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Abstract

We introduce version 3 of NetKet, the machine learning toolbox for many-
body quantum physics. NetKet is built around neural quantum states and
provides efficient algorithms for their evaluation and optimization. This new
version is built on top of JAX, a differentiable programming and accelerated
linear algebra framework for the Python programming language. The most
significant new feature is the possibility to define arbitrary neural network
ansätze in pure Python code using the concise notation of machine-learning
frameworks, which allows for just-in-time compilation as well as the implicit
generation of gradients thanks to automatic differentiation. NetKet 3 also
comes with support for GPU and TPU accelerators, advanced support for
discrete symmetry groups, chunking to scale up to thousands of degrees of
freedom, drivers for quantum dynamics applications, and improved modular-
ity, allowing users to use only parts of the toolbox as a foundation for their
own code.

Contents

1 Introduction 3
1.1 What’s new 4
1.2 Outline 4
1.3 Installing NetKet 5

2 Quantum-mechanical primitives 6

1



SciPost Physics Codebases Submission

2.1 Hilbert spaces 6
2.2 Linear operators 7

3 Variational quantum states 9
3.1 Abstract interface 9
3.2 Defining the variational ansatz 10
3.3 Estimating observables 16
3.4 Monte Carlo samplers 18
3.5 Quantum geometric tensor 20

4 Algorithms for variational states 24
4.1 Ground-state search 25
4.2 Finding steady states 26
4.3 Time propagation 28
4.4 Implementing custom algorithms using NetKet 29

5 Symmetry-aware neural quantum states 30
5.1 Symmetry groups and representation theory 31
5.2 Using group convolutional neural networks (GCNNs) 33

6 Quantum systems with continuous degrees of freedom 35
6.1 Continuous Hilbert spaces 35
6.2 Linear operators 35
6.3 Samplers 36
6.4 Harmonic oscillators 36
6.5 Interacting system with continuous degrees of freedom 37

7 Example: Finding ground and excited states of a lattice model 40
7.1 Defining the lattice and the Hamiltonian 40
7.2 Defining and training a symmetric ansatz 41
7.3 Finding an excited state 42

8 Example: Fermions on a lattice 43

9 Example: Real-time dynamics 46
9.1 Unitary dynamics 46
9.2 Dissipative dynamics (Lindblad master equation) 47

10 Benchmarks 49
10.1 Variational Monte Carlo 49
10.2 MPI for NetKet 49
10.3 Comparison with jVMC 50

11 Discussion and conclusion 51

A Details of group convolutions 53
A.1 Group convolutions and equivariance 53
A.2 Fast group convolutions using Fourier transforms 54

B Implementation details of the quantum geometric tensor 56
B.1 Jacobians and their products 56
B.2 QGTJacobian 57

2



SciPost Physics Codebases Submission

B.3 QGTOnTheFly 57

References 58

1 Introduction

During the last two decades, we have witnessed tremendous advances in machine learning
(ML) algorithms which have been used to solve previously difficult problems such as image
recognition [1, 2] or natural language processing [3]. This has only been possible thanks
to sustained hardware development: the last decade alone has seen a 50-fold increase
in available computing power [4]. However, unlocking the full computational potential
of modern arithmetic accelerators, such as GPUs, used to require significant technical
skills, hampering researchers in their efforts. The incredible pace of algorithmic advances
must therefore be attributed, at least in part, to the development of frameworks allowing
researchers to tap into the full potential of computer clusters while writing high-level
code [5, 6].

In the last few years, researchers in quantum physics have increasingly utilized machine-
learning techniques to develop novel algorithms or improve on existing approaches [7]. In
the context of variational methods for many-body quantum physics in particular, the
method of neural quantum states (NQS) has been developed [8]. NQS are based on the
idea of using neural networks as an efficient parametrization of the quantum wave func-
tion. They are of particular interest because of their potential to represent highly entangled
states in more than one dimension with polynomial resources [9], which is a significant
challenge for more established families of variational states. NQS are also flexible: they
have been successfully used to determine variational ground states of classical [10] and
quantum Hamiltonians [11–18] as well as excited states [13], to approximate Hamiltonian
unitary dynamics [8,19–24], and to solve the Lindblad master equation [25–27]. In partic-
ular, NQS are currently used in the study of frustrated quantum systems [13,16–18,28–31],
which have so far been challenging to optimize by established numerical techniques. They
have also been used to perform tomographic state reconstruction [32] and efficiently ap-
proximate quantum circuits [33].

A complication often encountered when working with NQS is, however, that standard
ML frameworks like Tensorflow [34] or PyTorch [35] are not geared towards these kind
of quantum mechanical problems, and it often takes considerable technical expertise to
use them for such non-standard tasks. Alternatively, researchers sometimes avoid those
frameworks and implement their routines from scratch, but this often leads to sub-optimal
performance. We believe that it is possible to foster research at this intersection of quan-
tum physics and ML by providing an easy-to-use interface exposing quantum mechanical
objects to ML frameworks.

We therefore introduce version 3 of the NetKet framework [36].1 NetKet 3 is an
open-source Python toolbox expressing several quantum mechanical primitives in the dif-
ferentiable programming framework jax [5,37]. NetKet provides an easy-to-use interface
to high-performance variational techniques without the need to delve into the details of
their implementations, but customizability is not sacrificed and advanced users can in-
spect, modify, and extend practically every aspect of the package. Moreover, integration

1This manuscript refers to NetKet v3.5, released at the end of May 2022.
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of our quantum object primitives with the jax ecosystem allows users to easily define cus-
tom neural-network architectures and compute a range of quantum mechanical quantities,
as well as their gradients, which are auto-generated through jax’s tracing-based approach.
jax provides the ability to write numerical code in pure Python using NumPy-like calls
for array operations, while still achieving high performance through just-in-time compi-
lation using xla, the accelerated linear algebra compiler that underlies TensorFlow. We
have also integrated jax and MPI with the help of mpi4jax [38] to make NetKet scale
to hundreds of computing nodes.

1.1 What’s new

With the release of version 3, NetKet has moved from internally relying on a custom
C++ core to the jax framework, which allows models and algorithms to be written in
pure Python and just-in-time compiled for high performance on both CPU and GPU
platforms.2 By using only Python, the installation process is greatly simplified and the
barrier of entry for new contributors is lowered.

iFrom a user perspective, the most important new feature is the possibility of writing
custom NQS wave functions using jax, which allows for quick prototyping and deploy-
ment, frees users from having to manually implement gradients due to jax’s support for
automatic differentiation, and makes models easily portable to GPU platforms. Other
prominent new features are

• support for (real and imaginary time) unitary and Markovian dissipative dynamics;

• support for continuous systems;

• support for composite Hilbert spaces;

• efficient implementations of the quantum geometric tensor and stochastic reconfigu-
ration, which scale to models with millions of parameters;

• group-invariant and group-equivariant layers and architectures which support arbi-
trary discrete symmetries.

A more advanced feature is an extension mechanism built around multiple dispatch [39],
which allows users to override algorithms used internally by NetKet without editing the
source itself. This can be used to make NetKet work with custom objects and algorithms
to study novel problems that do not easily fit what is already available.

1.2 Outline

NetKet provides both an intuitive high-level interface with sensible defaults to welcome
beginners, as well as a complete set of options and lower-level functions for flexible use
by advanced users. The high-level interface is built around quantum-mechanical objects
such as Hilbert spaces ( netket.hilbert ) and operators ( netket.operator ), presented in
Section 2.

The central object in NetKet 3 is the variational state, discussed in Section 3, which
bring together the neural-network ansatz, its variational parameters, and a Monte-Carlo
sampler. In Section 3.2, we give an example on how to define an arbitrary neural network
using a NetKet/jax-compatible framework, while Section 3.4 presents the new API of

2Google’s Tensor Processing Units (TPUs) are also, in principle, supported. However, at the time of
writing they only support half-precision float16 . Some modifications would be necessary to work-around
loss of precision and gradient underflow.
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ð
JAX fluency. Using NetKet’s high-level interface and built-in neural net-
work architectures does not require the user to be familiar with jax and
concepts such as just-in-time compilation and automatic differentiation. How-
ever, when defining custom classes such as neural network architectures, oper-
ators, or Monte Carlo samplers, some proficiency with writing jax-compatible
code will be required. We refrain from discussing jax in detail and instead
point the reader towards its documentation at jax.readthedocs.io.

stochastic samplers. In Section 3.5, we show how to compute the quantum geometric
tensor (QGT) with NetKet, and compare the different implementations.

Section 4 shows how to use the three built-in optimization drivers to perform ground-
state, steady-state, and dynamics calculations. Section 5 discusses NetKet’s implemen-
tation of spatial symmetries and symmetric neural quantum states, which can be exploited
to lower the size of the variational manifold and to target excited states in nontrivial sym-
metry sectors. In Section 6, we also show how to study a system with continuous degrees
of freedom, such as interacting particles in one or more spatial dimensions.

The final sections present detailed workflow examples of some of the more common use
cases of NetKet. In Section 7, we show how to study the ground state and the excited
state of a lattice Hamiltonian. Section 9 gives examples of both unitary and Lindbladian
dynamical simulations.

To conclude, Section 10 presents scaling benchmarks of NetKet running across multi-
ple devices and a performance comparison with jvmc [40], another library similar in scope
to NetKet.

Readers who are already familiar with the previous version of NetKet might be espe-
cially interested in the variational state interface described in Section 3.1, which replaces
what was called machine in NetKet 2 [36], the QGT interface described in Section 3.5, al-
gorithms for dynamics (Section 4.3 and Section 9), and symmetry-aware NQS (Section 5).

1.3 Installing NetKet

NetKet is a package written in pure Python; it requires a recent Python version, cur-
rently at least version 3.7. Even though NetKet itself is platform-agnostic, jax, its main
dependency, only works on MacOS and Linux at the time of writing.3 Installing NetKet
is straightforward and can be achieved running the following line inside a python environ-
ment:� �

1 pip install --upgrade netket� �
To enable GPU support, Linux with a recent CUDA version is required and a special
version of jax must be installed. As the appropriate installation procedure can change
between jax versions, we refer the reader to the official documentation4 for detailed in-
structions.

NetKet by default does not make use of multiple CPUs that might be available to
the user. Exploiting multiple processors, or even running across multiple nodes, requires
MPI dependencies, which can be installed using the command� �

1 pip install --upgrade "netket[mpi]"� �
3In principle, jax runs on Windows, but users must compile it themselves, which is not an easy process.
4https://github.com/google/jax#installation
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These dependencies, namely mpi4py and mpi4jax , can only be installed if a working
MPI distribution is already available.

Once NetKet is installed, it can be imported in a Python session or script and its
version can be checked as� �

1 >>> import netket as nk
2 >>> print(nk.__version__)
3 3.5.0� �

We recommend that users use an up-to-date version when starting a new project. In code
listings, we will often refer to the netket module as nk for brevity.

NetKet also comes with a set of so-called experimental functionalities which are
packaged into the netket.experimental submodule which mirrors the structure of the
standard netket module. Experimental APIs are marked as such because they are
relatively young and we might want to change the function names or options keyword
arguments without guaranteeing backward compatibility as we do for the rest of NetKet.
In general, we import the experimental submodule as follows� �

1 >>> from netket import experimental as nkx� �
and use nkx as a shorthand for it.

2 Quantum-mechanical primitives

In general, when working with NetKet, the workflow is the following: first, one defines
the Hilbert space of the system (Section 2.1) and the Hamiltonian or super-operator of
interest (Section 2.2). Then, one builds a variational state (Section 3.1), usually combining
a neural-network model and a stochastic sampler. In this section, we describe the first
step in this process, namely, how to define a quantum-mechanical system to be modeled.

2.1 Hilbert spaces

Hilbert-space objects determine the state space of a quantum system and a specific choice
of basis. Functionality related to Hilbert spaces is contained in the nk.hilbert module;
for brevity, we will often leave out the prefix nk.hilbert in this section.

All implementations of Hilbert spaces derive from the class AbstractHilbert and fall
into two classes:

• discrete Hilbert spaces, which inherit from the abstract class DiscreteHilbert and
include spin ( Spin ), qubit ( Qubit ), Fock ( Fock ) as well as fermionic orbitals
( SpinOrbitalFermions ) Hilbert spaces. Discrete spaces are typically used to de-
scribe lattice systems. The lattice structure itself is, however, not part of the Hilbert
space class and can be defined separately.

• continuous Hilbert spaces, which inherit from the abstract class ContinuousHilbert .
Currently, the only concrete continuous space provided by NetKet is Particle .

Continuous Hilbert spaces are discussed in Section 6. A general discrete space with N
sites has the structure

Hdiscrete = span{|s0〉 ⊗ · · · ⊗ |sN−1〉 | si ∈ Li, i ∈ {0, . . . , N − 1}}, (1)
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where Li is the set of local quantum numbers at site i (e.g., L = {0, 1} for a qubit,
L = {±1} for a spin-1/2 system in the σz basis, or L = {0, 1, . . . , Nmax} for a Fock
space with up to Nmax particles per site). Constraints on the allowed quantum numbers
are supported, resulting in Hilbert spaces that are subspaces of Eq. (1). For example,
Spin(1/2, total_sz=0) creates a spin-1/2 space which only includes configurations {si}

that satisfy ∑N
i=1 si = 0. The corresponding basis states |s〉 span the zero-magnetization

subspace. Similarly, constraints on the total population in Fock spaces are also supported.
Different spaces can be composed to create coupled systems by using the exponent

operator ( ** ) and the multiplication operator ( * ). For example, the code below creates
the Hilbert space of a bosonic cavity with a cutoff of 10 particles at each site, coupled to
6 spin−1

2 degrees of freedom.� �
1 >>> hi = nk.hilbert.Fock(10) * nk.hilbert.Spin(1/2)**6
2 >>> print("Size of the hilbert space: ", hi.n_states)
3 Size of the hilbert space: 704
4 >>> print("Size of the basis: ", hi.size)
5 Size of the basis: 7
6 >>> hi.random_state(jax.random.PRNGKey(0), (2,))
7 DeviceArray([[10., -1., 1., -1., 1., -1., -1.],
8 [ 9., 1., -1., -1., 1., -1., 1.]], dtype=float32)� �

All Hilbert objects can generate random basis elements through the function
random_state(rng_key, shape, dtype) , which has the same signature as standard ran-

dom number generators in jax. The first argument is a jax random-generator state as
returned by jax.random.PRNGKey , while the other arguments specify the number of out-
put states and optionally the jax data type. In this example, an array with two state
vectors has been returned. The first entry of each corresponds to the Fock space and is
thus an integer in {0, 1, . . . , 10}, while the rest contains the spin quantum numbers.

Custom Hilbert spaces can be constructed by defining a class inheriting either from
ContinuousHilbert for continuous spaces or DiscreteHilbert for discrete spaces. In

the rest of the paper, we will always be working with discrete Hilbert spaces unless stated
otherwise.

NetKet also supports working with super-operators, such as the Liouvillian used to
define open quantum systems, and variational mixed states. The density matrix is an ele-
ment of the space of linear operators acting on a Hilbert space, B(H). NetKet represents
this space using the Choi–Jamilkowski isomorphism [41, 42] convention B(H) ∼ H ⊗ H;
this “doubled” Hilbert space is implemented as DoubledHilbert . Doubled Hilbert spaces
behave largely similarly to standard Hilbert spaces, but their bases have double the num-
ber of degrees of freedom; for example, super-operators can be defined straightforwardly
as operators acting on them.

2.2 Linear operators

NetKet is designed to allow users to work with large systems, beyond the typically
small system sizes that are accessible through exact diagonalization techniques. In order
to compute expectation values 〈Ô〉 on such large spaces, we must be able to efficiently
represent the operators Ô and work with their matrix elements 〈σ| Ô |η〉 without storing
them in memory.

NetKet provides different implementations for the operators, tailored for different
use cases, which are available in the netket.operator submodule. NetKet operators
are always defined relative to a specific underlying Hilbert space object and inherit from
one of the abstract classes DiscreteOperator or ContinuousOperator , depending on the

7
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classes of supported Hilbert spaces. We defer the discussion of operators acting on a
continuous space to Section 6 and focus on discrete-space operators in the remainder of
this section.

An operator acting on a discrete space can be represented as a matrix with some matrix
elements 〈σ| Ô |η〉. As most of those elements are zero in physical systems, a standard
approach is to store the operator as sparse matrices, a format that lowers the memory
cost by only storing non-zero entries. However, the number of non-zero matrix elements
still scales exponentially with the number of degrees of freedom, so sparse matrices cannot
scale to the thousands of lattice sites that we want to support, either. For this reason,
NetKet uses one of three custom formats to represent operators:

• LocalOperator is an implementation that can efficiently represent sums of K-local
operators, that is, operators that only act nontrivially on a set of K sites. The
memory cost of this format grows linearly with the number of operator terms and
the number of degrees of freedom, but it scales exponentially in K.

• PauliStrings is an implementation that efficiently represents a product of Pauli
X,Y, Z operators acting on the whole system. This format only works with qubit-like
Hilbert spaces, but it is extremely efficient and has negligible memory cost.

• FermionOperator2nd is an efficient implementation of second-quantized fermionic
operators built out of the on-site creation and annihilation operators f †i , fi. It works
together with SpinOrbitalFermions and the equivalent Fock spaces.

• Special implementations like Ising , which hard-code the matrix elements of the
operator. Those are the most efficient, though they cannot be customized at all.

The nk.operator submodule also contains ready-made implementations of commonly
used operators, such as Pauli matrices, bosonic ladder or projection operators, and com-
mon Hamiltonians such as the Heisenberg, or the Bose–Hubbard models.

2.2.1 Manipulating operators

Operators can be manipulated similarly to standard matrices: they can be added, sub-
tracted, and multiplied using standard Python operators. In the example below we show
how to construct the operator

Ô = (σ̂x0 + σ̂x1 )2 = 2(σ̂x0 σ̂x1 + 1). (2)

starting from the Pauli X operator acting on the i-th site, σxi , given by the function
nk.operator.spin.sigmax(hi, i) :� �
1 >>> hi = nk.hilbert.Spin(1/2)**2
2 >>> op = nk.operator.spin.sigmax(hi,0) + nk.operator.spin.sigmax(hi,1)
3 >>> op = op * op
4 >>> op
5 LocalOperator(dim=2, acting_on=[[0], [0, 1], [1]], constant=0, dtype=float64)
6 >>> op.to_dense()
7 array([[2., 0., 0., 2.],
8 [0., 2., 2., 0.],
9 [0., 2., 2., 0.],

10 [2., 0., 0., 2.]])� �
8
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Note that each operator requires the Hilbert space object hi as well as the specific sites
it acts on as constructor arguments. In the last step (line 6), we convert the operator into
a dense matrix using the to_dense() method; it is also possible to convert an operator
into a SciPy sparse matrix using to_sparse() .

While it is possible to inspect those operators and (if the Hilbert space is small enough)
to convert them to dense matrices, NetKet’s operators are built in order to support
efficient row indexing, similar to row-sparse (CSR) matrices. Given a basis vector |σ〉 in
a Hilbert space, one can efficiently query the list of basis states |η〉 and matrix elements
O(σ, η) such that

O(σ, η) = 〈σ| Ô |η〉 6= 0 (3)

using the function operator.get_conn(sigma) , which returns both the vector of non-zero
matrix elements and the corresponding list of indices |η〉, stored as a matrix.5

3 Variational quantum states

In this section, we first introduce the general interface of variational states, which can
be used to represent both pure states (vectors in the Hilbert space) and mixed states
(positive-definite density operators). We then present how to define variational ansätze
and the stochastic samplers needed that generate Monte Carlo states.

3.1 Abstract interface

A variational state describes a parametrized quantum state that depends on a (possibly
large) set of variational parameters θ. The quantum state can be either pure (denoted as
|ψθ〉) or mixed (written as a density matrix ρ̂θ). NetKet defines an abstract interface,
netket.vqs.VariationalState , for such objects; all classes that implement this interface

will automatically work with all the high-level drivers (e.g., ground-state optimization
or time-dependent variational dynamics) discussed in Section 4. The VariationalState
interface is relatively simple, as it has only four requirements:

• The parameters θ of the variational state are exposed through the attribute parameters

and should be stored as an array or a nested dictionary of arrays.

• The expectation value 〈Â〉θ of an operator Â can be computed or estimated by the
method expect .

• The gradient of an expectation value with respect to the variational parameters,
∂〈Â〉θ/∂θj , is computed by the method expect_and_grad 6.

• The quantum geometric tensor (Section 3.5) of a variational state can be constructed
with the method quantum_geometric_tensor .

At the time of writing, NetKet exposes three types of variational state:
5This querying is currently performed in Python code, just-in-time compiled using numba [43], which

runs on the CPU. If you run your computations on a GPU with a small number of samples, this might
introduce a considerable slowdown. We are aware of this issue and plan to adapt our operators to be
indexed directly on the GPU in the future.

6For complex-valued parameters θj ∈ C, expect_and_grad returns the conjugate gradient ∂〈Â〉θ/∂θ∗j
instead. This is done because the conjugate gradient corresponds to the direction of steepest ascent when
optimizing a real-valued function of complex variables [44].

9
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• nk.vqs.ExactState represents a variational pure state |ψθ〉 and computes expecta-
tion values, gradients and the geometric tensor by performing exact summation over
the full Hilbert space.

• nk.vqs.MCState (short for Monte Carlo state) represents a variational pure state
and computes expectation values, gradients and the geometric tensor by performing
Markov chain Monte Carlo (MCMC) sampling over the Hilbert space.

• nk.vqs.MCMixedState represents a variational mixed state and computes expecta-
tion values by sampling diagonal entries of the density matrix.

Variational states based on Monte Carlo sampling are the main tools that we expose to
users, together with a wide variety of high-performance Monte Carlo samplers. More de-
tails about stochastic estimates and Monte Carlo sampling will be discussed in Section 3.3
and Section 3.4.

Dispatch and algorithm selection. With three different types of variational state
and several different operators supported, it is hard to write a well-performing algorithm
that works with all possible combinations of types that users might require. In order not
to sacrifice performance for generic algorithms, NetKet uses the approach of multiple
dispatch based on the plum module [39]. Combined with jax’s just-in-time compilation,
this solution bears a strong resemblance to the approach commonly used in the Julia
language [6].

Every time the user calls VariationalState.expect or .expect_and_grad , the types
of the variational state and the operator are used to select the most specific algorithm
that applies to those two types. This allows NetKet to provide generic algorithms that
work for all operators, but keeps it easy to supply custom algorithms for specific operator
types if desired.

This mechanism is also exposed to users: it is possible to override the algorithms used
by NetKet to compute expectation values and gradients without modifying the source
code of NetKet but simply by defining new dispatch rules using the syntax shown below.� �

1 @nk.vqs.expect.dispatch
2 def expect(vstate: MCState, operator: Ising):
3 # more efficient implementation than default one
4 #
5 # expectation_value = ...
6 #
7 return expectation_value� �

3.2 Defining the variational ansatz

The main feature defining a variational state is the parameter-dependent mapping of an
input configuration to the corresponding probability amplitude or, in other words, the
quantum wave function (for pure states)

(θ, s) 7→ ψθ(s) = 〈s|ψθ〉 (4)

or quantum density matrix (for mixed states)

(θ, s, s′) 7→ ρθ(s, s′) = 〈s| ρ̂θ
∣∣s′〉 . (5)

10
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In NetKet, this mapping is called a model (of the quantum state).7 In the case of
NQS, the model is given by a neural network. For defining models, NetKet primarily
relies on flax [45], a jax-based neural-network library8. Ansätze are implemented as
flax modules that map input configurations (the structure of which is determined by
the Hilbert space) to the corresponding log-probability amplitudes. For example, pure
quantum states are evaluated as

lnψθ(s) = module.apply (θ, s). (6)

The use of log-amplitudes has the benefit that the log-derivatives ∂ lnψθ(s)/∂θj , often
needed in variational optimization algorithms, are directly available through automatic
differentiation of the model. It also makes it easier for the model to learn amplitudes with
absolute values ranging over several orders of magnitude, which is common for many types
of quantum states.

,
Real and complex amplitudes. NetKet supports both real-valued and
complex-valued model outputs. However, since model outputs correspond
to log-amplitudes, real-valued networks can only represent states that have
exclusively non-negative amplitudes, lnψθ(s) ∈ R⇒ ψθ(s) ≥ 0.
Since the input configurations s are real, in many pre-defined NetKet models
the data type of the network parameters (θ ∈ RNp or θ ∈ CNp) determines
whether an ansatz represents a general or a real non-negative state. This
should be kept in mind in particular when optimizing Hamiltonians with
ground states that can have negative amplitudes.

3.2.1 Custom models using Flax

The recommended way to define a custom module is to subclass flax.linen.Module and
to provide a custom implementation of the __call__ method. As an example, we define
a simple one-layer NQS with a wave function of the form

lnψ(s) =
M∑
j=1

tanh[Ws+ b]j . (7)

with the number of visible units N matching the number of physical sites, a number of
hidden units M , and complex parameters W ∈ CM×N (the weight matrix) and b ∈ CM
(the bias vector). Using NetKet and flax, this ansatz can be implemented as follows:� �

1 import netket as nk
2 import jax.numpy as jnp
3 import flax
4 import flax.linen as nn
5

7The notion of “model” in NetKet 3 is related to the “machine” classes in NetKet 2 [36]. However,
while NetKet 2 machines both define the mapping (4) and store the current parameters, this has been
decoupled in NetKet 3. The model only specifies the mapping, while the parameters are stored in the
variational state classes.

8While our primary focus has been the support of flax, NetKet can in principle be used with any
jax-compatible neural network model. For example, NetKet currently includes a compatibility layer
which ensures that models defined using the Haiku framework by DeepMind [46] will work automatically
as well. Furthermore, any model represented by a pair of init and apply functions (as used, e.g., in
the stax framework included with jax) is also supported.

11
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6 class OneLayerNQS(nn.Module):
7 # Module hyperparameter:
8 n_hidden_units: int
9

10 @nn.compact
11 def __call__(self, s):
12 n_visible_units = s.shape[-1]
13 # define parameters
14 # the arguments are: name, initializer, shape, dtype
15 W = self.param(
16 "weights",
17 nn.initializers.normal(),
18 (self.n_hidden_units, n_visible_units),
19 jnp.complex128,
20 )
21 b = self.param(
22 "bias",
23 nn.initializers.normal(),
24 (self.n_hidden_units,),
25 jnp.complex128,
26 )
27

28 # multiply with weight matrix over last dimension of s
29 y = jnp.einsum("ij,...j", W, s)
30 # add bias
31 y += b
32 # apply tanh activation and sum
33 y = jnp.sum(jnp.tanh(y), axis=-1)
34

35 return y� �
The decorator flax.linen.compact used on __call__ (line 10) makes it possible to
define the network parameters directly in the body of the call function via self.param

as done above (lines 15 and 21). For performance reasons, the input to the module is
batched. This means that, instead of passing a single array of quantum numbers s of size
N , a batch of multiple state vectors is passed as a matrix of shape (batch_size, N) .
Therefore, operations like the sum over all feature indices in the example above need to
be explicitly performed over the last axis.

ð
Just-in-time compilation. Note that the network will be just-in-time (JIT)
compiled to efficient machine code for the target device (CPU, GPU, or TPU)
using jax.jit , which means that all code inside the __call__ method needs
to written in a way compatible with jax.jit .
In particular, users should use jax.numpy for NumPy calls that need to
happen at runtime; explicit Python control flow, such as for loops and if
statements, should also be avoided, unless one explicitly wants to have them
evaluate once at compile time. We refer users to the jax documentation for
further information on how to write efficient JIT-compatible code.

The module defined above can be used by first initializing the parameters using
module.init and then computing log-amplitudes through module.apply :� �
1 >>> module = OneLayerNQS(n_hidden_units=16)

12
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2 # init takes two arguments, a PRNG key for random initialization
3 # and a dummy array used to determine the input shape
4 # (here with a batch size of one):
5 >>> params = module.init(nk.jax.PRNGKey(0), jnp.zeros((1, 8)))
6 >>> module.apply(params, jnp.array([[-1, 1, -1, 1, -1, 1, -1, 1]]))
7 DeviceArray([-0.00047843+0.07939122j], dtype=complex128)� �

3.2.2 Network parametrization and pytrees

Parameter data types. NetKet supports models with both real-valued and complex-
valued network parameters. The data type of the parameters does not determine the
output type. It is possible to define a model with real parameters that produces complex
output. A simple example is the sum of two real-valued and real-parameter networks,
representing real and imaginary part of the log-amplitudes (and thus phase and absolute
value of the wave function) [30,32]:

lnψ(θ,η)(s) = fθ(s) + igη(s) ⇔ |ψ(θ,η)(s)| = exp[fθ(s)], argψ(θ,η)(s) = gη(s) (8)

(where all θi, ηi ∈ R and f(s), g(s) ∈ R).
More generally, any model with Np complex parameters θ = α+ iβ can be represented

by a model with 2Np real parameters (α, β). While these parametrizations are formally
equivalent, the choice of complex parameters can be particularly useful in the case where
the variational mapping is holomorphic or, equivalently, complex differentiable with re-
spect to θ. This is the case for many standard network architectures such as RBMs or
feed-forward networks, since both linear transformations and typical activation functions
are holomorphic (such as tanh, cosh, and their logarithms) or piecewise holomorphic (such
as ReLU), which is sufficient in practice. Note, however, that there are also common archi-
tectures, such as autoregressive networks, that are not holomorphic. In the holomorphic
case, the computational cost of differentiating the model, e.g., to compute the quantum
geometric tensor (Section 3.5), can be reduced by exploiting the Cauchy–Riemann equa-
tions [47],

i∇αψ(α,β)(s) = ∇βψ(α,β)(s). (9)

Note that NetKet generally supports models with arbitrary parametrizations (i.e.,
real and both holomorphic and non-holomorphic complex parametrizations). The default
assumption is that models with complex weights are non-holomorphic, but some objects
(most notably the quantum geometric tensor) accept a flag holomorphic=True to enable
a more efficient code path for holomorphic networks.

,
It is the user’s responsibility to only set holomorphic=True for models that
are, in fact, holomorphic. If this is incorrectly specified, NetKet code may
give incorrect results. To check whether a specific architecture is holomorphic,
one can verify the condition

∂ψθ(s)/∂θ∗j = (∂/∂αj + i∂/∂βj)ψθ(s) = 0, (10)

which is equivalent to Eq. (9).

Pytrees. In NetKet, model parameters do not need to be stored as a contiguous vector.
Instead, models can support any collection of parameters that forms a so-called pytree.

13
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Pytree is jax terminology for collections of numerical tensors stored as the leaf nodes
inside layers of nested standard Python containers (such as lists, tuples, and dictionaries).9
Any object that is not itself a pytree, in particular NumPy or jax arrays, is referred to
as a leaf. Networks defined as flax modules store their parameters in a (potentially
nested) dictionary, which provides name-based access to the network parameters.10 For
the OneLayerNQS defined above, the parameter pytree has the structure:� �

1 # For readability, the actual array data has been replaced with ... below.
2 >>> print(params)
3 FrozenDict({
4 params: {
5 weights: DeviceArray(..., dtype=complex128),
6 bias: DeviceArray(..., dtype=complex128),
7 },
8 })� �

The names of the entries in the parameter dictionary correspond to those given in the
param call when defining the model. NetKet functions often work directly with both

plain arrays and pytrees of arrays. Furthermore, any Python function can be applied
to the leaves of a pytree using jax.tree_map . For example, the following code prints
a pytree containing the shape of each leaf of params , preserving the nested dictionary
structure:� �

1 >>> print(jax.tree_map(jnp.shape, params))
2 FrozenDict({
3 params: {
4 weights: (16, 8),
5 bias: (16,),
6 },
7 })� �

Functions accepting multiple leaves as arguments can be mapped over the correspond-
ing number of pytrees (with compatible structure) using jax.tree_map . For exam-
ple, the difference of two parameter pytrees of the same model can be computed using
delta = jax.tree_map(lambda a, b: a - b, params1, params2) . NetKet provides an

additional set of utility functions to perform linear algebra operations on such pytrees in
the nk.jax submodule.

3.2.3 Pre-defined ansätze included with NetKet

NetKet provides a collection of pre-defined modules under nk.models , which allow
quick access to many commonly used NQS architectures (Table 1):

• Jastrow: The Jastrow ansatz [48,49] is an extremely simple yet effective many-body
ansatz that can capture some inter-particle correlations. The log-wavefunction is the
linear function logψ(σ) = ∑

i σiWi,jσj . Evaluation of this ansatz is very fast but it
is also the least powerful model implemented in NetKet;

9See https://github.com/google/jax/blob/jax-v0.2.28/docs/pytrees.md for a detailed introduction of
pytrees.

10Specifically, flax stores networks parameters in an immutable FrozenDict object, which otherwise
has the same semantics as a standard Python dictionary and, in particular, is also a valid pytree. The
parameters can be modified by converting to a standard mutable dict via flax.core.unfreeze(params) .
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Name NetKet class References

Jastrow ansatz Jastrow [48, 49]

Restricted Boltzmann machine
(RBM) RBM , RBMMultiVal , RBMModPhase [8]

Symmetric RBM RBMSymm [8]

Group-Equivariant Convolutional
Neural Network GCNN Section 5

[50]

Autoregressive Neural Network

ARNNDense , ARNNConv1D ,

ARNNConv2D , FastARNNConv1D ,

FastARNNConv2D

[51]

Neural Density Matrix NDM [25, 52]

Table 1: List of models included in NetKet’s nk.models submodule, together
with relevant references.

• RBM: The restricted Boltzmann machine (RBM) ansatz is composed by a dense
layer followed by a nonlinearity. If the Hilbert space has N degrees of freedom of size
d, RBM has αN features in the dense layer. This ansatz requires param_dtype=complex

to represent states that are non-positive valued. RBMMultiVal is a one-hot en-
coding layer followed by an RBM with αdN features in its dense layer. Finally,
RBMModPhase consists of two real-valued RBMs that encode respectively the mod-

ulus and phase of the wavefunction as logψ(σ) = RBM (σ) + i RBM (σ). This ansatz
only supports real parameters. If considering Hilbert spaces with local dimension
d > 2, plain RBMs usually require a very large feature density α and RBMMultiVal s
perform better.

• RBMSymm: A symmetry-invariant RBM. Only symmetry groups that can be
represented as permutations of the computational basis are supported (see Section 5).
This architecture has fewer parameters than an RBM, but it is more expensive to
evaluate. It requires param_dtype=complex to represent states that are non-positive
valued.

• GCNN: A symmetry-equivariant feed-forward network (see Section 5.2). Only sym-
metry groups that can be represented as permutations of the computational basis are
supported. This model is much more complex and computationally intensive than
RBMSymm , but can also lead to more accurate results. It can also be used to target

an excited state of a lattice Hamiltonian. When working with states that are real
but non-positive, one can use real parameters together with complex_output=True .
If the states are to have a complex phase, param_dtype=complex is required.

• Autoregressive networks: ARNNs are models that can produce uncorrelated
samples when sampled with nk.sampler.ARNNSampler . Those architectures can be
efficiently sampled on GPUs, but they are much more expensive than traditional
RBMs.
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• NDM: A positive-semidefinite density matrix ansatz, comprised of a component
describing the pure part and one describing the mixed part of the state. The pure
part is equivalent to an RBM with feature density α, while the mixed part is an
RBM with feature density β. This network only supports real parameters.

3.2.4 Custom layers included with Flax and NetKet

The nk.nn submodule contains generic modules such as masked dense, masked convo-
lutional and symmetric layers to be used as building blocks for custom neural networks.
Those layers are complementary to those provided by flax and can be combined together
to develop novel neural-network architectures.11

As an example, a multi-layer NQS with two convolutional and one final dense layer
acting as a weighted sum can be defined as follows:� �

1 class MultiLayerCNN(nn.Module):
2 features1: int
3 features2: int
4 kernel_size: int
5

6 @nn.compact
7 def __call__(self, s):
8 # define layers
9 layer1 = nn.Conv(

10 features=self.features1,
11 kernel_size=self.kernel_size,
12 )
13 layer2 = nn.Conv(
14 features=self.features2,
15 kernel_size=self.kernel_size,
16 )
17 weighted_sum = nn.Dense(features=1)
18

19 # apply layers and tanh activations
20 y = jnp.tanh(layer1(s))
21 y = jnp.tanh(layer2(y))
22 y = weighted_sum(y)
23 # last axis only has one entry, so we just return that
24 # but keep the batch dimension
25 return y[..., 0]� �

flax network layers are available from the flax.linen submodule (imported as nn

in the example above), NetKet layers from netket.nn .

3.3 Estimating observables

For any variational ansatz, it is crucial to also have efficient algorithms for computing
quantities of interest, in particular observables and their gradients. Since evaluating the
wave function on all configurations is infeasible for larger Hilbert spaces, NQS approaches
rely on Monte Carlo sampling of quantum expectation values.

11In the past flax had minor issues with complex numbers and therefore NetKet included versions of
some standard layers, such as Dense and Conv , that handle complex numbers properly. Starting with
flax version 0.5, released in May 2022, those issues have been addressed and we now recommend the use
of flax layers also with complex numbers.
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Pure states. The quantum expectation value of an operator Â on a non-normalized
pure state |ψ〉 can be written as a classical expectation value over the Born distribution
p(s) ∝ |ψ(s)|2 using the identity

〈Â〉 = 〈ψ|Â|ψ〉
〈ψ|ψ〉

=
∑
s

|ψ(s)|2
〈ψ|ψ〉

Ã(s) =
∑
s

p(s)Ã(s) = E[Ã], (11)

where Ã is the local estimator

Ã(s) = 〈s|Â|ψ〉
〈s|ψ〉

=
∑
s′

ψ(s′)
ψ(s) 〈s|Â|s

′〉, (12)

also known as the local energy when Â is the Hamiltonian [53]. Even though the sum
in Eq. (12) runs over the full Hilbert space basis, the local estimator can be efficiently
computed if the operator is sufficiently sparse in the given basis, i.e., all but a tractable
number of matrix elements 〈s|Â|s′〉 are zero. Thus, an efficient algorithm is required
that, given s, yields all connected configurations s′ together with their respective matrix
elements, as described in Section 2.2. Given the derivatives of the log-amplitudes

Oi(s) = ∂ lnψθ(s)
∂θi

, (13)

gradients of expectation values can also be evaluated. Define the force vector as the
covariance

fi = Cov[Oi, Ã] = E[O∗i (Ã− E[Ã])]. (14)

Then, if θi ∈ R is a real-valued parameter,

∂〈Â〉
∂θi

= 2 Re[fi]. (15)

If θi ∈ C and the mapping θi 7→ ψθ(s) is complex differentiable (holomorphic),

∂〈Â〉
∂θ∗i

= fi. (16)

In case of a non-holomorphic mapping, Re[θi] and Im[θi] can be treated as two independent
real parameters and Eq. (15) applies to each.

The required classical expectation values are then estimated by averaging over a se-
quence {si}Ns

i=1 of configurations distributed according to the Born distribution p(s) ∝
|ψ(s)|2; e.g., Eq. (11) becomes

E[Ã] ≈ 1
Ns

Ns∑
i=1

Ã(s). (17)

For some models, in particular autoregressive neural networks [51], one can efficiently draw
samples from the Born distribution directly. For a general ansatz, however, this is not
possible and Markov-chain Monte Carlo (MCMC) sampling methods [53] must be used:
these generate a sequence (Markov chain) of samples that asymptotically follows the Born
distribution. Such a chain can be generated using the Metropolis–Hastings algorithm [54],
which is implemented in NetKet’s sampler interface, described in the next section.
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Mixed states. When evaluating observables for mixed states, it is possible to exploit a
slightly different identity,

〈Â〉 =
Tr
[
ρ̂Â
]

Tr[ρ̂] =
∑
s

ρ(s, s)
Tr[ρ̂] Ãρ(s) = E[Ãρ], (18)

which rewrites the quantum expectation value as a classical expectation over the proba-
bility distribution defined by the diagonal of the density matrix p(s) ∝ ρ(s, s). Here, Ãρ
denotes the local estimator of the observable over a mixed state,

Ãρ(s) = 〈s|ρ̂Â|s〉
〈s| ρ̂ |s〉

=
∑
s′

ρ(s, s′)
ρ(s, s) 〈s

′|Â|s〉. (19)

It is then possible to follow the same procedures detailed in the previous paragraph for
pure states to compute the gradient of an expectation value of an operator over a mixed
state by replacing the probability distribution over which the average is computed and the
local estimator.

3.3.1 Reducing memory usage with chunking

The number of variational state evaluations required to compute the local estimators
(12) typically scales superlinearly12 in the number of sites N . For optimal performance,
NetKet by default performs those evaluations in a single call using batched inputs.
However, for large Hilbert spaces or very deep models it might be impossible to fit all
required intermediate buffers into the available memory, leading to out-of-memory errors.
This is encountered particularly often in calculations on GPUs, which have more limited
memory.

To avoid those errors, NetKet’s nk.vqs.VariationalState exposes an attribute
called chunk_size , which controls the maximum number of configurations for which
a model is evaluated at the same time13. The chunk size effectively bounds the maximum
amount of memory required to evaluate the variational function at the expense of an in-
creased computational cost in some operations involving the derivatives of the model. For
this reason, we suggest using the largest chunk size that fits in memory.

Chunking is supported for the majority of operations, such as computing expectation
values and their gradients, as well as the evaluation the quantum geometric tensor. If a
chunk size is specified but an operation does not support it, NetKet will print a warning
and attempt to perform the operation without chunking.

3.4 Monte Carlo samplers

The sampling algorithm used to obtain a sequence of configurations from the probability
distribution defined by the variational ansatz is specified by sampler classes inheriting
from nk.sampler.AbstractSampler . Following the purely functional design of jax, we
define the sampler to be a stateless collection of settings and parameters, while storing all
mutable state such as the PRNG key and the statistics of acceptances in an immutable
sampler state object. Both the sampler and the sampler state are stored in the variational
state, but they can be used independently, as they are decoupled from the rest of NetKet.

12The exact scaling depends on the sparsity of the observable in the computational basis (which in a
lattice model primarily depends on the locality of the operator and the dimension of the lattice).

13The chunk size can be specified at model construction and freely changed later. Chunking can also be
disabled at any time by setting VariationalState.chunk_size = None .
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The Metropolis–Hastings algorithm is used to generate samples from an arbitrary prob-
ability distribution. In each step, it suggests a transition from the current configuration s
to a proposed configuration s′. The proposal is accepted with probability

Pacc(s→ s′) = min
(

1, P (s′)
P (s)

g(s | s′)
g(s′ | s)

)
, (20)

where P is the distribution being sampled from and g(s′ | s) is the conditional probability
of proposing s′ given the current s. We use L(s, s′) = log[g(s | s′)/g(s′ | s)] to denote
the correcting factor to the log probability due to the transition kernel. This factor
is needed for asymmetric kernels that might propose one move with higher probability
than its reverse. Simple kernels, such as a local spin flip or exchange, are symmetric,
therefore L(s, s′) = L(s′, s) = 1, but other proposals, such as Hamiltonian sampling, are
not necessarily symmetric and need this factor.

At the time of writing, NetKet exposes four types of rules to use with the Metropolis
sampler: MetropolisLocal , which changes one discrete local degree of freedom in each
transition; MetropolisExchange , which exchanges two local degrees of freedom respecting
a conserved quantity (e.g., total particle number or magnetization); MetropolisHamiltonian ,
which transitions the configuration according to the off-diagonal elements of the Hamilto-
nian; and MetropolisGaussian , which moves a configuration with continuous degrees of
freedom according to a Gaussian distribution.

The different transition kernels in these samplers are represented by MetropolisRule

objects. To define a Metropolis sampling algorithm with a new transition kernel, one only
needs to subclass MetropolisRule and implement the transition method, which gives
s′ and L(s, s′) in each transition. For example, the following transition rule changes the
local degree of freedom on two sites at a time:� �

1 from netket.hilbert.random import flip_state
2 from netket.sampler import MetropolisRule
3 from netket.utils.struct import dataclass
4

5 # To be jax-compatible, it must be a dataclass
6 @dataclass
7 class TwoLocalRule(MetropolisRule):
8 def transition(rule, sampler, machine, parameters, state, key, σ):
9 # Deduce the number of MCMC chains from input shape

10 n_chains = σ.shape[0]
11 # Load the Hilbert space of the sampler
12 hilb = sampler.hilbert
13 # Split the rng key into 2: one for each random operation
14 key_indx, key_flip = jax.random.split(key, 2)
15 # Pick two random sites on every chain
16 indxs = jax.random.randint(
17 key_indx, shape=(n_chains, 2), minval=0, maxval=hilb.size
18 )
19 # flip those sites
20 σp, _ = flip_state(hilb, key_flip, σ, indxs)
21

22 # If this transition had a correcting factor L, it’s possible
23 # to return it as a vector in the second value
24 return σp, None� �

Once a custom rule is defined, a MCMC sampler using such rule can be constructed
with the command sampler = MetropolisSampler(hilbert, TwoLocalRule()) . Besides

19



SciPost Physics Codebases Submission

Type Name Usage

MCMC (Metropolis)

MetropolisLocal discrete Hilbert spaces

MetropolisExchange
permutations of local states, con-
serving total magnetization in spin
systems

MetropolisHamiltonian
preserving symmetries of the
Hamiltonian

MetropolisGaussian continuous Hilbert spaces

Direct
ExactSampler

small Hilbert spaces, performs MC
sampling from the exact distribu-
tion

ARDirectSampler autoregressive models

Table 2: List of samplers in NetKet with their class names and a description.

Metropolis algorithms, more advanced Markov chain algorithms can also be implemented
as NetKet samplers. Currently, parallel tempering is provided as an experimental fea-
ture.

Some models allow us to directly generate samples that are exactly distributed ac-
cording to the desired probability, without the use of Markov chains and the issue of
autocorrelation, which often leads to more efficient sampling. In this case, direct sam-
plers can be implemented with an interface similar to Markov chain samplers. Currently
NetKet has implemented ARDirectSampler to be used with ARNNs. For benchmarking
purposes, NetKet also provides ExactSampler , which allows direct sampling from any
model by computing the full Born distribution |ψ(s)|2 for all s. Table 2 is a list of all the
samplers.

3.5 Quantum geometric tensor

The quantum geometric tensor (QGT) [55] of a pure state is the metric tensor induced by
the Fubini–Study distance [56,57]

d(ψ, φ) = cos−1
√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

, (21)

which is the natural and gauge-invariant distance between two pure quantum states |ψ〉
and |φ〉. The QGT is commonly used for time evolution (see Section 4.3) and for quan-
tum natural gradient descent [58], which was originally developed in the VMC community
under the name of stochastic reconfiguration (SR) [59]. Quantum natural gradient de-
scent is directly related to the natural gradient descent developed in the machine learning
community [60].

From now on, we assume that the state |ψθ〉 is parametrized by a set of parameters θ.
Assuming further that |φ〉 = |ψθ+δθ〉, the distance (21) can be expanded to second order
in the infinitesimal parameter change δθ as d(ψθ, ψθ+δθ)2 = (δθ)†G(δθ), where G is the
quantum geometric tensor. For a holomorphic mapping θ 7→ |ψθ〉, the QGT is given by

Gij(θ) =

〈
∂θiψθ

∣∣∣∂θjψθ〉
〈ψ|ψ〉

−

〈
∂θiψθ

∣∣∣ψθ〉〈ψθ∣∣∣∂θjψθ〉
〈ψ|ψ〉2

(22)
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where the indices i, j label the parameters and 〈x|∂θiψθ〉 = ∂θi 〈x|ψθ〉. Similar to expec-
tation values and their gradients, Eq. (22) can be rewritten as a classical covariance with
respect to the Born distribution ∝ |ψ(s)|2:

Gij(θ) = Cov[Oi, Oj ] = E [O∗i (Oj − E[Oj ])] , (23)

where Oi are the log-derivatives (13) of the ansatz.14 This allows the quantum geometric
tensor to be estimated using the same sampling procedure used to obtain expectation
values and gradients. The QGT or its stochastic estimate is also commonly known as
the S matrix [53] or quantum Fisher matrix (QFM) in analogy to the classical Fisher
information matrix [58,60,61].

For applications such as quantum natural gradient descent or time-evolution it is usu-
ally not necessary to access the full, dense matrix representation Gij(θ) of the quantum
geometric tensor, but only to compute its product with a vector, ṽi = ∑

j Gij(θ) vj . When
the variational ansatz ψθ has millions of parameters, the QGT can indeed be too large to
be stored in memory. Exploiting the Gram matrix structure of the geometric tensor [62],
we can directly compute its action on a vector without ever calculating the full matrix,
trading memory requirements for an increased computational cost.

Given a variational state vs , a QGT object can be obtained by calling:� �
1 >>> qgt = vs.quantum_geometric_tensor()� �

This qgt object does not store the full matrix, but can still be applied to a vector with
the same shape as the parameters:� �

1 >>> vec = jax.tree_map(jnp.ones_like, vs.parameters)
2 >>> qgt_times_vec = qgt @ vec� �

It can be converted to a dense matrix by calling to_dense :� �
1 # get the matrix (2d array) of the qgt
2 >>> qgt_dense = qgt.to_dense()
3 # flatten vec into a 1d Array
4 >>> grad_dense, unravel = nk.jax.tree_ravel(vec)
5 >>> qgt_times_vec = unravel(qgt_dense @ vec_dense)� �

The QGT can then be used together with a direct solver, such as jnp.linalg.eigh ,
jnp.linalg.svd , or jnp.linalg.qr .

Mixed states. When working with mixed states, which are encoded in a density matrix,
it is necessary to pick a suitable metric to induce the QGT. Even if the most physical
distances for density matrices are the spectral norm or other trace-based norms [63,64], it
is generally hard to use them to define an expression for the QGT that can be efficiently
sampled and computed at polynomial cost. While this might be regarded as a barbaric
choice, it leads to an expression equivalent to Eq. (23), where the expectation value is
over the joint-distribution of the of row and column labels (s, s′) of the squared density
matrix ∝ |ρ(s, s′)|2. Therefore, when working with mixed states, we resort to the L2 norm,
which is equivalent to treating the density matrix as a vector (“pure state”) in an enlarged
Hilbert space.

14Strictly speaking, this estimator is only correct if ψθ(s) = 0 =⇒ ∂θkψθ(s) = 0. This is because we
multiplied and divided by ψθ(s) in the derivation of the estimator, which is only valid if ψθ(s) 6= 0.
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3.5.1 Implementation differences

There is some freedom in the way one can calculate the QGT, each different implementa-
tion taking a different tradeoff between computational and memory cost. In the example
above, we have relied on NetKet to automatically select the best implementation ac-
cording to some internal heuristics, but if one wants to push variational methods to the
limits, it is useful to understand the two different implementations on offer:

• QGTJacobian , which computes and stores the Jacobian Oi(s) of the model (cf.
Appendix B.1) at initialization (using reverse-mode automatic differentiation) and
can be applied to a vector by performing two matrix-vector multiplications;

• QGTOnTheFly , which lazily computes the application of the quantum geometric ten-
sor on a vector through automatic differentiation.

QGTOnTheFly is the most flexible and can be scaled to arbitrarily large systems. It
is based on the observation that the QGT is the Jacobian of the model multiplied with
its conjugate, which means that its action can be calculated by combining forward and
reverse-mode automatic differentiation. At initialization, it only computes the lineariza-
tion (forward pass), and then it effectively recomputes the gradients every time it is applied
to a vector. However, since it never has to store these gradients, it is not limited by the
available memory, which also makes it perform well for shallow neural-network models like
RBMs. This method works with both holomorphic and non-holomorphic ansätze with no
difference in performance.

QGTJacobian. For deep networks with ill-conditioned15 quantum geometric tensors,
recomputing the gradients at every step in an iterative solver might be very costly.
QGTJacobian can therefore achieve better performance at the cost of considerably higher

memory requirements because it precomputes the Jacobian at construction and stores it.
The downside is that it has to store a matrix of shape Nsamples×Nparameters, which might
not fit in the memory of a GPU. We note that there are two different implementations
of QGTJacobian : QGTJacobianDense and QGTJacobianPyTree . The difference among
the two is that in the former the Jacobian is stored contiguously in memory, leading to
a better throughput on GPUs, while the latter stores them in the same structure as the
parameters (so each parameter block is separated from the others). Converting from the
non-contiguous ( QGTJacobianPyTree ) to the contiguous ( QGTJacobianDense ) format has,
however, a computational and memory cost which might shadow its benefit. Moreover,
the dense format does not work with non-homogeneous parameter data types. The ba-
sic QGTJacobian algorithm supports both holomorphic and non-holomorphic NQS, but a
better performing algorithm for holomorphic ansätze can be accessed instantiating it with
the option holomorphic=True .

Key differences between the different QGT implementations are summarized in Table 3.
Implementations can be selected, and options passed to them, as shown below:� �

1 >>> from netket.optimizer.qgt import (
2 ... QGTJacobianPyTree, QGTJacobianDense, QGTOnTheFly
3 ... )
4 >>> qgt1 = vs.quantum_geometric_tensor(QGTOnTheFly)
5 >>> qgt2 = vs.quantum_geometric_tensor(QGTJacobianPyTree(holomorphic=True))

15The number of steps required to find a solution with an iterative linear solver grows with the condition
number of the matrix. Therefore, an ill-conditioned matrix requires many steps of iterative solver. For a
discussion on this issue, see the paragraph on Linear Systems of this section.
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Implementation Extra arguments Use-cases Limitations

QGTOnTheFly rescale_shift

shallow networks,
large numbers of
parameters and
samples, few solver
steps

QGTJacobianDense

mode
holomorphic

deep networks with
narrow layers

requires homoge-
neous parameter
types, memory
bound

QGTJacobianPyTree
deep networks
with heterogeneous
parameters

memory bound

Table 3: Overview of the three QGT implementations currently provided by
NetKet with their respective options and limitations.

6 >>> qgt3 = vs.quantum_geometric_tensor(QGTJacobianDense)� �
Holomorphicity. When performing time evolution or natural gradient descent, one does
not always need the full quantum geometric tensor: for ansätze with real parameters, as
well as in the case of non-holomorphic wave functions,16 only the real part of the QGT is
used. The real and imaginary parts of the QGT are only required when working with a
holomorphic ansatz. (An in-depth discussion of why this is the case can be found at [65,
Table 1].) For this reason, NetKet’s QGT implementations return the full geometric
tensor only for holomorphic complex-parameter ansätze, and its real part in all other
cases.

3.5.2 Solving linear systems

For most applications involving the QGT, a linear system of equations of the kind∑
j

Gijδj = fi (24)

needs to be solved, where Gi,j is the quantum geometric tensor of a NQS, and fi is a
gradient. This can be done using the standard jax/NumPy functions, assuming f is a
pytree with the same structure as the variational parameters:� �

1 >>> # iterative solver
2 >>> x, info = jax.scipy.sparse.linalg.cg(qgt, f)
3 >>> # direct solver, acting on the dense matrix
4 >>> x, info = jax.numpy.linalg.cholesky(qgt.to_dense(), f)� �

However, we recommend that users call the solve method on the QGT object, which
allows some additional optimization that may improve performance:� �

1 >>> x, info = qgt.solve(jax.scipy.sparse.linalg.cg, f)
2 >>> x, info = qgt.solve(nk.optimizer.solver.cholesky, f)� �
16Non-holomorphic functions of complex parameters are internally handled by both jax and NetKet as

real-parameter functions that take the real and imaginary parts of the “complex parameters” separately.
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While this works with any of the representations it is advisable to only use Jacobian based
implementations ( QGTJacobianPyTree or QGTJacobianDense ) with direct solvers, since
constructing the QGT matrix from QGTOnTheFly requires multiplication with all basis
vectors, which is not as efficient. Finally, we highlight the fact that users can write their
own functions to solve the linear system (24) using advanced regularization schemes (see
for instance ref. [22]) and use them together with qgt.solve , as long as they respect the
standard NumPy solver interface.

When working with iterative solvers such as cg, gmres or minres, the number of steps
required to find a solution grows with the condition number of the matrix. Therefore,
an ill-conditioned geometric tensor requires many steps of iterative solver, increasing the
computational cost. Even then or when using non-iterative methods such as singular
value decomposition (SVD), the high condition number can cause instabilities by ampli-
fying noise in the right-hand side of the linear equation [21, 22, 24]. This is especially
true for NQS, which typically feature QGTs with a spectrum spanning many orders of
magnitude [61], often making QGT-based algorithms challenging to stabilize [16,22,24].

To counter that, there is empirical evidence that in some situations, increasing the
number of samples used to estimate the QGT and gradients helps to stabilize the solution
[24]. Furthermore, it is possible to apply various regularization techniques to the equation.
A standard option is to add a small diagonal shift ε to the QGT matrix before inverting
it, thus solving the linear equation∑

j

(Gi,j + ε)δ′j = fi. (25)

When ε is small, the solution δ′ will be close to the desired solution. Otherwise it is biased
towards the plain force f , which is still acceptable in gradient-based optimization. To add
this diagonal shift in NetKet, one of the following approaches can be used:� �

1 >>> qgt_1 = vs.quantum_geometric_tensor(QGTOnTheFly(diag_shift=0.001))
2 QGTOnTheFly(diag_shift=0.001)
3 >>> qgt_2 = qgt_1.replace(diag_shift=0.005)
4 QGTOnTheFly(diag_shift=0.005)
5 >>> qgt_3 = qgt_2 + 0.005
6 QGTOnTheFly(diag_shift=0.01)� �

Regularizing the QGT with a diagonal shift is an effective technique that can be used
when performing SR/natural gradient descent for ground state search (see Section 4.1).
Note, however, that since the diagonal shift biases the solution of the linear equation
towards the plain gradient, it may bias the evolution of the system away from the physical
trajectory in cases such as real-time evolution. In those cases, non-iterative solvers such as
those based on SVD can be used, the stability of which can be controlled by suppressing
smaller singular values. It has also been suggested in the literature to improve stability
by suppressing particularly noisy gradient components [22, 40]. This is not currently
implemented in NetKet, but planned for a future release. SVD-based regularization also
comes at the cost of potentially suppressing physically relevant dynamics [24], making
it necessary to find the right balance between stabilization and physical accuracy, and
increased computational time as SVD is usually less efficient than iterative solvers.

4 Algorithms for variational states

The main use case of NetKet is variational optimization of wave function ansätze. In
the current version NetKet, three algorithms are provided out of the box via high-level
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driver classes: variational Monte Carlo (VMC) for finding ground states of (Hermitian)
Hamiltonians, time-dependent variational Monte Carlo (t-VMC) for real- and imaginary-
time evolution, and steady-state search of Liouvillian open-system dynamics.

These drivers are part of the nk.driver module but we also export them from the nk
namespace. They are constructed from the relevant physical model (e.g., a Hamiltonian),
a variational state, and other objects used by the optimization method. They all support
the run method, which performs a number of optimization steps and logs their progress
(e.g., variational energies and network parameters) in a variety of output formats.

We highlight that these drivers are built on top of the functionalities described in
Sections 2 and 3, and users are free to implement their own drivers or optimization loops,
as demonstrated in Section 4.4.

4.1 Ground-state search

NetKet provides the variational driver nk.VMC for searching for minimal-energy states
using VMC [53]. In the simplest case, the VMC constructor takes three arguments: the
Hamiltonian, an optimizer and the variational state (see Section 3.1). NetKet makes use
of optimizers provided by the jax-based optax library [66],17 which can be directly passed
to VMC , allowing the user to build complex training schedules or custom optimizers. In
each optimization step, new samples of the variational state are drawn and used to estimate
the gradient of the Hamiltonian with respect to the parameters θ of the ansatz [53] based
on the force vector [compare Eq. (14)]

fi = Cov[Oi, H̃] = E[O∗i (H̃ − E[H̃])], (26)

where H̃ is the local estimator (12) of the Hamiltonian, known as the local energy, and
Oi is the log-derivative (13) of the wave function. All expectation values in Eq. (26) are
evaluated over the Born distribution ∝ |ψ(·)|2 and can therefore be estimated by averaging
over the Monte Carlo samples. Given the vector f , the direction of steepest descent is
given by the energy gradient

∇θ〈Ĥ〉 = 2 Re[f ] (real) (27)

or complex co-gradient [44]

∇θ∗〈Ĥ〉 = f (complex holomorphic). (28)

Here we have distinguished the case of i) real parameters and ii) complex parameters
with a variational mapping that is holomorphic with respect to θ. For non-holomorphic
ansätze (cf. Section 3.2.2), complex parameters can be treated pairs of separate real-valued
parameters (real and imaginary part) in the sense of eq. (27). Therefore, this case can be
considered equivalent to the real parameter case.

The gradients are then passed on to the optax optimizer, which may transform them
(using, e.g., Adam) further before updating the parameters θ. Using the simple stochastic
gradient descent optimizer optax.sgd (alias nk.optimizer.Sgd ), the update rule is

θi 7→ θi − ηfi. (29)

Below we give a short snippet showing how to use the VMC driver to find the
ground-state of the Ising Hamiltonian.

17The nk.optimizer submodule includes a few optimizers for ease of use and backward compatibility:
these are simply re-exports from optax.

25



SciPost Physics Codebases Submission

� �
1 # Define the geometry of the lattice
2 g = nk.graph.Hypercube(length=10, n_dim=1, pbc=False)
3 # Hilbert space of spins on the graph
4 hi = nk.hilbert.Spin(s=1 / 2, N=g.n_nodes)
5 # Construct the Hamiltonian
6 hamiltonian = nk.operator.Ising(hi, graph=g, h=0.5)
7

8 # define a variational state with a Metropolis Sampler
9 sa = nk.sampler.MetropolisLocal(hi)

10 vstate = nk.vqs.MCState(sa, nk.models.RBM())
11

12 # Construct the VMC driver
13 vmc = nk.VMC(hamiltonian,
14 nk.optimizer.Sgd(learning_rate=0.1),
15 variational_state=vstate)
16

17 # run the optimisation for 300 steps
18 output = vmc.run(300)� �

To improve on plain stochastic gradient descent, the VMC interface allows passing a
keyword argument preconditioner . This must be a function that maps a variational
state and the gradient vector fi to the vector δi to be passed to the optimizer as gradients
instead of fi. An important use case is stochastic reconfiguration [53], where the gradient
is preconditioned by solving the linear system of equations∑

j

Re[Gij ]δj = Re[fi] (real) (30)

or ∑
j

Gijδj = fi (complex holomorphic). (31)

The corresponding preconditioner can be created from a QGT class and a jax-compatible
linear solver (the default is jax.scipy.sparse.linalg.cg ) using nk.optimizer.SR :� �

1 # Construct the SR object with the chosen algorithm
2 sr = nk.optimizer.SR(
3 qgt = nk.optimizer.qgt.QGTOnTheFly,
4 solver=jax.scipy.sparse.linalg.bicgstab,
5 diag_shift=0.01,
6 )
7

8 # Construct the VMC driver
9 vmc = nk.VMC(

10 hamiltonian, # The Hamiltonian to optimize
11 nk.optimizer.sgd(learning_rate=0.1), # The optimizer
12 variational_state=vstate, # The variational state
13 preconditioner=sr, # The preconditioner
14 )� �

4.2 Finding steady states

In order to study open quantum systems, NetKet provides the nk.SteadyState vari-
ational driver for determining the variational steady-state ρ̂ss defined as the stationary
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point of an arbitrary super-operator L,

0 = dρ̂

dt
= Lρ̂. (32)

The search is performed by minimizing the Frobenius norm of the time-derivative [25],
which defines the cost function

C(θ) = ‖Lρ̂‖
2
2

‖ρ̂‖22
=

Tr
[
ρ̂†L†Lρ̂

]
Tr [ρ̂†ρ̂] , (33)

which has a global minimum for the steady state. The stochastic gradient is estimated
over the probability distribution of the entries of the vectorized density matrix according
to the formula:

fi ≡
∂

∂θ∗i

‖Lρ̂‖22
‖ρ̂‖22

= E
[
L̃∇∗i L̃

]
− E[O∗i L̃2], (34)

where L̃(s, s′) = ∑
m,m′ L(s, s′;m,m′)ρ(m,m′)/ρ(s, s′) is the local estimator proposed

in [25], and the expectation values are taken with respect to the “Born distribution”
of the vectorized density matrix, p(s, s′) ∝ |ρ(s, s′)|2. The optimization works like the
ground-state optimization provided by nk.VMC : the gradient is passed to an optax op-
timizer, which may transform it further before updating the parameters θ. The simplest
optimizer, optax.sgd , would update the parameters according to the equation

θi → θi − ηfi. (35)

To improve the performance of the optimization, it is possible to pass the keyword argu-
ment preconditioner to specify a gradient preconditioner, such as stochastic reconfigu-
ration that uses the quantum geometric tensor to transform the gradient. The geometric
tensor is computed according to the L2 norm of the vectorized density matrix (see Sec-
tion 3.5).

As an example, we provide a snippet to study the steady state of a transverse-field Ising
chain with 10 spins and spin relaxation corresponding to the Lindblad master equation

Lρ̂ = −i
[
Ĥ, ρ̂

]
+
∑
i

σ̂−i ρ̂σ̂
+
i −

1
2
{
σ̂+
i σ̂
−
i , ρ̂

}
. (36)

We first define the Hamiltonian and a list of jump operators, which are stored in a
LocalLiouvillian object, which is a lazy representation of the super-operator L. Next,

a variational mixed state is built by defining a sampler over the doubled Hilbert space
and optionally a different sampler for the diagonal distribution p(s) ∝ ρ(s, s), which is
used to estimate expectation values of operators. The number of samples used to estimate
super-operators and operators can be specified separately, as shown in the example by
specifying n_samples and n_samples_diag .� �

1 # Define the geometry of the lattice
2 g = nk.graph.Hypercube(length=10, n_dim=1, pbc=False)
3 # Hilbert space of spins on the graph
4 hi = nk.hilbert.Spin(s=1 / 2, N=g.n_nodes)
5

6 # Construct the Liouvillian Master Equation
7 ha = nk.operator.Ising(hi, graph=g, h=0.5)
8 j_ops = [nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)]
9 # Create the Liouvillian with Hamiltonian and jump operators

10 lind = nk.operator.LocalLiouvillian(ha, j_ops)
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11

12 # Observable
13 sz = sum([nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)])
14

15 # Neural Density Matrix
16 sa = nk.sampler.MetropolisLocal(lind.hilbert)
17 vs = nk.vqs.MCMixedState(
18 sa, nk.models.NDM(beta=1), n_samples=2000, n_samples_diag=500
19 )
20 # Optimizer
21 op = nk.optimizer.Sgd(0.01)
22 sr = nk.optimizer.SR(diag_shift=0.01)
23

24 ss = nk.SteadyState(lind, op, variational_state=vs, preconditioner=sr)
25 out = ss.run(n_iter=300, obs={"Sz": sz})� �

4.3 Time propagation

Time propagation of variational states can be performed by incorporating the time de-
pendence in the variational parameters and deriving an equation of motion that gives
a trajectory in parameters space θ(t) that approximates the desired quantum dynamics.
For real-time dynamics of pure and mixed NQS, such an equation of motion can be de-
rived from the time-dependent variational principle (TDVP) [65, 67, 68]. When combined
with VMC sampling to estimate the equation of motion (EOM), this is known as time-
dependent variational Monte Carlo (t-VMC) [53,69] and is the primary approach currently
used in NQS literature [8,19,20,22–24]. For complex holomorphic parametrizations18, the
TDVP equation of motion is ∑

j

Gij(θ) θ̇j = γfi(θ, t), (37)

with the QGT G and force vector f defined in Sections 4.1 and 4.2. After solving Eq. (37),
the resulting parameter derivative θ̇ can be passed to an ODE solver. The factor γ
determines the type of evolution:

• For γ = −i, the EOM approximates the real-time Schrödinger equation on the
variational manifold, the simulation of which is the main use case for the t-VMC
implementation provided by NetKet.

• For γ = −1, the EOM approximates the imaginary-time Schrödinger equation on
the variational manifold. When solved using the first-order Euler scheme θ(t+dt) =
θ(t) + θ̇ dt, this EOM is equivalent to stochastic reconfiguration with learning rate
dt. Imaginary-time propagation with higher-order ODE solvers can therefore also be
used for ground state search as an alternative to VMC. This can result in improved
convergence in some cases [18].

• For γ = 1 and with the Lindbladian super-operator taking the place of the Hamilto-
nian in the definition of the force f , this ansatz yields the dissipative real-time evolu-
tion according to the Gorini-Kossakowski-Lindblad-Sudarshan master equation [70].
Our implementation uses the QGT induced by the vector norm [26] as discussed in
the last paragraph of Section 3.5.

18The TDVP can be implemented for real-parameter wavefunctions by taking real parts of the right-
hand side and QGT similar to VMC (Section 4.1) [40,47]. This is not yet available in the current version
of NetKet, but will be added in a future release.
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The current version of NetKet provides a set of Runge–Kutta (RK) solvers based on
jax and a driver class TDVP implementing the t-VMC algorithm for the three use cases
listed above. At the time of writing, these features are provided as a preview version in
the netket.experimental namespace as their API is still subject to ongoing development.
The ODE solvers are located in the submodule netket.experimental.dynamics , the driver
under netket.experimental.TDVP .

Runge-Kutta solvers implement the propagation scheme [71]

θ(t+ dt) = θ(t) + dt
∑L

l=1
blkl (38)

using a linear combination of slopes

kl = F

(
θ(t) +

∑l−1
m=1

almkm, t+ cl dt

)
, (39)

each determined by the solution F (θ, t) = θ̇ of the equation of motion (37) at an intermedi-
ate time step. The coefficients {alm}, {bl}, and {cl} determine the specific RK scheme and
its order. NetKet further supports step size control when using adaptive RK schemes.
In this case, the step size is dynamically adjusted based on an embedded error estimate
that can be computed with little overhead during the RK step (38) [71]. Step size con-
trol requires a norm on the parameters space in order to estimate the magnitude of the
error. Typically, the Euclidean norm ‖δ‖ =

√∑
i |δi|2 is used. However, since different

directions in parameters space influence the quantum state to different degrees, it can be
beneficial to use the norm ‖δ‖G =

√∑
i δ
∗
iGijδj induced by the QGT G as suggested in

Ref. [22], which takes this curvature into account and is also provided as an option with
the NetKet time-evolution driver.

An example demonstrating the use of NetKet’s time evolution functionality is pro-
vided in Sec. 9.

4.4 Implementing custom algorithms using NetKet

While key algorithms for energy optimization, steady states, and time propagation are
provided out of the box in the current NetKet version, there are many more applications
of NQS. While we wish to provide new high-level driver classes for additional use cases,
such as quantum state tomography [32] or general overlap optimization [33], it is already
possible and encouraged for users to implement their own algorithms on top of NetKet.
For this reason, we provide the core building blocks of NQS algorithms in a composable
fashion.

For example, it is possible to write a simple loop that solves the TDVP equation of
motion (37) for a holomorphic variational ansatz and using a first-order Euler scheme
[i.e., θ(t+dt) = θ(t)+ θ̇(t) dt] very concisely, making use of the elementary building blocks
provided by the VariationalState class:� �

1 def custom_simple_tdvp(
2 hamiltonian: AbstractOperator, # Hamiltonian
3 vstate: VariationalState, # variational state
4 t0: float, # initial time
5 dt: float, # time step
6 t_end: float, # end time
7 ):
8 t = t0
9 while t < t_end:

10 # compute the energy gradient f
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11 energy, f = vstate.expect_and_grad(hamiltonian)
12 G = vstate.quantum_geometric_tensor()
13 # multiply the gradient by -1.0j for unitary dynamics
14 gamma_f = jax.tree_map(lambda x: -1.0j * x, f)
15 # Solve the linear system using any solver, such as CG
16 # (or write your own regularization scheme)
17 dtheta, _ = G.solve(jax.scipy.sparse.linalg.cg, gamma_f)
18 # update the parameters (theta = theta + dt * dtheta)
19 vs.parameters = jax.tree_map(
20 lambda x, y: x + dt * y, vs.parameters, dtheta
21 )
22 t = t + dt� �

While the included TDVP driver (Section 4.3) provides many additional features (such
as error handling, step size control, or higher-order integrators) and makes use of jax’s
just-in-time compilation, this simple implementation already provides basic functionality
and shows how NetKet can be used for quick prototyping.

5 Symmetry-aware neural quantum states

NetKet includes a powerful set of utilities for implementing NQS ansätze that are sym-
metric or transform correctly under the action of certain discrete symmetry groups. Only
groups that are isomorphic to a set of permutations of the computational basis are sup-
ported. This is useful for modeling symmetric (e.g., lattice) Hamiltonians, whose eigen-
states transform under irreducible representations of their symmetry groups. Restricting
the Hilbert space to individual symmetry sectors can improve the convergence of varia-
tional optimization [72] and the accuracy of its result [15,17,50,73]. Additionally, symme-
try restrictions can be used to find excited states [14,17,31], provided they are the lowest
energy level in a particular symmetry sector.

While there is a growing interest for other symmetry groups, such as continuous ones
like SU(2) or SO(3), they cannot be compactly represented in the computational basis
and therefore the approach described in this chapter cannot be used. Finding efficient
encodings for continuous groups is still an open research problem and it’s not yet clear
which strategy will work best [17].

NetKet uses group convolutional neural networks (GCNNs) to build wave functions
that are symmetric over a finite group G. GCNNs generalize convolutional neural net-
works, invariant under the Abelian translation group, to general symmetry groups G which
may contain non-commuting elements [74]. GCNNs were originally designed to be invari-
ant, but they can be modified to transform under an arbitrary irreducible representation
(irrep) of G, using the projection operator [75]

|ψχ〉 = dχ
|G|

∑
g∈G

χ∗g g|ψ〉, (40)

where g runs over all symmetry operations in G, with corresponding characters χg. Under
the trivial irrep, where all characters are unity, the invariant model is recovered.

NetKet can infer the full space group of a lattice, defined as a set of permutations
of lattice sites, starting from a geometric description of its point group. It can also gen-
erate nontrivial irrep characters [to be used in (40) for states with nonzero wave vectors
or transforming nontrivially under point-group symmetries] using a convenient interface
that approximates standard crystallographic formalism [76]. In addition, NetKet pro-
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vides powerful group-theoretic algorithms for arbitrary permutation groups of lattice sites,
allowing new symmetry elements to be easily defined.

Pre-built GCNNs are then provided in the nk.models submodule, which can be con-
structed by specifying few parameters, such as the number of features in each layer, and
the lattice or permutation group under which the network should transform. Symmetric
RBMs [8] are also implemented as one-layer GCNNs that aggregate convolutional features
using a product rather than a sum. These pre-built network architectures are made up
of individual layers found in the nk.nn submodule, which can be used directly to build
custom symmetric ansätze.

Section 5.1 describes the NetKet interface for constructing space groups of lattices
and their irreps. Usage of GCNNs is described in Section 5.2, while appendix A provides
mathematical and implementation details.

5.1 Symmetry groups and representation theory

NetKet supports symmetry groups that act on a discrete Hilbert space defined on a
lattice. On such a Hilbert space, space-group symmetries act by permuting sites; most
generally, therefore, arbitrary subgroups of the symmetric group SN of a lattice of N sites
are supported. A symmetry group can be specified directly as a list of permutations, as
in the following example, which enforces the symmetry ψ(s0, s1, s2, s3) = ψ(s3, s1, s2, s0)
for all four-spin configurations s = (s0, . . . , s3), si = ±1:� �

1 hi = nk.hilbert.Spin(1/2, N=4)
2 symms = [
3 [0, 1, 2, 3], # identity element
4 [3, 1, 2, 0], # swap first and last site
5 ]
6 model = nk.models.RBMSymm(symms, alpha=1)� �

The listed permutations are required to form a group and, in particular, the identity
operation e : s 7→ s must always be included as the first element.

It is inconvenient and error-prone to specify all space-group symmetries of a large
lattice by their indices. Therefore, NetKet provides support for abstract representations
of permutation and point groups through the nk.utils.group module, complete with
algorithms to compute irreducible representations [77–79]. The module also contains a
library of two- and three-dimensional point groups, which can be turned into lattice-site
permutation groups using the graph class nk.graph.Lattice (but not general Graph

objects, for they carry no geometric information about the system):� �
1 from netket.utils.group.planar import D
2 from netket.graph import Lattice
3

4 # construct a centred rectangular lattice
5 lattice = Lattice(
6 basis_vectors = [[2,0], [0,1]], # each row is a lattice vector
7 extent = (5,5),
8 site_offsets = [[0,0], [1,0.5]], # each row is the position of a site in

the unit cell
9 point_group = D(2) # the point group of the lattice, here Z_2 x Z_2

10 )� �
NetKet contains specialized constructors for some lattices (e.g., Square or Pyrochlore ),
which come with a default point group; however, these can be overridden in methods like
Lattice.space_group :
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� �
1 from netket.utils.group.planar import rotation, reflection_group, D
2 from netket.utils.group import PointGroup, Identity
3 from netket.graph import Honeycomb
4

5 # construct the D_6 point group of the honeycomb lattice by hand
6 cyclic_6 = PointGroup(
7 [Identity()] + [rotation(360 / n * i) for i in range(1, n)],
8 ndim=2,
9 )

10 # the @ operator returns the Cartesian product of groups
11 # but doesn’t check for group structure
12 dihedral_6 = reflection_group(angle=0) @ cyclic_6
13

14 assert dihedral_6 == D(6)
15

16 lattice = Honeycomb([6,6])
17

18 # returns the full space group of ‘lattice‘ as a PermutationGroup
19 space_group = lattice.space_group()
20 # the space group is spanned by 6ˆ2 translations and 12 point-group

symmetries
21 assert len(space_group) == 12 * 6 * 6
22

23 # do this if the Hamiltonian breaks reflection symmetry
24 # can also be used for generic Lattices that have no default point group
25 space_group = lattice.space_group(cyclic_6)� �

Irreducible representation (irrep) matrices can be computed for any point or permuta-
tion group object using the method irrep_matrices() . Characters (the traces of these
matrices) are returned by the method character_table() as a matrix, each row of which
lists the characters of all group elements. Character tables closer to the format famil-
iar from quantum chemistry texts are produced by character_table_readable() . Irrep
matrices and character tables are calculated using adaptations of Dixon’s [77] and Burn-
side’s [78] algorithms, respectively.

It would, however, be impractical to inspect irreps of a large space group directly
to specify the symmetry sector on which to project a GCNN wave function. Exploiting
the semidirect-product structure of space groups [79], space-group irreps are usually19

described in terms of a set of symmetry-related wave vectors (known as a star) and an
irrep of the subgroup of the point group that leaves the same invariant (known as the little
group) [76]. Irreps can be constructed in this paradigm using SpaceGroupBuilder objects
returned by Lattice.space_group_builder() :� �

1 from netket.graph import Triangular
2

3 lattice = Triangular([6,6])
4 momentum = [0,0]
5 # space_group_builder() takes an optional PointGroup argument
6 sgb = lattice.space_group_builder()
7

8 # choosing a representation
9 # this one corresponds to the B_2 irrep at the Gamma point

19Representation theory for wave vectors on the surface of the Brillouin zone in a nonsymmorphic space
group is much more complicated [79] and is not currently implemented in NetKet.
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10 chi = sgb.space_group_irreps(momentum)[3]� �
The irrep chi , generated using the little group, is equivalent to one of the irreps in
Lattice.space_group().character_table() and can thus be used for symmetry-projecting

GCNN ansätze. The order in which irreps of the little group are returned can readily be
checked in an interactive session:� �

1 >>> sgb.little_group(momentum).character_table_readable()
2 ([’1xId()’, ’2xRot(60)’, ’2xRot(120)’, ’1xRot(180)’, ’3xRefl(0)’,

’3xRefl(-30)’],
3 array([[ 1., 1., 1., 1., 1., 1.], # this is irrep A1
4 [ 1., 1., 1., 1., -1., -1.], # A2
5 [ 1., -1., 1., -1., 1., -1.], # B1
6 [ 1., -1., 1., -1., -1., 1.], # B2
7 [ 2., 1., -1., -2., 0., 0.], # E1
8 [ 2., -1., -1., 2., 0., 0.]])) # E2� �

The main caveat in using this machinery is that the point groups predefined in NetKet
all leave the origin invariant (except for cubic.Fd3m which represents the “nonsymmor-
phic point group” of the diamond/pyrochlore lattice) and thus only work well with lattices
in which the origin has full point-group symmetry. This behaviour can be changed (see the
definition of cubic.Fd3m for an example), but it is generally safer to define lattices using
the proper Wyckoff positions [76], of which the origin is usually maximally symmetric.

5.2 Using group convolutional neural networks (GCNNs)

NetKet uses GCNNs [50, 74] to create NQS ansätze that are symmetric under space
groups of lattices. These networks consist of alternating group convolutional layers and
pointwise nonlinearities. The former can be thought of as a generalization of convolu-
tional layers to a generic finite group G. They are equivariant, that is, if their inputs are
transformed by some space-group symmetry, features in all subsequent layers are trans-
formed accordingly. As a result, the output of a GCNN can be understood as amplitudes
of the wave functions g|ψ〉 for all g ∈ G, which can be combined into a symmetric wave
function using the projection operator (40). Further details about equivariance and group
convolutions are given in Appendix A.1.

GCNNs are constructed by the function nk.models.GCNN . Symmetries are specified
either as a PermutationGroup or a Lattice . In the latter case, the symmetry group is
given by space_group() ; an optional point_group argument to GCNN can be used to
override the default point group. By default, output transforms under the trivial irrep
χg ≡ 1, that is, all output features are averaged together to obtain a wave function that is
fully symmetric under the whole space group. Other irreps can be specified through the
characters argument, which takes a vector of the same size as the space group.� �
1 from netket.graph import Triangular
2 from netket.models import GCNN
3 from netket.utils.group.planar import C
4

5 lattice = Triangular([6,6])
6 momentum = [0,0]
7 sgb = lattice.space_group_builder()
8 chi = sgb.space_group_irreps(momentum)[3]
9

10 # This transforms as the trivial irrep Gamma A_1
11 gcnn1 = GCNN(lattice, layers = 4, features=4)
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mode="irreps" mode="fft"

Can be used for any group only space groups
Symmetries can be speci-
fied by

• Lattice

• PermutationGroup

• Symmetry permutations
and irrep matrices

• Lattice

• PermutationGroup and
shape of translation group
• Symmetry permutations,
product table, and shape of
translation group

Kernel memory footprint
per layer

O(finfout|G|) O(finfout|G||P |)

Evaluation time per layer
per sample

O[(fin + fout)|G|2 +
finfout

∑
a d

3
a]

O[(fin + fout)|G| log |T | +
finfout|G||P |]

Preferable for • large point groups
• if expanded "fft" ker-
nels don’t fit in memory

• small point groups
• very large batches (see
App. A.2)

Table 4: Comparison of GCNN implementations. fin,out stands for the number
of input and output features, |G|, |P |, |T | for the sizes of the space group, point
group, and translation group, respectively. da are the dimensions of irreps of G;
in a large space group, ∑a d

3
a scales as |G||P |.

12

13 # This transforms as Gamma B_2
14 gcnn2 = GCNN(lattice.space_group(), characters=chi, layers=4, features=4)
15

16 # This does not enforce reflection symmetry
17 gcnn3 = GCNN(lattice, point_group=C(6), layers=4, features=4)� �

NetKet currently supports two implementations of GCNNs, one based on group
Fourier transforms ( mode="irreps" ), the other using fast Fourier transforms on each
coset of the translation group ( mode="fft" ): these are discussed in more detail in Ap-
pendix A.2. Their behavior is equivalent, but their performance and calling sequence is
different, as explained in Table 4. A default mode="auto" is also available. For spin mod-
els, parity symmetry (taking σz to −σz) is a useful extension of the U(1) spin symmetry
group enforced by fixing magnetization along the σz axis. Parity-enforcing GCNNs can
be constructed using the parity argument, which can be set to ±1.

In addition to deep GCNNs, fully symmetric RBMs [8] are implemented in nk.models.

RBMSymm as a single-layer GCNN from which the wave function is computed as

ψ =
∏
i,g∈G

cosh f (i)
g =⇒ logψ =

∑
i,g∈G

ln cosh f (i)
g . (41)

Due to the products (rather than sums) used, this ansatz only supports wave functions
that transform under the trivial irrep. An RBM-like structure closer to that of ref. [73]
can be achieved using a single-layer GCNN:� �

1 from netket.models import GCNN, RBMSymm
2 from netket.nn import logcosh
3
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4 # fully symmetric RBM
5 rbm1 = RBMSymm(group, alpha=4)
6

7 # symmetrized RBM similar to (Nomura, 2021)
8 rbm2 = GCNN(group, layers=1, features=4, output_activation=logcosh)� �

6 Quantum systems with continuous degrees of freedom

In this section we will introduce the tools provided by NetKet to study systems with
continuous degrees of freedom. The interface is very similar to the one introduced in
Section 2 for discrete degrees of freedom.

6.1 Continuous Hilbert spaces

Similar to the discrete Hilbert spaces, the bosonic Hilbert space of N particles in contin-
uous space has the structure

Hcontinuous = span{|x0〉 ⊗ · · · ⊗ |xN−1〉 : xi ∈ Li, i ∈ {0, . . . , N − 1}} (42)

where Li is the space available to each individual boson: for example, Li is Rd for a free
particle in d spatial dimensions, and [0, L]d for particles confined to a d-dimensional box
of side length L. In the case of finite simulation cells, the boundaries can be equipped
with periodic boundary conditions.

In the following snippet, we define the Hilbert space of five bosons in two spatial
dimensions, confined to [0, 10]2 with periodic boundary conditions:� �

1 >>> hilb = nk.hilbert.Particle(N=5, L=(10.0, 10.0), pbc=True)
2 >>> print("Size of the basis: ", hilb.size)
3 Size of the basis: 10
4 >>> hilb.random_state(nk.jax.PRNGKey(0), (2,))
5 [[0.02952452 0.21660899 2.836163 3.5628846 4.5622005 5.9473248
6 6.104126 8.14864 9.163713 9.263418 ]
7 [9.85617 0.4667458 2.211265 4.1587596 4.250165 6.69916
8 6.5165453 7.3764215 8.508119 0.08060825]]� �

As we discussed in Section 2.1, the Hilbert objects only define the computational basis.
For that reason, the flag pbc=True only affects what configurations can be generated by
samplers and how to compute the distance between two different sets of positions. This
option does not enforce any boundary condition for the wave-function, which would have
to be accounted for into the variational ansatz.

6.2 Linear operators

Similar to the discrete-variable case, expectation values of operators can be estimated as
classical averages of the local estimator

Õ(x) = 〈x| Ô |ψ〉
〈x|ψ〉

(43)

over the (continuous) Born distribution p(x) ∝ |ψ(x)|2. NetKet provides the base class
ContinuousOperator to write custom (local) operators and readily implements Hamilto-
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nians of the form (~ = 1 in our units)

Ĥ = −1
2
∑
i

1
mi
∇2
i + V̂

(
{xi}

)
(44)

using the predefined operators KineticEnergy and PotentialEnergy . For example, a
harmonically confined system described by Ĥ = −1

2
∑
i∇2

i + 1
2
∑
i x̂2

i can be implemented
as� �

1 # This function takes a single vector and returns a scalar
2 def v(x):
3 return 0.5*jnp.linalg.norm(x) ** 2
4

5 # Construct the Kinetic energy term with unit mass
6 H_kin = nk.operator.KineticEnergy(hilb, mass=1.0)
7 # Construct the Potential energy term using the potential defined above
8 H_pot = nk.operator.PotentialEnergy(hilb, v)
9

10 # Sum the two objects into a single Operator
11 H = H_kin + H_pot� �

Operators defined on continuous Hilbert spaces cannot be converted to a matrix form
or used in exact diagonalization, in contrast to those defined on discrete Hilbert spaces.
Continuous operators can still be used to compute expectation values and their gradients
with a variational state.

6.3 Samplers

Out of the built-in samplers in the current version of NetKet (Section 3.4), only the
Markov chain Monte Carlo sampler MetropolisSampler supports continuous degrees
of freedom, as both ExactSampler and the autoregressive ARNNSampler rely on the
sampled basis being countable. For continuous spaces, we provide the transition rule
sampler.rules.GaussianRule which proposes new states by adding a random shift to

every degree of freedom sampled from a Gaussian of customizable width. More complex
transition rules can be defined following the instructions provided in Section 3.4.

6.4 Harmonic oscillators

As a complete example of how to use continuous-space Hilbert spaces, operators, vari-
ational states, and the VMC driver together, consider 10 particles in three-dimensional
space, confined by a harmonic potential V (x) = x2/2. The exact ground-state energy
of this system is known to be E0 = 15. We use the multivariate Gaussian ansatz
logψ(x) = −xTΣ−1x, where Σ = TT ᵀ and T is randomly initialized using a Gaussian
with zero mean and variance one. Note that the form of Σ ensures that it is positive
definite.� �

1 import netket as nk
2 import jax.numpy as jnp
3

4 def v(x):
5 return 0.5*jnp.linalg.norm(x) ** 2
6

7 hilb = nk.hilbert.Particle(N=10, L=(jnp.inf,jnp.inf,jnp.inf), pbc=False)
8 ekin = nk.operator.KineticEnergy(hilb, mass=1.0)
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Figure 1: VMC energy estimate as a function of the optimization step for a
continuous-space system of N = 10 particles in d = 3 spatial dimensions subject
to a harmonic confinement.

9 pot = nk.operator.PotentialEnergy(hilb, v)
10 ha = ekin + pot
11

12 sa = nk.sampler.MetropolisGaussian(hilb, sigma=0.1, n_chains=16, n_sweeps=32)
13 model = nk.models.Gaussian(param_dtype=float)
14 vs = nk.vqs.MCState(sa, model, n_samples=10 ** 4, n_discard=2000)
15

16 op = nk.optimizer.Sgd(0.05)
17 sr = nk.optimizer.SR(diag_shift=0.01)
18

19 gs = nk.VMC(ha, op, sa, variational_state=vs, preconditioner=sr)
20 gs.run(n_iter=100, out="HO_10_3d")� �

We show the training curve of above snippet in Fig. 1; exact ground-state energy is recov-
ered to a very high accuracy.

6.5 Interacting system with continuous degrees of freedom

In this example we want to tackle an interacting system of bosonic Helium particles in
one continuous spatial dimension. The two-body interaction is given by the Aziz potential
which qualitatively resembles a Lennard-Jones potential [80–82]. The Hamiltonian reads

H = − ~2

2m
∑
i

∇2
i +

∑
i<j

VAziz(rij) (45)

We will examine the system at a density ρ = N
L = 0.3Å−1 with N = 10 particles in units

where ~ = m = kb = 1. To confine the system it is placed in a box of size L equipped with
periodic boundary conditions. The Hilbert space and sampler are initialized as shown
above (rm is the length-scaled defined in the Aziz potential):� �

1 import netket as nk
2

3 N = 10
4 d = 0.3 # 1/Angstrom
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5 rm = 2.9673 # Angstrom
6 L = N / (0.3 * rm)
7 hilb = nk.hilbert.Particle(N=N, L=L, pbc=True)
8 sab = nk.sampler.MetropolisGaussian(hilb, sigma=0.05, n_chains=16,

n_sweeps=32)� �
6.5.1 Defining the Hamiltonian

We can define the Hamiltonian through the action of the interaction-potential on a sample
of positions x, and combine it with the predefined kinetic energy operator. Since we are
using periodic boundary conditions, we will use the Minimum Image Convention (MIC)
to compute distances between particles. In the following snippet the Aziz potential (in
the units above) is defined and the Hamiltonian is instantiated:� �

1

2 def minimum_distance(x, sdim):
3 """Computes distances between particles using mimimum image convention"""
4 n_particles = x.shape[0] // sdim
5 x = x.reshape(-1, sdim)
6

7 distances = (-x[jnp.newaxis, :, :] + x[:, jnp.newaxis, :])[
8 jnp.triu_indices(n_particles, 1)
9 ]

10 distances = jnp.remainder(distances + L / 2.0, L) - L / 2.0
11

12 return jnp.linalg.norm(distances, axis=1)
13

14 def potential(x, sdim):
15 """Compute Aziz potential for single sample x"""
16 eps = 7.846373
17 A = 0.544850 * 10 ** 6
18 alpha = 13.353384
19 c6 = 1.37332412
20 c8 = 0.4253785
21 c10 = 0.178100
22 D = 1.241314
23

24 dis = minimum_distance(x, sdim)
25 return jnp.sum(
26 eps
27 * (
28 A * jnp.exp(-alpha * dis)
29 - (c6 / dis ** 6 + c8 / dis ** 8 + c10 / dis ** 10)
30 * jnp.where(dis < D, jnp.exp(-((D / dis - 1) ** 2)), 1.0)
31 )
32 )
33

34 ekin = nk.operator.KineticEnergy(hilb, mass=1.0)
35 pot = nk.operator.PotentialEnergy(hilb, lambda x: potential(x, 1))
36 ha = ekin + pot� �

6.5.2 Defining and training the variational Ansatz

There are two properties that the variational Ansatz for this system must obey:
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1. It must be invariant with respect to the permutations of its particles, because they
are bosons;

2. As the interaction resembles a Lennard-Jones potential we have a strong divergence
in the potential energy when particles get close to each other. This divergence must
be compensated by the kinetic energy.

We satisfy the permutation-invariance by using a neural network architecture called DeepSets.
DeepSets exploit the fact that any function f(x1, ..., xN ) which is invariant under permu-
tations of its inputs can be decomposed as [83]:

f(x1, ..., xN ) = ρ

(∑
i

φ(xi)
)

(46)

where ρ and φ are arbitrary functions. In this specific example, xi denotes a single-particle
position and ρ and φ are parameterized with dense feed forward neural networks.

The second requirement is fulfilled by using Kato’s cusp condition which states that [84]

lim
r→0

(
∇2ψc(r)
ψc(r)

+ V (r)
)
<∞ (47)

where r denotes the distance between the particles and ψc is the cusp wave-function. For
the case of a Lennard-Jones potential (∝ r−12-divergence), we have

ψc(r) = exp
[
−1

2

(
b

r

)5]
, (48)

where b is a variational parameter.
We also need to handle the periodic conditions, making sure that the wave-function

does not exhibit divergent behaviour at the edges of the (periodic) box. To this end
we will use a surrogate distance function for the minimum image convention, namely
dsin(xi, xj) = L

2 sin
(
π
Lrij

)
in the variational Ansatz. Additionally we replace the single-

particle coordinates in Eq. (46) by the two-particle distances dsin(xi, xj)2, such that all in
all our variational Ansatz reads

ψ(x1, ..., xN ) = exp

ρ
∑
i<j

φ(dsin(xi, xj)2)

 · exp

−1
2

(
b

dsin(xi, xj)

)5
 (49)

The variational ansatz we described here is implemented in NetKet as DeepSeetRelDistance ,
and a more in-depth discussion can be found in this reference [85].

Having defined the ansatz, we run the VMC driver with the given variatianal Ansatz
to find an estimation of the ground-state energy of the system. This is done as follows:� �

1 model = nk.models.DeepSetRelDistance(
2 hilbert=hilb,
3 cusp_exponent=5,
4 layers_phi=2,
5 layers_rho=3,
6 features_phi=(16, 16),
7 features_rho=(16, 16, 1),
8 )
9 vs = nk.vqs.MCState(sab, model, n_samples=4096, n_discard_per_chain=128)

10

11 op = nk.optimizer.Sgd(0.001)
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Figure 2: VMC energy estimate as a function of the optimization step for a
continuous-space system of N = 10 particles in d = 1 spatial dimensions subject
to a LJ-like interaction potential placed within a periodic box. The green dashed
line is the result given in the supplementary material of [81].

12 sr = nk.optimizer.SR(diag_shift=0.01)
13

14 gs = nk.VMC(ha, op, sab, variational_state=vs, preconditioner=sr)
15 gs.run(n_iter=1000, out="Helium_10_1d")� �

The result of this optimization and a comparison to literature results is displayed in Fig.
2.

7 Example: Finding ground and excited states of a lattice
model

In this example, we define the J1–J2 Heisenberg Hamiltonian

H = J1
∑
〈ij〉

~σi · ~σj + J2
∑
〈〈ij〉〉

~σi · ~σj , (50)

on a 10 × 10 square lattice and use the VMC code introduced in Section 4.1 to find a
variational approximation of its ground state. This model gives rise to several phases of
matter, including magnetically ordered states, a valence bond solid, and a quantum spin
liquid. Here, we set J1 = 1, J2 = 0.5, inside the spin liquid phase [31,86].

Our example is optimized to run on a single GPU with 16 GB of memory. We will
make note of what should be changed when running the simulation on CPUs.

7.1 Defining the lattice and the Hamiltonian

We use the Lattice class to define the square lattice and generate its space-group sym-
metries. By passing max_neighbor_order=2 to the constructor, we generate graph edges
for both nearest and next-nearest neighbours. The pre-defined Heisenberg class supports
passing different coupling constants for both types of edge.
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� �
1 import netket as nk
2 import numpy as np
3 import json
4 from math import pi
5

6 L = 10
7 # Build square lattice with nearest and next-nearest neighbor edges
8 lattice = nk.graph.Square(L, max_neighbor_order=2)
9 hi = nk.hilbert.Spin(s=1 / 2, total_sz=0, N=lattice.n_nodes)

10 # Heisenberg with coupling J=1.0 for nearest neighbors
11 # and J=0.5 for next-nearest neighbors
12 H = nk.operator.Heisenberg(hilbert=hi, graph=lattice, J=[1.0, 0.5])� �

7.2 Defining and training a symmetric ansatz

To enforce all spatial symmetries of (50), we use the GCNN ansatz described in Section 5.
By default, the GCNN projects onto the symmetric representation, which contains the
ground state for this geometry. We select singlet states by only sampling basis states
with ∑i S

z
i = 0 and setting spin parity using parity=1 . We use a model with four layers,

each containing four feature vectors (i.e., four hidden units for each of the 8L2 space-group
symmetries). To exploit the high degree of parallelism of GPUs, we set sampler.n_chains

equal to vstate.n_samples 20. When using CPUs, n_chains should be set to a smaller
value.� �

1 machine = GCNN(
2 symmetries=lattice,
3 parity=1,
4 layers=4,
5 features=4,
6 param_dtype=np.complex128,
7 )
8 sampler = nk.sampler.MetropolisExchange(
9 hilbert=hi,

10 n_chains=1024,
11 graph=lattice,
12 d_max=2,
13 )
14 opt = nk.optimizer.Sgd(learning_rate=0.02)
15 sr = nk.optimizer.SR(diag_shift=0.01)
16 vstate = nk.vqs.MCState(
17 sampler=sampler,
18 model=machine,
19 n_samples=1024,
20 n_discard_per_chain=0,
21 chunk_size=4096,
22 )
23 gs = nk.VMC(H, opt, variational_state=vstate, preconditioner=sr)
24 gs.run(n_iter=200, out="ground_state")

20Note that this results in a somewhat non-standard MC scheme where, instead of an ensemble of chains
with generally non-zero internal autocorrelation, the sampler produces an ensemble of independently drawn
single configurations ( n_samples_per_chain==1 ). Since the sampler state of the previous VMC step is used
as initial state for the next step, there can still be a residual autocorrelation with the previous samples,
which is, however, alleviated by the sampler performing Nsites intermediate updates before yielding the
single requested sample with the settings used here.
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Figure 3: Energy evolution of variational ground states (green) and excited states
after transfer learning (blue), compared to the lowest known variational energy
for the 10× 10 square-lattice J1–J2 model [31] (black). The variational energies
can be further improved by allowing more training steps, Monte Carlo samples,
etc. The plot on the right zooms in on the lowest energies.

25

26 data = json.load(open("ground_state.log"))
27 print(np.mean(data["Energy"]["Mean"]["real"][-20:])/400)
28 # Output: -0.49562531096409457
29 print(np.std(data["Energy"]["Mean"]["real"][-20:])/400)
30 # Output: 0.0002492304032505182� �

We specify chunk_size=4096 in the variational state in order to reduce memory con-
sumption. As we have L2 = 100 sites, at every VMC step we will need to evaluate the
network for O(NsamplesL

2) = O(103 · 102) different configurations, but the memory avail-
able on commercial GPUs will not be enough to perform this computation in a single
pass. Instead, by setting chunk_size NetKet will split the calculation in many smaller
sub-calculations (see Section 3.3.1 for more details).

This calculation, which takes about 30 minutes on an NVIDIA A100 GPU, already
delivers a fairly accurate variational energy. The evolution of variational energy during
the training procedure is shown in Fig. 3.

We note that a typical initialization of a GCNN gives rise to ferromagnetic correlations,
which can make training an antiferromagnetic Hamiltonian unstable [16, 50]. Therefore,
it is often good practice to pre-optimize the phases by restricting all amplitudes to unity
by setting equal_amplitudes=True switch and training only the phases of the network.
These parameters can then be loaded into a model with equal_amplitudes=False .

7.3 Finding an excited state

We can also find low-lying excited states using this procedure, by projecting the wavefunc-
tion onto a different irrep. Here, we consider the first gapless mode in the Anderson tower
of states of the Néel antiferromagnet [87], a triplet at wave vector (π, π) that transforms
trivially under all point-group symmetries. This mode is still gapless in the quantum spin
liquid; we project out spin-singlets by focusing on parity odd states.

We expedite this calculation by using parameters optimized for the ground-state sector
as an initial guess. The resulting wave function will already have a low variational energy
(as shown in Fig. 3) and correlations typical for low-energy eigenstates.
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� �
1 # store the optimized ground-state parameters
2 saved_params = vstate.parameters
3 # Compute the characters of the first excited state
4 characters = lattice.space_group_builder().space_group_irreps(pi, pi)[0]
5 # Construct a model respecting the first-excited state symmetries
6 machine = GCNN(
7 symmetries=lattice,
8 characters=characters,
9 parity=-1,

10 layers=4,
11 features=4,
12 param_dtype=complex,
13 )
14 vstate = nk.vqs.MCState(
15 sampler=sampler,
16 model=machine,
17 n_samples=1024,
18 n_discard_per_chain=0,
19 chunk_size=4096,
20 )
21 # assign the old parameters to the new variational state
22 vstate.parameters = saved_params
23 gs = nk.VMC(H, opt, variational_state=vstate, preconditioner=sr)
24 gs.run(n_iter=50, out=’excited_state’)
25

26 data = json.load(open("excited_state.log"))
27 print(np.mean(data["Energy"]["Mean"]["real"][-10:])/400)
28 # Output: -0.49301426054097885
29 print(np.std(data["Energy"]["Mean"]["real"][-10:])/400)
30 # Output: 0.0003802670752071611� �
8 Example: Fermions on a lattice

NetKet can also be used to simulate fermionic systems with a finite number of orbitals.
Functionality related to fermions is kept in the netket.experimental in order to signal
that some parts of the API might still slightly change while we gather feedback from the
community. We usually import this namespace as nkx as follows:� �

1 from netket import experimental as nkx� �
and then use nkx freely.

The Hilbert space for discrete fermionic systems is called SpinOrbitalFermions . It
supports fermions, with and without a spin- degree of freedom, which occupy a set of
orbitals (such as the sites of a lattice). Internally, it uses a tensor product of a Fock
space for each spin component. For a set of spin-1/2 fermions, we can fix the number
of fermions with up (↑) and down (↓) spins through the n_fermions keyword argument.
The SpinOrbitalFermions generates samples that correspond to occupation numbers
|n〉 = |n1,↑, ..., nNo,↑, n1,↓, ..., nNo,↓〉, for a given ordering of the No orbitals (or sites).

In the example below, we determine the ground state of the Fermi-Hubbard model on
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a square lattice

Ĥ = −t
∑
〈i,j〉

∑
σ={↑,↓}

f †i,σfj,σ + h.c.+ U
∑
i

ni,↑ni,↓ (51)

where ni,σ = f †i,σfi,σ.
NetKet implements a class FermionOperator2nd that represents an operator in sec-

ond quantization. This class does not separate spin and orbital indices. Internally, the
FermionOperator2nd computes matrix elements of a fermion operator f †i on an orbital i

through the Jordan-Wigner transformation

f †i →

⊗
j<i

Zj

(Xi + iYi
2

)
(52)

or in terms of occupation numbers〈
n
∣∣f †i ∣∣n′〉 = (−1)

∑
j<i

njδn′i+1,ni
∏
j 6=i

δnj ,n′j (53)

One can create a FermionOperator2nd object from an external FermionOperator object
from the OpenFermion library, which is popular for symbolic manipulation of fermionic
operators [88]. The small intermezzo code below shows how this works in practice for an
operator f †1f2 + 4f3f

†
0� �

1 from openfermion import FermionOperator
2 from netket.operator import FermionOperator2nd
3

4 of_operator = FermionOperator("1ˆ 2") + 4*FermionOperator("3 0ˆ")
5 nk_operator1 = FermionOperator2nd.from_openfermion(of_operator)
6

7 nk_operator2 = FermionOperator2nd("1ˆ 2") + 4*FermionOperator2nd("3 0ˆ")� �
where nk_operator1 and nk_operator2 are equivalent.

The mapping between fermions and qubit degrees of freedom is not unique [89], and
the Jordan-Wigner transformation is one well-know example of such a transformation.
However, by interfacing with toolboxes specialized in symbolic manipulation, we open up
a range of possibilities, especially in combination with PauliStrings.from_openfermion ,
which converts openfermion.QubitOperator from OpenFermion to a PauliStrings

object in NetKet. This allows one to, for example, use a wider range of alternatives to
the Jordan-Wigner transformation implemented in OpenFermion, or other variations.

Going back to our example of the Fermi-Hubbard model, NetKet also implements
a more easy to use set of creation and annihilation operators that clearly separate the
orbitals and spin indices

• f †i,σ: nkx.operator.fermion.create

• fi,σ: nkx.operator.fermion.destroy

• ni,σ: nkx.operator.fermion.number

Each operator takes a site and spin projection ( sz ) in order to find the right position
in the Hilbert space samples. We will create a helper function to abbreviate the creation,
annihilation and number operators in the example below.
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� �
1 from netket import experimental as nkx
2 from netket.experimental.operator.fermion import (
3 create as c, destroy as cdag, number as nc)
4

5 # create the graph our fermions can hop on
6 L = 4
7 g = nk.graph.Hypercube(length=L, n_dim=2, pbc=True)
8 n_sites = g.n_nodes
9

10 # create a hilbert space with 2 up and 2 down spins
11 hi = nkx.hilbert.SpinOrbitalFermions(n_sites, s=1 / 2, n_fermions=(2, 2))
12

13 t = 1 # tunneling/hopping
14 U = 0.01 # coulomb
15

16 up, down = +0.5, -0.5
17 ham = 0.0
18 for sz in (up, down):
19 for u, v in g.edges():
20 ham += -t * (cdag(hi, u, sz) * c(hi, v, sz) +
21 cdag(hi, v, sz) * c(hi, u, sz))
22 for u in g.nodes():
23 ham += U * nc(hi, u, up) * nc(hi, u, down)� �

Sampling: To run a VMC optimization, we need a proper sampling algorithm that
takes into account the constraints of the computational basis we are working with. As the
SpinOrbitalFermions basis consereves total spin-magnetization, we cannot use samplers

like MetropolisLocal which randomly change the population ni,σ on a site, thus changing
the total spin. We can instead use MetropolisExchange , which moves fermions around
according to the physical lattice graph of L × L vertices, but the computational basis
defined by the Hilbert space contains (2s+1)L2 occupation numbers. By taking a disjoint
copy of the lattice, we can move the fermions around independently for both spins and
therefore conserve the number of fermions with up and down spin. Notice that in the
chosen representation, where is no need to anti-symmetrize our ansatz.� �

1 sa = nk.sampler.MetropolisExchange(hi,
2 graph=nk.graph.disjoint_union(g, g),
3 n_chains=16)
4

5 ma = nk.models.RBM(alpha=1, param_dtype=complex)
6 vs = nk.vqs.MCState(sa, ma, n_discard_per_chain=100, n_samples=512)
7

8 opt = nk.optimizer.Sgd(learning_rate=0.01)
9 sr = nk.optimizer.SR(diag_shift=0.1)

10

11 gs = nk.driver.VMC(ham, opt, variational_state=vs, preconditioner=sr)
12 gs.run(500, out=’fermions’)� �
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9 Example: Real-time dynamics

We demonstrate the simulation of NQS dynamics in the transverse-field Ising model
(TFIM) on an L site chain with periodic boundaries, using a restricted Boltzmann machine
(RBM) as the NQS ansatz. The Hamiltonian reads

ĤIsing = J
∑
〈ij〉

σ̂zi σ̂
z
j − h

∑
i

σ̂xi (54)

with J = 1 and h = 1 and periodic boundary conditions. We will estimate the expectation
value of the transverse magnetization Ŝx = ∑

i σ̂
x
i along the way.

We simulate the dynamics starting from an initial state |ψ(t0)〉 that is the ground state
for the TFIM Hamiltonian with h = 1/2. The random weight initialization of a neural
network yields a random initial state. Therefore, we determine the weights corresponding
to this initial state by performing a ground-state optimization. Even though the TFIM
ground state can be parametrized using an RBM ansatz with real-valued weights, we need
to use complex-valued weights here, in order to describe the complex-phase of the wave
function that arises during the time evolution21. In this example, we work with a chain
of L = 20 sites, which can be easily simulated on a typical laptop with the parameters
below.� �

1 import netket as nk
2 import netket.experimental as nkx
3

4 # Spin Hilbert space on 20-site chain with PBC
5 L = 20
6 chain = nk.graph.Chain(L)
7 hi = nk.hilbert.Spin(s=1/2) ** L
8

9 # Define RBM ansatz and variational state
10 rbm = nk.models.RBM(alpha=1, param_dtype=complex)
11 sampler = nk.sampler.MetropolisLocal(hi)
12 vstate = nk.vqs.MCState(sampler, rbm, n_samples=4096)
13

14 # Hamiltonian at J=1 (default) and external field h=1/2
15 ha0 = nk.operator.Ising(hi, chain, h=0.5)
16 # Observable (transverse magnetization)
17 obs = {"sx": sum(nk.operator.spin.sigmax(hi, i) for i in range(L))}
18

19 # First, find the ground state of ha0 to use it as initial state
20 optimizer = nk.optimizer.Sgd(0.01)
21 sr = nk.optimizer.SR()
22 vmc = nk.VMC(ha0, optimizer, variational_state=vstate, preconditioner=sr)
23 # We run VMC with SR for 300 steps
24 vmc.run(300, out="ising1d_groundstate_log", obs=obs)� �

9.1 Unitary dynamics

Starting from the ground state, we can compute the dynamics after a quench of the
transverse field strength to h = 1. We use the second-order Heun scheme for time stepping,
with a step size of dt = 0.01, and explicitly specify a QGT implementation (compare
Sec. 3.5) in order to make use of the more efficient code path for holomorphic models.

21It is possible to first use a real-weight RBM for the initial state preparation and then switch to complex-
valued weights for the dynamics. For the sake of simplicity, we leave out this extra step in the present
example.
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Figure 4: Comparison between the exact (dashed line) and variational dynamics
of a quench on the transverse-field Ising model. (Left): Expectation value of the
quenched Hamiltonian, which is conserved by the unitary dynamics. The shaded
area represents the uncertainty due to Monte Carlo sampling. (Right): Expec-
tation value of the total magnetization along the x axis during the evolution.

� �
1 # Quenched Hamiltonian
2 ha1 = nk.operator.Ising(hi, chain, h=1.0)
3 # Heun integrator configuration
4 integrator = nkx.dynamics.Heun(dt=0.001)
5 # QGT options
6 qgt = nk.optimizer.qgt.QGTJacobianDense(holomorphic=True)
7 # Creating the time-evolution driver
8 te = nkx.TDVP(ha1, vstate, integrator, qgt=qgt)
9 # Run the t-VMC solver until time T=1.0

10 te.run(T=1.0, out="ising1d_quench_log", obs=obs)� �
In Fig. 5 we show the results of this calculation, comparing against an exact solution

computed using QuTiP [90,91].

9.2 Dissipative dynamics (Lindblad master equation)

In Section 4.3 we have shown that the time-dependent variational principle can also be used
to study the dissipative dynamics of an open quantum system. In this section we give a
concrete example, studying the transverse-field Ising model coupled to a zero-temperature
bath. The coupling is modeled through the spin depolarization operators σ̂−i acting on
every site i.

As the dissipative dynamics converges to the steady state, which is also an attractor of
the non-unitary dynamics, we will use a weak-simulation of the dynamics22 to determine
the steady-state more efficiently than using the natural gradient descent scheme proposed
in ref. [25]. This scheme is similar to what was proposed in Ref. [26].

We employ the positive-definite RBM ansatz proposed in Ref. [52]. A version of
that network with complex-valued parameters is provided in NetKet with the name
nk.models.NDM .� �
1 # The graph of the Hamiltonian

22We use weak and strong simulation in the sense of the theory of numerical SDE schemes [92]. This
means that weak integration is an integration which is not accurate at finite times but which converges to
the right state at long times. A strong integration yields the correct state at every time t.
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Figure 5: Comparison between the exact (dashed line) and variational dynamics
of a random initial density matrix evolved according to the Lindblad Master
equation. (Left): Expectation value of the 〈〈ρ|L†L|ρ〉〉 convergence estimator.
(Right): Expectation value of the total magnetization along the x̂ axis during
the evolution. We remark that the evolution is near-exact in the region where the
dissipative terms dominate the dynamics, while there is a sizable error when the
unitary dynamics starts to play a role. The error could be reduced by considering
smaller time steps.

2 g = nk.graph.Chain(L, pbc=False)
3 # Hilbert space
4 hi = nk.hilbert.Spin(0.5)**g.n_nodes
5 # The Hamiltonian
6 ha = nk.operator.Ising(hi, graph=g, h=-1.3, J=0.5)
7 # Define the list of jump operators
8 j_ops = [nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)]
9 # Construct the Liouvillian

10 lind = nk.operator.LocalLiouvillian(ha, j_ops)
11

12 # observable
13 Sx = sum([nk.operator.spin.sigmax(hi, i) for i in

range(g.n_nodes)])/g.n_nodes
14

15 # Positive-definite RBM-like ansatz (Torlai et al.)
16 ma = nk.models.NDM(alpha=2, beta=3)
17 # MetropolisLocal sampling on the Choi’s doubled space.
18 sa = nk.sampler.MetropolisLocal(lind.hilbert, n_chains=16)
19 # Mixed Variational State. Use less samples for the observables.
20 vs = nk.vqs.MCMixedState(
21 sa, ma, n_samples=12000, n_samples_diag=1000, n_discard_per_chain=100
22 )
23 # Setup the ODE integrator and QGT.
24 integrator = nkx.dynamics.Heun(dt=0.01)
25 # The NDM ansatz is not holomorphic because it uses conjugation
26 qgt = nk.optimizer.qgt.QGTJacobianPyTree(holomorphic=False, diag_shift=1e-3)
27 te = nkx.TDVP(lind, variational_state=vs, integrator=integrator, qgt=qgt)
28

29 # run the simulation and compute observables
30 te.run(T=6.0, obs={"Sx": Sx, "LdagL": lind.H @ lind})� �

In the listing above, we first construct the Liouvillian by assembling the Hamiltonian
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and the jump operators, then we construct the variational mixed state. We chose a different
number of samples for the diagonal, used when sampling the observables, as that happens
on a smaller space with respect to the full system. For the geometric tensor, we choose
the QGTJacobianPyTree and specify that the ansatz is non-holomorphic (while this is
already the default, a warning would be printed otherwise, asking the user to be explicit).
The choice is motivated by the fact that the TDVP driver by default uses an SVD-based
solver, which works best QGTJacobian -based implementations. However, NDM uses a mix
of complex and real parameters which is not supported by QGTJacobianDense , and would
throw an error. Normally, to simulate a meaningful dynamics you’d want to keep the
diagonal shift small, but since we are striving for a weak simulation a large value helps
stabilize the dynamics.

10 Benchmarks

10.1 Variational Monte Carlo

We benchmark NetKet by measuring its performance on the 1D/2D transverse-field Ising
model defined as in Eq. (54) with J = 1 and h = 1 and periodic boundary conditions.

We first monitor the scaling behavior of NetKet’s VMC implementation by running
an energy optimization consisting of 100 steps. In order to carry out a meaningful bench-
mark, we run a first VMC step to trigger the JIT-compiler on the relevant jax and Numba
functions, while all reported timings are for the evaluation of JIT compiled functions only.
The left panel of Fig. 6 depicts the scaling behavior of the computational time as a function
of the complexity of the NQS model, using three implementations of the QGT. Hereby,
we increase the complexity of the NQS by optimizing a DNN with an increasing amount
of layers, where depth d represents the number of dense layers (with α = 1), each followed
by a sigmoid activation function. Such a DNN with d layers has O((d − 1)L2 + L) free
parameters.

10.2 MPI for NetKet

We benchmark the scaling behavior of NetKet as a function of the computational re-
sources available to perform parallel computations. Therefore, NetKet uses MPI for jax
through mpi4jax [38]. The effectiveness of the MPI implementation is illustrated in Fig. 7
for a VMC optimization with and without Stochastic Reconfiguration (SR). Throughout
our analyses, we provide each MPI rank with 2 CPU cores. We introduce the speedup
factor τr = ∆t1/∆tr where ∆tr refers to the time required to perform the computations
on r MPI ranks. Similarly, we define τn as the speedup factor when using n nodes. The
right panel of Fig. 7 demonstrates that even on a single node, our MPI implementation
can introduce significant speedups by running multiple Markov Chain samplers in parallel.
This is consistent with the fact that jax is not able to make use of multiple CPU cores
unless working on very large matrices.

The performance of NetKet on challenging Hamiltonians, as well as its scalability
with both system size and model complexity depends on the implementation details of the
quantum geometric tensor [see Eq. (22)] and its matrix multiplication with the gradient
vector, as discussed in Section 3.5. We therefore isolate these operations and benchmark
the QGT constructor, combined with 1000 matrix multiplications with the gradient vector
(where the latter imitates many steps in the iterative solver). In Fig. 7, we show the
scaling behavior of these operations with respect to both the number of ranks (on a
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Figure 6: (Left): Benchmark of NetKet’s VMC implementation. Each data
point shows the minimum time spent (out of 5 repetitions) to evolve a DNN with
depth d layers and complex weights over 100 VMC steps for the 1D transverse-
field Ising model with L = 256 and Nsamples = 214 = 16384. (Right): Scaling
behavior of the required computational time as a function of the number of MPI
ranks on a single node. We repeat 5 VMC optimizations and report the minimum
time required for 100 steps for the 1D Ising model with L = 256 and an RBM with
α = 1 with complex weights. The black line represents ideal scaling behavior.

single node), and its scaling behavior with respect the number of nodes (thereby including
communication over the Infiniband network). One can observe that the scaling behavior
is close to optimal, especially when the number of samples per rank is sufficiently large.

10.3 Comparison with jVMC

We compare NetKet with jvmc [40], another open-source Python package supporting
VMC optimization of NQS. Results are shown in Fig. 6. We remark that since both
NetKet and jvmc are jax-based, performance on sampling, expectation values and gra-
dients is roughly equivalent when using the same hyperparameters [40]. However, a per-
formance difference arises in algorithms requiring the use of the QGT, such as TDVP
or natural gradient (SR). Such difference will vanish in cases where the cost of solving
the QGT linear system is small with respect to the cost of computing the energy and its
gradient.

At the time of writing, jvmc only implements a singular-value decomposition (SVD)
solver to invert the QGT matrix. The same type of solver can be used also in NetKet
(for a detailed discussion, see Section 3.5). We limit the computations to models with less
than 7000 parameters in order for the QGT to have less than 49 · 103 elements, which is
approximately the maximum matrix size that can be diagonalized in reasonable time on
the GPUs we have access to23. For that reason we chose the size of L = 64 spins.

As shown in Table 5, NetKet outperforms by almost an order of magnitude jvmc
on a 32-core CPU using SVD-based solvers. On GPU, jvmc requires significantly less

23Using distributed linear-algebra libraries such as ScaLaPack [93], ELPA [94] or the recent [95] would
allow us to avoid this barrier, however we are not aware of any Python binding for those libraries. Re-
gardless, if those libraries exposed a distributed linear solver to Python, using it with NetKet would be
as simple as using it as the linear solver for the QGT.
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Figure 7: (Left): Speedup factor τ observed by increasing the number of MPI
ranks r on a single node while keeping the problem size constant (strong scaling).
(Center): Speedup factor observed by scaling across multiple nodes n, and
scaling the number of samples accordingly (weak scaling). (Right): Scatter
plot of the absolute wall clock time in seconds for the runs reported in the weak
scaling (center) plot. There are 4 points for every color, but they overlap for most
implementations because of the almost-ideal weak scaling. We repeat 5 iterations
of constructing the QGT and 1000 matrix multiplications with the gradient vector
for the 2D Ising model with L = 8 and a DNN with 9 layers and complex weights.
In the left panel, we keep the number of samples Nsamples = 214 constant, while in
the center panel, we increase the number of samples to 214 × n, while we correct
the timing by the number of nodes n to show the speedup factor for a constant
number of 214 samples. We remark that while the speedup factor is resistant
to changes in the network architecture, the absolute timing might favor one or
another implementation depending on several details and can change depending
on the architecture and problem at hand.

computational time than on CPU, yet, NetKet outperforms jvmc by about 50% in a
full VMC iteration. We remark that in this benchmark both packages scale poorly when
going from a single GPU to two. This is because the diagonalization of the QGT, in this
case the bottleneck, cannot be parallelized.

In order to scale efficiently to many GPUs, our QGT implementations can be com-
bined with iterative solvers to scale up to potentially millions of parameters, as well as
significantly larger system sizes. As expected from Fig. 7, increasing the number of MPI
ranks reduces the total time by a factor nearing the number of ranks (with eventually a
saturation in the speedup). Notice also that the CG-solver becomes significantly more
efficient on GPU.

11 Discussion and conclusion

We have presented NetKet 3, a modular Python toolbox to study complex quantum-
mechanical problems with machine learning-inspired tools. Compared to version 2 [36], the
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NetKet jVMC

SVD solver

CPU (32 cores) 48 337
GPU (×1) 24 44
GPU (×2) 20 36

CG solver

CPU (32 cores) 86 N/A
CPU (32 cores, MPIx16) 7.5 N/A
GPU (×1) 3.9 N/A
GPU (×2) 1.7 N/A

Table 5: Comparison of performance between NetKet and jvmc. All times are
indicated in seconds and have been taken on a workstation with an AMD Ryzen
Threadripper 3970X 32-Core processor and 2xNvidia RTX 3090 GPUs. Tim-
ings are for one VMC step using a complex-valued RBM model with hidden
unit density of α = Nhidden/L = 1 on the 1-dimensional TFIM model (54) with
L = 64 sites. Other parameters are: 214 total samples, 210 independent Markov
chains per GPU (or across all CPUs). Calculations for NetKet where performed
using QGTJacobianDense(holomorphic=True) . NetKet multi-GPU calculations
use CUDA-enabled MPI for inter-process communication, while jvmc uses jax
built-in mechanism. The run labeled with (MPI×16) is run on the same work-
station but 16 MPI processes are used to better take advantage of the multiple
cores of the processors.

major new feature is the ability to define arbitrary neural-network ansätze for either wave
functions or density matrices using the flexible jax framework; we believe this makes
NetKet much more useful to non-technical users. Another significant improvement is
that NetKet is now completely modular. Users of NetKet 3 can decide to use only
the neural-network architectures, the stochastic samplers, the quantum geometric tensor,
or the operators without necessarily requiring the VariationalState interface, which is
convenient but geared towards the most common applications of variational NQS. Care
has been taken to ensure that the algorithms implemented can scale to very large sys-
tems and models with millions of parameters thanks to more efficient implementations of
the geometric tensor and other algorithmic bottlenecks. Thanks to its jax foundations,
NetKet 3 can now also make effective use of GPU hardware, without any need for manual
low-level programming for these platforms.

Even with all the new features that have been introduced with this version, there
are many things that we would like to see integrated into NetKet in the future. To
name a few: native support for fermionic systems; support for more general geometries in
continuous systems; improvements to the dynamics submodule in order to support a wider
variety of ODE solvers and more advanced regularization and diagnostic schemes [22,24];
new drivers for quantum state reconstruction [32] and overlap optimization [33]; a more
general way to define arbitrary cost functions to be optimized. However, we think that our
new jax-based core is very welcoming to contributors, and we believe that this constitutes
a solid foundation upon which to build in the future. Moreover, we are now explicitly
committed to stability of the user-facing API, in order to make sure that code written
today will keep working for a reasonable time, while we iterate and refine NetKet.

Since a project is only as big as its community, the most important developments are
probably those related to documentation, learning material, and developing a community
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where users answer each other’s questions in the spirit of open, shared science. We are
taking steps to make all of this happen.
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A Details of group convolutions

A.1 Group convolutions and equivariance

As explained in Section 5.2, GCNNs generate the action of every element g of the sym-
metry group G on a wave function |ψ〉, written as |ψg〉 = g|ψ〉, which are then combined
into a symmetric wave function using the projection operator (40). Amplitudes of the
computational basis states |σ〉 are related to one another in these wave functions as

ψg(σ) = 〈σ|g|ψ〉 = ψ(g−1σ). (55)
Therefore, feature maps inside the GCNN are indexed by group elements rather than
lattice sites, and all layers must be equivariant: that is, if their input is transformed by
a space-group symmetry, their output must be transformed the same way, so that (55)
would always hold. Pointwise nonlinearities clearly fit this bill [74]; we now consider what
linear transformations are allowed.

First, input feature maps naturally defined on lattice sites must be embedded into
group-valued features:

fg =
∑
~r

Wg−1~rσ~r =
∑
~r

Wrσg~r =
∑
~r

W~r(g−1σ)~r, (56)

consistent with (55). We also see that the embedding (56) is equivariant: if the input is
transformed by some symmetry operation u, the output transforms as∑

~r

Wg−1~rσu~r =
∑
~r

Wg−1u−1~rσ~r = fug. (57)

This layer is implemented in NetKet as nk.nn.DenseSymm .
To build deeper GCNNs, we also need to map group-valued features onto one another

in an equivariant fashion. This is achieved by group convolutional layers, which transform
input features as24

φg =
∑
h∈G

Wh−1gfh. (58)

24Our convention differs from that of Ref. [74], which in fact implements group correlation rather than
convolution. The two conventions are equivalent (the indexing of the kernels differs by taking the inverse
of each element); we use convolutions to simplify the Fourier transform-based implementations of Sec. A.2.
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This layer is implemented in NetKet as nk.nn.DenseEquivariant . It is equivariant
under multiplying with a group element u from the left:∑

h∈G
Wh−1gfuh =

∑
h∈G

Wh−1ugfh = φug, (59)

which is consistent with how the embedding layer (56) is equivariant, cf. (57). Indeed, it
can be composed with (56):

φg =
∑
h

Wh−1g

∑
~r

W′
h−1~rσ~r =

∑
~r

(∑
h

Wh−1W′
h−1g−1~r

)
σ~r ≡

∑
~r

W′′
g−1~rσ~r (60)

as the expression in brackets only depends on g−1~r.
Finally, the output features of the last layer of the GCNN are turned into the wave

functions ψg(σ) = ∑
i exp

(
f

(i)
g

)
and projected on an irrep using (40) (we drop the irrele-

vant constant prefactor):
ψ(σ) =

∑
i,g

χ∗g exp
(
f (i)
g

)
, (61)

where χg are the characters of the irrep. In addition to allowing nontrivial symmetries, our
choice of summing a large number of terms in the ansatz appears to improve the stability
of variational optimization for sign-problematic Hamiltonians [16,31,50,73].

A.2 Fast group convolutions using Fourier transforms

The simplest implementation of a group convolutional layer is expanding each of the finfout
kernels, containing |G| entries, to a |G| × |G| matrix defined as

W̃
(a,b)
g,h = W

(a,b)
g−1h, (62)

where a, b index input and output features, respectively. The resulting tensor of size
finfout|G|2 can then be contracted straightforwardly with the input features:

φ
(b)
h =

∑
a,g

W̃
(a,b)
g,h f (a)

g (63)

is equivalent to (58). Embedding layers (56) can be constructed analogously. This method
is the easiest to interpret and code, serving as a useful check on other methods; however, the
enlarged kernels require substantial amounts of memory, which already becomes a serious
problem on modestly sized lattices and networks. Furthermore, evaluating a convolution
using this method takes O(finfout|G|2) time. NetKet implements two approaches to
improve on this scaling.

The first approach uses group Fourier transforms, which generalize the usual discrete
Fourier transform for arbitrary finite groups. The forward and backward transformations
are defined by

f̂(ρ) =
∑
g∈G

f(g)ρ(g); f(g) = 1
|G|

∑
ρ

dρ Tr
[
f̂(ρ)ρ(g−1)

]
. (64)

In the forward transformation, ρ is a representation of the group G; f(g) is a function
defined on group elements, while f̂(ρ) is a matrix of the same shape as the representatives
ρ(g). The sum in the backward transformation runs over all inequivalent irreps ρ, of
dimension dρ, of the group. Since ∑ρ d

2
ρ = |G|, this transformation does not increase the
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amount of memory needed to store inputs, outputs, or kernels.25 Group convolutions can
readily be implemented by multiplying the Fourier transform matrices (we drop feature
indices for brevity):

φ̂(ρ) =
∑
g

φgρ(g) =
∑
g,h

fhWh−1gρ(h)ρ(h−1g) = f̂(ρ)Ŵ (ρ). (65)

To calculate a convolution using this approach, the input features are Fourier trans-
formed [O(fin|G|2) as there is no generic fast Fourier transform algorithm for group Fourier
transforms], multiplied with the kernel Fourier transform for each irrep [O(finfoutd

3
ρ) for

an irrep of dimension dρ], and the output is transformed back [O(fout|G|2)], yielding the
total runtime O[(fin + fout)|G|2 + finfout

∑
ρ d

3
ρ]. In a large space group, most irreps are

defined on a star of |P | wave vectors (P is the point group) and thus have dimension |P |;
accordingly, ∑ρ d

3
ρ ≈ |G||P |.

The second approach, based on Ref. [74], exploits the fact that the translation group
T is a normal subgroup of the space group G, so each g ∈ G can be written as tgpg, where
tg is a translation and pg is a fixed coset representative (in symmorphic groups, we can
choose these to be point-group symmetries). Now, we can define the expanded kernels (we
drop feature indices again to reduce clutter)

W̃
(pg ,ph)
t ≡Wp−1

g tph
(66)

such that

φh =
∑
g

fgWg−1h =
∑
tg ,pg

ftgpgWpgt
−1
g thph

≡
∑
tg ,pg

f̃
(pg)
tg W̃

(pg ,ph)
th−tg . (67)

In the last form, we split the space-group feature map f into cosets of the translation
group and observe that the latter is Abelian. In fact, the translation group is equivalent
to the set of valid lattice vectors, so the sum over tg in (67) is a standard convolution.
Ref. [74] proposes to perform this convolution using standard cuDNN routines. However,
we are usually interested in convolutions that span the entire lattice in periodic boundary
conditions: these can be performed more efficiently using fast Fourier transforms (FFTs)
as the Fourier transform of a convolution is the product of Fourier transforms. Therefore,
we FFT the kernels W̃ and features f̃ , contract them as appropriate, and FFT the result
back:

φ̃(b,ph) = F−1
[∑
a,pg

F
(
f̃ (a,pg)

)
F
(
W̃ (a,b;pg ,ph)

) ]
, (68)

where the Fourier transform is understood to act on the omitted translation-group indices,
and the Fourier transforms are multiplied pointwise.

Calculating a convolution in this approach involves fin|P | forward FFTs [O(|T | log |T |)
each], |T | tensor inner products [O(finfout|P |2 each], and fout|P | backward FFTs; as |G| =
|T ||P |, this yields a total of O[(fin + fout)|G| log |T | + finfout|G||P |]. For large lattices,
which bring out the better asymptotic scaling of FFTs, this improves significantly on
the runtime of the group Fourier transform-based approach, especially in the pre- and
postprocessing stages. By contrast, the group Fourier transform approach is better for
large point groups, as it avoids constructing the |P |2 reshaped kernels W̃ pgph , which can
be prohibitive for large lattices.

In practice, as both FFTs and group Fourier transforms involve steps more complicated
than simple tensor multiplication, their performance is hard to assess beyond asymptotes,

25If some irreps cannot be expressed as matrices with real entries, the Fourier transform of real in-
puts/outputs/kernels is complex too, temporarily doubling the amount of memory used.
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especially on a GPU. On CPUs, the FFT-based approach tends to be faster. On GPUs,
computation time tends to scale sub-linearly with the number of operations so long as
the process is efficiently parallelized. As all operations of the group Fourier transform
implementation involve multiplications of large matrices, it can fully exploit the large GPU
registers even with relatively few samples. By contrast, FFTs cannot be fully vectorized,
meaning that larger batches are required to make full use of the computing power of the
GPU. In practice therefore, the FFT-based approach may not perform better until most
of the GPU memory becomes involved in evaluating a batch.

B Implementation details of the quantum geometric tensor

In the following, we discuss our implementations of the quantum geometric tensor, in-
troduced in section 3.5, in more detail. In particular, we show how the action of the
quantum geometric tensor on a vector can be computed efficiently without storing the full
matrix. Appendix B.1 introduces relevant automatic-differentiation concepts in general
terms; the concrete algorithms used by QGTJacobian and QGTOnTheFly are discussed in
Appendices B.2 and B.3, respectively.

B.1 Jacobians and their products

We assume that our NQS is modeled by the scalar parametric function f(s) = lnψθ(s),
where θ is a vector of variational parameters and s is a basis vector of the Hilbert
space. Consistent with the notation of the main text, Oj(s) = ∂θj lnψθ(s) are the log-
derivatives (13) of the NQS.

We also assume that f can be vectorized and evaluated for a batch of inputs {sk}k=1...Ns ,
yielding the vector fk = lnψθ(sk). The Jacobian of this function is therefore the matrix

Jkl = Ol(sk) = ∂ lnψθ(sk)
∂θl

; (69)

each row corresponds to the gradient of f evaluated at a different input sk, so k = 1 . . . Ns
and l = 1 . . . Nparameters.

The Jacobian matrix can be computed in jax with jax.jacrev(log_wavefunction)(s) ,
which returns a matrix.26 However, it is often not needed to have access to the full Ja-
cobian: for example, when computing the gradient (26) of the variational energy, we only
need the product of the Jacobian with a vector, namely ∆Eloc(sk) = H̃(sk)− E[H̃].

A vector can be contracted with the Jacobian along its dimension corresponding to
either parameters or outputs:

• Jacobian–vector products (Jvp), ṽ = Jv, can be computed using forward-mode au-
tomatic differentiation;

• vector–Jacobian products (vJp), ṽ = vTJ , can be computed through backward-mode
automatic differentiation (backward propagation).

Modern automatic-differentiation frameworks like that of jax implement primitives that
evaluate Jvp and vJp, and construct higher-level functions such as jax.grad or jax.jacrev

on top of those functions; that is, one can extract the best performance from jax by mak-
ing use of vJp and Jvp as much as possible [96].

26More precisely, it returns a PyTree with a structure similar to the PyTree that stores the parameters;
each leaf gains an additional dimension of length Ns.
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B.2 QGTJacobian

Writing the estimator (23) of the quantum geometric tensor explicitly in terms a finite
number of samples sk, we obtain

Gij = E [O∗iOj ]− E [Oi]∗ E [Oj ]

≈ 1
Ns

Ns∑
k=1

Oi(sk)∗Oj(sk)−
1
Ns

2

( Ns∑
k=1

Oi(sk)
)∗( Ns∑

k=1
Oj(sk)

)

= 1
Ns

Ns∑
k=1

(
Oi(sk)−

Ns∑
k=1

Oi(sk)
Ns

)∗(
Oj(sk)−

Ns∑
k=1

Oj(sk)
Ns

)

= 1
Ns

Ns∑
k=1

(
Jki −

Ns∑
k=1

Jki
Ns

)∗(
Jkj −

Ns∑
k=1

Jkj
Ns

)

= 1
Ns

Ns∑
k=1

(∆Jki)∗ (∆Jkj) , (70)

where we have defined the centered Jacobian ∆Jki ≡ Jki −
∑Ns
k=1

Jki
Ns

. In matrix notation,
this is equivalent to

G = ∆J†√
Ns

∆J√
Ns

. (71)

The Jacobian-based implementation of the quantum geometric tensor computes27 and
stores28 the full Jacobian matrix Jkl for the given samples upon construction.Then, QGT–
vector products ṽ = Gv are computed without finding the full matrix G, in two steps:

∆w = ∆J√
Ns

v; ṽ = ∆J†√
Ns

∆w =
( ∆J√

Ns
∆w†

)†
; (72)

the final form has the advantage that the Hermitian transpose of a vector is simply its
conjugate. Evaluating Eq. (72) is usually less computationally expensive than constructing
the full quantum geometric tensor.

B.3 QGTOnTheFly

In some cases one might have so many parameters or samples that it is impossible to store
the full Jacobian matrix in memory. In that case, we still evaluate a set of equations similar
to Eq. (72), but without pre-computing the full Jacobian, only using vector–Jacobian and
Jacobian–vector products.

It would be impractical to perform a vJp using the centered Jacobian; however, Eq. (23)
can be rewritten as Gij = E [O∗i (Oj − E [Oj ])], which yields

G = 1
Ns

J†∆J, (73)

where we have substituted one of the two centered Jacobians with a plain Jacobian. Then,
we note that the centered-Jacobian–vector product can be expressed as

∆w ≡ ∆J v =
(
J − 1TJ

Ns

)
v = w− 1Tw

Ns
, (74)

27The full Jacobian can be computed row by row, performing vJps with vectors that have a single
nonzero entry. In practice, as the network is evaluated independently for all samples in a batch, each of
these products requires us to back-propagate the network for only one sample at a time.

28To speed up the evaluation of (72), we actually store ∆J/
√
Ns.
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where 1T is a row vector all entries of which are 1, used to express averaging the columns
of the Jacobian in the matrix formalism. Therefore, QGTOnTheFly performs the following
calculations:

w = 1
Ns

Jv; ∆w = w− 〈w〉 ; ṽ = J†∆w, (75)

where the first and the last step are implemented with jax.vjp and jax.jvp , respec-
tively.
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