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Abstract

We study the possibility of charge order at quarter filling and antiferromagnetism at
half-filling in a tight-binding model of magic angle twisted bilayer graphene. We build
on the model proposed by Kang and Vafek [1], relevant to a twist angle of 1.30◦, and
add on-site and extended density-density interactions. Applying the variational cluster
approximation with an exact-diagonalization impurity solver, we find that the system is
indeed a correlated (Mott) insulator at fillings 1

4 , 1
2 and 3

4 . At quarter filling, we check
that the most probable charge orders do not arise, for all values of the interaction tested.
At half-filling, antiferromagnetism only arises if the local repulsion U is sufficiently large
compared to the extended interactions, beyond what is expected from the simplest model
of extended interactions.
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1 Introduction

The observation of correlated insulators and superconductivity in twisted bilayer graphene
(TBG) [2,3] has inaugurated the new field of twistronics. This discovery was motivated by the
prediction that, for a few small “magic” twist angles, the band structure of a twisted graphene
bilayer would contain a low-energy manifold of flat bands, well separated from the other bands
and forming a strongly correlated electronic subsystem. [4–6]. So far the superconducting
order parameter symmetry of TBG is not known, although there are numerous predictions.
The precise nature of the insulating state (pure Mott insulator or broken symmetry phase) is
not precisely known either. The goal of this paper is to analyse the insulating state of TBG at
quarter- and half-filling and to ascertain whether it is a pure Mott state or a broken symmetry
state, either a charge-density wave (quarter filling) or an antiferromagnet (half-filling). We
will conclude that it is indeed a pure Mott state.

This paper is an extension of our previous work [7] on the superconducting state of TBG.
We will use the same premise: We will start from the tight-binding model proposed by Kang
and Vafek [1], based on the microscopic analysis of Moon and Koshino [8]. However, instead
of applying cluster dynamical mean field theory (CDMFT) as in Ref. [7], we will apply another
cluster method, the variational cluster approximation (VCA), based on a 12-site cluster. In
addition, we will include extended interactions, which were neglected in Ref. [7] and will
extend the VCA by a mean-field treatment of inter-cluster interactions. Since the model studied
is nearly particle-hole symmetric, the conclusions reached at quarter filling also apply at three-
quarter filling.

2 The low-energy model

Among the various tight-binding Hamiltonian proposed for the low-energy bands of TBG [1,
8–10], we adopt the one described in Ref. [1]. This model features four Wannier orbitals
per unit cell (labeled w1,2,3,4), with maximal symmetry, on an effective honeycomb lattice,
appropriate for a twist angle θ = 1.30◦. Each site of the honeycomb lattice is associated
with two Wannier orbitals, which it is convenient to imagine located on two different layers,
containing respectively the orbitals w1,4 and the orbitals w2,3. The Wannier orbitals of one
layer are schematically illustrated on Fig. 1, borrowed from Ref. [7]. We will only retain the
largest hopping integrals among those computed in Ref. [1]; see Table 1 (the notation used
is that of Ref. [1]). The most important hopping terms are between Wannier orbitals w1 and
w4 and between w2 and w3, i.e., between graphene sublattices, within a given layer. The
inter-layer hopping terms are much smaller, the largest of which being t13[0,0].

We now proceed to describe a simple model for interactions, derived from an on-site
Coulomb repulsion at the AA sites [11,12]:

Hint = u
∑

R∈AA

n2
R , (1)

where the sum is carried over AA sites and nR is the total charge located at that site, to which
contribute 12 Wannier orbitals (6 per layer). Specifically, we could write

nR =
1
3

3
∑

i=1

�

n(1)R+ai
+ n(1)R−ai

+ n(2)R+ai
+ n(2)R−ai

�

(2)

where n(`)r is the electron number associated with the Wannier orbital centered at the (honey-
comb) lattice site r on layer `. The vectors ±ai , indicated on Fig. 1, go from each AA site to
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Figure 1: Schematic representation of the Wannier functions w1 = w∗2 (orange) and w3 = w∗4
(green) on which our model Hamiltonian is built. The charge is maximal at the AA superpo-
sition points (blue circles) forming a triangular lattice. The Wannier functions are centered
on the triangular plaquettes that form a graphene-like lattice (black dots), whose unit cell is
shaded in red. The basis vectors E1,2 of the moiré lattice are shown (they are also basis vectors
of the graphene-like lattice of Wannier functions), as well as the elementary nearest-neighbor
vectors a1,2,3. This figure is borrowed from Ref. [7].

the six neighboring honeycomb lattice sites. The factor of 1
3 above comes from the fact that

each Wannier orbital has three lobes, i.e., is split across three AA sites.
Expressed in terms of the Wannier electron densities n`r , the interaction takes the form

Hint =
1
2

∑

r,r′,`,`′
V `,`

′

r,r′ n`rn`
′

r′ (3)

where the factor of 1
2 avoids double counting when performing independent sums over sites

and orbitals. The Hubbard on-site, intra-orbital interaction U is equal to V `,`r,r , since

V `,`r,r n`r↑n
`
r↓ =

1
2

V `,`r,r (n
`
r↑ + n`r↓)(n

`
r↑ + n`r↓)−

1
2

V `,`r,r n`r (n2
rσ = nrσ) (4)

Including on-site interactions in this form entails a compensation term U/2 to the chemical
potential.

Careful counting from Eqs (1,2) shows that

U =
2
3

u (on-site)

V (1,2)
rr ≡ V0 =

2
3

u= U (same site, different layers)

V (`,`
′)

rr′ ≡ V1 =
4
9

u=
2
3

U (1st neighbors)

V (`,`
′)

rr′ ≡ V2 =
2
9

u=
1
3

U (2nd neighbors)

V (`,`
′)

rr′ ≡ V3 =
2
9

u=
1
3

U (3rd neighbors)

(5)
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symbol value (meV)

• t13[0,0] =ωt13[1,−1] =ω∗ t13[1,0] −0.011

• t14[0,0] = t14[1,0] = t14[1,−1] 0.0177+ 0.291i

• t14[2,−1] = t14[0,1] = t14[0,−1] −0.1141− 0.3479i

• t14[−1,0] = t14[−1,1] = t14[1,−2]

= t14[1,1] = t14[2,−2] = t14[2,0] 0.0464− 0.0831i

Table 1: Hopping amplitudes used in the low-energy model, the largest computed in Ref. [1],
taken from Ref. [7]. the vector [a, b] stand for the bond vectors in the (E1,E2) basis of Fig. 1
and ω= e2πi/3. The hopping terms t14 (full lines) and t23 (dashed lines) for a given layer are
illustrated on the right; the blue area is the unit cell.

There are no interactions beyond third neighbors coming from a single AA site. We will study
this model by assuming the above relations between extended interactions V0,1,2,3 and the
on-site interaction U .

2.1 The strong-coupling limit

Given the large number of extended interactions in the model, it is instructive to look at the
strong-coupling limit (neglecting all hopping terms) to detect possible charge order instabilities
stemming solely from the interactions.

The reader will forgive us if we use a slightly different notation, writing the interaction
Hamiltonian as

Hint =
1
2

∑

R,R′,a,b

V a,b
R,R′n

a
Rnb

R′ (6)

where now R, R′ denote Bravais lattice sites and a, b orbital indices from 1 to 4. In essence,
for each R, the site index r takes two values (the two sublattices A and B), as does the layer
index `, leading to four possible value of the orbital index a. This shift in notation allows us
to express the interaction in Fourier space:

Hint =
1
2

∑

q,a,b

Ṽ ab
q ña†

q ñb
q (7)

where

V ab
RR′ =

1
L

∑

q

Ṽ ab
q eiq·(R−R′) ña

q =
1
p

L

∑

R

e−iq·Rna
R (8)

Interactions up to third neighbor are then encoded in the following q-dependent matrix:

[Ṽ ab
q ] =















U + V2βq V1γq + V3γ
∗
2q V0 + V2βq V1γq + V3γ

∗
2q

V1γ
∗
q + V3γ2q U + V2βq V1γq + V3γ

∗
2q V0 + V2βq

V0 + V2βq V1γ
∗
q + V3γ2q U + V2βq V1γq + V3γ

∗
2q

V1γ
∗
q + V3γ2q V0 + V2βq V1γ

∗
q + V3γ2q U + V2βq















(9)

with
βq = 2 (cosq · b1 + cosq · b2 + cosq · b3) and γq = eiq·a1 + eiq·a2 + eiq·a3 (10)
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where the vectors bi are the second-neighbor vectors on the honeycomb lattice (hence first
neighbors on the Bravais lattice):

b1 = 2a1 + a2 b2 = a1 + 2a2 b3 = a2 − a1 (11)

The order of orbitals adopted in this matrix notation is (w1, w4, w2, w3): the first two orbitals
belong to the “first layer”, the last two to the “second layer”.

The local density na
Rσ can only take the values 0 or 1, but the Fourier transforms ña

q are con-
tinuous variables in the thermodynamic limit, and they all commute with each other. Hence,
for the sake of detecting charge order in the strong-coupling limit, we can treat the variables
ña

q as classical.
The matrix (9) can be diagonalized by a unitary matrix:

Ṽ ab
q =

4
∑

r=1

Uar
q λ

(r)
q U br∗

q (12)

and thus the interaction energy can take the form

Hint =
1
2

∑

q

4
∑

r=1

λ(r)q |m
(r)
q |

2
�

m(r)q = Uar∗
q ña

q

�

(13)

with the eigenvalues

λ(1)q = U + V0 + 2V2βq + 2|V1γq + V3γ
∗
2q| (14)

λ(2)q = U + V0 + 2V2βq − 2|V1γq + V3γ
∗
2q| (15)

λ(3)q = λ(4)q = U − V0 (16)

The uniform solution ña
0 = (1,1, 1,1) corresponds to λ(1)0 , which is the largest possible

eigenvalue, and is favored by the (neglected) kinetic energy. Charge order instabilities in the
strong-coupling limit occur for negative eigenvalues, since they can be lower the interaction
energy. When substituting the values given in Eq. (5), one finds that the maximum eigenvalue
is λ(1)0 = 12U and the minimum eigenvalue is zero, the latter at the Dirac points q= K and q=
K′ for λ(1)q , and at all wavevectors for λ(2,3,4)

q . This means that the system has no instabilities in
the strong-coupling limit, only indifferent states (zero eigenvalue), especially at wavevectors K
and K′. When probing such instabilities with a cluster method, we should therefore make sure
that these two wavevectors belong to the reciprocal cluster. The 12-site (hexagonal) cluster
used in this work statisfies this requirement.

3 Computational method

3.1 The variational cluster approximation

In order to detect spectral gaps in the normal state and to probe the possible existence of
antiferromagnetic or charge-ordered states in this model, we use the variational cluster ap-
proximation (VCA) [13–15] with an exact diagonalization solver at zero temperature. This
method takes into account short-range correlations exactly, while allowing long-range order
through the introduction of broken-symmetry fields determined by a variational principle. We
will not review this method in detail here, but rather simply summarized the needed proce-
dure; we refer the reader to the litterature for details (see, e.g., Refs [16, 17] for example
applications).
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In VCA, the lattice is tiled into a superlattice of identical clusters. On each cluster one
defines a Hamiltonian H ′, which has the same interaction part as the full Hamiltonian H, but
a different one-body part t ′i j 6= t i j (i, j stand here for site and orbital indices together). The
Potthoff functional, inherited from the Luttinger-Ward functional, is a functional of t ′i j that is
stationary at the physical solution and which takes the following explicit form:

Ω(t ′) = Ω′ −
∫

dω
2π

∑

k̃

lndet
�

1−V(k̃)Gc(ω)
�

, (17)

This formula deserves a few explanations. We defined the difference Vi j = t i j − t ′i j of one-
body terms between the original and cluster Hamiltonian. We express it as a function of a
wavevector k̃ in the reduced Brillouin zone (associated with the superlattice of clusters) and
site/orbital indices within the cluster, which give it its matrix form V(k̃). Gc(ω) is the electron
Green function associated with the Hamiltonian H ′ on the cluster. Ω′ is the ground state energy
(chemical potential included) of H ′. The frequency integral can be taken along the imaginary
axis after proper regularization.

In practice, one looks for stationary points of the functional (17) as a function a a few
parameters defining the one-body matrix t′ of the cluster Hamiltonian. Once a solution is
found, the cluster self-energy Σ(ω) associated with H ′ is adopted as the self-energy of the
full lattice Hamiltonian: the VCA stems from the exact application of a variational principle
on the self-energy, except that the space of available self-energies is limited to the exact self-
energies of cluster Hamiltonians parametrized by a finite number of one-body operators. In
particular, one can search for spontaneously broken symmetries by including in t′ symmetry-
breaking terms, i.e., Weiss fields. By contrast with conventional mean-field theory, the full
dynamical effect of correlations is taken into account via the frequency dependence of the
cluster Green’s function G′ in Eq. (17). In other words, short-range correlations (within the
cluster) are treated exactly.

3.2 The dynamical Hartree approximation

The VCA approximation as summarized above only applies to systems with on-site interactions,
since the Hamiltonians H and H ′ must differ by one-body terms only, i.e., they must have the
same interaction part. If extended interactions are present, they are partially truncated when
the lattice is tiled into clusters and one must apply further approximations. Specifically, we
can apply a Hartree (or mean-field) decomposition on the extended interactions that straddle
different clusters, while interactions (local or extended) within each cluster are treated exactly.
This is called the dynamical Hartree approximation (DHA) and has been used in Refs [16,18]
in order to assess the effect of extended interactions on strongly-correlated superconductivity.
We will explain this approach in this section.

Let us consider a Hamiltonian of the form

H = H0(t) +
1
2

∑

i, j

Vi jnin j (18)

where i, j are compound indices for lattice site and orbital, niσ is the number of electrons of
spin σ on site/orbital i, and ni = ni↑ + ni↓ (the index i is a composite of honeycomb site r
and layer ` indices as used in Sect. 2, or of Bravais lattice site R and orbital index a used in
Sect. 2.1). The factor 1

2 in the last term comes from the independent sums on i and j rather
than a sum over pairs (i, j). In the dynamical Hartree approximation, the extended interactions
in the model Hamiltonian (18) are replaced by

1
2

∑

i, j

V c
i jnin j +

1
2

∑

i, j

V ic
i j (n̄in j + ni n̄ j − n̄i n̄ j) (19)

6
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where V c
i j denotes the extended interaction between orbitals belonging to the same cluster,

whereas V ic
i j those interactions between orbitals of different clusters. Here n̄i is a mean-field,

presumably the average of ni , but not necessarily, as we will see below. Both the first term (V̂ c)
and the second term (V̂ ic), which is a one-body operator, are part of the lattice Hamiltonian
H and of the VCA reference Hamiltonian H ′.

Let us express the index i as a cluster index c and a site-within-cluster index α. Then
Eq. (19) can be expressed as

1
2

∑

c,α,β

Ṽ c
αβnc,αnc,β +

1
2

∑

c,α,β

Ṽ ic
αβ(n̄αnc,β + nc,αn̄β − n̄αn̄β) (20)

where we have assumed that the mean fields n̄i are the same on all clusters, i.e., they have
minimally the periodicity of the superlattice, hence n̄i = n̄α. We have consequently replaced
the large, N × N and block-diagonal matrix V c

i j by a small, Nc × Nc matrix Ṽ c
αβ

, and we have

likewise “folded” the large N × N matrix V ic
i j into the Nc × Nc matrix Ṽ ic

αβ
.

In order to make this last point clearer, let us consider the simple example of a one-
dimensional lattice with nearest-neighbor interaction v, tiled with 3-site clusters. The interac-
tion Hamiltonian

Hint = v
N
∑

i=0

nini+1 (21)

would lead to the following 3× 3 interaction matrices:

Ṽ c = v









0 1 0

1 0 1

0 1 0









Ṽ ic = v









0 0 1

0 0 0

1 0 0









(22)

In practice, the symmetric matrix Ṽ ic
αβ

is diagonalized and the mean-field inter-cluster in-
teraction is expressed in terms of eigenoperators mµ:

V̂ ic =
∑

µ

Dµ

�

m̄µmµ −
1
2

m̄2
µ

�

(23)

For instance, in the above simple one-dimensional problem, these eigenoperators mµ and their
corresponding eigenvalues Dµ are

D1 = −v m1 = (n1 − n3)/
p

2 (24)

D2 = 0 m2 = n2 (25)

D3 = v m3 = (n1 + n3)/
p

2 (26)

The mean fields n̄i are determined either by applying (i) self-consistency or (ii) a varia-
tional method. In the case of ordinary mean-field theory, in which the mean-field Hamiltonian
is entirely free of interactions, these two approaches are identical. In the present case, where
the mean-field Hamiltonian also contains interactions treated exactly within a cluster, self-
consistency does not necessarily yield the same solution as energy minimization. In the first
case, the assignation n̄i ← 〈ni〉 would be used to iteratively improve on the value of n̄i un-
til convergence. In the second case, one could treat n̄i like any other Weiss field in the VCA
approach, except that n̄i is not defined only on the cluster, but on the whole lattice. We will
follow the latter approach below.
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Ṽ ic =































































0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3

V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2

2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1

V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2

2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3

V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0

0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3

V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2

2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1

V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2

2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3

0 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0































































m0

D0 = 2(V1 + 4V2 + 2V3) =
16

3
U

m1

D1 = 2(V1 − 2V2 − V3) = −
2

3
U

m2

D2 = 2(V1 − 2V2 − V3) = −
2

3
U

m3

D3 = −2(V1 + 2V2 − V3) = −2U

m4

D4 = −2(V1 + 2V2 − V3) = −2U

m5

D5 = −2(V1 − 4V2 + 2V3) = 0

m6

D6 = 0

m7

D7 = 0

m8

D8 = 0

m9

D9 = 0

m10

D10 = 0

m11

D11 = 0

Table 2: Inter-cluster coupling matrix for the 12-site cluster used in this work. The numbering
of sites is illustrated on Fig. 2. Bottom: eigenvalues Dµ and corresponding eigenvectors (or
eigenoperators) mµ of this matrix. The eigenoperators are shown graphically as a function of
site on the 12-site cluster: blue means 1 and red −1. The eigenvalues are also shown as a
function of the on-site repulsion U when the constraints (5) are applied.
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Figure 2: 12-site cluster used in this work. The extended interactions V0 to V3 are shown.
Different Wannier orbitals are shown as spheres of different colors. Orbitals w1 and w4 are
located, say, on the bottom layer, whereas orbitals w2 and w3 are located on the top layer.

3.60 3.65 3.70 3.75
µ

0.490

0.495

0.500

0.505

0.510

n

U = 1.5

5.0 5.2 5.4
µ

U = 2

7.50 7.75 8.00 8.25 8.50
µ

U = 3

Figure 3: Electronic density vs chemical potential µ for different interaction strengths at quar-
ter filling. The presence of a plateau (in red) is the signature of an insulating state, and the
width of the plateau is the magnitude of the gap. The insulator-to-metal transition occurs be-
tween U = 1.5 and U = 2.

4 The normal state at quarter filling

In this work we use a 12-site cluster containing 3 unit cells of the low-energy model. It is made
of two superimposed hexagonal clusters, as illustrated on Fig. 2. On that figure the various
extended interactions V0 to V3 are indicated. The three wavevectors of the reciprocal cluster
are Γ= 0, K and K′. The 12×12 matrix of inter-cluster interactions is given in Table 2 and the
eigenoperators mµ used in the dynamical Hartree approximation are illustrated in the lower
part of the same table.

We begin by investigating the normal state at quarter filling, for several values of the in-
teraction U , all the extended interactions following from U according to Eq. (5). We will start
by applying VCA to detect the insulating state, assuming that no charge order is present. To
do this, we treat the cluster chemical potential, µc , as a the sole variational parameter in the
VCA procedure. We do not take into account inter-cluster interactions, i.e., the Hartree ap-
proximation described in Sect. 3.2. Indeed, all the sites of the 12-site cluster are equivalent
in the absence of charge order, meaning that the relevant (normalized) eigenvector of the

9
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−0.4 −0.2 0.0 0.2 0.4
m̄1

0

2

4

Ω
−Ω
(0
)

×10−3

U = 1.5

U = 3.0

U = 6.0

U = 9.0

−0.4 −0.2 0.0 0.2 0.4
m̄3

0.00

0.25

0.50

0.75

1.00

1.25

×10−3

U = 1.5

U = 3.0

U = 6.0

U = 9.0

Figure 4: Left panel : The Potthoff functional Ω as a function of the charge-density-wave Weiss
field m̄1 at quarter-filling. Right panel: the same, for the charge-density-wave Weiss field m̄3.
See Table 2 for an illustration of the density-waves m1 and m3. The symmetric state (no charge
density wave) m̄1,3 = 0 is stable.

inter-cluster interaction matrix V ic is

m0 =
1

2
p

3

12
∑

i=1

ni (27)

Therefore, adding the corresponding mean-field m̄0m0 to the lattice Hamiltonian would simply
shift the chemical potential by −m̄0, and leave the variational space used in VCA unchanged.
This would therefore not help us in determining whether there is a gap or not.

The signature of the Mott gap will be a plateau in the relation between µ and the density
n. This is shown in Fig. 3 for a few values of the interaction U . Using the cluster chemical
potential µc as a variational parameter makes the plateaux very sharp, whereas not using VCA,
i.e., simple cluster perturbation theory (CPT) would make the plateaux softer, thereby making
the transition to the metallic state more difficult to detect. In the case shown, the metal-
insulator transition clear occurs between U = 1.5 meV and U = 2 meV. This Mott transition is
essentially caused by extended interactions.

The question then arises as to the nature of the insulating state at quarter filling: is there
a charge density wave or not? As shown in Sect. 2.1, the charge fluctuations are expected to
be large, because a full array of charge configurations do not affect the energy in the strong-
coupling limit when the extended interactions follow Eq. (5). We do expect, on intuitive
grounds, that the kinetic energy terms would be unfavorable to charge order. Nevertheless,
in order to probe the possible existence of charge order, we will apply Hartree inter-cluster
mean-field theory, as described in Sect. 3.2. In order to put all the chances on our side, we
will probe one of the eigenoperators with the lowest (negative) eigenvalues in Table 2, namely
one of those with D = −2:

m3 =
1

2
p

2

�

n1 + n2 − n4 − n5 + n7 + n9 − n10 − n11

�

(28)

We must then optimize the Potthoff functional as a function of the mean field m̄3, in addition
to using µc as a variational parameter. On the right panel of Fig. 4 we show the Potthoff
functionalΩ as a function of m̄3 for a valueµc that actually optimizeΩ at a value ofµ associated
with quarter filling, for a few values of the interaction U . This is to illustrate the absence of
nontrivial solution for m̄3, i.e., the value of the mean-field parameter m̄3 that minimizes the
energy is indeed zero. This shows that, within this inter-cluster mean-field approximation and

10
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for these values of U , there is no charge order this type (m3 or, equivalently, m4) at quarter-
filling.

We perform the same computation for the m1 eigenoperator:

m1 =
1

2
p

2

�

n1 − n2 + n4 − n5 + n7 − n9 + n10 − n11

�

(29)

and find similar results, as shown on the left panel of Fig. 4. Therefore, for the values of
U probed, the quarter-filled state appears to be a pure, uniform Mott insulator, driven by
extended interactions.

0.5 0.6 0.7
µ

0.996

0.998

1.000

1.002

1.004

n

U = 0.1

1.4 1.5 1.6 1.7
µ

U = 0.25

2.8 3.0 3.2
µ

U = 0.5

Figure 5: Electronic density vs chemical potential µ for different interaction strengths at half
filling, similar to Fig. 3. The presence of a plateau (in red) is the signature of an insulating state,
and the width of the plateau is the magnitude of the gap. The insulator-to-metal transition
occurs between U = 0.1 meV and U = 0.25 meV.
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Figure 6: Potthoff functional vs the antiferromagnetic Weiss field M ′ for several values of
a = 3V1/2U and U = 3, at half-filling. The case a = 1 corresponds to the contraints (5), and
smaller values of a just weaken the extended interactions compared to the on-site interaction.
The value of Ω at M = 0 is subtracted for clarity. Antiferromagnetism appears only below
a = 0.7, i.e., not for the extended interactions constrained by Eq. (5).
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5 The normal state at half filling and antiferromagnetism

The insulating state at half-filling is revealed the same way as at quarter-filling, by applying
the VCA with µc as a variational parameter. The results are shown in Fig. 5, where it appears
that the Mott transition occurs between U = 0.1 meV and U = 0.25 meV, i.e., at a much lower
value of the interaction than at quarter filling.

We will not probe charge order at half-filling, as an antiferromagnetic state is more ex-
pected to occur. The Weiss field used to probe antiferromagnetism is

M̂ = M
12
∑

i=1

(−1)i(ni↑ − ni↓) (30)

Fig. 6 shows the Potthoff functional as a function of M for different values of the extended
interactions compared to the on-site repulsion U = 3 meV. These different values are char-
acterized by the ratio a = 3V1/2U , which is unity when the extended interactions obey the
constraints (5). Otherwise, the extended interactions V0−3 have the same ratios between them
as in Eq. (5). Lower values of a correspond to weaker extended interactions (compared to
U). From that figure we see that, even at a relatively strong U (the Mott transition occurs at
a much lower value of U), antiferromagnetism is not present at half-filling for the nominal
values of the extended interactions defined in Eq. (5). Upon lowering these interactions, an-
tiferromagnetism appears. Hence the half-filled state should be a true Mott insulator, not an
antiferromagnetic insulator.

This is relatively easy to understand in the strong-coupling limit, when Eq. (5) holds. The
low-energy manifold at half-filling in the absence of hopping terms is degenerate non only
because of spin, but also because of charge motion: if there is exactly one electron on each site,
hopping an electron to the neighboring site does not change the interaction energy, and thus
the usual strong-coupling perturbation theory argument leading to an effective Heisenberg
model at half-filling and large U does not hold anymore.

6 Conclusion

We have probed the insulating states at quarter- and half-filling in a tight-binding model for
magic angle twisted bilayer graphene, augmented with local and extended density-density in-
teractions. For a wide range of interactions obeying the constraints (5), we have detected the
Mott gap using the variational cluster approximation (VCA) with a 12-site cluster and located
the Mott transition between U = 1.5 meV and U = 2 meV at quarter filling, and between
U = 0.1 meV and 0.25 meV at half-filling. In addition, we have investigated the possibility of
charge order at quarter-filling using the VCA and an inter-cluster Hartree approximation for
the extended interactions, and concluded that it does not arise. Lastly, we have probed anti-
ferromagnetism at half-filling and concluded likewise that it does not arise when the extended
interactions obey the relations (5). It looks therefore plausible that the correlated insulat-
ing states observed at these filling ratios are genuine Mott insulators and not gapped ordered
states.
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