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Abstract

We propose nonabelian higher-rank gauge theories in 2+1D and 3+1D. The

gauge group is constructed from the volume-preserving diffeomorphisms of

space. We show that the intriguing physics of the lowest Landau level (LLL)

limit can be interpreted as the consequences of the symmetry. We derive the

renowned Girvin-MacDonald-Platzman (GMP) algebra as well as the topo-

logical Wen-Zee term within our formalism. Using the gauge symmetry in

2+1D, we derive the LLL effective action of vortex crystal in rotating Bose

gas as well as Wigner crystal of electron in an applied magnetic field. We

show that the nonlinear sigma models of ferromagnets in 2+1D and 3+1D ex-

hibit the higher-rank gauge symmetries that we introduce in this paper. We

interpret the fractonic behavior of the excitations on the lowest Landau level

and of skyrmions in ferromagnets as the consequence of the higher-rank gauge

symmetry.
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1 Introduction

Recently, considerable interest has been drawn to “higher-rank gauge theories,” i.e., the-

ories where the gauge potential is not a one-form, but a tensor of higher rank [1–14].

The physical motivation of the higher-rank gauge theories is the discovery of a new class

of topological matter known as fractons [15–19], one feature of which is the existence

of excitations with restricted mobility. The excitations either cannot move at all or can

only move in lower-dimensional sub-spaces, while composites of elementary excitations

can move freely. The restricted mobility of the fractonic excitations can be interpreted as

the consequence of the higher-rank theories’ conservation laws. In particular, the tensor

Gauss’s law leads to the conservation of not only the electric charge but also the electric

dipole moment and, in some cases, higher moments of the charge distribution [1, 2, 19].

This has the physical effect of rendering the electric charge immobile but leaving the

dipoles mobile or partially mobile. One representative example is the so-called “traceless

scalar charge theory,” in which the electric charges are immobile and the electric dipole

can move only in the direction perpendicular to the dipole moment [2]. The higher-rank

gauge theories have also been applied to describe defects in solids [20–24], supersolids [25],

superfluid vortices [26,27], smectics [5, 27,28], and other systems.

All the higher-rank gauge symmetries in the physical models mentioned above are

abelian. There were attempts to generalize these symmetries to nonabelian symme-

tries [6, 29–31]; however, physical systems that realize those symmetries have not been

explicitly proposed. In this paper, we propose nonabelian higher-rank symmetry theo-

ries for condensed matter systems of physical relevance. We reformulate the tensor gauge

transformation in the traceless scalar charge theory in 2+1D [1,2], showing that the gauge
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transformation is nothing but the volume-preserving diffeomorphism (VPD) in the lin-

earized form. We then construct nonlinear higher-rank gauge theories with VPDs as

the symmetry group. The nonabelian nature of the gauge symmetry has a nontrivial

consequence: the charge density operators at different positions do not commute. In-

stead, they form the long-wavelength limit of the Girvin-MacDonald-Platzman (GMP)

algebra [32–34], which reveals a connection to the lowest Landau level (LLL).

It is easy to notice that many features of the physics on the LLL bear a close resem-

blance to that of the field-theory models with higher rank symmetries [35]: for example,

electric charges are pinned to one place by the large magnetic field, and neutral excita-

tions (e.g., the composite fermion in the half-filled Landau level [36]) carry an electric

dipole moment and can move in the direction perpendicular to the direction of motion. In

this paper, we show that this resemblance is not accidental; in fact, the nonlinear higher-

rank symmetry is realized as a symmetry of the problem of charged particles on the LLL.

The relation between the dipole moment and momentum of an excitation in models with

higher-rank symmetry was noticed in Refs. [13, 26].

We also will present several physical systems that enjoy the nonabelian higher-rank

symmetry. In 2+1D systems, the symmetry originates from the lowest-Landau-level limit,

where the volume-preserving nature of the diffeomorphisms comes from the restriction

that the transformations should preserve the background magnetic field. In addition to

the derivation of the GMP algebra, we draw a connection between the topological Wen-Zee

term [37] with the Chern-Simons term in a higher-rank gauge theory.

Furthermore, we will use the gauge symmetry to derive the effective theories of the

Wigner crystal of electrons in a strong magnetic field and the vortex crystal in a rotating

Bose gas.

Finally, we find that the nonlinear sigma models describing ferromagnetism in 2+1D

and 3+1D also exhibit the global higher-rank symmetry. The higher rank gauge symme-

try provides a new interpretation of the conservation of multipole moments in ferromag-

nets [38]; it also explains the close resemblance between the behaviors of skyrmions in

ferromagnets and charged particles in a magnetic field [39].

2 Review of the traceless scalar charge theory

For the paper to be self-contained, in this Section we will review the symmetric tensor

gauge theory proposed by Pretko [1, 2]. We consider a higher-rank gauge theory called

“traceless scalar charge theory,” where the gauge potential is a symmetric rank-2 tensor

Aij : Aij = Aji. Its conjugate momentum is the electric field Eij . They satisfy the

canonical commutation relation

[Eij(x), Akl(y)] = i(δikδjl + δilδjk)δ(x− y). (1)

One imposes the Gauss law and the traceless constraint:

∂i∂jEij = ρ, (2)

E ≡ Eii = 0, (3)
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which lead to the conservation of the following charges:∫
dx ρ(x),

∫
dx xρ(x),

∫
dxx2ρ(x). (4)

The conservation of the quantities listed in in Eq. (4) imply that a charge cannot move,

and a dipole can move only along the direction perpendicular to the dipole moment [1].

The constraints (2) and (3) generate the gauge transformations on the gauge potential

Aij → Aij + ∂i∂jλ, (5)

Aij → Aij + δijµ. (6)

For our purpose, it is convenient to use the second gauge transformation (6) to explicitly

fix the gauge A ≡ Aii = 0 and eliminate the trace of Aij from the set of dynamical degrees

of freedom. Since the two constraints E = 0 and A = 0 do not commute according to the

commutation relation (1), following Dirac one should modify the commutators, replacing

them by the Dirac brackets [40], which in our case is

[O1, O2]→ [O1, O2]D = [O1, O2] + [O1, E][E, A]−1[A, O2]− [O1, A][E, A]−1[E, O2] (7)

The new commutator is then

[Eij(x), Akl(y)] = i

(
δikδjl + δilδjk −

2

d
δijδkl

)
δ(x− y). (8)

The Gauss constraint ∂i∂jEij = ρ generates now the gauge transformation

Aij → Aij + ∂i∂jλ−
1

d
δij∂

2λ, ∂2 ≡ ∂k∂k. (9)

To construct a gauge-invariant Lagrangian, we introduce the field strengths. The

electric field

Eij = ∂i∂jA0 −
1

d
δij∂

2A0 − ∂tAij , (10)

is obviously gauge invariant. One notices that

ωi = −∂jAij (11)

transforms like a U(1) vector potential,

ωi → ωi − ∂iλ̃, λ̃ =

(
1− 1

d

)
∂2λ, (12)

using which one can define the magnetic field,

Hij = ∂iωj − ∂jωi = −∂i∂kAjk + ∂j∂kAik, (13)

that is manifestly gauge invariant. The simplest Lagrangian for the gauge field is then the

“Maxwell theory,”

L = c1E
2
ij − c2HijHij . (14)

However, as noticed in Ref. [41], in (2+1)D, another possible term in the Lagrangian is

the Chern-Simons term which, up to an overall coefficient, reads

LCS = εij(A0Hij −AikȦjk). (15)
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As for a Chern-Simons term, the Lagrangian density is gauge-invariant only up to a total

derivative. This term is more relevant than the Maxwell term. The higher-rank Chern-

Simons theory in 3 spatial dimensions was also discussed previously in Ref. [42].

Note that one does not have to require the theory to contain dynamical gauge fields

in order to have the conserved quantities (4). A theory coupled to background gauge

fields (A0, Aij) and is invariant under the gauge symmetry under which the gauge fields

transform as

A0 → A0 + λ̇, Aij + ∂i∂jλ−
1

d
δij∂

2λ, (16)

will have the conservation law

∂tρ− ∂i∂jJij = 0, (17)

where ρ and Jij are the operators that couple to A0 and Aij , respectively, and Jii = 0.

This is sufficient to derive the conservation of the quantities (4). In fact, in most of this

paper, we will consider theories coupled to nondynamical background gauge fields.

3 Nonlinear higher-ranked symmetry

3.1 Traceless scalar charge theory in (2+1)D as a theory of linearized

gravity

We now show that the theory presented in the previous section can be interpreted as a

theory of linearized gravity, and the higher-rank symmetry is the linearized version of

VPD. Instead of Aij we introduce an equivalent field hij defined as

hij = −`2(εikAjk + εjkAik), (18)

where ` is some constant of the dimension of length1. Note that hij is also symmetric and

traceless. The gauge transformation for hij is inherited from (16)

hij → hij − `2(εik∂j∂k + εjk∂i∂k)λ. (19)

If we define

ξi = `2εik∂kλ, (20)

then the transformation law of hij can be reformulated as

hij → hij − ∂iξj − ∂jξi. (21)

The transformation (21) is nothing but the transformation of the metric under the volume-

preserving (or in 2D, area-preserving) diffeomorphism xi → xi + ξi, since ∂iξ
i = 0 due to

the definition (20). The connection between a higher-rank gauge theory and a linearized

gravity theory was proposed previously in Ref. [43].

1We assume A0 has dimension 1 and Aij is of dimension 2, so hij is dimensionless.

5



SciPost Physics Submission

3.2 Nonlinear higher-rank symmetry

The fact that the gauge symmetry resembles the transformation law of a metric under

VPDs allows one to devise a nonlinear version of the gauge symmetry. Namely, in our

nonlinear theory, instead of a gauge field hij (or Aij for that matter), the degree of freedom

is the metric gij . The tracelessness of hij translates into the statement that the metric is

unimodular: det g = 1. The linear theory is restored when one expands the metric around

the flat metric: gij = δij + hij +O(h2).

Under an infinitesimal VPD xi → xi + ξi = xi + `2εij∂jλ, the metric transforms as

δλgij = −ξk∂kgij − gkj∂iξk − gik∂jξk = −`2εkl(∂kgij + gkj∂i + gik∂j)∂lλ. (22)

Now we need to write down the nonlinear version of the transformation laws for A0. One

notices that the VPDs do not commute: from Eq. (22) one reads

[δα, δβ] = δ[α,β], (23)

with [α, β] = `2εij∂iα∂jβ. This means that our gauge symmetry is nonabelian; in this pa-

per, we will use “nonlinear” and “nonabelian” interchangeably. The transformation of A0

must satisfy the commutation relation (23). One can check that this can be accomplished

by the following simple modification

δλA0 = ∂tλ− ξk∂kA0 = ∂tλ− `2εkl∂kA0 ∂lλ. (24)

The transformation of A0 in Eq. (24) was motivated by the symmetries of the lowest

Landau level that will be discussed subsequently. Nonetheless, it is the unique nonlinear

generalization of (16) given that the transformation is at most linear in A0 and respects

rotational invariance. Furthermore, the second term of (24) means that A0 transforms

as a scalar field under time-independent spatial diffeomorphism, which is expected. We

leave the detailed discussion on the uniqueness of the nonlinear transformation (24) to

Appendix A. Equations (24) and (22) give the transformation laws of a nonlinear higher-

rank symmetry, which we collect here for convenience:

δλA0 = ∂tλ− `2εkl∂kA0 ∂lλ, (25)

δλgij = −`2εkl(∂kgij + gkj∂i + gik∂j)∂lλ. (26)

A nonlinear transformation similar to Eq. (26) was considered in Ref. [14] within a dynam-

ical gauge model of the traceless scalar charge theory. One can derive the Ward identity

from Eqs. (25) and (26). Let us define the charge density ρ and the stress tensor T ij by

varying the logarithm of the partition function

δ lnZ =

∫
d3x

(
ρδA0 +

1

2
T ijδhij

)
. (27)

The Ward identity is then

ρ̇− `2εkl∂l
[
ρ∂kA0 + 1

2T
ij∂kgij + ∂i(T

ijgjk)
]

= 0 (28)
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In the presence of the background field, only the total charge is conserved, but not the

higher multipoles in (4).

Since the total charge is conserved, it is possible to introduce a vector potential Ai so

that the theory is invariant under the usual U(1) gauge symmetry Aµ → Aµ+∂µα. In this

case A0 plays a double role: it is the temporal component of a U(1) gauge field (A0, Ai), and

also as the scalar component of the gauge potential of a higher-spin symmetry, (A0, gij).

The two sets of gauge potentials share one scalar component, see Fig. 1. We will see an

example when we consider ferromagnets (Sec. 6.4).

gij
<latexit sha1_base64="YtQPEOszpqJPe7idiBX06OxnZZo=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmI5pYkTsbLYk2lpjIRwIXsrfswcLu3mV3z4Rc8DfYam1nbKn9G5b+CHv3gELAl0zy8t5MZuYFMWfauO6Xk1tb39jcym8Xdnb39g+Kh0d1HSWK0BqJeKSaAdaUM0lrhhlOm7GiWAScNoLhbeY3HqnSLJIPZhRTX+CeZCEj2Fip3uukbDDuFEtu2Z0CrRJvTkqVs5/JJwBUO8XvdjciiaDSEI61bnlubPwUK8MIp+NCO9E0xmSIe7RlqcSCaj+dXjtG51bpojBStqRBU/XvRIqF1iMR2E6BTV8ve5n4n9dKTHjtp0zGiaGSzBaFCUcmQtnrqMsUJYaPLMFEMXsrIn2sMDE2oIUtgcgy8ZYTWCX1y7Lnlr17G84NzJCHEziFC/DgCipwB1WoAYEBPMMLvDpPzpvz7nzMWnPOfOYYFuBMfgGLMJio</latexit><latexit sha1_base64="9DCaTtgW9RRlcuUefQXDCP7Z8S4=">AAAB/HicbVC7TgJBFL2LLwQfqKXNRDSxIrs2WhJtLDGRR4IbMjvMwsDM7GZmloRs8BtstbYztvyAX2HpR2jt8CgEPMlNTs65N/feE8ScaeO6n05mbX1jcyu7ncvv7O7tFw4OazpKFKFVEvFINQKsKWeSVg0znDZiRbEIOK0H/ZuJXx9QpVkk780wpr7AHclCRrCxUq3TSllv1CoU3ZI7BVol3pwUy6ff449B/qfSKnw9tCOSCCoN4VjrpufGxk+xMoxwOso9JJrGmPRxhzYtlVhQ7afTa0fozCptFEbKljRoqv6dSLHQeigC2ymw6eplbyL+5zUTE175KZNxYqgks0VhwpGJ0OR11GaKEsOHlmCimL0VkS5WmBgb0MKWQEwy8ZYTWCW1i5Lnlrw7G841zJCFYziBc/DgEspwCxWoAoEePMEzvDiPzqvz5rzPWjPOfOYIFuCMfwGZ9poi</latexit><latexit sha1_base64="9DCaTtgW9RRlcuUefQXDCP7Z8S4=">AAAB/HicbVC7TgJBFL2LLwQfqKXNRDSxIrs2WhJtLDGRR4IbMjvMwsDM7GZmloRs8BtstbYztvyAX2HpR2jt8CgEPMlNTs65N/feE8ScaeO6n05mbX1jcyu7ncvv7O7tFw4OazpKFKFVEvFINQKsKWeSVg0znDZiRbEIOK0H/ZuJXx9QpVkk780wpr7AHclCRrCxUq3TSllv1CoU3ZI7BVol3pwUy6ff449B/qfSKnw9tCOSCCoN4VjrpufGxk+xMoxwOso9JJrGmPRxhzYtlVhQ7afTa0fozCptFEbKljRoqv6dSLHQeigC2ymw6eplbyL+5zUTE175KZNxYqgks0VhwpGJ0OR11GaKEsOHlmCimL0VkS5WmBgb0MKWQEwy8ZYTWCW1i5Lnlrw7G841zJCFYziBc/DgEspwCxWoAoEePMEzvDiPzqvz5rzPWjPOfOYIFuCMfwGZ9poi</latexit><latexit sha1_base64="DqR493zjXfvcOP1dPHhIz3z2tzE=">AAAB/HicbVA9T8MwEL2Ur1K+CowsFhUSU5WwwFjBwlgk+iG1UeW4TuvWdiLbQaqi8htYYWZDrPwXRv4JTpqBtjzppKf37nR3L4g508Z1v53SxubW9k55t7K3f3B4VD0+aesoUYS2SMQj1Q2wppxJ2jLMcNqNFcUi4LQTTO8yv/NElWaRfDSzmPoCjyQLGcHGSu3RIGWT+aBac+tuDrROvILUoEBzUP3pDyOSCCoN4VjrnufGxk+xMoxwOq/0E01jTKZ4RHuWSiyo9tP82jm6sMoQhZGyJQ3K1b8TKRZaz0RgOwU2Y73qZeJ/Xi8x4Y2fMhknhkqyWBQmHJkIZa+jIVOUGD6zBBPF7K2IjLHCxNiAlrYEIsvEW01gnbSv6p5b9x7cWuO2SKcMZ3AOl+DBNTTgHprQAgITeIFXeHOenXfnw/lctJacYuYUluB8/QKWn5XZ</latexit>

Ai

A0 higher-rank

U(1)
Figure 1: A0 is shared by two sets of gauge potentials.

The nonabelian nature of the gauge symmetry, in some cases, allows us to derive the

algebra satisfied by the charge density of the matter coupled to the gauge field. Imagine

that the action Sm(ψ,A0, gij) describing the coupling of the matter fields ψ with the gauge

fields (A0, gij) does not contain the time derivatives of any fields, A0, gij , or ψ. In this

case, if one promotes the gauge fields to dynamical fields by adding to the action a pure

gauge action Sg,

S = Sg[A0, gij ] + Sm[ψ,A0, gij ], (29)

then upon quantization, the canonical commutation relations in the gauge sector are set

by Sg and in the matter sector by Sm. The left-hand side of the Gauss constraint,

δSg

δA0
+
δSm

δA0
= 0, (30)

is the generator that generates gauge transformations. In particular, in the matter sector,

the commutator of the charge density ρ(x) with any matter field O(x) will give the change

of O under infinitesimal gauge transformation:[∫
dy λ(y)ρ(y), O(x)

]
= iδλO(x). (31)

But diffeomorphisms do not commute, so we conclude that the charge density at different

points does not commute in our theory. We find

[ρ(x), ρ(y)] = i`2εij∂iρ(x)∂jδ(x− y). (32)

Here we recover the long-wavelength version of the Girvin–MacDonald–Platzman (GMP)

algebra [32] (or the w∞ algebra), which suggests that the symmetry described here is

related to the physics of the LLL.

7



SciPost Physics Submission

4 Connection to quantum Hall effect

To establish the connection with the physics of the LLL, we recall the symmetry of the

problem. A system of particles interacting with an electromagnetic field can also be put

in curved space:

S =

∫
dt dx

√
g

(
i

2
ψ†
↔
∂ tψ +A0ψ

†ψ − gij
2m

Diψ
†Djψ + · · ·

)
, (33)

where · · · includes interaction terms. (Strictly speaking, the discussion here corresponds

to the g = 2, s = 1 version of the LLL symmetry [44].) One can check that the clas-

sical action is invariant with respect to time-dependent spatial diffeomorphisms (i.e., all

diffeomorphism transformations which preserve the time slices) [44,45]:

δA0 = −ξk∂kA0 −Akξ̇k, (34)

δAi = −ξk∂kAi −Ak∂iξk −mgikξ̇k, (35)

δgij = −ξk∂kgij − gik∂jξk − gik∂jξk. (36)

The LLL limit corresponds to taking m→ 0. The term proportional to m disappears from

the transformation law for Ai; now Aµ simply transforms like a one-form under spatial

diffs:

δAµ = −ξk∂kAµ −Aλ∂µξλ, ξλ = (0, ξi). (37)

The metric gij also transforms like a covariant tensor. The nontrivial feature of the states

on the LLL that sets it apart from other states in a magnetic field is that, although a

time-varying diffeomorphism generates the g0i components of the metric tensor from gij :

δg0i = · · ·+ gij ξ̇
j , the partition function of the theory does not depend at all on g0i.

The fractional quantum Hall effect exists in a finite magnetic field B = ∂1A2 − ∂2A1.

Suppose one is not interested in computing the electric current by varying the partition

function with respect to Ai. In that case, one can assume that Ai has some fixed value,

for example, Ai = −1
2Bεijx

j , and only consider A0 and gij as external backgrounds. Then

it is natural to ask if the partition function of the theory is symmetric under any gauge

transformation that touches only A0 and gij , and explore the Ward-Takahashi identities

that follow. To keep B unchanged, we need to restrict ourselves to VPDs. These corre-

spond to ξk = `2εkl∂lλ, where we chose ` to be the magnetic length ` = 1/
√
B. For VPDs,

the change of the spatial components of gauge potential Ai,

δAi = −`2εkl∂lλ∂kAi − `2Akεkl∂i∂lλ = −`2εkl∂lλ(∂kAi − ∂iAk)− `2∂i(εklAk∂lλ)

= −∂i(λ+ `2εklAk∂lλ), (38)

can be compensated by a gauge transformation Aµ → Aµ + ∂µα with α = λ+ `2εklAk∂lλ.

Under this combination of coordinates and gauge transformations, A0 transforms as

δA0 = −`2εkl∂lλ∂kA0 − `2Ak∂t(εkl∂lλ) + λ̇+ `2∂t(ε
klAk∂lλ) = λ̇− `2εkl∂kA0∂lλ. (39)

We see that the transformation law for A0 has exactly the form that we have postulated

in Eq. (24). The metric, of course, transforms as in Eq. (22).
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4.1 Higher-rank symmetry in the lowest Landau level limit

Within the context of the LLL, it is possible to give an intuitive interpretation of the

higher-rank conservation law. We write down the current conservation

∂ρ

∂t
+ ∇ · j = 0, (40)

and the law of conservation of momentum,

∂πi
∂t

+ ∂jTij = Eiρ+ εikjkB, (41)

where πi is the momentum density. In a Galilean-invariant theory with particles of mass

m, the momentum density is proportional to the particle number flux πi = mji, and

vanishes in the LLL limit m → 0. Now the conservation of momentum becomes simply

the equation of balance of force, which in the absence of the electric field simply reads

∂jTij = εikjkB, (42)

and can be solved to yield for the current

ji = − 1

B
εij∂kTjk. (43)

The equation for the conservation of charge is now

∂ρ

∂t
− 1

2B
∂i∂j(εikTkj + εjkTik) = 0. (44)

One notices that the conservation law (44) is in the same form as (17) in the earlier version

of the symmetric tensor gauge theory of fracton. Thus, the conservation of charge has a

“higher-rank” form due to the fact that, on the LLL, the current density is no longer

independent but can be expressed through the derivative of the stress tensor. The same

conservation law was derived previously in Ref. [46] using a LLL field theory formalism.

The connection between volume-preserving diffeomorphism and quantum Hall physics was

also noticed in Refs. [14, 26,33,34,47–50].

Some comments are in order. We began with two independent Ward’s identities, (40)

and (41). The conservation law (44) can be considered as the linear combination of the

charge conservation (40) and the massless limit of (41). One then recognizes that we

end up with two independent conservation laws, one being (44) and the other being the

original charge conservation. It is the same conclusion that we arrived at in Section 3.

4.2 The Wen-Zee term

One possible term in the effective action for the fractional quantum Hall is the Wen-Zee

term [37]. To introduce this term, we need to define the Newton-Cartan geometry and

the spin connection that comes with it. We only give the relevant formulas here; for

details, see, e.g., Refs. [44,51]. The Newton-Cartan geometry structure is given by a one-

form nµ (in the simplest version of the geometry dn = 0), a vector vµ, and a symmetric

contravariant metric tensor gµν satisfying nµv
µ = 1, gµνnν = 0. In our case,

nµ = (1,0), vµ =

(
1

vi

)
, gµν =

(
0 0

0 gij

)
. (45)
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where

vi = `2εij∂jA0, (46)

and gij is the inverse matrix of gij . One then defines the covariant metric tensor gµν so

that gµνv
ν = 0 and gµνg

νλ = δλµ − nµvλ,

gµν =

(
gijv

ivj −vj
−vi gij

)
, (47)

where vi ≡ gijvj , together with the Christoffel symbol which can be used to define covariant

derivatives

Γµνλ = vµ∂νnλ +
1

2
gµρ(∂νgρλ + ∂λgρν − ∂ρgνλ). (48)

One further defines the vielbein eaµ so that

gµν = eaµeaν , (49)

and the spin connection is defined as

ωµ =
1

2
εabeaν∇µebν , (50)

which, in components, reads

ω0 =
1

2
(εabeaj∂0e

b
j + εij∂ivj), (51)

ωi =
1

2
(εabeaj∂ie

b
j − εjk∂jgik). (52)

The spin connection transforms like the gauge potential under the local O(2) rotation of

the vielbein: ea(x)→ ea(x) + α(x)εabeb(x). The Wen-Zee term [37] is given by

κ

4π
εµνλωµ∂νAλ =

κ

4π

(
ω0B +A0ε

ij∂iωj − εijωi∂0Aj
)

=
κ

4π

(
ω0

`2
+

1

2
A0R

)
, (53)

where we have put εij∂iAj = `−2 and ∂0Ai = 0. The coefficient κ is related to the filling

fraction ν and the Wen-Zee shift S of a fraction quantum Hall (FQH) system by the

relation

κ = νS. (54)

Up to quadratic order and ignoring the total derivative terms, we can rewrite the Wen-Zee

term as
κ

8π

(
A0R−

1

4`2
εijhikḣjk

)
, (55)

which is exactly the Chern-Simons term (15).

A remark can be made here. We demonstrated that the Wen-Zee term in the FQH

literature is nothing but the Chern-Simon term in the higher-rank gauge theory. One

can think of this in the reversed order. The higher-rank gauge symmetry dictates the

relationship between the Wen-Zee shift S and the Hall viscosity ηH , which enter two

separated components of the Chern-Simons Lagrangian in the higher-rank gauge theory

(55).

10
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5 Generalization to (3+1) dimensions

5.1 Construction of the (3+1)D nonlinear higher-rank symmetry

This section will generalize the nonabelian higher-rank symmetry to (3+1) dimensions.

To do that, we imagine a three-dimensional version of the LLL. Instead of a background

magnetic field, we imagine a background Kalb-Ramond field. Concretely, we imagine a

nonrelativistic theory living in background metric gij and a Kalb-Ramond field Bµν =

−Bνµ. The field strength of the latter is

Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν , (56)

and we assume that there is gauge symmetry with one-form gauge parameter αµ under

which

δBµν = ∂µαν − ∂ναµ. (57)

and Hµνλ is invariant. Most crucially, we assume that our theory is invariant symmetry

under time-dependent spatial diffeomorphisms,

δgij = −ξk∂kgij − gkj∂iξk − gik∂jξk, (58)

δBij = −ξk∂kBij −Bkj∂iξk −Bik∂jξk, (59)

δBi0 = −ξk∂kBi0 −Bk0∂iξ
k −Bikξ̇k. (60)

which is a 3D version of the m → 0 (i.e., LLL) limit of the nonrelativistic diffeomor-

phism (34). We do not have a concrete example of a well-defined theory with the symme-

try (58), (59) and (60). As the LLL can be thought of as the massless limit for particles in

a magnetic field, one can imagine a theory of massless strings coupled to a Kalb-Ramond

field. The details (or even the existence) of such a theory are not important for our further

discussion.

Following our discussion of the LLL in (2+1)D, we assume that our system lives in a

finite Kalb-Ramond field Hijk = `−3εijk, and restrict ourselves to VPDs with ∂kξ
k = 0 or

ξk = `3εklm∂lλm. (61)

The change of Bij under this VPD,

δBij = −`3εklm(∂kBij +Bkj∂i +Bik∂j)∂lλm, (62)

again can be compensated by a gauge transformation (57) with the gauge parameter

αi = λi − `3εklm Bik∂lλm. (63)

The combined VPD and gauge transformation changes only the B0i components of the

Kalb-Ramond potential and the metric. This is a higher-rank symmetry that transforms

our set of gauge fields (B0i, gij) like

δB0i = λ̇i − `3εklm(∂kB0i +B0k∂i)∂lλm, (64a)

δgij = −`3εklm(∂kgij + gkj∂i + gik∂j)∂lλm. (64b)

11
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In addition, we also inherit from the gauge symmetry (57) those transformations which

leave Bij invariant. These correspond to gauge parameters with vanishing spatial compo-

nents: αµ = (α0,0). Under these gauge transformations,

δB0i = −∂iα0, (65a)

δgij = 0. (65b)

Equations (64) and (65) represent the full group of higher-rank symmetries. Though

we have used an analogy with the LLL physics in 2D as a motivation, the resulting

transformation laws do not require any LLL-type microscopic physics. In fact, we will see

that the higher-rank symmetry appears in the context of 3D ferromagnets.

As in 2D, it is possible to “complete” B0i by adding the spatial components Bij so

that Bµν form a set of Kalb-Ramond gauge potentials. This would make B0i the shared

components of the two sets of gauge potentials: the Kalb-Ramond gauge potentials and

the gauge potentials of the higher-rank symmetry of VPDs (see Fig. 2).

gij
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higher-rank

U(1)

B0i

Bij

Figure 2: B0i is shared by two sets of gauge potentials.

5.2 Linearized higher-ranked symmetries and conservation laws

At the linearized level, the higher-rank gauge invariance is

δB0i = λ̇i − ∂iα0, (66)

δhij = −`3(εjkl∂i + εikl∂j)∂kλl. (67)

As far as we know, this linear higher-rank symmetry has not been considered previously

in the literature.

Let us now assume that the currents coupled to B0i and hij are J i and T ij ,

δ lnZ =

∫
d4x

(
J iδB0i +

1

2
T ijδhij

)
. (68)

Two conservation laws follow from Eqs. (66) and (67). First, the gauge invariance with

gauge parameter α0 implies that the “current” J i is divergence-free:

∇ · J = 0. (69)

On the other hand the VPD invariance, generated by λi, leads to

∂Ji
∂t
− `3εijk∂j∂lTkl = 0. (70)
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This means the following quantities are conserved

I1 =

∫
dx J, (71)

I2 =

∫
dx (x · J), I3 =

∫
dx (x× J), Iij4 =

∫
dxx{iJ j}, (72)

I5 =

∫
dx x(x · J), I6 =

∫
dx

x2

2
J, (73)

Iijk7 =

∫
dxx{ixjJk}. (74)

where the {ij · · · } denotes symmetrization over the indices i, j, · · · 2. On the other hand,

Iij8 =

∫
dxx{i(x× J)j} (77)

is not conserved; its time derivative is proportional to
∫
dxT ij .

Assume that the “current” J is nonzero only in a finite region of space, then because

it is divergence-free, one can express it as the curl of a vector field: J = ∇× µ, where µ

vanishes at infinity. Then among the conserved quantities, only the following are nonzero:

I3, I5, and I6, and the last two quantities are not independent:

I3 =

∫
dxµ, (78)

I5 = −I6 =

∫
dx (x× µ). (79)

One can think of µ as the magnetic moment density and J as the magnetization current.

Let us assume that there is a quasiparticle that carries a magnetic moment. Then the

conservation of I3 means that the total magnetic moment does not change its value. The

conservation of I5 implies that a particle can move only along the direction of its magnetic

moment, but not along the two perpendicular directions.

Note that the (3+1)D higher-rank symmetry presented above, even in the linearized

version, differs from that of the vector charge theory proposed in Ref. [2]. Our motivation

was to generalize the area-preserving diffeomorphism of the LLL in (2+1)D to volume-

preserving diffeomorphism of (3+1)D. We have generalized the charge density ρ, the one-

form gauge potential Aµ and the constant magnetic field B to the vector charge density

J i, the two-form gauge potential Bµν and the constant Kalb-Ramond field strength Hijk.

We then arrive at a different gauge transformation rather than the one in Ref. [2]. One

can define the electric field and magnetic field that are invariant under the gauge trans-

formations and write down a generalized Maxwell action. We will not do that here, as the

aim of this paper is to investigate the conservation laws and their physical consequences3.

2Explicitly

A{iBj} =
1

2

(
AiBj +AjBi

)
, (75)

and

A{iBjCk} =
1

3

(
AiB{jCk} +BiC{jAk} + CiA{jBk}

)
. (76)

3Since the gauge transformations (66) and (67) differ from the ones in Ref. [2], the definitions of

the gauge-invariant electric field and magnetic field should be modified accordingly, namely Eij =

(εjkl∂i + εikl∂j) ∂kB0l + ∂thij and H = ∂i∂jhij . We will not discuss them further.
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The conservation law (70), though similar to the one of vector charge theory in Ref [2],

is not the same because of the different gauge transformations. Recall that the gauge

transformation of the symmetry tensor gauge in the vector charge version is [2, 41]

δAij = ∂iλj + ∂jλi, δφi = ∂tλi (80)

which leads to a conservation law with only one spatial derivative acting on the current

density J ij

∂tρ
i + ∂jJ

ij = 0 (81)

instead of an equation with two spatial derivative. Furthermore, inherited from a system

of vector matter field coupled with the Kalb-Ramond field, we have an extra “conservation

law” ~∇ · ~J = 0, which does not have a counterpart in the vector charge theory proposed

in Ref. [2].

We will show in Section 6.4 that the symmetry that has been proposed is realized in

the nonlinear sigma model describing 3D ferromagnets.

6 Examples of theories with volume-preserving diffeomor-

phism invariance

For the abelian higher-rank symmetry, one of the simplest ways to couple a matter field

to the gauge field (A0, hij) is to introduce a Goldstone boson ϕ which transforms under

the gauge transformation as ϕ→ ϕ+ λ and write

L =
c1

2
(∂0ϕ−A0)2 − c2

2
(∂i∂jϕ− hij)2. (82)

However, we were not able to find a nonlinear version of this transformation. For example,

if one postulates

δλϕ = λ− `2εkl∂kϕ∂lλ, (83)

then one can check by direct calculation that [δα, δβ]ϕ 6= δ[α,β]ϕ, so such transformation

law would be inconsistent. We have to devise other ways to couple the matter field to the

gauge field.

6.1 Composite fermions

In the fractional quantum Hall effect at filling fractions ν = 1/2, ν = 1/4 etc., the

quasiparticle is electrically neutral. One can consistently couple such a particle to the

higher-rank gauge field. For example, a Lagrangian for a nonrelativistic particle with

dispersion relation ω = k2/2m would be

L =
i

2
vµψ†

↔
∂ µψ −

1

2m
gµν∂µψ

†∂νψ =
i

2
ψ†
↔
∂ 0ψ +

i

2
`2εij∂jA0 ψ

†↔∂ iψ −
gij

2m
∂iψ
†∂jψ. (84)

One can interpret the coupling of the electric field ∂iA0 with the particle momentum as

a dipole moment, perpendicular to the direction of its motion. This is consistent with the

constraints that follow from conservation laws. In fact, that is how a composite fermion

in the fractional quantum Hall state at ν = 1/2 or ν = 1/4 should couple to the external

potential: the composite fermion is neutral but possesses an electric dipole moment.
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6.2 Crystal on the lowest Landau level

Another way to realize the higher-rank symmetry is through an effective theory of a solid.

Such a solid may be realized as a Wigner crystal, which is expected to be the ground

state of electrons on the LLL at small filling fractions. A solid is parametrized by a

map from the physical coordinates xi to the coordinate system Xa frozen into the solid:

Xa = Xa(xi) [52]. In the ground state Xa = xiδai, the displacement ua are defined as

Xa = xa−ua. On the LLL the coordinates of a lattice site do not commute: [x, y] = −i`2.

The Lagrangian should thus contain the following term

SBerry =
n0

2`2
εabXa∂tX

b, (85)

where n0 is the equilibrium particle number density. Under a VPD, Xa transforms as

δλX
a = −`2εij∂iXa∂jλ, (86)

and so

δλSBerry = −n0

2
εijεabXa∂iX

b∂j λ̇ = −n0

2
λ̇εijεab∂iX

a∂jX
b. (87)

This change of the action can be compensated by including a term proportional to A0 into

the Lagrangian. The full Lagrangian is then

L =
n0

2`2
εabXa∂tX

b +
n0

2
A0ε

abεij∂iX
a∂jX

b − ε(Oab), (88)

with Oab = gij∂iX
a∂jX

b and ε(Oab) is the energy associated with elastic deformations.

The spectrum of this theory can be obtained by expanding the action to quadratic order

over the displacement ua. The presence of a term with a first time derivative implies that

the dispersion relation of the lattice sound wave has the quadratic form ω ∼ q2 rather

than the linear form.

Thus, we have been able to construct the effective theory of a Wigner crystal on the

LLL starting from the higher-rank symmetry.

6.3 Vortex crystal

Another type of matter is the “vortex crystal,” which is realized, for example, in a rotating

Bose gas [53]. The crystal is formed by the zeros of the condensate wave function. In this

case, the lattice fields Xa do not couple to A0 directly, but through a dynamical gauge field

aµ, which is the dual of the superfluid phonon. Under VPD aµ transforms as a one-form,

δaµ = −`2εkl(∂kaµ − ak∂µ)∂lλ. (89)

The field aµ couples to the background A0 through the following term

1

2π

∫
d3x

(a0

`2
+A0b

)
, (90)

where b = εij∂iaj is the emergent magnetic field. One can check directly that this term

is invariant under VPDs. It is also obviously invariant under gauge transformations aµ →
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aµ + ∂µα. In fact, (90) can be obtained from the Chern-Simons term 1
2πε

µνλaµ∂νAλ by

setting Ai to be the static background with εij∂iAj = `−2.

The Lagrangian of the vortex crystal is then determined by the symmetry and reads

L = −εµνλεabaµ∂νXa∂λX
b − ε(Oab)− εb(b) +

1

2π

(a0

`2
+A0b

)
, (91)

where ε(Oab) and εb(b) represent the energies of the lattice and the condensate, respec-

tively. Assuming aµ transforms like a one-form under VPD, it can be checked that the

Lagrangian above is invariant with respect to this symmetry. The eigenmode of this theory

is again a Tkachenko mode with a quadratic dispersion relation [53].

Note that the above Lagrangian contains only leading-derivative terms and does not

include next-to-leading terms considered in Ref. [53].

6.4 Ferromagnets

6.4.1 Ferromagnets in 2+1 D

We now show that the ferromagnet in 2+1D secretly possesses a higher-rank symmetry

similar to the models with particles on the LLL 4. At the long-wavelength limit, a ferro-

magnet is described by a nonlinear sigma (NLS) model [55], written in terms of an O(3)

unit vector na, nana = 1, with the action

S = SBerry + SNLS = S0

1∫
0

dσ

∫
dt dx εabcna∂tn

b∂σn
c − J

2

∫
dt dx δij∂in

a∂jn
a. (92)

The first term is a Wess-Zumino topological term in spin’s action, which is induced by the

Berry phase [55]. The second term is the energy term of the nonlinear sigma model and

can be made invariant under VPD by replacing δij with gij . The first term is, however

not invariant:

δλSBerry = −S0`
2

1∫
0

dσ

∫
dt dx εabcεijna∂in

b∂σn
c∂j λ̇. (93)

Integrating by parts, taking into account that εabc∂jn
a∂in

b∂σn
c = 0 (this is because all

the three O(3) vectors ∂in
a, ∂jn

a, ∂σn
a are perpendicular to na and hence are linearly

dependent) we find

δλSBerry = S0`
2

1∫
0

dσ

∫
dt dx εabcεijna∂in

b∂j∂σn
cλ̇

=
S0

2
`2

1∫
0

dσ

∫
dt dx εabcεij∂σ(na∂in

b∂jn
c)λ̇ =

S0

2
`2
∫
dt dx εabcεijna∂in

b∂jn
cλ̇. (94)

4In fact, one can show that the dynamical equation of a single skyrmion in a 2-dimensional ferromagnet

is the same as the equation of motion of a charged particle in a constant magnetic field [54].
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We now choose

`2 =
1

4πS0
, (95)

and add the following term to the action

SA0 = − 1

8π

∫
dt dxA0ε

abcεijna∂in
b∂jn

c. (96)

Then δλ(SBerry +SA0) = 0. Thus if we couple the ferromagnetic order parameter with the

gauge fields A0, gij in the following way

S = SBerry + SA0 −
J

2

∫
dt dx gij∂in

a∂jn
a, (97)

then the action is invariant under VPD with `2 defined in Eq. (95).

One can further introduce into the theory the vector gauge potential Ai, promoting

Eq. (96) to

SAµ = − 1

8π

∫
dt dxAµε

abcεµνλna∂νn
b∂λn

c. (98)

with Ai transforming as a one-form under VPDs. In this case, the potential A0 is simul-

taneously the scalar component of the U(1) gauge field (A0, Ai) and the scalar component

of the gauge potential of a higher-spin symmetry, (A0, gij) (Fig. 1).

Now the scalar potential A0 is coupled to the topological charge density ρ(x). This

means that a skyrmion behaves like a particle in an effective magnetic field with the

magnitude

Beff = −4πS0q, (99)

where q =
∫
dx ρ(x) is the topological charge of the skyrmion. This fact can be derived by

calculating the Berry phase associated with the motion of a skyrmion [39]. One also finds

that the following quantities∫
dx ρ,

∫
dxxiρ,

∫
dxx2ρ, (100)

are conserved. This fact is again well known [38].5

It is instructive to rewrite the ferromagnet in the CP1 parametrization, where

na = z†σaz, z =

(
z1

z2

)
, z†z = 1. (101)

The action of the ferromagnet is then [54]

S = SBerry + SNLS = 2iS0

∫
dt dx z†∂tz − 2J

∫
dt dxDiz

†Diz, (102)

where Diz ≡ (∂i − iai)z, and ai = −iz†∂iz is promoted to a dynamical field.

Now we couple the CP1 model to the external probes (gij , A0). We assume that under

VPD, z transforms as

δλz = −`2εkl∂kz∂lλ, (103)

5In the presence of the Dyaloshinskii-Morya interaction, which breaks the higher-rank symmetry, only

the first two quantities are conserved [56].
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therefore,

δλSBerry = −2iS0`
2

∫
dt dx εijz†∂iz∂j λ̇ = −2iS0`

2

∫
dt dx λ̇εij∂iz

†∂jz. (104)

We now add the following term to the action:

SA0 = 2iS0`
2

∫
dt dxA0ε

ij∂iz
†∂jz. (105)

Then δλ(SBerry + SA0) = 0, therefore the coupling of the ferromagnetic model with the

gauge field gij , A0 is

S = SBerry + SA0 − 2J

∫
dt dx gijDiz

†Djz, (106)

and respects the higher-rank symmetry.

6.4.2 Ferromagnets in 3+1 D

For a ferromagnet in (3+1)D, the term SA0 that couples A0 to the topological charge

density is replaced by the coupling of B0i to the density of a one-form current,

SB0i = − 1

8π

∫
dt dx εabcεijkB0in

a∂jn
b∂kn

c, (107)

and this has the (3+1)D version of VPD invariance with `3 = (4πS0)−1. Again one can

promote (107) to

SBµν = − 1

8π

∫
dt dx εabcεµνλρBµνn

a∂λn
b∂ρn

c. (108)

In this case, B0i are the shared components of a Kalb-Ramond gauge field and the set of

gauge potentials of a higher-rank gauge symmetry (B0i, gij) (see Fig. 2).

It was found in Ref. [38] that I3 and I5 = −I6 are conserved. We have given this fact

a new interpretation in terms of a hidden higher-rank symmetry.

7 Conclusion

We have presented a nonlinear version of a higher-rank gauge symmetry. The symmetry

is basically that of volume-preserving diffeomorphism. We show several examples of cou-

pling of matter with the higher-rank gauge potential that respects the symmetry. Many

examples are taken from the physics of the LLL, which we show to naturally have volume-

preserving diffeomorphism invariance. We also show that the nonlinear sigma models of

ferromagnetism also exhibit this symmetry if one couples a gauge potential of the higher-

rank symmetry with the topological charge density.

We have shown that, under certain conditions, the charge densities satisfy the commu-

tation relation of the VPD, i.e., the w∞ algebra. In this way, one can easily understand

why this algebra is realized in the bimetric model of the FQH effect [57], without explicit

calculations. One interesting question is whether the w∞ symmetry can be “upgraded” to

the quantum W∞ symmetry [33, 34]. This question, relevant for the fractional quantum

Hall effect, is deferred to future work.
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A The uniqueness of the nonlinear transformation (24)

In this Appendix, we will briefly argue that the nonlinear transformation (24) is the unique

generalization of (16), given the following assumptions:

• The nonlinear transformation satisfies the area-preserving diffeomorphism algebra

(23).

• In the background (A0, gij), A0 is a scalar, therefore the transformation δλA0 should

be a scalar.

• The transformation of (A0, gij) is at most linear in (A0, gij).

• The rotational symmetry is preserved.

Due to the algebra (23), the transformation δλA0 has to be linear in λ. We consider the

general transformation that is linear in A0 with the form6

δλA0 ∼ (∂i1 · · · ∂im)A0(∂j1 · · · ∂jn)λ, (110)

with ∂k is the derivative in the spartial directions. By counting the number of derivative

in the spartial directions, in order to satisfy the algebra (23), both m and n have to be 1.

Furthermore, δλA0 has to be a scalar and invariant under rotation. We need to contract

all the spatial indices of the derivatives, εij is the only rotational invariant two indices

tensor that helps us to satisfy the algebra (23)

δλA0 = −`2εij∂iA0∂jλ. (111)

We also consider the term that is independent of A0

δλA0 = αi1···is(∂t)
u(∂i1 · · · ∂is)λ− `2εij∂iA0∂jλ, (112)

with ∂t is the time derivative and αi1···is is a rotational symmetric tensor. By counting the

derivatives, to satisfy (23) then u + s = 1. There is no rotational symmetric tensor with

just one spartial index, thereofre s = 0 and u = 1. We then arrive at the transformation

(24).

6One can even generalize the argument with the more general transformation

δλA0 ∼
∑
m,n

cmn(∂i1 · · · ∂im)A0(∂j1 · · · ∂jn)λ (109)

and ends up the same conclusion. By couting the number of time derivatives, we also see that one can’t

add time derivatives to (110) in order to satisfy the algbera (23).
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