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Abstract

We study the HLbL contribution to g-2 in the kinematic region where the three loop mo-
menta are large. We show how, even when the fourth photon is in the static limit, the
massless quark loop gives the leading term of an operator product expansion. Power
corrections are found to be small. Gluonic corrections are also included and the expan-
sion is found to be well-behaved at relatively low-energies, which can be used to reduce
uncertainties in the HLbL contribution to g-2.
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1 Introduction

A new measurement of the anomalous magnetic moment of the muon, coming from the FNAL
Muon g-2 Experiment, was released this year [1], updating the combined experimental average
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Figure 1: HLbL contribution to g-2. Figure reused from [5].

to
aexp
µ = 11659 2061(41) · 10−11 , (1)

and confirming the tension with the SM prediction of Ref. [2],

aSM
µ = 116591810(43) · 10−11 . (2)

Such a remarkable theoretical precision is in part a consequence of the strong dominance of
pure QED contributions, whose theory uncertainties are completely negligible compared to
the experimental result. Electroweak corrections are very small and well known too, so they
cannot, within the SM, account for such a tension. A discrepancy of ∼ 2.5 ·10−8 with perfectly
controlled corrections from strong interactions would immediately translate into evidence of
BSM physics. In order to achieve such a control, strong efforts are being made by both the data-
driven and lattice approaches in the two relevant contributions: Hadronic Vacuum Polarization
(HVP) and Hadronic Light-by-Light contributions (HLbL). The focus of our work, [3–5], has
been oriented to improve the data-driven evaluation of the latter.

2 Hadronic Light-by-Light contributions to the muon g-2

The Hadronic Light-by-Light contribution to g-2 is depicted in Fig. 1. The key piece for its
calculation is the corresponding HLbL tensor, defined as

Πµ1µ2µ3µ4 ≡ −i

∫

d4q4

(2π)4

� 4
∏

i=1

∫

d4 x i e−iqi x i

�

〈0|T

 

4
∏

j=1

Jµ j (x j)

!

|0〉 , (3)

where Jµ(x) = q̄(x)Qqγ
µq(x) is the electromagnetic quark current. The correponding g-2

number is obtained when convoluting

lim
q4→0

∂Πµ1µ2µ3ν4

∂ qµ4
4

, (4)

with the other two loops [6,7]

aHLbL
µ =

2α3

3π2

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ
p

1−τ2 Q3
1Q3

2

12
∑

i=1

Ti(Q1,Q2,τ)Πi(Q1,Q2,τ) . (5)

The Πi functions only depend on the five independent scalar functions of the Lorentz decom-
position of Eq. (4) [5]. The main difficulty in the evaluation of this contribution is finding
those functions. The weights Ti enhance the low-energy contributions, since the scale of the
problem is the muon mass. Perturbative QCD cannot be used for the tensor of Eq. (3) at that
energy and non-perturbative methods have to be applied. QCD-inspired evaluations of it gave
a first assessment of this contribution [8–10], but a more model-independent evaluation of
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it was desirable. That possibility arrived with the data-driven approach of Ref. [6], where a
model-independent way of evaluating the different leading long-distance contributions was
assessed.1

While systematic improvements on them are possible, the residual contributions from
medium and short distances are more challenging. One of the expected contributions at short
distances was the quark loop, but the low-energy scale of the muon mass and the static g-2
photon requires some lower cut-off, since the logarithmic mass divergences associated to the
light-by-light contributions do not make much sense for light-quarks. There are no physical
hadronic states with such small masses. A constituent quark mass was typically used as a reg-
ulator. However, in the context of a data-driven evaluation, such a model-dependent solution
was not satisfactory. Our work has been focused on the interplay of the short-distance contri-
butions to g-2 within QCD, aiming to see whether and how the quark loop is the leading term
of any asymptotic expansion in the g-2 kinematics.

3 The Operator Product Expansion in the QCD vacuum

Two-point correlation functions of quark currents J1 and J2,

Π(q) =

∫

d4 x e−iqx〈0|T (J1(x)J2(0))|0〉 , (6)

are described at large Euclidean Momenta by its Operator Product Expansion (OPE) in the
presence of the QCD vacuum [12],

Π≈
∑

i,D

ci,DOi,D

QD
, (7)

where D is the dimension of the associated operator Oi,D, ci,D are c-numbers, the Wilson co-
efficients, and Q2 = −q2. Any possible operator with the same quantum numbers as the QCD
vacuum can give a nonzero contribution, starting by unity, which provides the perturbative
series, and supplemented by operators with quarks and gluons such as the scalar current q̄q,
which gives rise to the well-known quark condensate, 〈q̄q〉. A known limitation of this descrip-
tion for some of these expansions is in the separation of the tail of the perturbative expansion,
of asymptotic nature, and the effect of vacuum condensates. Some possible prescriptions on
how to separate those effects can be found in the literature (e.g. see [13]). The same OPE can
be applied to correlation functions with a higher number of external legs. A detailed study of
the OPE of three-point correlation functions can be found in Ref. [14].

We then have an asymptotic expansion describing the behaviour of the HLbL tensor of
Eq. (3) at large Euclidean momenta, whose leading contribution is clearly given by the quark
loop. Its applicability to the muon g-2 kinematics is, however, not obvious even when we
explore the region with three large (Euclidean, Q1,2,3) loop momenta. This is because the
fourth (g-2) momentum is defined in the static q4→ 0 limit, where the use of such a vacuum
OPE is not justified. Indeed, an explicit exploration shows how the first dimensional correction,
the one associated to the quark condensate, presents divergences in that limit from the diagram
shown in Fig. 2 [3]. This observation may cast some doubts on the validity of the quark loop
as the leading term of the (subleading) short-distance contributions to HLbL g-2.

1Very recently lattice methods have achieved a similar precision [11]. The very good agreement between two
largely model-independent and completely different approaches reinforces the idea that a miss-evaluation of HLbL
cannot be behind the current tension in muon g-2.
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Figure 2: Quark condensate contribution to HLbL. In the static q4→ 0 limit the quark
propagator on the left diverges. Figure reused from [3].

Figure 3: Topologies giving the different contributions to the studied OPE.

4 The Operator Product Expansion in the QCD vacuum with an
external background photon field

Analogous problems for extrapolating the QCD vacuum OPE to the static-momentum regime
were found when trying to describe the nucleon magnetic moments through sum rules. A
very elegant solution was presented in Refs. [15, 16], and some applications to other muon
contributions can actually be found in the literature, e.g. [17]. The essential point is that the
OPE should be performed keeping the external g-2 photon as an explicit external (background)
state. This is applying the OPE to the (equivalent) tensor

Πµ1µ2µ3(q1, q2)≡ −
1
e

∫

d4q3

(2π)4

� 3
∏

i=1

∫

d4 x i e−iqi x i

�

〈0|T

 

3
∏

j=1

Jµ j (x j)

!

|γE(q4)〉 , (8)

where the γE(q4) is the external static photon. Essentially, from such an OPE one needs to
keep not those local operators with the same quantum numbers as the QCD vacuum, but
those operators with the same quantum numbers as the external g-2 photon, Fµν,

Q1,µν ≡ e eqFµν, Q2,µν ≡ q̄σµνq , ... (9)

The leading contribution is associated to the lowest dimensional operator, Q1. This is repre-
sented in the first diagram from the left of Fig. 3. We showed in Ref. [3] how, up to gluonic
corrections, it corresponds to the massless quark loop, which becomes the leading term in a
well-defined expansion. In the neighbourhood of the mq → 0 limit, the leading quark mass
correction is not quadratic but linear in the mass and is given by the contribution of the second
diagram in Fig 3 to the tensor current, which has a non-zero expectation value in the presence
of an external background photon even in the strict chiral limit. This effect of spontaneous
chiral symmetry breaking is known as the magnetic susceptibility of the QCD vacuum and is
trivially related to the zero momentum limit of ΠV T (q). The explicit results associated to these
contributions, which scale as

(4π)2mqXq

Q2
∼
Λ2
χ

M2
ρ

M2
π(K)

Q2
, (10)
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can be found in Refs. [3,4] and may be used as short-distance constraints for possible evalua-
tions of mass corrections to chiral limit evaluations of HLbL.

Beyond the chiral limit, the leading power corrections are suppressed by four powers of
the large loop momenta. The associated topologies are the ones of Fig. 3. Details in the
computation and explicit expressions for them can be found in Ref. [4]. We have checked
that, as far as one is above 1 GeV, the power corrections are typically suppressed by at least
two orders of magnitude with respect to the leading massless quark loop and can be safely
neglected.

5 The two-loop corrections

In principle the gluonic corrections to the HLbL tensor contain many different two-loop dia-
grams which depend on where to connect the gluon lines, also with respect to the soft static
photon. However, a simplification occurs when realizing that the color structure carried by
the gluon can be factored out and it can be regarded as an extra "photon". Then, before con-
tracting the gluon propagator and setting the external g-2 momentum to zero, we simply have
a fully symmetric sum of hexagons. It is then a natural step to take advantage of this strong
symmetry to eventually break it with both the soft-photon and the second (gluon-propagator)
loop. This very simple set-up leads to a very large number of two-loop integrals. But then we

can use general projectors PΠ̃i
µ1µ2µ3µ4ν4

to the five independent scalar functions Π̃i of the HLbL
g-2 tensor. One finds [5]

Π̃i = PΠ̃i
µ1µ2µ3µ4ν4

lim
q4→0

∂Πµ1µ2µ3ν4

∂ qµ4
4

= −
(N2

c − 1)g2
s e4

q

4

∫

d4q5

(2π)4
gµ5µ6

q2
5

lim
q4→0

q6→−q5

PΠ̃i
µ1µ2µ3µ4ν4

∂

∂ qν4
4

Hµ1µ2µ3µ4µ5µ6 , (11)

where

Hµ1µ2µ3µ4µ5µ6 ≡
∫

d4p
(2π)4

∑

σ(1,2,4,5,6)

Tr

�

γµ3S(p+ q1 + q2 + q4 + q5 + q6)γ
µ1S(p+ q2 + q4 + q5 + q6)

× γµ2S(p+ q4 + q5 + q6)γ
µ4S(p+ q5 + q6)γ

µ5S(p+ q6)γ
µ6S(p)

�

. (12)

S(p) = /p
p2 is the massless quark propagator and σ(1, 2,4, 5,6) the set of pairwise permutations

of µi and qi for i = 1, 2, 3, 5, 6.
Now we "simply" need to deal with ∼ 103,4 different scalar two-loop integrals, depending

on the set of used projectors (which are related by gauge invariance). In order to get the
task done we take advantage of KIRA [18], which is a software that allows for a reduction of
multi-loop scalar integrals into a set of master integrals. We find that there is a set of them,
corresponding to the integrals of Fig 4, for which all the needed 1

D−4 expansions have been
worked out analytically in terms of classical poly-logs [19].

We then have fully analytic results for the five independent scalar functions of the HLbL
tensor encoding the g-2 kinematics, which are valid for the regime of large momenta, including
the leading term, power and gluonic corrections. We find that gluonic corrections are typically
suppressed with respect to the quark loop by a factor of approximately −αs

π .2

2Before realizing of a typo in one of the analytic expressions for the master integrals presented in Ref. [19],
the obtained prefactor in front of αs

π was O(102,3), which would have completely killed the applicability of this
expansion.
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Bq:

q → → q

C123:

q1 → ← q3

↓ q2

Sq:

q → → q

V312:

q1 → ← q2

↓ q3

V̇312:

q1 → ← q2

↓ q3

W312:

q1 → ← q2

↓ q3

Figure 4: Master integrals entering into the two-loop calculation after applying scalar
reduction. Figure reused from [5].
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Figure 5: Fully short-distance contributions for HLbL muon g-2, as obtained by our
expansion. The leading term (dashed-line) corresponds to the massless quark loop
and the NLO one includes the gluonic corrections. Figure reused from [5].

Now it is a matter of convoluting with the other two loops and numerically integrate glu-
onic corrections, using Eq. (5), for the kinematics regions where the expansion is valid. This
is Q1,2,3 > Qmin. Having computed the power and gluonic corrections, we can actually assess
from which values of Qmin the expansion is safe. The result for the leading massless quark
loop and the gluonic corrections is displayed in Fig. 5. We observe how, as far as the running
of the strong coupling is well defined, the gluonic corrections are rather small and negative.
As a consequence, the obtained expansion gives a very precise description of the (subleading,
but not negligible) fully short-distance contributions of HLbL muon g-2.

In order to improve the numerical precision, explicit analytic expansions have been per-
formed in some kinematic regions to cancel spurious singularities. One of them corresponds
to a sub-region of the Melnikov-Vainshtein short-distance constraints [20]. We have checked
how we recover the correct limits for both the quark loop and the gluonic corrections [21,22].
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6 Conclusions

We have shown how, in spite of the soft-momentum associated to the external g-2 photon, an
OPE can be applied for the HLbL muon g-2 contribution when the three loop momenta are
large. The leading contribution is given by the massless quark loop [3].

The leading power correction is found to be suppressed by two powers of the energy, from
which one corresponds to the quark mass. In the chiral limit, the first power corrections appear
suppressed by four powers of the energy. We have worked out explicit expressions for them in
Ref. [4]. They are found to be negligible as far as one is above ∼ 1 GeV.

Finally, we have computed the gluonic corrections. The relatively small prefactors in the
αs
π expansion confirms that it is well behaved from relatively low energies and can be used to
improve the precision of the data-driven evaluation of muon g-2.
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