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Abstract

It is common that the local inversion symmetry in crystals is broken, even though the whole crystal

has global inversion symmetry. This local inversion symmetry breaking allows for a local Dzyaloshinsky-

Moriya interaction (DMI) in magnetic crystals. Here we show that the local DMI can stabilize a skyrmion

as a metastable excitation or as a skyrmion crystal in equilibrium. We consider crystal structure with layered

structure as an example, where local inversion is violated in each layer but a global inversion center exists in

the middle of the two layers. These skyrmions come in pairs that are related by the inversion symmetry. The

two skyrmions with opposite helicity in a pair form a bound state. We study the properties of a skyrmion

pair in the ferromagnetic background and determine the equilibrium phase diagram, where a robust lattice

of skyrmion pairs is stabilized. Our results point to a new direction to search for the skyrmion lattice in

centrosymmetric magnets.
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I. INTRODUCTION

Magnetic skyrmions are topologically protected localized excitations, which have attracted

considerable attention recently. [1–4] Skyrmions have lots of promising applications in spin-

tronic devices because of their compact size, high mobility and stability. Both single skyrmion

and skyrmion lattice have been observed in a wide classes of magnetic materials indicating their

ubiquitous existence. This includes chiral magnets [5–8], magnetic multilayers [9, 10] and cen-

trosymmetric magnets [11–13]. In chiral magnets and multilayers, the skyrmions are stabilized by

the Dzyaloshinsky-Moriya interaction (DMI) [14–16] as a consequence of the inversion symmetry

breaking. [17–19] While in the centrosymmetric magnets, skyrmions are stabilized by the frus-

trated or competing magnetic interactions. [20–22] Despite the tremendous progress in the past

in identifying new skyrmion hosting materials, it is always demanding to find a new mechanism

to stabilize skyrmions, as such a new mechanism will likely lead to novel physical properties of

skyrmions, which may be desirable for device applications.

Here we demonstrate that the local DMI in globally centrosymmetric magnets can also support

skyrmions. The global centrosymmetry alone is not enough to forbid DMI. Instead, the inversion

symmetry can be broken locally which admits a local spin orbit coupling and hence DMI. One

example is the spins in honeycomb lattice. Two nearest neighbor spins are inversion symmetric

with the inversion center localized at the center of the bond, thus forbids the DMI. However, there

is no inversion symmetry for the two next nearest neighbor spins, and therefore a local DMI is

allowed. The honeycomb lattice has the mirror symmetry with respect to the honeycomb plane.

As a result, the Moriya rule [15] dictates the DMI vector being perpendicular to the honeycomb

plane. Including such a DMI to the nearest neighbor ferromagnetic Heisenberg model on the

honeycomb lattice realizes a Haldane model for the magnons with topological magnon bands.

[23]

II. MICROSCOPIC MODEL

To be specific, let us consider crystal structure of type CaBe2Ge2 (space group 129, see Fig.

1 for a schematic view [24]). The magnetic ions (light orange) form layered square lattice with

odd and even layer being related by the inversion symmetry. Inside each layer, the local inversion

symmetry is broken, which allows for a Rashba spin orbit interaction. The local Hamiltonian for
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FIG. 1. (a) Unit cell of the crystal structure of type CaBe2Ge2. We consider a material system with two

magnetic ions (light orange sphere) in a unit cell. Each magnetic ion is not an inversion center, but the two

magnetic ions are related by inversion with the inversion center located at the middle of the bond connecting

these two ions. (b) Enlarged unit cell where magnetic ions form a layered square lattice. Within each layer,

the local inversion symmetry is broken, but a pair of the nearest neighboring two layers enjoy the inversion

symmetry. The golden arrows represent the spin orbit coupling vectors.

each layer is assumed to be

Hl =−t ∑
⟨i, j⟩,α

c†
ilαc jlα − iλ ∑

⟨i, j⟩,αβ

c†
ilασαβ · (−1)ldi jc jlβ +H.C.− JH

2 ∑
i,αβ

c†
ilασαβ cilβ ·Sil. (1)

Here i, j are site indices of the square lattice at each layer l. We consider nearest neighboring

hopping between electrons described by the creation operator c†
ilα with spin index α . We have

assumed a local exchange coupling between classical spin Sil with |Sil|= 1 and the electron spin.

λ is the strength of the Rashba spin orbit interaction characterized by a unit vector (−1)ldi j that

reverses its direction from layer to layer. The unit vector is perpendicular to the bond for the

Rashba spin orbit interaction di j = ẑ× ri j/|ri j| with ri j = ri − r j. We assume a hopping between

electrons in the nearest layers only when the site is aligned and neglect the interlayer spin orbit

coupling (the interlayer spin orbit coupling is allowed even there exists an inversion center),

Hc =−tc ∑
i,l

c†
il+1α

cilα +H.C.. (2)

The total Hamiltonian HT = Hc +∑l Hl is invariant under inversion transformation, which flips

the even and odd layers, i.e. l ↔ l + 1. The coupling of localized spin Sil to the conduction
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Layer 1

FIG. 2. Spin configuration of a skyrmion pair. Color represents out-of-plane component of spin (blue: -1

and red: +1) and arrows denote the in-plane component. There is a relative shift between the two skyrmions

in a skyrmion pair. Meanwhile, a skyrmion in one layer induced a halo in its neighboring layers. Here

B = 1.0 and J12 = 0.4.
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electrons mediates an effective magnetic interaction between Sil . In the strong coupling limit

JH ≫ t, tc (double-exchange mechanism), we can consider two site problem with i = 1, 2. [25]

For Sil in the same layer, by performing SU(2) rotation in the spin space, i.e. c̃1lα = [exp(−iθσ ·

(−1)ld12)/2]αβ c1lβ and c̃2lα = [exp(iθσ · (−1)ld12)/2]αβ c2lβ with tanθ = λ/t, the spin orbit

coupling can be absorbed into an effective hopping parameter. The localized moment after the

rotation is given by

S̃1l = cosθS1 − sinθ(S1l × (−1)ld12)+(1− cosθ)(S1l ·d12))d12)). (3)

For S̃2l , we need to replace θ →−θ in the above equation. After the SU(2) rotation, the Hamil-

tonian is the same as the Anderson-Hasegawa Hamiltonian without a spin orbit coupling [26], and

then we obtain the interaction between S̃il , H = −κ t̃
√

1+ S̃1l · S̃2l/2, where t̃ ≡
√

t2 +λ 2 and

κ is a constant depending on the electron density. In term of the original classical spin Sil , the

Hamiltonian becomes

H =−J ∑
⟨i, j⟩,l

Sil ·S jl − J12 ∑
i,l

Sil+1 ·Sil − ∑
⟨i, j⟩,l

Di j ·Sil ×S jl −A∑
i,l
(Sx

ilS
x
i+ŷl +Sy

ilS
y
i+x̂l). (4)

Here J = t̃κ cos(2θ), the compass anisotropy strength A = t̃κ(1− cos(2θ)) and the interlayer

coupling strength J12 = tcκ . x̂, ŷ, ẑ are unit vector in the x, y, z direction respectively. The DMI

vector is perpendicular to the bond with Di,i+x̂ = t̃κ sinθ ŷ and Di,i+ŷ = −t̃κ sinθ x̂ (see Fig. 1).

For realistic material parameters, λ ≪ t, we have J ≫ |Di j| ≫ A. The DMI is nonperturbative

because any weak DMI turns the ferromagnetic (FM) state into a magnetic spiral state, hence it

should not be neglected even though it is weak. In the following discussion, we will neglect the A

term. The same form of H can also be derived for the superexchange mechanism [25], which is

at work in Mott insulators. For RKKY interaction valid in the region JH ≪ t, there appears long

range interaction between localized moments. In view of the broad relevance of the Hamiltonian

Eq. (4), we will treat J12 as a free parameter which can either be antiferromagnetic (AFM) or FM.

For |Di j|/J ≪ 1, the relevant length scale of the possible spin textures is much longer than the

atomic (or tight-binding) lattice parameter. We can write Eq. (4) in the continuum limit

H = ∑
l

∫
dr2

[
J
2
(∇Sl)

2 +D(−1)l[Sz(∇ ·S)− (S ·∇)Sz]− J12Sl ·Sl+1 −B ·Sl

]
, (5)

where we have included a Zeeman coupling to spins and D is the magnitude of DMI. When J12 = 0,

Eq. (5) reduces two copies of well studied Hamiltonian for chiral magnets, which supports both

single skyrmion and skyrmion lattice solutions. The spin texture depends on the form of the DMI.
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FIG. 3. Optimal relative separation between the two skyrmions in a skyrmion pair obtained by numerical

minimizing of the energy. The skyrmion pair becomes unstable when J12 is outside of the range plotted in

the figure. Here B = 1.0.

In our case, the skyrmion is of Neél type. In one layer, the in-plane component of the spins of a

skyrmion are pointing outward along the radial direction of the skyrmion while in the other layer,

the spins are pointing inward, see Fig. 2 for an example. The former skyrmion has helicity 0 and

the latter has helicity π . Such spin configuration costs energy in interlayer coupling J12, no matter

if it is AFM or FM. Our task is to understand the behavior of single skyrmion metastable state in

the ferromagnetic background and the skyrmion lattice in the presence of a nonzero J12. In the

following, we will take the two dimensional limit by keeping minimal two layers in Eq. (5). We

will use dimensionless unit by normalizing length in unit of J/D and energy in unit of J2/D. The

model has two independent parameter B and J12, both of which are in unit of D2/J.

III. SINGLE SKYRMION SOLUTION

Let us first study the properties and dynamics of a skyrmion pair in the ferromagnetic back-

ground, with one skyrmion sitting in the top layer and the other skyrmion sitting in the bottom

layer. The top and bottom layers are related by the inversion symmetry. The spins away from

the skyrmion center are fully polarized by the magnetic field, which requires B being much larger

than |J12| if J12 < 0. We minimize the energy numerically with a skyrmion pair as an initial condi-

tion. The two skyrmions in the skyrmion pair form a bound state with attraction between the two

skyrmions. The relative shift of the two skyrmions depends on J12. For J12 < 0 (AFM interlayer
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coupling), the two skyrmions in different layers sit on top of each other. While for J12 > 0 (FM

interlayer coupling), there is a relative shift between the two skyrmions and the relative shift in-

creases with |J12|, see Fig. 3. When there is a relative shift, the skyrmion in on layer couples to the

otherwise ferromagnetic state in the neighboring layer and generates a shadow spin texture with

winding of spins, as displayed in Fig. 2. The reason why the two skyrmions in two layer shifts

from each other for J12 > 0 can be understood as follows. Due to the opposite helicity of the two

skyrmions, the in-plane component of the spins associated with the two skyrmions are opposite in

the two layers, which is favored by J12 < 0. For J12 > 0, the two skyrmions avoid siting atop of

each other to save cost in the ferromagnetic coupling between the in-plane component of spins.

The out-of-plane component of spins are less important in determining the relative position of

skyrmions because the Zeeman coupling dominates over other interactions.

To quantify the shape of the skyrmion pair, we introduce the skyrmion topological charge center

for a skyrmion in the l-th layer

rl =
∫

l−th layer
dr2rlSl ·∂xSl ×∂ySl/

∫
l−th layer

dr2Sl ·∂xSl ×∂ySl (6)

and the relative shift r12 = |r1 − r2|. The optimal r12 (denoted as rm) that minimizes the skyrmion

pair energy as a function of J12 is shown in Fig. 3. The separation between the two skyrmions

quickly saturates to a value and then decreases slowly as J12 is increased. The skyrmion pair

becomes unstable when J12 > 0.72 or J12 <−0.44 at B = 1.0.

Now we turn the dynamics of the skyrmion pair. We consider both the spin transfer torque and

spin Hall torque. The dynamics of spin is given by

∂tS =−γS×Heff +αS×∂tS+ τ, (7)

where Heff ≡−δH /δS is an effective field, α is the Gilbert damping and γ is the gyromagnetic

ratio. We use α = 0.2 in simulations. The torque is τ = h̄γ

2e(J ·∇)S for the spin transfer torque

[27, 28] and τ = h̄γθsh
2ed S× [S× (ẑ×J)] for the spin Hall torque [29–31]. Here θsh is the spin Hall

angle, d is the film thickness and e > 0 is the elementary electric charge. For a weak drive,

the deformation of skyrmion is negligible [32] and the skyrmion dynamics are described by its

translational motion in space, which is a Goldstone mode in a clean system. The translational

motion is parameterized by the skyrmion center Rl and the corresponding velocity vl = Ṙl , which

obey the Thiele’s equation [33]. For the spin transfer torque, the Thiele’s equation for the two
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FIG. 4. Skyrmion dynamics under a spin transfer torque. The two skyrmions in a skyrmion pair move

as a whole, and move almost anti-parallel to the applied current direction with a small transverse velocity

proportional to the damping constant. The velocity vs Jext for J12 < 0 is the same as that for J12 = 0 within

numerical resolution. The velocity at a given Jext becomes smaller when J12 > 0 is increased due to the

induced shadow texture in the neighboring layer. Here B = 1.0 and time is in unit of J/(γD2).

skyrmions in a skyrmion pair reads

Ql ẑ×
(

vl +
h̄γ

2e
Jext

)
=−αηlvl +(−1)lF12, (8)

where F12 is the attraction between the two skyrmions at two layers. Here ηl is the skyrmion form

factor ηl ≡
∫ ′

l−th layer
(
∂µSl

)2 dr2/(4π) and the skyrmion topological charge Ql =
∫ ′

l−th layer dr2Sl ·

∂xSl × ∂ySl/(4π), where the integration is restricted to the region around a skyrmion. [34] The

Thiele’s equation for the spin transfer torque does not depend on the helicity of the skyrmions

and hence the two skyrmions respond to the spin transfer torque in the same way. The two

skyrmions move as a whole skyrmion pair almost the same as those in the decoupled limit

J12 = 0. The skyrmion pair velocity can be found v∥ = −γh̄Q2Jext/[2e(Q2 +α2η2)] and v⊥ =

−γh̄αηQJext/[2e(Q2 +α2η2)], where v∥ (v⊥) is the skyrmion velocity component parallel (per-

pendicular) to the current. We have approximated η = ηl and Q = Ql . The numerical results

are shown in Fig. 4. The interlayer coupling J12 enters into the equation through the form factor

ηl because J12 causes skyrmion deformation (see Fig. 2). For J12 > 0, there are a relative shift

between the two skyrmions and induced shadow in the neighboring layers. As a consequence

ηl for J12 > 0 is larger than these for J12 ≤ 0. This explains the result in Fig. 4, where |v∥| for

J12 = 0.4 is smaller than that for J12 =−0.4.

8



0.00 0.05 0.10 0.15
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Jext

Ve
lo
ci
ty

𝑣!"

𝑣#"

𝑣#||

𝑣!||

10 15 20 25 30

16

18

20

22

24

x

y

Dissociation

Dissociation

(a)

(b)

FIG. 5. (a) Velocity of the two skyrmions after a skyrmion pair disassociates at the threshold current

Jc
ext = 0.0085 for B = 1.0 and J12 =−0.4. The two skyrmions travel in the opposite direction. (b) Trajectory

of the two skyrmions in a skyrmion pair subjected to a spin Hall torque. Initially the two skyrmions are

sitting atop of each other for J12 =−0.4. The point when the skyrmion pair disassociates is indicted in the

figure.

The dynamics of skyrmion pair driven by the spin Hall torque is more interesting because the

spin Hall torque couples to the helicity. [35] The Thiele’s equation in this case is

Ql ẑ×vl +αηlvl =
h̄γθsh

2ed
JextYl +(−1)lF12, (9)

Yl,µ =
(
ẑ× Ĵext

)
·
∫ ′

l−th layer
(
∂µSl ×Sl

)
dr2/(4π) with µ = x, y. Ĵext is a unit vector along the

current direction. It is straightforward to verify Y1,µ =−Y2,µ when the two skyrmions have oppo-

site helicity. Therefore the two skyrmions in a skyrmion pair tend to move in a different trajec-

tory. For Neél skyrmions with helicity equals 0 or π , Yl is parallel to the current direction and

its magnitude is denoted by Yl∥. When the current is small, the force F12 balances the different

driving force acting on the two skyrmions by adjusting the relative shift of position between the
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two skyrmions. The corresponding solution is vl = 0 and |F12| = |h̄γθsh
2ed JextYl|, When the current

reaches a threshold, the maximal force F12 between the two skyrmions is no longer sufficient to

cancel the disparity in the driving force between the two skyrmions. As a result, the skyrmion

pair disassociates and the two skyrmions move independent. One can obtain the skyrmion veloc-

ities by setting F12 = 0 in Eq. (9), which yields v1⊥ = −QY1∥h̄γθshJext/[2ed(Q2 +(αη)2)] and

v1∥ = αηY1∥h̄γθshJext/[2ed(Q2 +(αη)2)], and similarly for v2. Because Y1,µ = −Y2,µ , the two

skyrmions move in the opposite direction, see Fig. 5 (a). The skyrmions travel almost perpendic-

ularly to the current direction, v1⊥ ≫ v1∥.

Let us examine the dynamical process of the decoupling of the two skyrmions in a skyrmion

pair. We take J12 < 0 such that two skyrmions sit on top of each other. We then turn on current and

calculate rl . The trajectory is shown in Fig. 5 (b). As current is turned on, the two skyrmions move

away from each other. The trajectory is a spiral because of the Magnus force, ∼ ẑ×vl , which forces

skyrmion to move perpendicularly to the force direction. When the skyrmion separation exceeds

a threshold value, the two skyrmions decouple.

Interestingly, one can estimate F12(r) and hence the potential U(r) from Eq. (9). This can

be done in two different ways. In the first approach, one considers the static limit for a small

current. Then F12(rm) = |h̄γθsh
2ed JextYl| where rm is the equilibrium relative distance between the

two skyrmions. In the second approach, one directly calculates F12(r) from the trajectory of two

skyrmions upon switching on current.

It is also interesting to ask if the internal force F12 produces an effective mass for the skyrmion

pair, which causes retarded response to the external drive. The answer is no. This can be seen from

Eqs. (8) or (9) by rewriting the equation of motion in term of relative coordinate R12 = R1 −R2

and center of mass coordinate R=R1+R2. No term of the form MR̈+ · · ·= Fext with Fext being a

driving force, is generated, hence the mass generation due to F12 is absent. However, the skyrmion

mass can be generated through excitation of high energy internal modes [32, 36, 37], which has

been neglected here.

IV. SKYRMION LATTICE

We then determine the equilibrium phase diagram of Hamiltonian Eq. (5) in two dimensions.

We perform numerical annealing from high temperature disordered state to zero temperature and

determine the ground state spin configuration. We discretize Eq. (5) into a square lattice with a
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lattice parameter dr = 0.8, such that the magnetic spiral at B = 0 and J12 = 0 roughly has 8 lattice

parameters. The phase diagram is displayed in Fig. 6 where the triangular lattice of skyrmion pair

is stabilized in a wide region in the B and J12 space. A large value of |J12| disfavors the skyrmion

crystal. When it is stabilized, the skyrmion crystal is more stable for an AFM J12 than that for a

FM J12. The skyrmion crystal is aligned in the direction perpendicular to the layers when J12 < 0.

While for J12 > 0, the in-plane position of the skyrmions locates at positions corresponding to the

interstitial sites of the skyrmion lattice in the nearest neighboring layers. As such relative shift is

not always optimal for a skyrmion pair (see Fig. 2), this explains why the skyrmion crystal is less

favorable for J12 > 0 than that for J12 < 0. Typical spin configurations obtained from numerical

calculations are presented in Figs. 7 and 8. It is clear that the skyrmion has opposite helicity

between the nearest neighbor layers. Besides the skyrmion lattice phase, the standard magnetic

spiral state is stabilized in the low magnetic field region and the spins are fully polarized at high

magnetic fields.

Very recently, lattice spin Hamiltonian which reduces to Eq. (5) in the continuum limit by tak-

ing the ordering wave vector q → 0 was studied by Hayami [38]. Our phase diagram differs from

that in Ref. [38], where more 3-Q states have been identified besides the skyrmion lattice phase.

One possible reason for the discrepancy is due to the underlying spin lattice symmetry. In Ref.

[38], spins are defined on triangular lattice with q = π/3, while in the present work, we discretize

the continuum model into a square lattice with a fine mesh to minimize the discretization effect.

Our method reproduces the known results well when J12 = 0. The spin lattice generates a poten-

tial to orientate the spin modulation wavevector, which can be quite different for the triangular and

square lattice for a relatively large q. It is known from the previous study [39] that the underlying

spin lattice symmetry can have profound consequences on the spin textures that can be realized.

In Ref. [38], Hayami restricted to the six in-plane wave vectors qi with |qi|= π/3 that are related

by six-fold rotation in the simulations. This may also be a source of the discrepancy. In contrast,

we have taken all the qs permitted by discretization into account in our numerical calculations.

V. DISCUSSION AND SUMMARY

Here we discuss the dynamics of skyrmion lattice in the presence of a spin Hall torque. When

the current is large such that the skyrmion lattice in two layers both depin from impurities and

decouple from each other, the two skyrmion lattices move in the opposite direction. If we take
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FIG. 6. Phase diagram of the model Eq. (5) in two dimensions (minimal two layers limit). The color

represents the skyrmion density. The triangular skyrmion lattice is stabilized in a wide region in the param-

eter space of J12 and B. The phase boundary is constructed based on magnetization, skyrmion topological

density and their derivatives as a function of J12 and B. The system size is 40×40.

skyrmion lattice in one layer as a reference, then effectively the skyrmion lattice in the other layer

experiences a periodic potential produced by the reference skyrmion lattice. This produces an

oscillating component in the skyrmion lattice velocity with period Tv ∝ aL/v12 where aL is the

skyrmion lattice parameter and v12 is the relative velocity. In the presence of conduction electrons,

the coupling between the skyrmion lattice and conduction electrons generates an oscillating emer-

gent electric field. [40] It is known in the case of Abrikosov vortex lattice, driving the vortex lattice

with an ac current in addition to a dc current produces Shapiro steps when the frequency associ-

ated with the periodic passing of vortex lattice through pinning sites is commensurate with the ac

current frequency. [41, 42] Here similarly phenomenology is expected when the skyrmion lattice

is driven through defects. No ac current is required in this case because the relative motion of the

two skyrmion lattices already provides an oscillating velocity component. The situation is simi-

lar to fractional vortex lattice in multi-component superconductors discussed in Ref. [43], with a

notable difference that the Magnus force is dominant over the viscous force for the dynamics of

skyrmions.

We then discuss some open questions for future study. One direct extension of the current work

12



Layer 2

Layer 1

FIG. 7. Skyrmion lattice configuration in the neighboring two layers for J12 = 0.6 and B = 0.24. The

skyrmion lattice in one layer is sitting at the interstitial sites of the neighboring layer, and with an opposite

helicity. Here color represents out-of-plane component of spin (blue: -1 and red: +1) and arrows denote the

in-plane component. The system size is 40×40.
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Layer 2

Layer 1

FIG. 8. Skyrmion lattice configuration in the neighboring two layers for J12 = −0.5 and B = 0.9. The

skyrmion lattices in the two layers are aligned, and with an opposite helicity. Here color represents out-of-

plane component of spin (blue: -1 and red: +1) and arrows denote the in-plane component. The system size

is 40×40.
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is the phase diagram in three dimensions. It is known that the magnetic phase diagram in two

dimensions and three dimensions differs radically for chiral magnets [5, 6, 44], and we expect the

same is also true here. Here we have neglected the interlayer spin orbit coupling. If such a spin

orbit coupling is taken into account, there can be an extra twist of spins along the direction perpen-

dicular to layers. This can generate three dimensional skyrmion texture with different skyrmion

lattice symmetry. This idea has been validated in three dimensional inversion symmetric magnets

with frustrated interlayer couplings [45]. Going beyond the simple spin orbit coupling vectors

and local DMI vectors distribution studied here, more complex local DMI vectors distribution are

possible depending on the local inversion symmetry breaking pattern, atomic crystal structure and

constrained by Moriya’s rule [15], which is likely to generate a plethora of spin textures for spins

sitting at different sub-lattices.

To summarize, we demonstrate that there exists skyrmion lattice in centrosymmetric magnets

with a local inversion symmetry breaking. The lack of local inversion symmetry allows for a

local DMI which is sufficient to stabilize the skyrmion spin texture. For the particular crystal

structure considered here, the DMI in the nearest neighboring layer has alternating sign and the

skyrmion in the neighboring layers has opposite helicity. The dynamics of skyrmions can be

quite different when the external drive, such as spin Hall torque, couples to the helicity of the

skyrmions. We have determined the equilibrium skyrmion lattice phase diagram and demonstrated

the stability of the skyrmion lattice against the interlayer coupling. The skyrmion with alternating

helicity in different layers can be detected experimentally using the standard imaging methods,

such as neutron scattering spectroscopy, and Lorentz transmission electron microscopy imaging at

a surface with a controlled layer termination. The local DMI mechanism identified here is expected

to have broader implications in determining spin textures in centrosymmetric magnets, which has

largely been overlooked so far. Our results point to a new direction to search for skyrmions in

magnetic materials.
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Note added– We become aware a recent manuscript [38], which has some overlap with the

current work.
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