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Abstract

Kitaev’s toric code Hamiltonian in dimension D = 2 has been extensively studied for
its topological properties, including its quantum error correction capabilities. While the
Hamiltonian is quantum, it lies within the class of models that admits a D+1-dimensional
classical representation. In these notes, we provide details of a Suzuki-Trotter expansion
of the partition function of the toric code Hamiltonian in the presence of an external
magnetic field. By coupling additional degrees of freedom in the form of a matter field
that can subsequently be gauged away, we explicitly derive a classical Hamiltonian on a
cubic lattice which takes the form of a non-isotropic 3D Ising gauge theory.
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1 Introduction

Kitaev’s famous Hamiltonian, also referred to as the toric code, has captured the attention of
a broad community and defined a once-in-a-generation paradigm surrounding the physics of
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Figure 1: A 2D square lattice with periodic boundary conditions. a) Labels for lattice
sites s, bonds b and plaquettes p are shown, as well as spins involved in site operators
Âs and plaquette operators B̂p. b) Redundant 1/2 spin degrees of freedom ~̂µs and
~̂ηp introduced at the sites s and center of plaquettes face p are shown. We couple
Kitaev’s toric code Hamiltonian in an external magnetic field to the spins ~̂ηp.

deconfinement, topological order and quantum error correction [1]. The toric code Hamil-
tonian is an important tool since it contains the simplest topologically-ordered phase – the
deconfined Z2 quantum spin liquid – with gapped anyonic excitations that play an important
role in proposals for topological quantum computing [2], and can be condensed to quantum
critical points that display universal physics. Importantly, the toric code can be modified with
a number of additional Hamiltonian terms which greatly enrich its physics while remaining
simple to analyze in various limits. While the toric code is explicitly quantum, its partition
function in two spatial dimensions admits a mapping to a three-dimensional (3D) classical
partition function that can be further analyzed with analytical or numerical techniques [3,4].
In these notes, we provide a detailed derivation of this mapping.

Kitaev defined the Hamiltonian of the toric code as,

ĤT C = −
∑

s

Âs −
∑

p

B̂p, (1)

where the spin-1/2 degrees of freedom ~̂σ are located on the bonds of the two-dimensional
(2D) square lattice placed on the torus. The operators Âs and B̂p are given by Âs =

∏

j∈s σ̂
x
j

and B̂p =
∏

j∈p σ̂
z
j , where s represents the site of the lattice and p represent plaquettes on the

lattice (see Fig.1a).
The ground state solution of the toric code is easy to obtain, since the operators Âs and

B̂p commute. The Hamiltonian has eigenvalues Âs = 1 and B̂p = 1 for all s and p. It is four-
fold degenerate on a 2D torus, with gapped elementary excitations. These excitations are
represented by Âs = −1 and B̂p = −1, which can also be viewed as a Z2 electric charge on site
s and Z2 magnetic charge (vortex) on plaquette p.

In previous studies it has been shown that the topological ground state of the toric code is
robust against longitudinal magnetic field perturbations of the form −h

∑

b σ̂
z
b [5] and more

generally both longitudinal and transverse fields −hx
∑

b σ̂
x
b−hz

∑

b σ̂
z
b [6]. Considering elec-

tric and magnetic charge conservations laws [1], Kitaev introduced additional spin degrees of
freedom (or matter fields) ~̂µs and ~̂ηp for each vertex s and plaquette p. The additional spins
contribute to a unique quantum state |ζ〉 such that µ̂x

s |ζ〉= |ζ〉 and η̂z
p |ζ〉= |ζ〉. This leads to

an embedding of the Hilbert space N of spins |ψ〉 = |σz
b〉 ⊗ |σ

x
b〉 in ĤT C into a larger Hilbert

space T of all the spins |ψ〉 7→ |ψ〉 ⊗ |ζ〉. The physical states ψ ∈N also satisfy µ̂x
s |ψ〉 = |ψ〉
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and η̂z
p |ψ〉 = |ψ〉, as ĤT C does not depend on any terms that use the additional degrees of

freedom ~̂µs and ~̂ηp .
A growing number of studies, particularly those that wish to use numerical techniques like

Monte Carlo [6–8], exploit a quantum-to-classical mapping of the 2D toric code. A straight-
forward way to derive this mapping is to use the Suzuki-Trotter expansion [9] of the partition
function to derive a classical partition function and the corresponding 3D classical Hamilto-
nian. In this paper, we follow the procedure of coupling the toric code Hamiltonian to the
additional spins discussed above, and then gauging the resulting Hamiltonian in order to pro-
duce a form that can be integrated in the Suzuki-Trotter expansion. To derive a 3D classical
Hamiltonian that produces the same partition function as its quantum equivalent, we will em-
ploy the following steps. First, we pick an array of redundant spins (i.e. not explicitly present
in the ĤT C) with the same symmetry as the original array of spins. In our case, these are spins
~̂ηp in the center of each plaquette as discussed above. We then extend the Hilbert space to
include redundant spins, and observe that the energy spectrum is not affected, as ĤT C does
not contain ~̂ηp. After this step, we are allowed to perform unitary operations in the extended
Hilbert space - these will also not affect the energy spectrum that we are trying to understand,
but will couple redundant spins ~̂ηp with spins ~̂σb. At this point, we will seek specific choices of
unitary operators U whose symmetry operator Q̂p generates the Z2 gauge transformation. This
specific choice will give us the gauge freedom to transform the Kitaev toric code Hamiltonian
in an external magnetic field into a form that can be explicitly integrated via a Suzuki-Trotter
expansion.

As mentioned, the process of embedding in a larger Hilbert space does not change the
energy spectrum (as spins ~̂µs and ~̂ηp are not explicitly present in ĤT C). However, the newly
gained gauge freedom does allow us to apply unitary transformations U on top of the extended
Hilbert space T , that would couple the toric code spins σ̂z

b and σ̂x
b with the additional spin

degrees of freedom ~̂µs and ~̂ηp. One possible coupling with ~̂µs is described by Tupitsyn et al. in
Ref. [6]. In this study, we focus on coupling with plaquette-centered spin degrees of freedom
~̂ηp, by considering a unitary transformation U that performs the map,

σ̂x′
b 7→ η̂

x
p1
σ̂x

b η̂
x
p2

. (2)

With this mapping, the physical subspace becomes N ′ = UN , and vectors belonging to N ′
are invariant under the symmetry operator Q̂p = Ûσ̂z

pÛ† = σ̂z
p B̂p. Since the transformed

Hamiltonian Ĥ ′T C = Û ĤT C Û† commutes with the symmetry operator Q̂p, and since Q̂2
p = 1

and Q̂p operators commute amongst themeselves [Q̂p1
, Q̂p2

] = 0, the operator Q̂p generates a
Z2 gauge transformation; we call it a generator Q̂p or magnetic gauge [10]. The statesψ′ ∈N ′

are thus eigenstates of both Ĥ ′T C and of all the generators Q̂p. We can then define the new
Hilbert space of gauge invariant states by making a choice of Q̂p = 1 or Q̂p |ψ′〉 = |ψ′〉 [10].
This is a very convenient choice, because it will help us simplify the terms that perturb ĤT C ,
i.e. in the Q̂p = 1 Hilbert space, the terms proportional to B̂p can be replaced with terms
proportional to η̂z

p. In this new Hilbert space Q̂p = 1 represents a form of the familiar Gauss-

law condition, but instead of B̂p = 1 we have dynamical source in the form of η̂z
p.

Therefore, we proceed to analyze the Kitaev toric code with external magnetic fields:

Ĥ = −Jx

∑

s

Âs − Jz

∑

p

B̂p − hx

∑

b

σ̂x
b − hz

∑

b

σ̂z
b, (3)

by considering Hilbert space Q̂p = 1 (or working in a magnetic gauge η̂z
p B̂p = 1). The Hamil-

tonian of Eq. (3) together with Eq. (2) and in the Q̂p = 1 gauge becomes:

Ĥ ′ = −hx

∑

p,q

η̂x
pσ̂

x
pqη̂

x
q − Jx

∑

s

Âs − Jz

∑

p

η̂z
p − hz

∑

b

σ̂z
b. (4)
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We will now analyze this Hamiltonian using an explicit quantum-to-classical mapping.

2 Suzuki-Trotter decomposition of the toric code in the Q̂p = 1
gauge

We will now focus on computing the quantum statistical partition function Z = Tr{e−β Ĥ ′} of
Hamiltonian Eq. (4), under gauge constraint η̂z

p B̂p = 1. Notice that, in this gauge, the portion

of the Hamiltonian diagonal in the z-basis Ĥz = −Jz
∑

p η̂
z
p−hz

∑

b σ̂
z
b no longer has any terms

dependent on products of spins. To take full advantage of this simplification, we will perform
the Suzuki-Trotter decomposition in the x-basis {σx

b}⊗{η
x
p}, so that Ĥz is the off-diagonal part

of the Hamiltonian.
Following usual prescription for the Suzuki-Trotter expansion that

e−β Ĥ ′ = lim
M→∞

(e−∆τĤ ′)M , (5)

where ∆τ= β
M , we have

Z =
∑

{σx
b ,ηx

p}

〈{σx
b} ⊗ {η

x
p}|
�

e−εĤ
′��

e−εĤ
′�

...
�

e−εĤ
′�

︸ ︷︷ ︸

M factors

×
∏

q

δ(1− η̂q B̂q) |{σx
b} ⊗ {η

x
p}〉 ,

(6)

where the operators δ(1 − η̂q B̂q) are necessary to enforce the gauge condition. Inserting
the identity 1 =

∑

{σx
b ,ηx

p}
|{σx

b} ⊗ {η
x
p}〉 〈{σ

x
b} ⊗ {η

x
p}| between each of the M factors, this

becomes,

Z =
�M−1
∏

k=0

∑

{σx
b (kε),η

x
p (kε)}

�

× 〈{σx
b} ⊗ {η

x
p}(0)|

�

e−εĤ
′�
∏

q

δ(1− η̂q B̂q) |{σx
b} ⊗ {η

x
p}((M − 1)ε)〉

× 〈{σx
b} ⊗ {η

x
p}((M − 1)ε)|

�

e−εĤ
′�
∏

q

δ(1− η̂q B̂q)...

× 〈{σx
b} ⊗ {η

x
p}(ε)|

�

e−εĤ
′�
∏

q

δ(1− η̂q B̂q) |{σx
b} ⊗ {η

x
p}(0)〉 ,

(7)

where we distinguish the M−1 additional bases by labeling them with a parameter τ. Because
e−εĤ

′
is the Euclidean time-evolution operator for time interval ε, by augmenting τ by ε after

each factor, we can interpret τ as a Euclidean time coordinate, labeling bases at different
imaginary times.

In more compact notation,

Z =
�M−1
∏

k=0

∑

{σx
b (kε),η

x
p (kε)}

�M−1
∏

l=0

〈{σx
b} ⊗ {η

x
p}((l + 1)ε)|

�

e−εĤ
′�

×
∏

q

δ(1− η̂q B̂q) |{σx
b} ⊗ {η

x
p}(lε)〉|t r ,

(8)
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where we use |t r to denote the condition that 〈{σx
b} ⊗ {η

x
p}(Mε)| = 〈{σ

x
b} ⊗ {η

x
p}(0)|, origi-

nating from the trace. Expanding out the Hamiltonian, this is

Z =
�M−1
∏

k=0

∑

{σx
b (kε),η

x
p (kε)}

�

Zdiag

M−1
∏

l=0

〈{σx
b} ⊗ {η

x
p}((l + 1)ε)|

�

eεJz
∑

p η̂
z
p eεhz

∑

b σ̂
z
b

�

×
∏

q

δ(1− η̂q B̂q) |{σx
b} ⊗ {η

x
p}(lε)〉|t r .

(9)

Here, the term Zdiag refers to contribution to the partition function of the diagonal part of
the Hamiltonian, Ĥx = −hx

∑

p,q η̂
x
pσ̂

x
pqη̂

x
q − Jx

∑

s Âs. The interesting terms that we need

to handle in Eq. (9) are the Kronecker delta symbols δ(1 − η̂q B̂q), which ensure the correct

projection onto the Hilbert space defined by the Q̂p = 1 gauge, and exponential terms eεJz
∑

p η̂
z
p

and eεhz
∑

b σ̂
z
b that appear challenging for summation.

3 The classical Ising gauge theory in 3D

To evaluate the Suzuki-Trotter decomposition of the quantum statistical partition function in
Eq. (9), we will take advantage of some identities relating Pauli spin operators, which are
shown and proven in the appendices. We can use Eq. (27) to rewrite δ(1− η̂q B̂q), the term
which ensures correct projection into the Hilbert space defined by the Q̂p = 1 gauge, for
each bond and each plaquette. Eq. (27) introduces sums over new classical dummy “spins”
associated with each plaquette, sx

p , which effectively expands our Hilbert space again from
{σx

b} ⊗ {η
x
p} 7→ {σ

x
b} ⊗ {η

x
p} ⊗ {s

x
p}. Additionally, we will insert the form of the identity given

in Eq. (28) twice, once for the ~̂η degrees of freedom, and once for the ~̂σ. This gives,

Z =
�M−1
∏

k=0

∑

{σx
pq⊗ηx

p}(kε)

�

Zdiag

M−1
∏

l=0

〈{σx
pq ⊗η

x
p}((l + 1)ε)|

× ei π2
∑

pq(1−σ̂
z
pq)
��

1−σx
pq(lε)

�

+
�

1−σx
pq((l+1)ε)

��

eεhz
∑

pq σ̂
z
pq

× ei π2
∑

p(1−η̂
z
p)
��

1−ηx
p (lε)

�

+
�

1−ηx
p ((l+1)ε)

��

eεJz
∑

p η̂
z
p

×
1
2

∏

q

∑

sx
q (lε)=±1

e
iπ

1−sx
q (lε)
2

�

1−η̂z
q

2 +
∑

pq∈q
1−σ̂z

pq
2

�

× |{σx
pq ⊗η

x
p}(lε)〉

�

�

�

�

t r
,

(10)

where we have parameterized the new classical degrees of freedom sx
q with the Euclidean time

as we have inserted the identity Eq. (27) once at each time.
Folding the sums over sx

q (lε) in with the other sums over spin configurations, and pulling

5



SciPost Physics Lecture Notes Submission

the sums over bonds and plaquettes out of the exponentials, we have

Z =





M−1
∏

k=0

∑

{σx
pq⊗ηx

p , sx
q }(kε)



Zdiag

M−1
∏

l=0

〈{σx
pq ⊗η

x
p}((l + 1)ε)|

×
∏

pq

�

ei π2 (1−σ̂
z
pq)
��

1−σx
pq(lε)

�

+
�

1−σx
pq((l+1)ε)

��

eεhzσ̂
z
pq

�

×
∏

p

�

ei π2 (1−η̂
z
p)
��

1−ηx
p (lε)

�

+
�

1−ηx
p ((l+1)ε)

��

eεJz η̂
z
p

�

×
1
2

∏

q

e
iπ

1−sx
q (lε)
2

�

1−η̂z
q

2 +
∑

pq∈q
1−σ̂z

pq
2

�

|{σx
pq ⊗η

x
p}(lε)〉

�

�

�

�

t r
.

(11)

We can now regroup terms so that we only have two products inside of the matrix element,
one for each bond and one for each plaquette, in anticipation of the fact that our final classical
Hamiltonian will be comprised of sums over bonds and sums over plaquettes. This gives

Z =
�M−1
∏

k=0

∑

{σx
pq⊗ηx

p , sx
q }(kε)

�

Zdiag

M−1
∏

l=0

〈{σpq ⊗ηx
p}((l + 1)ε)|

×
∏

pq

�

e
i π2 (1−σ

z
pq)
�

�

1−σx
pq(lε)

�

+
�

1−σx
pq((l+1)ε)

�

+
1−sx

p (lε)
2 +

1−sx
q (lε)
2

�

eεhzσ
z
pq

�

×
∏

p

�

e
i π2 (1−η

z
p)
�

�

1−ηx
p (lε)

�

+
�

1−ηx
p ((l+1)ε)

�

+
1−sx

p (lε)
2

�

eεJzη
z
p

�

× |{σx
pq ⊗η

x
p}(lε)〉

�

�

�

�

t r
,

(12)

where sx appears twice in the product over bonds because each bond is between two plaque-
ttes.

We have now lost the complex projection terms and put the partiton function into a form
simple enough to evaluate directly by using Eq. (26) and making an anzatz. First, notice that

the factor
h
�

1−ηx
p(lε)

�

+
�

1−ηx
p((l + 1)ε)

�

+
1−sx

p (lε)
2

i

can only be odd if sx
p (lε) = −1, as the

x-basis eigenvalues, ηx
p(lε),η

x
p((l + 1)ε), sx

p (lε) = ±1. This implies that, as in the derivation
of spin identity Eq. (26), the term inside Eq. (12) can be replaced with

e
i π2 (1−η̂

z
p)
�

�

1−ηx
p (lε)

�

+
�

1−ηx
p ((l+1)ε)

�

+
1−sx

p (lε)
2

�

=

¨

1 when sx
p (lε) = 1

η̂z
p when sx

p (lε) = −1 .
(13)

Returning to the full plaquette term in Eq. (12), we can decompose the exponential eεJzη
z
p in

terms of trigonometric functions to get

eεJz η̂
z
p = cosh(εJzη̂

z
p) + sinh(εJzη̂

z
p)

= cosh(εJz)1+ sinh(εJz)η̂
z
p ,

(14)

where in the second equality we have used the fact that the eigenvalues of η̂z
p are ±1 and that

cosh(x) is an odd function while sinh(x) is even. Putting this together with Eq. (13), we see

e
i π2 (1−η̂

z
p)
�

�

1−ηx
p (lε)

�

+
�

1−ηx
p ((l+1)ε)

�

+
1−sx

p (lε)
2

�

eεJz η̂
z
p

=

¨

cosh(εJz)1+ sinh(εJz)η̂z
p when sx

p (lε) = 1

cosh(εJz)η̂z
p + sinh(εJz)1 when sx

p (lε) = −1 .

6
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Evaluating this within the matrix element gives

〈ηx
p((l + 1)ε)|

�

e
i π2 (1−η̂

z
p)
�

�

1−ηx
p (lε)

�

+
�

1−ηx
p ((l+1)ε)

�

+
1−sx

p (lε)
2

�

eεJz η̂
z
p

�

|ηx
p(lε)〉

=

¨

cosh(εJz) when sx
p (lε)η

x
p((l + 1)ε)ηx

p(lε) = 1

sinh(εJz) when sx
p (lε)η

x
p((l + 1)ε)ηx

p(lε) = −1 ,

≡ A2ek2sx
p (lε)η

x
p ((l+1)ε)ηx

p (lε).

(15)

as, when ηx
p((l + 1)ε) and ηx

p(lε) are the same, that is ηx
p((l + 1)ε)ηx

p(lε) = 1, the term
proportional to 1 will survive. On the other hand, when ηx

p((l + 1)ε)ηx
p(lε) = −1, the term

proportional to η̂z
p will flip ηx

p(lε) and contribute. Put together with the dependence on sx
p (lε),

we find that this part of the matrix element, and therefore this portion of the 3D classical
Hamiltonian, depends only on the product of all three eigenvalues. We can solve it by making
the ansatz shown in the second equality, finding

A2 =
�

sinh(εJz) cosh(εJz)
�1/2

(16)

k2 = −
1
2

ln tanh(εJz) . (17)

This is the step when all of the spin variables inside the quantum partition function move into
the exponent, allowing us to analytically identify the emerging 3D classical Hamiltonian; we
started with sp as a dummy spin variable, but through this process it has been promoted to an
actual classical spin.

Returning to the matrix element in Eq. (12), all that remains to be computed are the factors
associated to each bond pq, which depend on the ~̂σ spins. We can evaluate the matrix element
on these factors by following exactly the same procedure as above, finding

e
i π2 (1−σ̂

z
pq)
�

�

1−σx
pq(lε)

�

+
�

1−σx
pq((l+1)ε)

�

+
1−sx

p (lε)
2 +

1−sx
q (lε)
2

�

eεhzσ̂
z
pq

=

¨

cosh(εhz)1+ sinh(εhz)σ̂z
pq when sx

p (lε)s
x
q (lε) = 1

cosh(εhz)σ̂z
pq + sinh(εhz)1 when sx

p (lε)s
x
q (lε) = −1 .

The only small difference from the previous case with the ~̂η spins arises because there are
two sx terms in the bracketed factor on the first line—the bracketed factor can only be odd if
just one of sx

p (lε) and sx
q (lε) is −1, meaning that the cases are distinguished by the product

sx
p (lε)s

x
q (lε). Evaluating this within the matrix element, we have,

〈σx
pq((l + 1)ε)|

×
�

e
i π2 (1−σ̂

z
pq)
�

�

1−σx
pq(lε)

�

+
�

1−σx
pq((l+1)ε)

�

+
1−sx

p (lε)
2 +

1−sx
q (lε)
2

�

eεhzσ̂
z
pq

�

|σx
pq(lε)〉

=

¨

cosh(εhz) when sx
p (lε)s

x
q (lε)η

x
p((l + 1)ε)ηx

p(lε) = 1

sinh(εhz) when sx
p (lε)s

x
q (lε)σ

x
pq((l + 1)ε)σx

pq(lε) = −1 .

≡ A′2ek′2sx
p (lε)s

x
q (lε)σ

x
pq((l+1)ε)σx

pq(lε),

where we have found that the classical Hamiltonian now depends on the product of all four
eigenvalues, and made the corresponding ansatz in the second equality. It is solved by

A′2 =
�

sinh(εhz) cosh(εhz)
�1/2

(18)

k′2 = −
1
2

ln tanh(εhz) . (19)

7
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Now that we have fully evaluated the matrix element, we can substitute our solution back into
Eq. (12) to find the now fully-classical partition function,

Z =
�M−1
∏

k=0

∑

{σx
pq ,ηx

p ,sx
q }(kε)

�

Zdiag

M−1
∏

l=0

∏

p

Ase
k2sx

p (lε)η
x
p ((l+1)ε)ηx

p (lε)

×
∏

pq

A′2ek′2sx
p (lε)s

x
q (lε)σ

x
pq((l+1)ε)σx

pq(lε)
�

�

�

�

t r
.

(20)

Expanding out the contribution to Z from the previously-diagonal Ĥx and massaging to read
off the classical Hamiltonian, we have

Z = AN
2 A′N2

�M−1
∏

k=0

∑

{σx
pq ,ηx

p ,sx
q }(kε)

�

e
∑

l

∑

pq k′2sx
p (lε)s

x
q (lε)σ

x
pq((l+1)ε)σx

pq(lε)

×e
∑

l

∑

p k2sx
p (lε)η

x
p ((l+1)ε)ηx

p (lε)

×e
∑

l (εJx
∑

s

∏

p∈sσ
x
p (lε)+εhx

∑

pq η
x
p (lε)σ

x
pq(lε)η

x
q )(lε))

�

�

�

�

t r
,

(21)

where we have moved the products over bonds and plaquettes, as well as the product over the
discrete time parameter l, into the exponent, where they become spatial and temporal sums.

The 3D classical Hamiltonian is then

β ′Hc = −
M−1
∑

l=0

�

εJx

∑

s

∏

p∈s

σx
p (lε) + k′2

∑

pq

sx
p (lε)s

x
q (lε)σ

x
pq((l + 1)ε)σx

pq(lε)

+εhx

∑

pq

ηx
p(lε)σ

x
pq(lε)η

x
q (lε) + k2

∑

p

sx
p (lε)η

x
p((l + 1)ε)ηx

p(lε)

�

.

(22)

Notice that it has four terms: two equal-time terms coming straight through from the Ĥx
part of the original, 2D quantum Hamiltonian, and two terms originating from the evaluation
of Ĥ y in the matrix element. These two new terms prescribe interactions between spins at
different times (lε) and ((l + 1)ε). Notice that one of these, the new k2 “equal-space” terms,
is structurally very similar to the equal-time hx term, that is, the external field term. To make
the correspondence more explicit, we will rename the sx

p degrees of freedom σx
p,p+1(lε), that

is, we declare that they are spins living between a plaquette at one time lε and the plaquette
at the next time (l + 1)ε. This is just a renaming: as depicted in Fig. 2, we are systematically
shifting where we imagine the sx

p spins to be on the lattice, which does not change the physics.
Under this renaming, the Hamiltonian becomes

β ′Hc = −
M−1
∑

l=0

�

εJx

∑

s

∏

p∈s

σx
p (lε) + k′2

∑

pq

σx
p,p+1(lε)σ

x
q,q+1(lε)σ

x
pq((l + 1)ε)σx

pq(lε)

+εhx

∑

pq

ηx
p(lε)σ

x
pq(lε)η

x
q (lε) + k2

∑

p

σx
p,p+1(lε)η

x
p((l + 1)ε)ηx

p(lε)

�

.

(23)

Now we can explicitly see that the k2 term is exactly another matter field term, or a “line bond,”
just oriented in the temporal direction. Similarly, we see that the k′2 adds a new temporal As
which is distinct from the spatial As in that it is not centered about a vertex (Fig. 2). Next, we
absorb the sum over the discrete time coordinate l into our sums. That is, if we expand the

8
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Figure 2: Renaming sx
p creates a temporal star. Left: Configurations ofσx (squares)

and sx (circles) classical spins at two time slices lε and (l+1)ε (the horizontal layers
of the 3D lattice). Identifying the two plaquettes in the lower layer as p and q, the
blue spins connected by dashed lines illustrate the sx

p (lε)s
x
q (lε)σ

x
pq((l + 1)ε)σx

pq(lε)
bond from the k′2 term of β ′H3D. Right: We rename the sx

p spins to σx
p,p+1, shifting

them in the lattice so that they sit between each plaquette p at lε and p at (l + 1)ε.
The k′2 term illustrated in blue becomesσx

p,p+1(lε)σ
x
q,q+1(lε)σ

x
pq((l+1)ε)σx

pq(lε) and
can be clearly recognized as a temporal “star” term. Notice that all such temporal
stars are centered around the plane between two cubes of the lattice, rather than
about a vertex like spatial stars.

definitions of our sums over spatial and temporal stars (respectively, line bonds) to include
spatial and temporal stars (line bonds) existing at all times, we obtain,

β ′Hc =− εJx

∑

s,spatial

As,spatial − k′2
∑

s,temporal

As,temporal

− εhx

∑

pq

ηx
pσ

x
pqη

x
q − k2

∑

p,p+1

ηx
pσ

x
p,p+1η

x
p+1 .

(24)

This Hamiltonian corresponds to an Ising gauge Hamiltonian in 3D to which matter fields are
added (see Fradkin Eq. (9.76) [10]) and is dual to the classical Hamiltonian shown in Eq. (5)
in Ref. [6]. The duality can be demonstrated by rewriting either Hamiltonian on the dual
lattice (see Fig. 1), which will change the As-like operators of Eq. (24) into Bp-like plaquette
operators, or, like in Fradkin, with the rotation of the basis from σx back to σz .

Finally, this Hamiltonian can be simplified further by removing the gauge degrees of free-
dom by fixing all of the now-classical dummy spins to ηx

p = 1, and removing the sums over
{ηx

p(kε)} in the partition function. Figure 3 illustrates the resulting spatial and temporal de-
grees of freedom. In this Hamiltonian, the matter field terms have been reduced to external
fields, while the star terms are unchanged. We thus have

β ′Hc =− εJx

∑

s,spatial

As,spatial − k′2
∑

s,temporal

As,temporal

− εhx

∑

pq

σx
pq − k2

∑

p,p+1

σx
p,p+1 .

(25)

In this form, the Hamiltonian is a simple Ising gauge theory in 3D with classical degrees of
freedom σx .

9
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Figure 3: Left: After implementing the Suzuki-Trotter decomposition, we obtain a
partition function describing classical interacting spins in 3D. The third dimension
corresponds to spin values at point of time k∆τ and (k+1)∆τ in the Suzuki-Trotter
decomposition, where k = 0, 1,2...M − 1 (see Eq. 6). Right: If we focus on one
imaginary time period, we can see the new degrees of freedom σp,p+1 that emerged
in the computation of the partition function. The new spins participate in the classical
3D Hamiltonian in As-like terms and bond-like terms in the temporal direction.
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4 Conclusion

In these notes, we have provided a detailed derivation of the classical 3D Ising gauge theory
starting from the 2D quantum toric code Hamiltonian with external fields. As a consequence
of this mapping, the 3D gauge theory is expected to capture the universal physics of a variety
of 2D quantum systems that exhibit Z2 spin liquid phases, including some of the recent ex-
perimental results on a programmable quantum computer [11]. Written in the classical spin
language, the 3D gauge theory provides the paradigmatic examples of stable confined and de-
confined phases, and various possibilities for the transitions between them, including the Higgs
and confinement transitions. It is also the starting point for numerical studies using classical
Monte Carlo simulations, which have been used recently to probe a number of interesting out-
standing questions regarding the physics of the model related to topological order, criticality
and error correction [5–8]. We hope that the detailed derivation provided here will help fa-
cilitate further understanding of this class of models, the phenomena contained within them,
and the compelling equivalence of the quantum and classical systems discussed in these notes.
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A Spin identity No. 1

Given a Pauli spin operator σ̂x and integer n, the first spin identity is

ei nπ
2 (1−σ̂) =

¨

1 when n is even

σ̂x when n is odd.
(26)

The proof of spin identity No. 1 can be obtained with Taylor expansion.

ei nπ
2 (1−σ̂

x ) = ei nπ
2 e−i nπ

2 σ̂
x

= ei nπ
2

�

1− i
nπ
2
σ̂x +

(−i nπ
2 )

2

2!
1+ ...

�

= ei nπ
2

�

cos(
−nπ

2
)1+ i sin(

−nπ
2
)σ̂x

�

= cos2(
nπ
2
)1− sin(

nπ
2
) sin(

−nπ
2
)σ̂x

=

¨

1 when n is even

σ̂x when n is odd.

where in the fourth equality we have expanded ei nπ
2 into sin and cos and used the fact that

cross terms won’t survive because n is an integer.
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B Spin identity No. 2

δ(1− η̂z
p B̂p) =

1
2

∑

sx
p=±1

e
iπ

1−sx
p

2

�

1−η̂z
p

2 +
∑

pq∈p
1−σ̂z

pq
2

�

(27)

To prove this identity, we begin by expanding out the sum over sp on the RHS, and pulling
down the sum in the exponent, giving

1
2

∑

sp=±1

e
iπ

1−sp
2

�

1−η̂z
p

2 +
∑

b∈p
1−σ̂z

b
2

�

=
1
2

�

1+ e
iπ
�

1−η̂z
p

2 +
∑

b∈p
1−σ̂z

b
2

��

=
1
2



1+ eiπ
1−η̂z

p
2





∏

b∈p

eiπ
1−σ̂z

b
2







 .

This leaves us with only factors of the form ei π2 (1−σ̂
z
b) and ei π2 (1−η̂

z
b) which we can evaluate using

Eq. (26). Substituting this in, we get a much simpler expression for the RHS of the identity,

1
2

∑

sp=±1

e
iπ

1−sp
2

�

1−η̂z
p

2 +
∑

b∈p
1−σ̂z

b
2

�

=
1
2

 

1+ η̂z
p

∏

b∈p

σ̂z
b

!

=
1
2

�

1+ η̂z
p B̂p

�

.

To see that this is equal to δ(1− η̂z
p B̂p), we will evaluate both sides in the z-basis. The RHS

gives

〈ηz
p ⊗ {σ

z
b}b∈p|

1
2

�

1+ η̂z
p B̂p

�

|ηz
p ⊗ {σ

z
b}b∈p〉=

1
2

�

1+ηz
pBp

�

=

¨

1 when ηz
p = Bp

0 when ηz
p 6= Bp ,

as both ηz
p, Bp = ±1. Similarly, because we can pull the Kroenecker delta out of the matrix

element, the LHS gives

〈ηz
p ⊗ {σ

z
b}b∈p|δ(1− η̂z

p B̂p) |ηz
p ⊗ {σ

z
b}b∈p〉= δ(1−ηz

pBp)

=

¨

δ(0) = 1 when ηz
p = Bp

δ(1) = 0 when ηz
p 6= Bp,

which matches the RHS as expected. Therefore, as the identity holds in the z-basis, it must be
true in all bases.

C Spin Identity No. 3

ei π2 (1−σ̂
z
b)[(1−σx

b (lε))+(1−σx
b ((l+1)ε))] = 1 (28)

We construct a proof by noticing that, because the x-eigenvalues σx
b(lε),σ

x
b((l + 1)ε) = ±1,

we can immediately evaluate the numerical factor in the brackets, giving

ei π2 (1−σ̂
z
b)[(1−σx

b (lε))+(1−σx
b ((l+1)ε))] =











1 when σx
b(lε) = σ

x
b((l + 1)ε) = 1

ei2π(1−σ̂z
b) when σx

b(lε) = σ
x
b((l + 1)ε) = −1

eiπ(1−σ̂z
b) when σx

b(lε) 6= σ
x
b((l + 1)ε) .

By using Eq. (26), we can immediately see that all three cases are the identity.
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