

We have treated all ghost-branes as independent, and the boundaries associated to each eigenvalue

exponentiate separately. This is an effect that happens at large σ, and arises because we took only the

leading term in the unitary integral (3.5). The subleading corrections in (3.5) gives rise to double-trace

terms for H0 and H, this means the RHS of (3.3) is no longer a single product over the eigenvalues of

H0. At large σ, every eigenvalue of H0 can be seen as being associated with one ghost-brane, therefore

the multi-trace terms that appear for smaller σ can be thought of as interactions between the different

ghost-branes. Indeed (2.8) is also not just a product over the eigenvalues of H0. We will discuss this
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more in section 6.

Deformed dilaton potential

The closed string interpretation is different. Using the results of [57, 65, 66], we can immediately map

this deformation of the JT gravity spectral density (3.38) to a deformation of the dilaton gravity action

(1.7). We find that the dilaton potential to order e´S0 becomes

W pΦq “ 2pΦ` UpΦqq , UpΦq “ ´ e´S0 e´2πΦ
8
ÿ

k“0

Φ2k αkp2σ ` H0q ` Ope´2S0q , (3.39)

with αkp2σ ` H0q given in (3.31). Alternatively we can simply carry out the sum over k and write

UpΦq “ e´S0
8
ÿ

i“1

?
2σ ` xi

2σ ` xi ` Φ2
e´2πΦ ` Ope´2S0q. (3.40)

The insertion of the branes has thus been reinterpreted as small changes of the spacetime action. The

most important take away from this section is there are perfectly sensible theories of dilaton gravity

(3.39), which are less random than the simplest case of JT gravity.

Notice however that we have assumed here that 2σ`xi ą 0. When 2σ becomes close to the largest

(negative) eigenvalue we see that the corrections in U become large and the dilaton potential seems to

develop non-monotonicities. At that point however, one also needs to include higher genus corrections

but not only to U but also to E0. A more thorough discussion of that is beyond the scope of the present

discussion.

The fact that we have these two different ways of interpreting the effect of H0 in the bulk spacetime

is a manifestation of an open-closed duality or as discussed in [60,104] it is an explicit realisation where

two bulk descriptions coexist.12

The large σ regime showed what it means in gravity to slightly fix a Hamiltonian in the boundary

matrix ensemble. However this is still only an asymptotic region of σ space, and our main interest is

in small σ. We next consider what happens when we back away from asymptotically large σ.

4 Tearing spacetime

When lowering σ, the coupling constants αk in (3.31) blow up, when one of the eigenvalues of σ2{H0

approaches the spectral edge E0, resulting in a proliferation of operator insertions. More importantly,

operators Ok in (3.23) with large k are strongly suppressed for large σ, when all eigenvalues are far

from the cut, but this suppression stops when one of the eigenvalues approaches the edge, and operators

12 The context is different than in [60], who discuss a path integral duality at small σ whereas this duality is at large σ.

34



Figure 9: Disk that is torn apart because of the proliferation of macroscopic holes [64]. The blue boundary
indicates an asymptotic boundary and the large orange holes are where the spacetime ends on ghost-branes.
In reality these orange boundaries are much larger and the spacetime just consists of thin strips.

with large k dominate. Another way of seeing this proliferation is by noticing that the series (3.3) in

(3.6) is no longer convergent for small σ, meaning that Tr
`

Hk
˘

operators for large k dominate. These

correspond to macroscopic holes in the spacetime, unlike local operators which have small k. The result

is a spacetime with many large holes (see Fig. 9) which therefore appears to be torn apart.

Remarkably, this tearing phenomenon has been discovered by Kazakov [64], in the quartic matrix

integral with avant la lettre ghost-brane-insertions. He studies the potential (B.2) with the deformation

(3.23), but restricted to one eigenvalue pair. We have L{2 eigenvalue pairs, restricting to the case with

an even spectrum

W pHq “
1

2τ
H2 ´

τ4

4τ
H4 `

1

L

L{2
ÿ

i“1

Tr log
`

σ4{x2
i ´H

2
˘

. (4.1)

Here the parameter τ is understood to be fixed once and for all to the value

τ “
M2

0

8
, (4.2)

This is the combination of (B.6) and (B.9), with M0 the undeformed spectral edge (3.27). This was

also used in (3.32).

Let x be the absolute value of the largest negative eigenvalue of H0.13 Based on the above discussion

one might expect a tearing phase transition when σ2{x “ E0; however, a more careful analysis shows

that this transition happens when an eigenvalue of σ2{H0 passes the edge of the undeformed spectrum

σ2

x
ăM0 . (4.3)

Let us explain this in a bit more detail, and discuss the double-scaled continuum theory at both sides

of the transition.

The point is that, when σ becomes too small, the critical coupling for the theory, where one obtains

13 As before, we will be scaling towards the left edge.
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the continuum p2, 3q minimal gravity theory, is no longer τ4 “ 1{12τ and one needs to scale towards a

different coupling constant to find a continuum theory [55]. To see this, consider the constraint equation

(3.19)

g

4ττ4

ˆ

1´
3

4
g

˙

´
γ

2

1{γ
ÿ

i“1

ˆˆ

1´
gx2

i

τ4σ4

˙´1{2

´ 1

˙

“ 1 , (4.4)

where we introduced g “ τ4E
2
0 and following Kazakov introduced γ “ 1{L. Furthermore, consider the

derivative of the constraint equation with respect to g

ˆ

1´
3

2
g

˙

´
γτ

σ4

1{γ
ÿ

i“1

x2
i

ˆ

1´
gx2

i

τ4σ4

˙´3{2

“ 0 . (4.5)

Naively taking γ “ 0, one recovers the critical couplings g “ 2{3 and τ4 “ 1{12τ . This second equation

(4.5), tunes the coupling such that one obtains a E3{2 spectral edge, and is analogous to demanding

that the first term vanishes in (B.7), as is explained in the refreshingly didactic review [55].

However, as Kazakov explained, the limit γ “ 0 is treacherous [64]. To see this, one can solve these

equations perturbatively in γ, the first subleading correction gives

g “
2

3
´ γ

1

12

M2
0

σ4

8
ÿ

i“1

ˆ

1´
M2

0x
2
i

σ4

˙´3{2

, (4.6)

with a structurally similar expression for τ4. This expansion is regular when σ2{x ąM0, but it becomes

singular, and hence nonphysical, once this largest eigenvalue enters the undeformed cut σ2{x ăM0 as

follows from the negative fractional power.

This means that for σ2{x ăM0 the critical couplings at γ “ 0 are not g “ 2{3 and τ4 “ 1{12τ , one

should instead expand around different values to obtain an expansion with real couplings. The trick is

to expand the couplings close to the singular point in (4.4) and (4.5), where one obtains the leading

answer

E2
0 “

g

τ4
“
σ4

x2
´ γ2{3 1

4

ˆ

1´
σ4

M2
0x

2

˙´2{3

. (4.7)

The power of γ2{3 for the correction is an ansatz which implies the second term in (4.5) is order γ0 and

therefore competitive with the first term, and similarly in (4.4). The solution for the coupling itself is

more messy, but has a similar structure τ4 “ a` γ2{3 b where a and b functions of σ, x and M0 that are

real as long as σ2{x ăM0. See Fig. 10 for an numerical solution to the constraints (3.19) and (4.5) as

a function of σ. The transition is clearly visible there. For future purposes we note that Bσa ‰ 0.

Now for Kazakov’s surprise. Using intuition from the discrete ribbon graphs, one deduces that the

average circumference ` of the holes associated with the deformation (see Fig. 5) is proportional to [64]

` 9 ´
σBστ4

γBγτ4
9 γ´2{3 . (4.8)
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Figure 10: Tearing transition as a function of σ. Blue dots are numerical solutions to the (3.19) and (4.5)
for x “ 10, γ “ 10´4 and M2

0 “ 8. At large σ we see the usual solution for the quartic matrix model and
E2

0 « 8 (horizontal grey line). As σ is lowered and crosses σ2 “ xM0 “ 20
?

2, there is a first order phase
transition and E2

0 goes like σ4{x2, which is indicated with the solid orange curve. Note that at finite γ the
transition is smoothed out, but becomes sharp as γ Ñ 0.

In the limit γ “ 0 these become macroscopic or even asymptotic boundaries; this is the tearing phase

where the smooth spacetime is shredded by these large holes. In the phase before the tearing transition

σ2{x ăM0, the holes remain relatively small [64].

Notice that (4.7) implies that σ2{xi ă E0 everywhere. The eigenvalues σ2{xi therefore never actually

enter the spectral cut, the edge moves along; this validates using (3.30) for all values of σ, it protects

the coupling constants from becoming imaginary and hence nonphysical.

From this analysis, we see that the undeformed potential does not affect the tearing transition. The

non-trivial feature of this phase, the fractional power of γ and Bσa ‰ 0, just comes from the addition

of the brane terms. Consequently, the tearing phase is also present if we take the undeformed potential

to be the one corresponding to JT gravity.

One might wonder what happens after σ2 has crossed M0x. First, notice that the large boundaries

that occur are labelled only by x. The other xi boundaries are still small, but when σ2 becomes smaller,

also those can become large. As a result, the surface becomes more and more torn. Second, when σ

becomes sufficiently small, the approximations we made to find (3.6) breaks down. For instance, multi-

trace terms will become important, see section 6. Furthermore, we have not considered non-perturbative

effects and the insertion of the Gaussian around H0 does not introduce any pathologies and so we expect

that non-perturbatively this transition might be resolved. For instance, to check this one can compute

the relevant (ghost) brane correlators in the Airy case [105], which are presumably smooth functions

of the ghost brane energies σ2{xi.
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5 Towards non-averaged dilaton gravity

We have just seen that the gravitational interpretation becomes more complicated when backing away

from asymptotically large σ. Surprisingly though, in the other extreme of small σ, one can still find a

gravitational interpretation, but this requires taking a slightly different route.

We propose for small σ to modify (1.1) by integrating over H0 and insert a small number of spectral

densities for H0, which fixes several eigenvalues of H0 but leaves most of the Hamiltonian random. The

matrix model we shall consider is

Zpσ, κ1 . . . κnq “

ˆ
dH

ˆ
dH0 Tr δpH0 ´ κ1q . . .Tr δpH0 ´ κnq

exp

ˆ

´LTrV pHq ´
L

2σ2
TrpH0 ´Hq

2

˙

, (5.1)

where n ! L. At finite σ, we are dealing with a certain two-matrix model. At small σ, the Gaus-

sian centered around H0 becomes a delta function, and the H0 integral collapses, giving an ordinary

matrix integral with a bunch of densities inserted. This is the merit of integrating over H0, as most

of the eigenvalues of H remain random, even at small σ and so a more feasible direction to discuss a

gravitational interpretation opens up.

5.1 Local factorization

Actually, to further motivate studying (5.1), we note that partial fixing is already enough to understand

questions such as factorisation [5, 8, 10–12, 90]. As we explain now, this is because in energy space it

results in what one could call local factorization.

Consider the spectral correlation for n “ 1, to which we restrict during most of this section

xρpE1qρpE2qyκ “
1

Zpσ, κq

ˆ
dH Tr δpH ´ E1qTr δpH ´ E2q

ˆ
dH0 Tr δpH0 ´ κq

exp

ˆ

´LTrV pHq ´
L

2σ2
TrpH0 ´Hq

2

˙

. (5.2)

One of the eigenvalues of H is gradually fixed to κ; to appreciate this, notice that for small σ we obtain

a delta function δpH0 ´Hq. By permuting the eigenvalues of H one finds that indeed one eigenvalue

has been fixed

Zpσ, κq “ L

ˆ `8

´8

L
ź

i“1

dλi exp

ˆ

´ L
L
ÿ

i“1

V pλiq

˙

∆pλq2 δpλ1 ´ κq , (5.3)

The same thing happens in all correlators, and it carries over immediately to generic n.

The connected part of (5.2) is

xρpE1qρpE2qyκ conn “ xρpE1qρpE2qyκ ´ xρpE1qyκ xρpE2qyκ
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Figure 11: The spectral correlation T pE1, E2q for the theory where we gradually fix one eigenvalue (5.2).
For σ “ 8 (left) this is the characteristic sine-kernel of random matrix theory (5.6). For σ “ 0 (right) the
spectral correlation is completely destroyed close to the fixed eigenvalue, modulo a delta spike (5.7). For
finite but small σ (middle) the leading effect is a Gaussian smearing of this delta spike (5.16). Here κ “ 0.2.

“ ´TκpE1, E2q ` δpE1 ´ E2q xρpE1qyκ , (5.4)

where one computes xρpE1qyκ analogously to how the two-point function is computed, but now with

only the one insertion of Tr δpH ´Eq. Following the logic of section 2, we are interested in calculating

TκpE1, E2q. Define thereto the sine-kernel [106], which features the undeformed (associated to a matrix

integral with potential V pEq) spectral density ρpEq

SpE1, E2q “
sinpπρpE1qpE1 ´ E2qq

πpE1 ´ E2q
. (5.5)

In the case n “ 0 random matrix universality implies that one can approximate the covariance T pE1, E2q

for the completely random theory as [106]

T pE1, E2q “ SpE1, E2q
2 . (5.6)

Using formula (67) of [11] one finds a similarly universal expression for the theory with one eigenvalue

fixed

TκpE1, E2q “ pSpE1, E2q ´ SpE1, κqSpE2, κq{Spκ, κqq
2 ` δpE1 ´ κqδpE2 ´ κq , (5.7)

see Fig. 11. When E1 and E2 approach κ, the smooth part of the covariance vanishes

TκpE1, E2q “ δpE1 ´ κqδpE2 ´ κq `
π4ρpκq6

9
pE1 ´ κq

2pE2 ´ κq
2 ` . . . (5.8)

This shows that fixing one eigenvalue κ already destroys all spectral correlation for energies close to κ.

In fact, it is clear that locally near this eigenvalue xρpE1qρpE2qyκ already factorizes and gives rise to an
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Figure 12: The geometries contributing to the spectral correlation (5.7), the genus expansion is suppressed
for presentation purposes. Fixed energy boundaries are red and eigenbrane boundaries are orange. The first
two terms should be normalized by one eigenbrane disk (labelled by κ), the third term is normalized by two
such disks. Here we again emphasize that the relation between these geometries holds locally.

interesting constraint between geometries.

Geometrically, (5.7) features 3 topologies; suppressing the genus expansion and the corresponding

nonperturbative corrections, see Fig 12.14 There is the wormhole connecting the two boundaries ρpE1q

and ρpE2q, the three holed sphere connecting ρpE1q and ρpE2q to ρpκq “ Spκ, κq, a product of two

wormholes connecting ρpE1q to ρpκq and the second wormhole connecting ρpE2q to a second copy of

ρpκq. This last term originates from subtracting the disconnected terms in (5.4).

If we are close to κ, (5.8) tells us that Tκ is small and we that the three aforementioned geometries

need to satisfy the constraint as sketched in Fig. 12. When fixing multiple consecutive eigenvalues κi,

the region where the corresponding Tκ1...κn is small, grows and leads to more intricate relations between

different geometries. We emphasize that the nonperturbative corrections are crucial for recovering these

sine-kernel formulas, and the resulting factorization. Classical geometries will not explain Fig. 12.

In connection to the dispersion relation in section 2.4, and [60] we notice that the self-averaging

wormholes contribution is always there. The other two geometries strongly depend on κ and are non-

self-averaging. The third geometry represents the completely factorized diagonal contribution, it equals

the sum of the wormhole and some other non-self-averaging geometry [11,12].

Let us emphasize the main point. Suppose one considers JT gravity with one eigenvalue fixed at

position κ, and computes the two point function of asymptotic boundaries with fixed energy boundary

conditions. Then when considering boundary energies close to κ one finds that this amplitude essentially

factorizes. This makes the theory with only several fixed eigenvalues (5.1) worth understanding.

14 Here we use the dictionary between double scaled matrix models and minimal string theory to relate a insertion of the
spectral density to a geometry with fixed energy boundary conditions [5]. In the JT limit such boundary conditions were
studied also classically in [58].
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5.2 Gravitational interpretation

Let us now return to studying finite σ (5.1). As mentioned before, this matrix model can be inter-

preted geometrically as having n background boundaries labelled by κi. In [11, 12] they were dubbed

eigenbranes as they represent fixed energy boundary conditions. When inserting probe boundaries

ρpEiq, labelled by energies Ei, in order to compute various correlation functions, we sum over over all

spacetimes that are consistent with the boundary conditions. We already saw an example of this in the

previous subsection.

Unfortunately, these n background boundaries have no immediate gravitational interpretation, be-

cause the auxiliary random matrix H0 has no direct gravitational interpretation. We need to integrate

H0 out in order to make contact with gravity. Luckily, using the formulas from section 2, we can easily

perform these H0 integrals and obtain the appropriate insertion in the matrix integral for H.

The goal is understanding the gravitational dual of that insertion and how the eigenbrane picture is

modified for nonzero σ. This gives us a better handle on the full parameter space of our theory (1.1).

To simplify the analysis and discussion, let us focus on fixing just one eigenvalue. The insertion in the

H matrix integral is thus

ρH0pκq “

ˆ
dH0 Tr δpH0 ´ κq exp

ˆ

L

2σ2
TrpH0 ´Hq

2

˙

. (5.9)

The idea is to write this in terms of operators with known gravitational duals. For the purposes of this

section we introduce a coupling g2 “ L{σ2 which remains finite throughout; this is a different scaling

of σ than in section 3.

By slightly modifying the derivation of (2.14) one can exactly perform this Gaussian integral and

find [36]

ρH0pκq “

ˆ `8

´8

dt

2π

L
ÿ

k“1

exp

ˆ

´
1

2g2
t2 ` itpλk ´ κq

˙ L
ź

i‰k

λk ` it{g2 ´ λi
λk ´ λi

“ g2

ˆ `8

´8

ds

2π

˛
H

du

2πi
exp

ˆ

´
g2

2
ps2 ` pu´ κq2q

˙

1

κ´ is´ u

detpκ´ is´Hq

detpu´Hq
, (5.10)

where the contour integral around the eigenvalues λk of H, and we defined s “ ipu´ κq ´ t{g2, which

is actually the same variable as appearing in the Kontsevich integral. It is important to notice that

here we are thinking about H as a matrix that we still need to integrate over, so at this point it has a

bunch of discrete eigenvalues and the above manipulations make sense.

The contour for the u integral can be deformed so as to take the discontinuity, on the real axis, of the

ratio of determinants (and not of the pole at κ´is). This is non-zero as a result of the Sokhotski-Plemelj

theorem.

To find these discontinuities is difficult, but luckily, at large g (small σ), the Gaussians in (5.10) are
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Tr

ˆ

δpκ´Hq
1

κ´H

˙

“ ... , Tr δpκ´HqTr

ˆ

1

κ´H

˙

“ ... ...

Figure 13: Contact terms correspond in gravity with different boundary conditions on different segments
(left).The gravitational translation of the double trace operator (right) is inserting one boundary with fixed
energy boundary state, and a marked FZZT boundary or resolvent [5,107]. We distinguish these close related
boundary states by picturing the FZZT boundary segments using dark orange wiggly curves in contrast to
the eigenbrane boundary in orange.

sharply peaked around s “ 0 and u “ κ. This invites us to Taylor expand the determinants as

detpκ´ is´Hq

detpu´Hq
“ det

ˆ

1`
κ´ is´ u

u´H

˙

“ 1`
8
ÿ

n“1

1

n!
pκ´ is´ uq

L
ÿ

i1‰¨¨¨‰in

1

u´ λi1
. . .

1

u´ λin

“ 1`
8
ÿ

n“1

1

n!
pκ´ is´ uqn

ˆ

Tr

ˆ

1

u´H

˙˙n

smooth

. (5.11)

where the subscript on the products of resolvents means we subtract contact terms. The simplest cases

are

Tr

ˆ

1

u´H

˙

smooth

“ Tr
1

u´H
,

ˆ

Tr

ˆ

1

u´H

˙˙2

smooth

“

ˆ

Tr

ˆ

1

u´H

˙˙2

´ Tr

ˆ

1

u´H

˙2

. (5.12)

Now one can take the discontinuity for each term in the expansion (5.11). The constant in (5.11)

does not contribute, since the pole at κ ´ is lies outside of the contour. Using Sokhotski-Plemelj, we

obtain

ρH0pκq “
g2

2π

ˆ `8

´8

ds exp

ˆ

´
g2

2
s2

˙ ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

8
ÿ

n“0

1

n!
pκ´ is´ uqn

ˆ

Tr δpu´Hq

ˆ

Tr

ˆ

1

u´H

˙˙n˙

smooth

, (5.13)

where again the smooth quantities are defined by subtracting diagonal contact terms. For example

ˆ

Tr δpu´HqTr

ˆ

1

u´H

˙˙

smooth

“ Tr δpu´HqTr

ˆ

1

u´H

˙

´ Tr

ˆ

δpu´Hq
1

u´H

˙

. (5.14)

Notice that there are no products of delta functions, because the sum in (5.11) is over different eigen-

values. Finally, the integrals over s give n-th order Hermite polynomials, which, by using the Rodrigues

formula, can be converted in derivatives of the Gaussian centered at u “ κ. After n partial integration,
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... “

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

...

´
1

g2

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

... ... ` . . .

Figure 14: Gravitational interpretation (right) for inserting ρH0pκq (left) in our two-matrix integral (5.1).
The eigenbrane boundary is smeared away from the g “ 0 limit.

we then arrive at

ρH0pκq “
g

p2πq1{2

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙ 8
ÿ

n“0

1

n!

p´1qn

g2n
Bnu

ˆ

Tr δpu´Hq

ˆ

Tr

ˆ

1

u´H

˙˙n˙

smooth

“
g

p2πq1{2

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

pTr δpu´Hq ` . . . q . (5.15)

Each term in this expansion has a direct gravitational interpretation, which we will discuss next.

The leading contribution represents the insertion of a spectral density operator Tr δpκ´Hq in the

H integral, and in gravity this corresponds to inserting one extra asymptotic boundary, with fixed

energy boundary conditions. The difference with g “ 8, is that the energy of the boundary state will

be smeared with a tight Gaussian. The leading effect on the eigenvalue correlation (5.7) is a similar

smearing

TκpE1, E2q “ pSpE1, E2q ´ SpE1, κqSpE2, κq{Spκ, κqq
2 `

g2

2π
exp

ˆ

´
g2

2
pE1 ´ κq

2 ´
g2

2
pE2 ´ κq

2

˙

.

(5.16)

Close to the almost-fixed eigenvalue this is indistinguishable from the results for the finite dimensional

matrix integral (2.31), but here with a clear gravitational interpretation. See also Fig. 11.

The subleading corrections to (5.15) correspond with having multiple extra boundaries. They come

in two types. The first one is the contact term contributions and has segments with different boundary

condition separated by marked points [56,72,107,108]. The second type is simply the coming from the

multi-trace contributions in the first line of (5.15). Both are shown in Fig. 13.

The partial derivative Bu introduces an extra marked point on any of the boundaries [56,72,107,108];

fundamentally the boundary conditions remain the same.

In summary, we end up with the mapping of fixed energy boundaries for the auxiliary H0 matrix,

to tightly smeared gravitational boundary conditions, that is shown in Fig. 14.
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Notice that, when lowering g to make the eigenvalue more random, the configurations with many

macroscopic boundaries are no longer suppressed and ultimately they proliferate. This reminds us of

the tearing phenomenon encountered in section 4, but now approached from the small σ regime. It is

surprising that in this setup, the gravitational theory seems to make more sense when one eigenvalue

is completely fixed, than when the eigenvalue is half -random.

This provides hope for the endpoint σ “ 0 of the theory, where we try fixing the whole Hamiltonian

(1.1). Perhaps when lowering from σ “ 8, the theory goes through some rough patch at intermediate

values of σ where spacetime appears to be broken, torn apart by macroscopic holes, but then regains

its footings and acquires a nice gravitational interpretation again at σ “ 0.

6 Concluding remarks

We have investigated the matrix integral

Zpσ,H0q “

ˆ
dH exp

ˆ

´LTrV pHq ´
L

2σ2
TrpH0 ´Hq

2

˙

, (6.1)

in different parametric regimes of σ, both in finite dimensional matrix integrals and in the double-scaling

limit, where the theory describes two dimensional dilaton gravity. This represent a more realistic toy

model for higher dimensional quantum gravity, which appears to be dual to a single boundary theory,

instead of an ensemble like JT gravity.

Our most important findings are:

1. Wormholes gradually approach diagonal delta functions in the non-random theory.

2. One universal saddle S “ 0 in the Efetov model governs the non-averaged theory.

3. When making the theory less random, there are phase transitions where spacetime is torn apart.

It has been suggested that perhaps quantum gravity is just an ensemble average, and that is the

end. However, via wormhole physics, traces of microstructure have been discovered within gravitational

systems, like the ramp and plateau. Analogous to how Brownian motion was evidence for molecules,

this is evidence that there is microstructure underlying spacetime. The logical next step is to investigate

what the atoms of spacetime are. Our work is a step in that direction.

We refer to the individual sections and the summary in section 1.2, for specific discussions on each

regime. We end this work with various, more speculative, pieces of discussion and raise open questions.

Higher dimensions

Unlike with two or three dimensions, quantum gravity in higher dimensional AdS is dual to one single

boundary theory. From our analysis, we have learned what it means, for a two dimensional theory, to
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go towards a single boundary theory. Importantly, we saw in section 3 that there are perfectly sensible

theories of dilaton gravity (3.39) which are less random than the simplest case of JT gravity.

This confirms the idea that, when we consider a UV complete theory of quantum gravity, which we

believe are rather scarce and special; the UV details of the theory, such as branes, strings, higher-spin

fields etcetera, are encoded in specific couplings of the effective low energy bulk description. For many

questions, however, a truncation to the Einstein-Hilbert or JT action suffices. But for questions about,

say, factorisation [90,109] it does not. The simplified gravity theory appears to be dual to an ensemble.

It is the additional bulk couplings (that we dropped in doing the truncation) that then need to be taken

into account. Our model precisely shows that when we move away from the boundary theory being an

ensemble, bulk couplings appear and in particular they depend heavily on the specific boundary theory.

This also highlights the point that one specific boundary theory is dual to one specific bulk theory.

It would be interesting to study our deformed JT gravity theory in Lorentzian signature. The extra

boundaries labelled by xi would then, after analytic continuation, correspond to additional boundaries

in Lorentzian spacetime, seemingly just outside the horizon like fuzzballs [68]. Do these micro-structures

also generalise to higher dimensions? If and how these structures relate to microstates of black holes is

an interesting question and requires a full understanding of the theory at small σ, which seems unclear

at present.

The most promising avenue towards understanding small σ, seems to be understanding the S “ 0

universal saddle of the Efetov model in gravity.

Of course, there is an alternative open-closed dual Lorentzian interpretation of literally JT gravity

with a deformed dilaton potential (3.39). It would be interesting to understand the closed dual of the

tearing phase. Perhaps this is related to the aforementioned non-monoticities that appear in the dilaton

potential.

Weingarten corrections

The conclusion of sections 4 was that spacetimes are annihilated by the nucleation of huge holes, when

σ is lowered below some critical value.

However one should remember that the starting point (3.6) of our analysis is an approximation too,

and that approximation comes into jeopardy when the coupling constants blow up. When operators On

with huge valence n become relevant, the Gaussian approximation to the Weingarten functions breaks

down. This is because all Weingarten functions at fixed n, share the same denominator [85,86], which

diverges when n ą L. For example when n “ 3

Wgp1, 1, 1q “
L2 ´ 2

LpL2 ´ 1qpL2 ´ 4q
, (6.2)

the Weingarten functions diverge if L ă 3. Deviations of Weingarten functions from Gaussian behavior
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are intimately connected with various signatures of discreteness, such as the plateau. These corrections

should be important for a full understanding of small σ. Furthermore, the combinatorial prefactors in

(3.5) could make the multi-trace deformations compete with the single-trace deformations.

Therefore, we believe a rigorous treatment of the transition to small σ, will require control of the

full Harish-Chandra integral (3.2) in the double scaling limit; we have not succeeded in understanding

this. Undoubtedly this would result in an expression for the deformed potential involving multi-trace

deformations on top of the L branes we already had. One would have to figure out how to process this

through something like (3.12) or through the string equation machinery.

Multitrace deformations and branched polymers

Fortunately, multitrace deformations of matrix models have been considered before and several inter-

esting phenomena were found [110–114].

In [110], a quartic matrix integral deformed by the double trace term ptrH2q2 is considered. This

interaction is known as a touching interaction, because in the ribbon graph, ribbons would be touching.

If one considers a term ptrHkq2 then higher interaction vertices are touching, establishing a microscopic

wormhole. In the continuum limit, these become nonlocal interactions between distinct points on the

spacetime, so one obtains a non-local dilaton gravity action (1.7). The open string dual are the brane

interactions discussed in section 3.4.

As function of the coupling g of these multitrace operators, three phases were found. Below some

critical coupling g0 the theory behaves like the standard minimal string, but with nonlocal interactions.

Then there is a peculiar phase at g0 where we still have the minimal string, but mysteriously the minimal

matter primaries are dressed by the dual Liouville primary with weight Q´ α instead of α [113]. For

g ą g0 the theory is dominated by branched polymers, which seems to signal a breakdown of continuum

geometry.

It would be interesting to understand these phases in detail in the context of our finite σ theory, in

particular one would like to analytically track the non-localities in the dilaton gravity action, and try

to make sense of the branched polymer phase in gravity.

Averaging over bulk couplings

Let us mention that by using a Hubbard-Stratonovich transformation, the double-trace deformation

can also be interpreted as a single trace term with Gaussian measure. The microscopic wormholes then

originate from an average over bulk couplings, just as Coleman envisioned [115]. This now corresponds

in dilaton gravity with viewing the nonlocal theory discussed above, as a local dilaton gravity theory

with specific couplings, and with en ensemble average over the couplings. This would be a closed string

picture of the effects of branes and their interactions. It is tantalizing that averages over bulk couplings

appear when we are trying to describe the bulk dual of one system. The idea would be that this

46



ensemble too ultimately collapses when σ “ 0, then we are in an α-state [9, 12].

We have seen that introducing the external matrix H0 generates bulk couplings, as manifested in

the deformed dilaton potential (3.39). From the matrix model perspective, we have

ˆ
dH0 Zpσ,H0q “

ˆ
dH dH0 exp

ˆ

´LTrV pHq `
1

2σ2
TrpH0 ´Hq

2

˙

“

ˆ
dH exp

ˆ

´ LTrV pHq

˙

(6.3)

modulo implicit normalization constants. An interesting open problem is understanding why averaging

over H0 in the closed string description (3.39) returns simply JT gravity, without any matrix technology.

One way to understand this, would be to find a gravitational interpretation for the other poles in the

dispersion relation (2.56), and for them vanishing when we integrate over H0.

Another place where averaging over bulk couplings appeared was in section 5. There we considered

fixing only one eigenvalue of H and needed to integrate over the brane parameters. Directly interpreting

(5.10) as averaging over brane locations is, however, subtle; because determinants and branes differ by a

factor expp´LV pEq{2q. This diverges in the double scaling limit, therefore complicating an immediate

gravitational interpretation of (5.10). It would be interesting to understand how to deal with this, such

that one could study (5.10) away from small σ perturbation theory.

Direct product of gravity theories

From the matrix integral point of view, the genus zero spectral density now has many cuts (2.54).

Perhaps for sufficiently small σ, one could interpret the matrix integral as a direct product of L gravity

theories, which only know about each other non-perturbatively (see also [116]). Thus perhaps there is

some many-universe interpretation [9] at small σ.

One way to also see that this could be true is by looking at the topological recursion for matrix

models with an external field [47, 117]. This recursion (and hence also the topological expansion) is

much more complicated then in the usual case, not only because the spectral curve is more intricate,

but also, and perhaps most importantly, because the residue is not just taken at z “ 0 (as is the case for

JT for instance), but at all branch points of the spectral curve (spectral edges). Since there are many

of them, the topological recursion includes many more contributions. In the naive double scaled theory

one could argue that only one branch point is of interest, but clearly at small σ this is insufficient.

Open questions

We have made progress in understanding non-averaged two dimensional gravity. However, many open

questions remain. There are several concrete things to investigate:

1. Gravitational interpretation for the universal S “ 0 saddle in the Efetov model.
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2. Double scaling limit of the Efetov model (2.42). Gravitational interpretation for the theory whose

spectrum consists of many tight semicircles, centered around each of the target eigenvalues (2.54).

Investigate the leading order wormhole for that theory.

3. Gravitational interpretation for the residues from the other poles in the dispersion relation (2.56).

4. Solve matrix integrals with multi-trace deformations in the potential. Gravitational interpretation

of the corresponding double scaling limit, resulting in a concrete nonlocal dilaton gravity action.

Some progress in this direction has been made in [110–114].

5. Describe the atoms of non-averaged gravity at σ “ 0.
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A Efetov saddle points

In this appendix, we collect some details about the saddle point structure of the Efetov model for one

single determinant (2.44); in a simple example where H0 has L{2 eigenvalues z and L{2 eigenvalues ´z.

In this case the saddle point equation becomes

8

a2
iS “

1

E ´ za2{4σ2 ´ iS
`

1

E ` za2{4σ2 ´ iS
. (A.1)

This is a cubic equation for S and can be solved analytically, but the solutions are a bit unwieldy, so we

resort to a numerical analysis. The basic things we want to highlight are the movement of the solutions

as a function of σ, which we sketched in Fig. 15 for two different energies. One energy remains outside

of all cuts and the other enters and leaves a cut as sigma decreases. The discussion is in the caption of

Fig. 15.

The question is which of these saddle points lies on the integration contour. This quickly becomes

teadious to answer. Fortunately, we have made some educated guesses in section 2.3. We can simply

check if these are correct by computing (2.44) numerically and comparing it to the saddle point ap-

proximation, where we take only the physical saddle into account for energies outside any cut; and take

the physical saddle plus the saddle with the opposite branch for the relevant square root, whenever we

are inside some spectral cut. We find excellent agreement, as shown in Fig. 16.15

15 Including another saddle given an answer that is many orders of magnitude too large to match (2.44).
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Figure 15: Three solutions (orange, black, blue) to (A.1) as a function of σ. The real part of S is in solid
lines and the imaginary part of S is in dashed lines. We use z “ 5{2, b “ 2 and E “ 3 for the left figure
and E “ 2.2 for the right. At large σ the physical saddle (orange) should approach ´i{2pE´

?
E2 ´ b2q «

´0.382i for the left and ´0.642i for the right plot, as can be seen from the plots. Notice that the physical
saddle approaches S “ 0 for σ “ 0 as claimed in the main text, whereas the other saddles indeed approach
S “ ´ipE ˘ zq. Near σ “ 8 one saddle (blue) approaches the value S “ ´iE corresponding with (2.52)
and another (black) approaches ´i{2pE `

?
E2 ´ b2q, the other standard solution in (2.50). For the right

plot, we can see that E “ 2.2 enters the cut when the physical saddle and one of the other saddles coincide,
it leaves the cut again at the second bifurcation. Both these transitions take place at an (anti-)Stokes line,
as claimed in the main text, since both the real and imaginary parts of the saddles coincide. In the region
between the two bifurcations, both saddles are on the integration contour, otherwise only the physical one
is included (orange).

We expect this to be true more generally, but it would be worthwhile to verify it more analytically,

by computing steepest descent contours etcetera.

B Quartic matrix integral

In this appendix we study some aspects of a quartic matrix model and its double scaling. In particular,

we will present a straightforward way of obtaining an E3{2 edge and one that includes a E1{2 edge as

well. The latter is what is encountered in the p2, 3q minimal string, also known as pure gravity; however

in the current context that name is misleading, all minimal strings are pure dilaton gravity [5, 56–59].

We consider the potential

V pHq “
1

2t
H2 ´

t4
4t
H4 , (B.1)

and we will scale to the critical point corresponding with the p2, 3q minimal string. This model is simple

enough to be didactic, and sufficiently rich to clarify the intricacies of double scaling to anything except

the p2, 1q minimal string; which you obtain everywhere except at the critical points.
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Figure 16: Comparison between numerical evaluation of (2.44) (orange dashed) and its saddle point
approximation (solid blue) at L “ 20, taking only the saddles mentioned in the text into account. We used
b “ 2 and z “ 5{2. The plot on the left is a log plot (because the range is rather big) for E “ 3 which
remains outside any cut as a function of σ, and we see that the saddle point approximation is excellent.
For the right figure we have E “ 2.2 and will thus enter and leave a cut as σ decreases. The saddle point
approximation is still very good, except when the value of E enters a cut around σ « 0.16 and « 1.2. At
these values for σ the saddles change dominance and the saddle point approximation breaks down, leading
to bigger errors. Notably, between those two values there are two saddles (orange and black in Fig. 15)
contributing. The inset on the right shows the same plot, but for smaller values of σ.

With the main sections in mind we will include the quadratic deformation from (3.6), but leave out

the inverse determinants; and thus study the potential

W pHq “

ˆ

1

t
`

1

σ2

˙

1

2
H2 ´

t4
t

1

4
H4 “

1

2τ
H2 ´

τ4

4τ
H4 , (B.2)

where we introduced new effective coupling constants, similar to in (2.1)

1

τ
“

1

t
`

1

σ2
,

τ4

τ
“
t4
t
. (B.3)

Let us now compute the resolvent using (3.12). We deform the integration contour around the pole at

E and the pole at 8, which, in the latter case, should be computed by going to variables λ “ 1{z. The

one at E gives W 1pHq{2, and does not contribute to the discontinuity of the resolvent; and therefore

neither to the spectral density. The pole at 8 does give an interesting contribution, it reads

RpEq “ ´
L

2τ
pE2 ´ E2

0q
1{2

ˆ

1´
3

2
τ4E

2
0

˙

`
Lτ4

2τ
pE2 ´ E2

0q
3{2 , (B.4)
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resulting in the spectral density

ρpEq “
L

2π

1

τ
pE2

0 ´ E
2q1{2

ˆ

1´
3

2
τ4E

2
0

˙

`
L

2π

τ4

τ
pE2

0 ´ E
2q3{2 . (B.5)

We want to think about the constraint (3.10) as fixing the parameter τ as a function of E0, such that

there is the freedom to send E0 to infinity for double scaling

τ “
E2

0

4

ˆ

1´
3

4
τ4E

2
0

˙

. (B.6)

which reduces indeed to the Gaussian potential (2.1), when we turn off the quartic term. This equation

eliminates t when translated back to the original couplings (B.2).

To double scale this theory we send E0 to infinity and considers energies close to the spectral edge

(3.21), whilst simultaneously sending L to infinity; in such a way that the spectrum near the edge

remains finite. We believe it is didactic to work this out in some detail. It seems sensible to scale τ4 as

τ4 “ g{E2
0 with g finite, giving

ρpEq
ds
“
L

π

23{2

E
3{2
0

1´ 3g{2

1´ 3g{4
E1{2 ´

L
?

2π

1

E
5{2
0

1´ 19g{2

1´ 3g{4
E3{2 . (B.7)

The second term is suppressed by 1{E0 for generic coupling. We are then urged to scale L “ eS0pE0{2q
3{2

to obtain some finite answer near the edge

ρpEq “
eS0

π

1´ 3g{2

1´ 3g{4
E1{2 . (B.8)

This is the spectral curve for the p2, 1q minimal string, or topological gravity [5,118]. Generic potentials

indeed always double scale to this simplest p2, 1q minimal string.

To obtain the p2, pq minimal strings one should tune (in the quartic case) the couplings of the

potential such that the coefficient of the E1{2 vanishes, making the E3{2 term competitive. For p “

2m` 1, the couplings multiplying H2`2m are tuned to make the first m terms in the expansion vanish,

leaving only Em`1{2, these special couplings are called critical points. In our case we must take g “ 2{3,

commonly written as; after using (B.6)

τ4 “
1

12τ
. (B.9)

Since the leading density is being tuned to zero, we need much more eigenvalues L in the theory to see

interesting behavior near the edge – from (B.7) we see that we should take L “ eS0pE0{2q
5{2, and find

ρpEq “
eS0

π

4

3
E3{2 . (B.10)

This is indeed the spectral curve of the second critical point. We can make the lower terms competitive
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at the same order, by scaling slightly differently towards the critical points. For this quartic example,

choosing the coupling g “ 2{3p1´ 2κ{E0q gives

ρpEq “
2eS0

π

ˆ

κE1{2 `
2

3
E3{2

˙

(B.11)

This spectral density is indeed proportional to the spectral density of the p2, pq minimal string theory

with non-zero cosmological constant κ, with p “ 3 [5]

ρpEq 9 eS0 sinh

„

p

2
arccosh

ˆ

1`
E

κ

˙

(B.12)

As we send the cosmological constant to zero, one then indeed recovers the second multi-critical point

(B.10).
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[40] E. Brézin and S. Hikami, Random Matrix Theory with an External Source. SpringerBriefs in

Mathematical Physics. Springer Singapore, 2017.

https://books.google.com/books?id=1ODmDQAAQBAJ.

54

http://arxiv.org/abs/2012.07875
http://arxiv.org/abs/2105.02142
http://arxiv.org/abs/2106.12760
http://dx.doi.org/10.1140/epjc/s10052-018-6267-1
http://dx.doi.org/10.1140/epjc/s10052-018-6267-1
http://arxiv.org/abs/1804.09742
http://dx.doi.org/10.1007/JHEP04(2019)103
http://arxiv.org/abs/1812.01007
http://dx.doi.org/10.1007/JHEP03(2021)176
http://arxiv.org/abs/2008.07533
http://dx.doi.org/10.1007/JHEP05(2021)233
http://arxiv.org/abs/2102.12355
https://doi.org/10.1007/s002200050372
http://dx.doi.org/10.1088/1751-8113/40/45/005
http://dx.doi.org/10.1088/1751-8113/40/45/005
http://arxiv.org/abs/0704.2044
https://link.aps.org/doi/10.1103/PhysRevE.58.7176
https://link.aps.org/doi/10.1103/PhysRevE.58.7176
http://dx.doi.org/10.1103/PhysRevE.56.264
http://dx.doi.org/10.1103/PhysRevE.56.264
http://dx.doi.org/10.1016/S0550-3213(97)00307-6
http://dx.doi.org/10.1016/S0550-3213(97)00307-6
http://dx.doi.org/10.1016/0550-3213(91)90368-8
http://dx.doi.org/10.1016/0550-3213(96)00394-X
https://books.google.com/books?id=1ODmDQAAQBAJ


[41] A. I. Aptekarev, P. M. Bleher, and A. B. Kuijlaars, “Large n limit of gaussian random matrices

with external source, part ii,” Communications in Mathematical Physics 259 no. 2, (Jun, 2005)

367–389.

[42] P. Bleher and A. B. J. Kuijlaars, “Large n limit of gaussian random matrices with external

source, part i,” Communications in Mathematical Physics 252 no. 1-3, (Oct, 2004) 43–76.

[43] P. M. Bleher and A. B. J. Kuijlaars, “Large n limit of gaussian random matrices with external

source, part iii: Double scaling limit,” Communications in Mathematical Physics 270 no. 2,

(Dec, 2006) 481–517.

[44] N. Orantin, “Gaussian matrix model in an external field and non-intersecting brownian

motions,” 2008.
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