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Abstract

A spectrum of localized excitations of isolated static fermions has been discovered in several
different gauge Higgs theories. In lattice numerical simulations, we show that the charged
elementary particles can have the spectrum of excitations in the Higgs phase of SU(3) gauge
Higgs theory, q = 2 Abelian Higgs theory, Landau-Ginzburg theory, and in chiral U(1) gauge
Higgs theory. Possibly these excited states of the isolated fermions can be observed in ARPES
studies of conventional superconductors. Also, we consider that similar kinds of excitations
could exist in other gauge Higgs theories, such as the electroweak sector of the Standard
Model.
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1 Introduction

Molecules, atoms, nuclei, hadrons are composite systems having a spectrum of excitations, but
what about the charged “elementary” particles? Could quarks and leptons have a spectrum of
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excitations?
A charged particle is accompanied by a surrounding gauge field (and possibly other fields)

as a consequence of Gauss’s Law. These surrounding, localized fields could in principle have a
spectrum of excitations. If so, those excitations would look like a mass spectrum of the isolated
elementary particle.

Obviously, such excitation doesn’t happen in pure QED because any energy eigenstate con-
taining a static ± charge pair is just the Coulomb field plus some number of photons. But this
could be different in the gauge Higgs theories.

1.1 Pseudomatter fields

In connection with gauge theories we often ask: are all physical states gauge invariant? The
answer is: not quite. Note that the Gauss law constraint only requires invariance under in-
finitesimal gauge transformations, but this does not exclude certain global transformations.
As a simple example taken from QED, consider a single static charge at point x in an infinite
volume. The corresponding physical state of lowest energy, first written down by Dirac [1], is

|Ψx〉=ψ
+
(x)ρC(x; A)|Ψ0〉 , ρC(x; A) = exp

�

−i
e

4π

∫

d3z Ai(z)
∂

∂ zi

1
|x− z|

�

. (1)

The state |Ψx〉 satisfies the Gauss Law. However, considering an arbitrary U(1) gauge transfor-
mation, g(x) = eiθ (x), we separate out the zero mode θ (x) = θ0+ θ̃ (x). Then this transforms
the static charge operator as ψ(x) → eiθ (x)ψ(x), but the ρC operator in Eq. (1) transforms
without the zeroth mode ρC(x; A) → eiθ̃ (x)ρC(x; A). Then the operator combining the static
charge operator and the ρC operator together transforms as |Ψx〉 → e−iθ0 |Ψx〉, so |Ψx〉 trans-
forms under the global subgroup of the gauge group. This result reminds us that while Elitzur’s
theorem says that local symmetries cannot break spontaneously, global symmetries can.

We call operators like ρC in Eq. (1) “pseudomatter” fields [2]. These are non-local func-
tionals of the gauge field which transforms like a matter field in the fundamental representa-
tion of the gauge group, except under the global center subgroup of the gauge group. In our
work in the gauge Higgs theory, we create physical states by combining the scalar field and
pseudomatter fields with the static charge operator.

Examples of pseudomatter fields include (i) Any SU(N) gauge transformation gF (x; A) to a
physical gauge F(A) = 0. This can be decomposed into N pseudomatter fields {ρn}, and vice-
versa, via ρa

n(x; A) = g†an
F (x; A) (in fact the operator ρ∗C(x; A) in (1) is the gauge transformation

to Coulomb gauge in an abelian theory). And (ii) any eigenstate ξn(x; U) of the covariant
Laplacian operator, −D2ξn = κnξn, in an SU(N) gauge theory, where

(−D2)ab
xy =

3
∑

k=1

�

2δabδxy − Uab
k (x)δy,x+k̂ − U†ab

k (x− k̂)δy,x−k̂

�

, (2)

is a pseudomatter field.
Pseudomatter fields play an important role in the formulation of excited states of elemen-

tary fermions in gauge Higgs theories. For static quarks in a pure gauge theory there is a tower
of energy eigenstates

Ψn(R) = q(x)Vn(x,y; U)q(y)Ψ0 , (3)

which we attribute to the string excitations. In fact, these excitations have been observed in
computer simulations in [3] and in [4].

A similar spectrum of excitations (metastable due to string breaking) exists in the confine-
ment phase of a gauge Higgs theory. For light quarks, the flux tube forms between the pair of
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the quark and antiquarks, and the excited hadronic states lie on linear Regge trajectories. But,
what about in the Higgs phase? Is there a similar tower of metastable states given by

Ψn(R) = qa(x)

�

∑

m

c(n)m ρ
a
m(x)ρ

†b
m (y)

�

qb(y)Ψ0 , (4)

where the {ρm(x)} are pseudo-matter fields? We asked this question in four different models,
first in SU(3) gauge Higgs theory [5], then in q = 2 Abelian gauge Higgs theory [6], in Landau-
Ginzburg effective action for superconductivity [7], and in chiral U(1) gauge Higgs theory
(Smit-Swift formulation) [8]. In those four models, we impose a unimodular constraint
φ∗(x)φ(x) = 1 for simplicity of our calculations. Of course, the four models are different, so
each model has its own special features which must be taken into account.

1.2 Transfer matrix

Let E1(R) be the lowest energy, above the vacuum energy E0, of all states containing a static
fermion-antifermion pair separated by distance R, and let |Ψ(R)〉 be some arbitrary state of
this kind. Then on general grounds

〈Ψ(R)|T T |Ψ(R)〉 =
∑

n

cne−En(R)T → c1e−E1(R)T as T →∞ . (5)

where T = e−(H−E0)a is the transfer matrix (τ = e−Ha) rescaled by an exponential eE0a of the
vacuum energy E0 (from here on we refer to T , rather than τ as the transfer matrix). But this
is not very useful for finding the energy of the excited states, because all you get is the ground
state in this way.

Alternatively, we may choose some set of states {|Φα(R)〉}, spanning a subspace of the
full Hilbert space with the two static charges. One could then obtain an approximate mass
spectrum by diagonalizing T in the given subspace, as is done in many lattice QCD calculations.
However, this requires using a rather large set containing on the order of hundreds of states.
Obviously, this method is also not practical for our purposes, where generating the required
pseudomatter operators is a computationally intensive process.

As a practical solution for our purposes, we instead generate a small set of states {|Φα(R)〉},
diagonalize either the transfer matrix T or a power of the transfer matrix T p in the small
subspace spanned by these states, and evolve these states in Euclidean time. The idea is that
one or more of the eigenstates |Ψn〉may be orthogonal, or nearly orthogonal, to the true ground
state. If |Ψ〉 is orthogonal to the ground state, then

〈Ψ|T T |Ψ〉 =
∑

n

cne−En(R)T → cex e−Eex (R)T at large T . (6)

However this method is also not guaranteed to work, so we just need to try it to see if it works
or not.

2 Models and Results

2.1 SU(3) gauge Higgs theory

Let ξn denote the eigenstates −D2ξn = κnξn of the lattice Laplacian operator in (2) in SU(3)
gauge Higgs theory. At each quark separation R = |x − y|, we consider the 4-dimensional
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subspace of the Hilbert space spanned by three quark-pseudomatter states, and one quark-
scalar state

Φn(R) = [qa(x)ξa
n(x)] × [ξ

†b
n (y)q

b(y)] Ψ0 (n= 1, 2,3)

Φ4(R) = [qa(x)φa(x)] × [φ†b(y)qb(y)] Ψ0 . (7)

For this non-orthogonal basis, we calculate numerically the matrix elements and overlaps,

[T ]αβ(R) = 〈Φα|T |Φβ〉 , [O]αβ (R) = 〈Φα|Φβ〉 . (8)

We obtain the eigenvalues of T in the subspace by solving the generalized eigenvalue problem,

[T ]~υn = λn[O]~υ
(n) and |Ψn(R)〉=

4
∑

i=1

υ
(n)
i |Φi(R)〉 . (9)

The |Ψn(R)〉 are the linear combinations of the non-orthognal basis states |Φi(R)〉 , and the set of
states |Ψn(R)〉 are the energy eigenstates (i.e. eigenstates of the transfer matrix) of the isolated
static pair only in the restricted subspace. Next, we consider evolving states for Euclidean time
T , and compute

T T
nn(R) = 〈Ψn|T T |Ψn〉= υ

(n)∗
i 〈Φi|T T |Φ j〉υ

(n)
j with En(R, T ) = − log

�

T T
nn(R)

T T−1
nn (R)

�

,(10)

where En(R, T ) is a lattice logarithmic time derivative, and can be understood as the energy
expectation value of the state Ψ

�

R, 1
2(T − 1)

�

= T (T−1)/2Ψ(R) which is obtained by evolving

Ψ(R) by 1
2(T − 1) units of Euclidean time.

In order to compute Eq. (10), we first integrate out the massive (i.e. static) fermion fields,
and this generates a pair of Wilson lines. Then the numerical computation of 〈Φi|T T |Φ j〉 boils
down to calculating the expectation values of products of Wilson lines each terminated by
matter or pseudomatter fields.

There are three possibilities: (i) Ψn(R) is an eigenstate in the full Hilbert space, and
En(R) = E(R, T ) is time independent; (ii)Ψn(R) evolves to the ground state, and En(R, T )→ E1;
(iii) Ψn(R) evolves in Euclidean time to a stable or metastable excited state above the ground
state. Then En(R, T ) converges to a value greater than E1. For our numerical work, we have
computed En(R, T ) in SU(3) gauge theory with a unimodular Higgs field on a 143×32 lattice
volume, with γ = 0.5 and γ = 3.5, in the confinement and Higgs phases respectively. The
action is

S = −
β

3

∑

plaq

ReTr[Uµ(x)Uν(x + µ̂)U
†
µ(x + ν̂)U

†
ν(x)]− γ

∑

x ,µ

Re[φ†(x)Uµ(x)φ(x + bµ)] . (11)

Now let us consider two states in particular,

Φ1(R) = [q
a(x)ξa

1(x)]× [ξ
†b
1 (y)q

b(y)]Ψ0 , Φ4(R) = [q
a(x)φa(x)]× [φ†b(y)qb(y)]Ψ0 (12)

Φ4 is just a pair of color neutral objects, which can be separated to R → ∞ with a finite
cost in energy. The distinction between the Higgs and confinement phases is that in the con-
finement phase the energy of every pseudomatter state (such as Φ1) diverges as R→∞, no
matter which pseudomatter field is used. That is the definition of separation-of-charge (Sc)
confinement [2], which is associated with metastable flux tubes and Regge trajectories. Sc con-
finement disappears in the Higgs phase, where the global center subgroup of the gauge group
is spontaneously broken [9], and this is seen in Fig. 1, with data taken at β = 5.5,γ = 0.5 in
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Figure 1: (a) Energy expectation value of Φ1(R) purple line and Φ4(R) green line in
the confinement phase. (b) Energy expectation value of Φ1(R) purple line and Φ4(R)
green line in the Higgs phase. Figure from [5].

the confinement phase, and β = 5.5,γ= 3.5 in the Higgs phase. We also find that the overlap
〈Φ1|Φ4〉 → 0 at large R in the confinement phase, but is non-zero in the Higgs phase.

We solve the generalized eigenvalue problem (9) in the non-orthogonal basis (7) in the
Higgs phase and determine the eigenstates Ψn(R) of the pair of static fermion and antifermion.
Then we compute the time dependent energy expectation values, En(R, T ), and the overlap of
Ψ1(R),Ψ2(R) after evolution for T = 4− 12 units of Euclidean time. The results are shown in
Fig. 2.
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Figure 2: (a) energy expectation value En(R, T ) in the Higgs phase of SU(3) gauge
Higgs theory; (b) overlap of Ψ1(R),Ψ2(R) after evolution in Euclidean time in the
Higgs phase of SU(3) gauge Higgs theory. Figure from [5].

In Fig. 2a, time evolution of the energy expectation value of Ψ1(R), the ground state, con-
verges to the purple line, and the time evolution of the energy expectation value of Ψ2(R), the
first excited state, converges to yellow line, which is the different energy level from the ground
state for T = 4−12. The energy gap is far smaller than the threshold for vector boson creation.
In Fig. 2b, we see that after some Euclidean time evolution, the ground state Ψ1(R) and the
first excited state Ψ2(R) are orthogonal to each other. These results in Fig. 2 are the clear evi-
dence of existence of a stable localized excited state, which is orthogonal to the ground state,
in the excitation spectrum of the static fermion and antifermion pair in the Higgs phase of the
SU(3) gauge Higgs theory.
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2.2 q = 2 Abelian Gauge-Higgs theory

We investigate the localized excited states in q = 2 Abelian gauge Higgs theory with the action,

S = −β
∑

plaq

Re[Uµ(x)Uν(x + µ̂)U
∗
µ(x + ν̂)U

∗
ν(x)]− γ

∑

x ,µ

Re[φ∗(x)U2
µ(x)φ(x + bµ)] . (13)

In this theory, the scalar field has charge q = 2 as do Cooper pairs. Similarly to SU(3) gauge
Higgs theory, we impose a unimodular constraint φ∗(x)φ(x) = 1 for simplicity of our calcu-
lations. This is a relativistic generalization of the Landau-Ginzburg effective model of super-
conductivity.

In our calculation we make use of the four lowest-lying Laplacian eigenstates ξi and the
Higgs field, defining ζi(x) = ξi(x), i = 1− 4 and ζ5(x) = φ(x). We define

Qα(R) = ψ(x)Vα(x,y; U)ψ(y) and Vα(x,y; U) = ζα(x; U)ζ∗α(y; U) , (14)

and also

[T ]αβ = 〈Φα|e−(H−E0)|Φβ〉= 〈Q†
α(R, 1)Qβ(R, 0)〉 , [O]αβ = 〈Φα|Φβ〉= 〈Q†

α(R, 0)Qβ(R, 0)〉(15)

obtaining the five orthogonal eigenstates of [T ]αβ by solving the generalized eigenvalue prob-
lem (9), with eigenvaluesλn ordered such thatλn decreases with n. Then we consider evolving
the states Ψn in Euclidean time,

Tnn(R, T ) = 〈Ψn|T T |Ψn〉= υ∗(n)α 〈Q
†
α(R, T )Qβ(R, 0)〉υ(n)

β
, (16)

where Latin indices indicate matrix elements with respect to the Ψn rather than the Φα, and
there is a sum over repeated Greek indices. After integrating out the massive fermions, whose
worldlines lie along timelike Wilson lines (denoted P(x, t, T ) which are products of squared
timelike link variables U2

0 (because charge q = 2)), we have

〈Q†
α(R, T )Qβ(R, 0)〉= 〈Tr[V †

α (x,y; U(t + T ))P†(x, t, T )Vβ(x,y; U(t))P(y, t, T )]〉 , (17)

and then use (17) to compute the time dependent matrix elements of the transfer matrix as in
Eq. (16) numerically. On general grounds, Tnn(R, T ) is a sum of exponentials

Tnn(R, T ) = 〈Ψn(R)|e−(H−E0)T |Ψn(R) =
∑

j

|c(n)j (R)|
2e−E j(R)T , (18)

where c(n)j (R) is the overlap of state Ψn(R) with the j-th energy eigenstate of the Abelian Higgs
theory containing a static fermion-antifermion pair at separation R, and E j(R) is the corre-
sponding energy eigenvalue minus the vacuum energy.

For our numerical study, we investigate the Higgs region at β=3 and γ=0.5. We com-
pute the photon mass from the plaquette-plaquette correlator to be 1.57 in lattice units. The
energies En(R) for n = 1,2 are also obtained by fitting the data for Tnn(R, T ) vs. T , at each
R, to an exponential falloff. An example of these fits at R = 6.93 on a 164 lattice with cou-
plings β = 3,γ = 0.5 are shown in Fig. 3a. Fitting through the points at T = 2− 5, we find
E1 = 0.2929(6) and E2(R) = 1.01(1). We repeated the single exponential fitting analysis for
each separation distance R; the data and errors were obtained from ten independent runs,
each of 77,000 sweeps after thermalization, with data taken every 100 sweeps, computing Tnn
from each independent run.
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Figure 3: (a) An exponential fitting example at R = 6.93 on a 164 lattice with cou-
plings β = 3,γ = 0.5. (b) A plot of the energy expectation values En(R) vs. R for
n= 1,2, 3. Figure from [6].

We also looked for any indication of a second stable excited state by fitting T33(R, T ) to a
sum of exponentials, but of course such an analysis must be treated with caution. With this
caveat, all values of E1, E2, E3 together with the one photon threshold are shown in Fig. 3b.
The yellow line is the one photon threshold energy line which is simply E1+mphoton = 1.86(1)
in lattice units. The most important observation is that E2(R) lies well below this threshold,
which implies that the first excited state of the static fermion-antifermion pair is stable. The
second excited state E3(R) seems to lie above or near the one photon threshold is probably a
combination of the ground state plus a massive photon.

2.3 Effective Landau-Ginzburg model

The effective Landau-Ginzburg model for ordinary superconductivity is a non-relativistic q = 2
Abelian Higgs model of this form:

S = −β
∑

plaq

Re[UUU∗U∗]− γ
∑

x

3
∑

k=1

φ∗(x)U2
k (x)φ(x + k̂)−

γ

υ2

∑

x

φ∗(x)U2
0 (x)φ(x + t̂) ,(19)

where υ∼ 10−2 in natural units, is on the order of the Fermi velocity in a metal, and
β = 1

e2 = 10.9, where e is the electric charge. In the simulations we go to unitary gauge, where
U0(x) ≈ ±1. The aim is to find excitations around pairs of static q = ±1 (e) charges, having
in mind electrons and holes.

Couplings γ,β determine the photon mass, which is the inverse to the penetration depth,
in lattice units. Therefore the penetration depth, at given γ, sets the lattice spacing in physical
units. Unfortunately in this case we found that eigenstates of T in the subspace have energies
which flow, in Euclidean time, to the ground state energy.

To overcome this problem, we instead diagonalize T 2t0 in the basis Φα at each separation
R, so that we compute the transfer matrix elements 〈Ψm|T 2t0 |Ψn〉 = λn(t0)δmn and define
Ψn(t) = T tΨn. Consider evolving Ψ1 by t0 units of Euclidean time, and suppose that after
this time period Ψ1(t0) is approximately the true ground state in the full Hilbert space. It
follows that Ψn>1(t0) is orthogonal to the ground state, because 〈Ψm(t0)|Ψn(t0)〉 ∝ δmn, and
therefore, at large T > 2t0

T22(R, T ) = 〈Ψ2|T T |Ψ2〉= 〈Ψ2(t0)|T T−2t0 |Ψ2(t0)〉 → const× e−Eex T where Eex > E1 . (20)

In Fig. 4a, we show an example of our fitting of the transfer matrix of T11(R, T ) at R= 5.385,
γ = 0.25. We choose 2t0 = 9, and we fit T11 to f1(T ) = a1 exp(−b1T ) + c1 We found c1 6= 0,
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and this means that the ground state energy E1 ≈ 0. Note that b1 gives an excited state energy.
Then similarly, we fit the matrix element of T22(R, T ) in the range T > 6 to a single exponential
f2(T ) = a2 exp(−b2T ) as shown in Fig. 4b. The coefficient b2 < b1 gives another excitation
energy.
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Figure 4: (a) An exponential fitting example of the matrix element of T11 at
R = 5.385, γ = 0.25. (b) An exponential fitting example of the matrix element
of T22 at R= 5.385, γ= 0.25.

Our preliminary results (note that this is work in progress) for the excitation spectrum of
the fermion and antifermion pair in effective Landau-Ginzburg model are shown in Fig. 5a.
In the effective Landau-Ginzburg model, we found that the data at R < 4.0 are rather noisy,
with large χ2, and these points are omitted. Note that in Fig. 5a the ground state energy of
the fermion and antifermion pair is zero. Similarly to the previous models, we find that the
first exited state of the static fermion-antifermion pair lies below the one photon threshold,
at least for R > 4. Therefore, once again, the first excited state is stable. The second excited
state, the purple dots right on the threshold in Fig. 5a, is presumably the ground state plus a
massive photon.

Based on these results, we can ask if such excitations could be detected experimentally, e.g.
by ARPES (angle-resolved photoemission spectroscopy)? We don’t yet know, but of course it
would be exciting to observe such excited states in the real superconductors.
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Figure 5: Excitation spectrum of a static fermion and antifermion pair in (a) the
effective Landau-Ginzburg model and (b) a chiral U(1) gauge theory (Figure from
[8]) in a Smit-Swift formulation.
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2.4 Chiral gauge theories

There is no known lattice formulation of chiral non-abelian gauge theories with a continuum
limit. In an abelian chiral gauge theory there exists a successful formulation due to Lüscher,
but this formulation involves the use of overlap fermions, and it is challenging to implement
numerically.

In the exploratory work by one of us [8], a simpler option was chosen. For static fermions,
work instead with a quenched version, at fixed lattice spacing, of the Smit-Swift lattice action,
U(1) gauge group, with oppositely charged right and left-handed fermions.

There are doublers, even with quenched fermions. The idea was to use a Wilson-style
non-local mass term to take the mass of the doublers to infinity in the continuum. However,
the continuum limit doesn’t work because Smit-Swift formulation is not a true chiral gauge
theory. Moreover, the positivity of the transfer matrix is unproven. But at least the non-local
mass term breaks the mass degeneracy with the doublers.

In Fig. 5b, we present the numerical results for the excitation spectrum of static fermion and
antifermion pair. The plot shows excitation energies all together E1, E2, E3 vs. R at β = 3,γ= 1,
together with the one photon threshold. The first excited state energies are well below the one
photon threshold line, and this indicates that the first excited state of the static fermion and
antifermion pair is stable. The energies of the second excited state are above the one photon
threshold line, so the second excited states are probably the combination of the ground state
and massive photons. Once again, our investigation in chiral gauge theory leads to the similar
results of those other models of SU(3) gauge Higgs model, q = 2 Abelian gauge Higgs model,
and Landau-Ginzburg model.

3 Conclusion

In this work, we have shown that the gauge plus Higgs fields surrounding a charged static
fermion have a spectrum of localized excitations, and these cannot be interpreted as just the
ground state plus some propagating massive bosons. This means that charged “elementary”
particles can have a mass spectrum in gauge Higgs theories. This conclusion seems robust
because we see those excitation spectrums in four different models of SU(3) gauge Higgs, q=2
Abelian Higgs, Landau-Ginzburg, and chiral U(1) gauge Higgs models. Perhaps it is possible
to observe those localized excitations in ARPES studies, e.g. in core electron spectra found by
ARPES studies of conventional superconductors above and below the transition temperature.
Finally, we are also interested in extending our investigation to electroweak theory, and looking
for similar kinds of localized excitations of quarks and leptons, and possibly also excitations
of massive gauge bosons.

Funding for this research was provided by the United States Department of Energy under
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