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We study the dynamical behavior of the one-dimensional Anderson insulator in the presence of a
local noise. We show that the noise induces logarithmically slow energy and entanglement growth,
until the system reaches an infinite-temperature state, where both quantities saturate to extensive
values. The saturation value of the entanglement entropy approaches the average entanglement
entropy over all possible product states. At infinite temperature, we find that a density excitation
spreads logarithmically with time, without any signs of asymptotic diffusive behavior. In addi-
tion, we provide a theoretical picture which qualitatively reproduces the phenomenology of particle
transport.

I. INTRODUCTION

Anderson localization is an ubiquitous wave phenomenon that arises due to destructive interference in the presence
of quenched disorder [1]. Since its discovery, it has been instrumental for the understanding of a much richer class
of physical phenomena [2–6]. One of the most important manifestations of Anderson localization is the suppression
of transport which follows from the exponential localization of all the single-particle wavefunctions in one and two
dimensions [1, 7], such that infinitesimally small disorder leads to zero DC-conductivity at any temperature. While
in higher dimensions, and at zero temperature, a metal-insulator transition takes place [7]. The phenomenon of
Anderson localization has been extensively studied [8, 9], and experimentally demonstrated in many systems [10–17].
Even if most of the experimental setups are highly controlled, it is impossible to completely isolate the system from
all dissipation effects that arise due to the coupling to the environment, for example, coupling to phonons is present
in any condensed matter system, and is known to induce a finite DC conductivity [18]. It is therefore of importance
to theoretically account for such dissipative processes.

The stability of Anderson localization to different classes of perturbations has been assessed in several theoretical
studies [4–6, 19–28]. Anderson localization is known to be stable under spatially local but quasiperiodic in time
perturbations in any dimension [20], and to survive global periodic driving in one dimension [27, 29]. In contrast, it is
unstable to global noise, which is known to induce delocalization [22, 23, 26, 28, 30–34], and a transient subdiffusive
transport, which eventually crosses over to regular diffusion [26, 34]. Global noise was also shown to lead to prethermal
energy plateaus at intermediate time scales, followed by exponential relaxation at longer time scales [28]. The stability
of localized systems has also been studied extensively in recent experiments with ultracold atoms in optical lattices
[35–37] .

In this work, we study how the dynamics in the one-dimensional Anderson insulator is affected by the presence
of a local white-noise, which can be thought as a coupling to a local Markovian bath. We find that the noise leads
to a logarithmically slow heating of the system up to an infinite-temperature state which is further reflected in slow
transport properties of the system.

Our article is organized as follows. In Sec. II, we introduce the model and the methods used to characterize the
noise-induced dynamics. In Sec. III, we first assess the heating dynamics in terms of the energy and the entanglement
entropy. We then analyze the particle transport in the system using both numerical simulations and a semi-analytical
approach. In Sec. V, we summarize and discuss our main results.

II. MODEL AND METHODS

We consider the one-dimensional Anderson model,

ĤA = −J
L−1∑
i=1

(
ĉ†i ĉi+1 + h.c.

)
+

L∑
i=1

win̂i, (1)

where ĉ†i (ĉi) creates (annihilates) a spinless electron on site i, “h.c.” stands for a Hermitian conjugate, n̂i = ĉ†i ĉi is the
density, and J denotes the hopping constant. The on-site disorder potential, wi, are independent random variables
uniformly distributed in the interval wi ∈ [−W,W ], withW the disorder strength. This model is known to be localized
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for any W > 0 [1]. We perturb the Anderson model, by the addition of a local white-noise,

Ĥ = ĤA + ζ (t) n̂L/2, (2)

such that ζ (t) has zero mean ζ(t) = 0 and a vanishing correlation length

ζ (t) ζ (t′) = γδ (t− t′) , (3)

where the overbar denotes the average over stochastic realizations of the noise and γ is the noise strength. The noise
term represents a local Markovian heat bath coupled to the system, and as such, the dynamics of the density matrix
of the system, ρ̂ (t), is given by the following Lindblad equation [38]

∂tρ̂ (t) = −i
[
ĤA, ρ̂ (t)

]
+ (4)

+ γ
(
n̂L/2ρ̂ (t) n̂L/2 −

1

2

{
n̂L/2, ρ̂ (t)

})
,

where {·, ·} is the anti-commutator. The Lindblad equation describes a trace-preserving non-unitary evolution, where
the first term corresponds to the unitary evolution, and the second term corresponds to the dissipative coupling
between the system and the local heat bath. It is easy to check by substitution, that the steady state of (4) is an
infinite-temperature state with density matrix ρ̂∞ ∝ 1, which means that for any initial state the system will approach
ρ̂∞. Please note, that the approach to infinite temperature by itself does not imply delocalization of the system, since
as stated above, in one and two dimensions, and without the coupling to the noise, localization persists also at infinite
temperature [1]. Here, we focus on the questions of how the infinite-temperature state is approached and what is the
dynamics of the system at this state, in the presence of a local noise.

While (4) can be numerically solved, this is extremely demanding even for noninteracting particles, since certain
couplings to the heat bath create an effective interaction between the particles, which requires the use of the full many-
body density matrix of dimensions N ×N , where N is the Hilbert-space dimension. Alternative methods, based on a
unitary propagation followed by stochastic measurements, of an ensemble of wavefunctions, were developed [39–43].
These methods, known as quantum-trajectory methods, are more efficient since the dimension of the wavefunction isN .
The solution of (4) is reproduced by an average over quantum trajectories, which correspond to individual realizations
of the measurements. The procedure of writing (4) as a stochastic differential equation, is known as “unraveling”, and
since there can be many stochastic differential equations whose averages reproduce (4), the procedure is not unique,
and can depend on the physical context [41].

In this work, we use a unitary unraveling of (4), which was introduced in Refs. [42, 43] and corresponds to the
following stochastic unitary infinitesimal propagator

Û (t+ dt, t) = e−iĤdt−iηtn̂L/2

√
γdt, (5)

where ηt are independent normally distributed random variables of zero mean and unit variance. The evolution of the
density matrix is then obtained by performing an average over trajectories corresponding to the different realizations
of the noise ηt, namely,

ρ̂ (t+ dt) = |ψ (t+ dt)〉 〈ψ (t+ dt)|, (6)

where the overbar denotes the average over the noise trajectories, and |ψ (t+ dt)〉 = Û (t+ dt, t) |ψ (t)〉, with the
initial condition |ψ (t = 0)〉 taken from an ensemble whose average corresponds to the initial density matrix ρ̂(t =
0) = |ψ (t = 0)〉 〈ψ (t = 0)|.

For self-adjoint Lindblad operators this unraveling is equivalent to the quantum-jump approach [43], but is numer-
ically superior for an initial quadratic density matrix ρ̂ (t = 0) = e−

∑
i αin̂i , since it only requires the propagation of

a single-particle density matrix

ρsij (t) ≡ Tr
(
ρ̂ (t) ĉ†i ĉj

)
, (7)

which is polynomial rather than exponential in L. This simplification occurs, since Û (t+ dt, t) is quadratic in ĉ†i
(ĉi) and therefore an initially quadratic density matrix, stays quadratic for the entire evolution of the system. The
propagation of ρsij (t) is obtained using the single-particle version of the stochastic unitary propagator (5),

Us (t+ dt, t) = e−iĥAdt−iηt|L/2〉〈L/2|
√
γdt, (8)
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where

ĥA = −J
L−1∑
i=1

(|i〉 〈i+ 1|+ |i+ 1〉 〈i|) +

L∑
i=1

wi |i〉 〈i| (9)

is the single-particle Anderson Hamiltonian. The evolved single-particle density matrix ρsij (t+ dt) is therefore given
by,

ρsij (t+ dt) = Usik (t+ dt, t) ρskl (t) Û
s∗
jl (t+ dt, t). (10)

For our numerical simulations we use Krylov-space methods and time steps of dt = 0.1, although the unraveling we
use is exact for any dt. We fix the tunneling constant to J = 1, which determines the units of time and set the noise
strength to γ = 1; changing the amplitude of the noise, does not change our results qualitatively. We average our
results over 100 disorder realizations and 10 realizations of the noise for each disorder realization, which we verified
to be sufficient to obtain converged results. The averages over disorder and over noise are denoted by square brackets
[·] and by an overbar ·̄, respectively.

III. RESULTS

In this section we characterize how the system approaches an infinite-temperature state in terms of the energy and a
properly defined entanglement entropy. We then assess the linear response particle transport at infinite temperature.

A. Energy dissipation

The energy of the system,

ε (t) = Tr
(
ρ̂ (t) ĤA

)
, (11)

grows as a result of coupling to the local heat bath. Since ĤA =
∑
ij

〈
i
∣∣∣ĥA∣∣∣ j〉 ĉ†i ĉj , we can express the energy

growth using the single-particle density matrix as,

ε (t) =
∑
i,j

〈
i
∣∣∣ĥA∣∣∣ j〉Tr (ρ̂ (t) ĉ†i ĉj

)
=
∑
i,j

ρsij (t)
〈
i
∣∣∣ĥA∣∣∣ j〉 , (12)

where |i〉 and |j〉 are single-particle states in the position basis. Following the discussion of Sec. II, at long times, the
system approaches an infinite-temperature state, ρ̂∞ ∝ 1, therefore,

ε (t→∞) =
1

N Tr
(
ĤA

)
=

1

2
Tr ĥA =

1

2

L∑
i

wi, (13)

where N is the Hilbert space dimension. Since the energy of the system is bounded, to have a sufficiently wide range
of energy growth, we prepare the system in the ground state of ĤA. In this state, the single-particle density matrix
is given by,

ρsij (0) =

N∑
α=1

φ∗α (i)φα (j) , (14)

where φα (i) ≡ 〈i|α〉 are single-particle eigenstates of ĥA ordered by energy, and N is the number of fermions, which
we set to be N = L/2, namely, half-filling.

In Fig. 1(a) we show how the averaged (over realizations of disorder and trajectories) energy absorbed from the
coupling to the local environment, ∆ε (t) =

[
ε (t)− εGS

]
, grows in time for several disorder strengths W and a fixed
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Figure 1. Averaged energy logarithmic growth starting from the ground state of the Anderson model. (a) As a function of
disorder strength W for a system size L = 100.(b) As a function of system size L for W = 1.0.(c) Inset showing the saturation
of the energy density [ε(t)]/L to an infinite-temperature state at long times for the smaller system sizes.

system size L = 100. We observe that the averaged absorbed energy grows logarithmically with time, ∆ε ∼ ln t,
over a broad time window extending into several decades and for all the disorder strengths we study. Increasing the
disorder strength further suppresses the heating. Interestingly, this logarithmically slow energy growth resembles the
heating in a vicinity of the Floquet-MBL transition [44].

In Fig. 1(b), we show how ∆ε (t) depends on system size L, for a weak disorderW = 1. For the smallest system size
L = 12, the absorbed energy saturates, but as we increase the system size, the times required to observe saturation
significantly increase. Since the energy of the system is extensive, to compare the saturation of the energy for different
system sizes we calculate the energy density ε(t)/L. The results are presented in the inset of Fig. 1(b) and show the
approach to an energy density corresponding to an infinite-temperature state, which for ĤA is ε∞/L = 1

2 〈wi〉 = 0.

B. Entanglement entropy growth

The entanglement entropy is not a good entanglement measure for mixed states [45], and therefore is not a natural
quantity to consider for dissipative dynamics given by (4). While one can calculate the time-dependent entanglement
for each of the unraveled pure states, since the entanglement entropy is not a linear function of the wavefunctions, the
averaged entanglement entropies corresponding to different unravelings of (4) do not need to coincide (see [46] and
references therein). Notwithstanding, if a certain unraveling can be justified by an underlying physical process, the
use of such an averaged entanglement acquires physical meaning, and has implications on spread of correlations and
transport [40]. Specifically, the unitary unraveling of Refs. [42, 43] that we use here, is applicable to systems attached
to a local time-dependent potential, with a frequency band-width much larger than any other energy scale. For such
systems, the computed average entanglement entropy bounds transport or correlations spreading in the system, and
therefore, any dynamics can go faster than the entanglement dynamics.

To calculate the von-Neumann entanglement entropy we partition the system into two spatially equal parts A and
B. For noninteracting systems the entanglement between A and B is given by [47]

S (t) =−
∑
α

[
ñAα (t) log ñAα (t)

+
(
1− ñAα (t)

)
log
(
1− ñAα (t)

) ]
,

(15)

where ñAα (t) are the eigenvalues of the single-particle density matrix ρsij (t) with i, j ∈ A. To have a sizable regime
of entanglement growth we initiate the system at a random product state, namely, ρsij (t = 0) = njδij , with random
nj ∈ {0, 1}.

In Fig. 2(a), we show the time evolution of the entanglement entropy S (t), averaged over disorder and trajectories
realizations, for various disorder strengths W , and a fixed system size L = 100. Similar to the energy, we find that the
averaged entropy grows logarithmically with time and that the slope of its growth is suppressed with disorder strength.
Since the entanglement is bounded, the growth saturates at long times to S∞ ≡ limt→∞ S (t), as is apparent for the
smaller system sizes in Fig. 2(b). The entanglement entropy density S (t) /L, for different system sizes approaches
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Figure 2. Upper panels: Logarithmic entanglement growth starting from random product states. (a) As a function of disorder
strength W for L = 100, and (b) as a function of system size L for W = 1.0. (c) Inset showing the saturation of the averaged
entanglement entropy density for the smaller system sizes and diverging exponentially with increasing system size. The dashed
line in (c) refers to the entanglement entropy density averaged over all possible product states, S̄/L ≈ 0.193 (see Eq. (2) in
Ref. [50]). Lower panels: Entanglement profile. (d) Entanglement entropy (in colorbar) as a function of the cut `A; for L = 100,
and W = 1.0. (e) Entanglement entropy growth for the first half of the cuts corresponding to (d).

the same constant, S∞/L ≈ 1
4 ln 2, as is shown in the inset of Fig. 2(b). This value is considerably smaller than the

Page value SPage = 1
2L ln 2 − 1

2 [48], contrary to the case of coupling to noise in interacting systems [49]. Since in
our case the state of the system is a product state for all times, though not necessarily in the position basis, the
saturation value better agrees with the entanglement entropy density averaged over all possible product states, given
by S̄/L ≈ 0.193 (see Eq. (2) in Ref. [50]), and not over all possible states in the entire Hilbert space, which would
correspond to the Page value. Before concluding this section, it is worthwhile to observe that the entire behavior
of the averaged entanglement entropy in Fig. 2 is somewhat reminiscent of the entanglement entropy behavior in
many-body localized systems [51, 52], though, as we will see in what follows, here the system is delocalized by the
noise, which induces a slow particle transport.

In order to assess how the entanglement spreads spatially, we compute the averaged entanglement entropy for
various cuts through the system. Fig. 2(d), shows the entanglement profile at all times for different cuts (sizes) of the
subsytem A, `A. Analogously, panel (e) shows the time evolution of the entanglement entropy in lines as a function
of `A. It is clear that the delay in the logarithmic entanglement growth is proportional to the distance from the cut
to the noise term located at the middle of the chain, |L/2− `A|. The logarithmic growth starts showing up at earlier
times as the cut becomes closer to the noise term, while for cuts `A � L/2 no growth can be observed in the time
window explored. As we discussed above, since the spreading of entanglement entropy is an upper bound for other
forms of correlations, we expect that any other dynamical behavior in the system to scale at most logarithmically
with time.
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Figure 3. RMS displacement R̃ (t) as a function of time showing logarithmic transport in the system. (a) For various disorder
strengths W and L = 1000, and (b) for various system sizes L and W = 1.0.

C. Particle transport at infinite temperature

In the previous subsections we have studied the approach of the system to the infinite-temperature state. Here, we
consider particle transport at infinite temperature. Since in the absence of noise, all single-particle states are localized,
there is no transport, even at infinite temperature. Therefore, all transport is induced by the local noise. To assess
particle transport we compute the density-density correlation function

Cij (t) = Tr (ρ̂∞ n̂i (t) n̂j) =
∣∣∣Tr (ρ̂∞ ĉ†i (t) ĉj

)∣∣∣2 , (16)

which corresponds to the spreading of an excitation of the density at site j. The last equality follows from the fact
that the particles are noninteracting, and ρ̂∞ ∝ 1. For the unitary unraveling of (4) that we use here, the evolution
of ĉ†i (t) is given by ĉ†i (t) =

∑
k U

s
ik (t, 0) ĉ†k, therefore,

Cij (t) =

∣∣∣∣∣∑
k

Usik (t, 0) ρskj

∣∣∣∣∣
2

=
1

4

∣∣Usij (t, 0)
∣∣2 , (17)

where we used the infinite-temperature form of the single-particle density matrix, ρskl = 1
2δkl. To characterize the

nature of transport in the presence of the local noise, we first evaluate the width of the excitation profile, known as
the root-mean-square (RMS) displacement,

R̃ (t) =

(
L∑
i=1

(i− j)2
[
Cij (t)

])1/2

. (18)

For diffusive transport, R̃ (t) ∼
√

2Dt, where D is the linear response diffusion constant [53, 54], and for localization
the width is bounded, R̃ (t) ≤ A.

In Ref. [26], it was shown that the Anderson insulator subject to global noise with arbitrary correlation time exhibits
transient subdiffusion, before asymptotic diffusion takes place. In contrast, in the case of local white noise, we find
that the RMS displacement R̃ (t) grows logarithmically with time, without any signs of crossover to diffusion (see
Fig. 3(a)). Similarly to the energy and the entanglement entropy, transport is suppressed with increasing the disorder
strength. In Fig. (3)(b) we show that our results do not suffer from finite-size effects over a broad time window
spanning several decades.

IV. SEMI-ANALYTICAL PICTURE

In this section we provide a theoretical model of nonequilibrium dynamics in the Anderson insulator in the presence
of a local noise, which gives a qualitative explanation of the phenomenology we observe. For this purpose we use
a variable-range-hopping-like approach, as originally introduced by Mott in the context of phonons [18]. In this
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Figure 4. Logarithmic RMS displacement R̃ (t) as a function of time corresponding to the analytical picture. (a) For various
localization lengths ξ and L = 1000. (b) The same as (a), but R̃ (t) /ξ plotted vs ξt.

approach, the environment induces hopping between the localized orbitals of the Anderson problem. Moreover, it is
assumed that the noise decoheres the dynamics, such that the process can be described by a classical master equation
[22, 23, 55],

∂tpα =
∑
β

(Γαβpβ − Γβαpα) , (19)

where pα is the probability to find a particle at an Anderson eigenstate 〈i|α〉 = φα (i), and

Γαβ = Γβα = γ2 | 〈β|L/2〉 〈L/2|α〉|2

= γ2
∣∣∣∣φ∗β (L2

)
φα

(
L

2

)∣∣∣∣2 , (20)

are the transition rates between Anderson eigenstates |α〉 and |β〉, where to obtain the rates we used the noise coupling
γ |L/2〉 〈L/2|, and the fact that the noise is white. Since the Anderson eigenstates are localized, in a one-dimensional
lattice the indices α can be ordered almost in one-to-one correspondence with the site indices i, thus we can write,

Γαβ = γ2e−|α−L/2|/ξe−|β−L/2|/ξ, (21)

where ξ is the localization length. We see that the transition rates between a pair of states are exponentially suppressed
with the distance from the local noise, which explains the exponentially long-time scales we observe. To see this more
precisely, we numerically solve (19) for a particle initially located at the center of the lattice. In this case the RMS

displacement is given by R̃(t) =

√∑
α

(
α− L

2

)2
pα (t), and is plotted in Fig. 4(a) for various localization lengths, ξ.

Plotting R̃ (t) /ξ with respect to ξt results in a perfect collapse of the data, as shown in Fig. 4(b), indicating that
the RMS displacement scales as R̃ (t) ∼ ξ ln (ξt), which is in excellent agreement with the quantum simulation in
the previous section, though we could not produce a similar collapse for the original problem (2) with ξ computed
numerically. This might indicate that more than one scaling parameter might be required.

V. DISCUSSION

We have studied the dynamical behavior of the Anderson insulator in the presence of a local noisy potential. While
the dynamics is dissipative, it can be efficiently studied using an ensemble of pure states, which evolve under unitary
evolution [42, 43]. Physically, this corresponds to dynamics in the presence of a local, time-dependent potential with
a very wide bandwidth of frequencies, which allows us to consider, in addition to the energy absorption, the growth
of the entanglement entropy. We find that both quantities grow logarithmically in time and saturate after times that
diverge exponentially with system size. While the local noise leads to an infinite-temperature state at long times,
the entanglement entropy saturates to an extensive value which is smaller than the Page value [48], but that is in
good agreement with the average entanglement entropy over all product states [50]. Interestingly, the entanglement
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entropy growth we observe is similar to that of many-body localized systems [51, 52], but contrary to MBL systems,
the local noise induces slow logarithmic particle transport at infinite temperature. This scenario is also different from
the case of global coupling to noise, where subdiffusive transport is only a transient and asymptotically the system
is diffusive [26]. While in this work we have studied a one-dimensional Anderson insulator, the analytical picture we
have presented suggests that our results should hold as long as there are no delocalized single-particle states.

We show that the slow dynamical behavior of the Anderson insulator in the presence of a local noise, can be
qualitatively understood using a classical master equation, which describes noise-mediated hopping of a particle
between localized single-particle states, similar to the variable-range-hopping mechanism [18, 22, 23, 55]. In particular,
we show that the RMS displacement of the particle grows as, R̃ (t) ∼ ξ ln ξt, indicating a vanishing diffusion coefficient.
Based on this analysis, it is easy to see that our results should hold for any noise which operates in a bounded spatial
region, however, the system will become delocalized if the noise operates on a finite fraction of the lattice, p. In this
case, the average distance between the noisy sites would be ` = 1/p, and the system would delocalize in a time scale,
t ∼ ξ−1 exp [`/ξ], exhibiting diffusive transport [26, 34]. Our results provide an upper bound for the delocalization
rate of Anderson and MBL systems in the presence of local ergodic grains, discussed in Refs. [56, 57], since unlike the
grains, the local noise does not “cool down”. Our predictions could be feasibly assessed in quantum simulators with
ultracold atoms.
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