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Abstract

We introduce matchmakereft, a fully automated tool to compute the tree-level and one-
loop matching of arbitrary models onto arbitrary effective theories. Matchmakereft per-
forms an off-shell matching, using diagrammatic methods and the BFM when gauge the-
ories are involved. The large redundancy inherent to the off-shell matching together with
explicit gauge invariance offers a significant number of non-trivial checks of the results
provided. These results are given in the physical basis but several intermediate results,
including the matching in the Green basis before and after canonical normalization, are
given for flexibility and the possibility of further cross-checks. As a non-trivial example
we provide the complete matching in the Warsaw basis up to one loop of an exten-
sion of the Standard Model with a charge −1 vector-like lepton singlet. Matchmakereft
has been built with generality, flexibility and efficiency in mind. These ingredients al-
low matchmakereft to have many applications beyond the matching between models
and effective theories. Some of these applications include the one-loop renormalization
of arbitrary theories (including the calculation of the one-loop renormalization group
equations for arbitrary theories); the translation between different Green bases for a
fixed effective theory or the check of (off-shell) linear independence of the operators in
an effective theory. All these applications are performed in a fully automated way by
matchmakereft.
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1 Introduction

Effective field theories (EFTs) are the most appropriate tool to perform calculations in multi-
scale problems when using mass-independent renormalization schemes. The process of match-
ing and running turns an often complicated, and sometimes not even perturbatively conver-
gent, multi-scale problem into a succession of simpler single-scale calculations with the pos-
sibility of resummation of large logarithms for a better perturbative convergence [1]. The
absence of direct experimental indications of new physics beyond the Standard Model (SM)
seems to imply a hierarchy between the scale of new physics and the energies at which exper-
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iment is performed. In these circumstances, EFTs are not only applicable, but they become a
powerful tool that allows us to very efficiently solve the problem of comparing experimental
data with theoretical predictions. This is a highly non-trivial problem that involves compli-
cated, usually loop-level, calculations of many experimental observables. Calculations that
have to be repeated for each new physics model and for each observable. The way EFTs sim-
plify this process is by splitting in two, mostly independent, steps. The first one, the bottom-up
approach to EFTs, provides a model-independent parametrization of experimental observables
that can be systematically improved but has to be computed only once (for the given precision)
for each experimental observable. This efficient parametrization can be provided in the form
of global fits to experimental data and a very important effort from the community has been
devoted to this task in the last few years (see [2–13] and references there in for some recent
global fits). The second step, the top-down approach to EFTs, sacrifices model-independence
in favour of model-discrimination. It consists of the process of matching, in which the Wil-
son coefficients (WCs) of the EFT are computed in terms of the parameters of the ultraviolet
(UV) model. This process of matching has to be repeated for each UV model but it can be
automated.

When dealing with searches for new physics beyond the SM, the relevant EFT seems to be
the SMEFT (see [14] for a recent review). The SMEFT WCs can be run down to the electroweak
scale thanks to the renormalization group equations (RGEs) computed in [15–18] at dimen-
sion 6 ignoring baryon and lepton number violating operators (see [19,20] for calculations of
a subset at dimension 6, [21,22] for the inclusion of lepton-number violating operators, [18]
for baryon-number violating ones, [23] for dimension-7 operators and [24, 25] for recent ef-
forts towards the calculation of the dimension 8 RGEs). The SMEFT has been matched to the
low-energy EFT (LEFT), the relevant EFT below the electroweak scale, both at tree level [26]
and at one-loop [27] and then run again using the LEFT RGEs [28] to the relevant experi-
mental energy scale to compute the corresponding experimental observables. This process of
running in the SMEFT, matching to the LEFT and running in the LEFT has been implemented
in automated tools like DsixTools [29, 30] or Wilson [31]. This leaves the calculation of
the matching of arbitrary UV models onto the SMEFT as the only missing step towards a fully
automated calculation of the phenomenological implications of new physics models.

We present in this article matchmakereft, https://ftae.ugr.es/matchmakereft/, a fully
automated tool to perform tree-level and one-loop matching of arbitrary UV models onto
arbitrary EFTs. The tree-level matching of the most general extension of the SM onto the
SMEFT at dimension 6 has been recently computed in [32], building on previous partial re-
sults [33–36]. Going up to the one-loop order in the matching is far more complex and some
degree of automation is needed. Functional methods, pioneered in [37] extending ideas from
the 80s [38,39], have seen an impressive progress in the recent years [40–51] and they have
resulted in computer tools that help with some of the most computational-intensive steps of
the calculation [52, 53] or that are automated but apply only to specific sets of models [54].
However, to the best of our knowledge, there is currently no code that can provide the com-
plete one-loop matching of arbitrary models onto arbitrary EFTs in a fully automated way. 1

Matchmakereft comes to fill this gap.
Matchmakereft uses a diagrammatic approach to tree-level and one-loop matching, per-

formed in the background field method (BFM) when gauge theories are involved. The match-
ing is, as of version 1.0.0, done off-shell which, together with gauge invariance, provides a
significant redundancy that results in a number of non-trivial cross-checks of the calculation.
It has been designed with efficiency, generality and flexibility in mind, what allows a num-
ber of applications beyond the direct matching of UV models to EFTs. Current applications
include the renormalization of arbitrary (effective) theories, the calculation of the RGEs of ar-

1See [55,56] for alternative partial efforts using a diagrammatic approach.
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bitrary (effective) theories, EFT basis translation and checks of (off-shell) linear independence
of operators. All these calculations are done in a fully automated way.

The rest of the article is organised as follows. We describe the way matchmakereft per-
forms the tree-level and one-loop calculation in Section 2. Model creation in matchmakereft
is explained in detail in Section 3. The different commands available in matchmakereft are
defined in Section 4 and common pitfalls when using matchmakereft are described in Sec-
tion 5. Some physical applications are given in Section 6 and we conclude and provide some
outlook in Section 7. In the appendices we provide some more technical information, includ-
ing comprehensive installation instructions in Appendix A, details about the handling of γ5
in Appendix B, a minimal but complete example of the capabilities of matchmakereft in
Appendix C, as well as the complete Green basis for the baryon-number preserving SMEFT,
including our definition of evanescent operators, in matchmakereft in Appendix D.

2 Matchmakereft in a nutshell

2.1 Model classification

Models in matchmakereft are classified according to two criteria. Depending on their spec-
trum they can be light models, if only light (but not necessarily massless) particles are present
in the spectrum; or heavy models, when there is at least one heavy particle in the spectrum.
Depending on their role in the process of matching we have UV models, which can be light
or heavy, that are to be matched onto EFTs, which are necessarily light models. Models in
matchmakereft are created using FeynRules [57], as described in detail in Section 3.

Matchmakereft performs an off-shell matching, in the BFM when gauge theories are in-
volved, of a UV model onto an EFT. This is done by computing, in dimensional regularization
in D = 4− 2ε space-time dimensions, the hard-region contribution to the one-light-particle-
irreducible relevant amplitudes at tree and one-loop level in the UV theory and equating it to
the tree level contribution in the EFT for arbitrary kinematic configurations of the external par-
ticles (see [58,59] for two recent excellent reviews of the matching process). The amplitudes,
with only physical external light particles, that have to be computed are fixed in an auto-
mated way by matchmakereft but the user has flexibility on changing this list as described
in Section 4. All the relevant diagrams in the UV model and the EFT are then automatically
computed by QGRAF [60] and the corresponding amplitudes are dressed by matchmakereft
using the Feynman rules computed during the creation of the model.

2.2 Amplitude calculation

Matchmakereft runs in two different modes, depending on whether the UV model is light
or heavy, called RGEmaker and Matching modes, respectively. In RGEmaker mode, which is
used to compute the RGEs of an arbitrary theory, the UV model contains no heavy particles
and matchmakereft computes the UV-divergent contribution proportional to 1/ε of the cor-
responding one-particle-irreducible amplitudes. In Matching mode, there are heavy particles
in the spectrum and both the finite and 1/ε (both UV and IR) hard-region contributions to
the corresponding one-light-particle-irreducible amplitudes are computed. In this case dia-
grams including only light particles are not included in the calculation, as they cancel in the
matching.

The calculation of the hard region contribution to the amplitudes is performed with FORM [61]
and proceeds as follows:

• Hard region expansion. This corresponds to the following expansion of the integrand
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of the amplitude
k2 ∼ M2� p2 ∼ m2, (1)

where k represents the loop momentum, M a heavy mass, p any of the external momenta
and m a light mass. This is done by iterating the following identities

1
(k+ p)2 −M2

=
1

k2 −M2

�

1−
p2 + 2k · p
(k+ p)2 −M2

�

,

1
(k+ p)2 −m2

=
1
k2

�

1−
p2 + 2k · p−m2

(k+ p)2 −m2

�

. (2)

These identities are imposed iteratively until the power of infrared (IR) scales (external
momenta or light masses) is the correct one to match the maximum dimension of the
operators appearing in the EFT as automatically computed in matchmakereft.

• Tensor reduction. Tensor reduction is performed by means of the following identities

kµ1 kµ2 = gµ1µ2
k2

D
, (3)

kµ1 kµ2 kµ3 kµ4 = gµ1µ2µ3µ4
k4

D2 + 2D
, (4)

kµ1 . . . kµ6 = gµ1...µ6
k6

D3 + 6D2 + 8D
, (5)

kµ1 . . . kµ8 = gµ1...µ8
k8

D4 + 12D3 + 44D2 + 48D
, . . . (6)

where gµ1...µn is the totally symmetric combination of metric tensors.

• Dirac algebra. Once the integrals have been reduced to scalar integrals we proceed
to perform the corresponding Dirac algebra, in D dimensions in Matching mode (in
4 dimensions in RGEmaker mode). Version 1.0.0 of matchmakereft uses an anti-
commuting γ5 prescription as discussed in Section 2.3. In the case of fermion number
violating particles and/or interactions, we follow the rules proposed in Ref. [62,63].

• Partial fractioning. The following identity is used to separate propagators with different
masses

1
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where masses can be light or heavy and one of them can be vanishing.

• Integration by parts. After partial fractioning scaleless integrals are set to zero, except
in RGEmaker mode, in which case we keep the UV poles using,

∫

dDk
(2π)D

1
k4
=

i
(4π)2

1
ε
+ . . . , (8)

before eliminating the remaining scaleless integrals. In Matching mode the following
identity is used to reduce the massive integrals to tadpoles

1
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=
D− 2n
2nm2

1
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. (9)

At this point we are left with a tadpole integral

a0(m) =

∫
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where
1
ε̄
≡

1
ε
+ γE − log(4π), (11)

with γE ≈ 0.5772 the Euler-Mascheroni constant. In matchmakereft 1/ε̄ is denoted
by invepsilonbar.

2.3 About γ5 and evanescent operators

In order to ensure maximum generality matchmakereft assumes no four-dimensional proper-
ties when running in Matching mode. In particular no Fierz relations or reduction of products
of three or more gamma matrices is perform during the matching procedure. This means that
all evanescent structures, which are equivalent to operators in the Green basis only in D = 4
have to be explicitly defined as part of the Green basis. As an example, we provide in Ap-
pendix D the complete Green basis for the SMEFT at dimension 6 as needed for the matching
with matchmakereft of general theories with renormalizable couplings. 2 This extends the
Green basis of [64]with the general set of evanescent structures including fermionic operators.

Regarding γ5 it is well known that its implementation in dimensional regularization schemes
is problematic (see [65] and references there in for an account of the current status). The cur-
rent version of matchmakereft (1.0.0) implements an anticommuting γ5 together with an
implementation of the hermiticity properties of the WCs that is enough for the case of the
SMEFT (and extensions with multiple scalar doublets) as we discuss more carefully in Ap-
pendix B.

2.4 Wilson coefficient matching

Once the amplitudes have been computed, the output is written in two files for each ampli-
tude, one including the gauge structure and the other including the kinematic and flavour
structures. Matchmakereft then uses Mathematica match the amplitudes for all kinematic
configurations between the UV model and the EFT both at tree level and one loop. Once the
off-shell matching has been performed, that is the Wilson coefficients of the Green basis have
been computed in terms of the couplings and masses of the UV model, matchmakereft au-
tomatically performs a canonical normalization of the results and then reduces the matching
to a physical basis as defined by the user (see Section 4 for details). Results at all three levels
(Green basis with non-canonical kinetic terms, canonically normalised Green basis and Phys-
ical basis) are reported by matchmakereft together with the corresponding renormalisation
of the gauge couplings as fixed by gauge boson renormalisation in the BFM. If RGEmakermode
has been invoked then matchmakereft can also automatically compute the beta functions for
all the WCs of the EFT used.

The off-shell matching used introduces a large degree of kinematic redundancy. In gauge
theories the BFM also introduces a large degree of explicit gauge redundancy. These redundan-
cies provide a very powerful mechanism to cross-check the results obtained in matchmakereft
and when any of them is not fulfilled matchmakereft will issue a warning and provide some
extra information that can be useful to debug the problem.

2Non-renormalizable theories can be matched also with matchmakereft but an extension of the basis with
a larger number of gamma matrices in four-fermion operators would be needed. Similarly, if bosonic evanescent
operators appear in the process of matching a specific UV model they would have to be included in the EFT basis.
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3 Model creation

Model creation is fully automated in matchmakereft but it relies on the explicit input from
the user. Thus, it is the step that should be performed with the greatest care, as it is the most
likely culprit in case of problems with the matching calculation. Model creation is greatly
simplified by the use of FeynRules but a few important points should be taken into account.

3.1 Required files

Matchmakereft expects a number of files with all the relevant information to create the
model. The detailed structure of each of these files will be defined below but we list them here
first: 3

• Model files (compulsory): one or more files modfile1.fr, ..., modfilen.fr that
define the model in FeynRules format. One of the files, the last one of the list dur-
ing the creation of the model (see below) is special, as it will define the name of the
matchmakereft model, which is modelfilen_MM, and the name that extra files with
additional information need to have. Matchmakereft expects the Lagrangian of the
to be defined as Ltot. If a different name is used the model will not be created.

• Gauge information file (compulsory only if gauge groups are present): a file called
modfilen.gauge that has the definition of all the gauge functions, including struc-
ture constants, group generators in different representations and Clebsch-Gordan coef-
ficients, appearing in the model (see below for more information). The user can choose
any gauge basis of interest but they are responsible for the consistency of the chosen
basis.

• Symmetry file (optional): a file called modfilen.symm that indicates possible symme-
tries in the parameters of the model. This is particularly important in the case of the EFT
model and it is compulsory in this case if symmetries are present. The content of the file
should be a Mathematica list in which the symmetries are given in the form of replace-
ment rules. As an example we show the case of the symmmetries of the Wilson coefficient
of the Weinberg operator (denoted by alphaWeinberg[i,j]=alphaWeinberg[j,i])
and the four-lepton operator O`` = ¯̀

iγ
µ` j

¯̀
kγµ`l (denoted by alphaOll[i,j,k,l]=

alphaOll[k,l,i,j]):

1 listareplacesymmetry=
2 {
3 alphaWeinberg[i_, j_] -> alphaWeinberg[j, i],
4 alphaWeinbergbar[i_ , j_] -> alphaWeinbergbar[j, i],
5 alphaOll[i_ , j_, k_, l_] -> alphaOll[k, l, i, j]
6 }

where the underscore denoting dummy indices on the left hand side of the rules is com-
pulsory and the bar at the end of a name denotes complex conjugation.

• Redundancy file (compulsory): a file called modfilen.red that provides the redun-
dancies that express the Wilson coefficient of a physical basis in terms of the ones in the
Green basis. It is compulsory but it can be empty if no redundancies are needed (for
example if the model is a UV model, if the physical and Green bases coincide or if we
just want the results in the Green basis).

3The installation of matchmakereft comes with a number of sample models that can be obtained with the
command copy_models (see below). We encourage the user to check these examples for details on how to
implement new models.
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• Hermiticity properties file: complex conjugation is a very important process in matchmakereft,
providing extra cross-checks of the correctness of the calculation. For that reason it is im-
portant to provide the information of which WCs have special (anti)hermiticity proper-
ties. A file called modfilen.herm can be provided by the user defining a Mathematica
list called listahermiticity defining those WCs whose hermitian conjugate can be
defined in terms of the original coefficient. As an example, for the case of the hermitian

operator (O(1)Hq)i j = H†i
↔
DµH¯̀

iγ
µ` j , its Wilson coefficient, denoted alphaOHq1[i,j]

satisfies alphaOHq1bar[i,j]=alphaOHq1[j,i]. This is provided in the form of the
hermiticity file as follows

1 listahermiticity = {
2 alphaOHq1bar[i_ ,j_]->alphaOHq1[j,i]
3 }

3.2 Gauge structure

Matchmakereft is especially efficient when the matching is performed in the unbroken phase
of gauge theories as it keeps gauge indices as dummy indices during the calculation of the am-
plitudes, replacing them with their explicit values only at the end of the calculation. When
creating a model, all gauge functions, including structure constants, generators in different
representations and Clebsh-Gordan coefficients need to have a specific name that does not
correspond to any function already present in Mathematica or FeynRules. Structure con-
stants and generators do not have to be defined as FeynRules parameters but Clebsch-Gordan
coefficients do. The numerical values of these gauge functions are provided in a file wigh a
modfilen.gauge extension with the definition of a mathematica list called replacegaugedata
that consist of a list of substitutions in the form of Mathematica sparse arrays. As a simple
example, the SU(2)L weak gauge group can be defined as follows in one of the .fr files:

1 M$GaugeGroups = {
2 SU2L == {
3 Abelian -> False ,
4 CouplingConstant -> g2,
5 GaugeBoson -> Wi,
6 StructureConstant -> fsu2 ,
7 Representations -> {{Ta,SU2D}}
8 }
9 },

where we have defined the structure constant symbol and one representation with generator
symbol Ta and index definition SU2D. Note that the adjoint representation does not need
to be explicitly defined as it is defined by the structure constants and the definition of the
corresponding gauge bosons which, in this case reads (again, provided in one of the .fr
files),

1 M$ClassesDescription = {
2 V[2] == {
3 ClassName -> Wi,
4 SelfConjugate -> True ,
5 Indices -> {Index[SU2W]},
6 Mass -> 0,
7 FullName -> "light"
8 }
9 };

A few things are worth emphasizing from the above example. First, the mass is set to zero
because we are in the unbroken phase of the SM. Second, we define physical fields in entire
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gauge multiplets, rather than components. 4 Finally, we assign the FullName variable to “light”
(FullName->"light"). This is compulsory in matchmakereft. Every particle has to be
defined with FullName equal to either "light" or "heavy" to define the corresponding
particle as light (and therefore to be kept in the EFT model) or heavy (to be integrated out in
the UV model).

The corresponding indices (not only gauge, also flavour indices if present) have to be
defined with a finite range within the .fr files. As an example the ones corresponding the
the adjoint (SU2W) and fundamental (SU2D) representations of SU(2)L , together with flavor
indices for fermion generations (Generation), can be defined as follows

1 IndexRange[Index[SU2W]] = Range [3];
2 IndexRange[Index[SU2D]] = Range [2];
3 IndexRange[Index[Generation ]] = Range [3];
4 IndexStyle[SU2W ,n];
5 IndexStyle[SU2D ,l];
6 IndexStyle[Generation , fl];

Only massless particles can have flavor indices in the current version of matchmakereft
(1.0.0).

In order to show how new particles with non-trivial quantum numbers and Clebsch-Gordan
coefficients are defined we show here the case of a heavy scalar triplet under SU(2)L and the
SM Higgs

1 M$ClassesDescription = {
2 S[105] == {
3 ClassName -> tphi ,
4 SelfConjugate -> True ,
5 Indices -> {Index[SU2W]},
6 Mass -> Mtphi ,
7 FullName -> "heavy",
8 QuantumNumbers -> {Y -> 0}
9 },

10

11 S[11] == {
12 ClassName -> Phi ,
13 Indices -> {Index[SU2D]},
14 SelfConjugate -> False ,
15 Mass -> muH ,
16 FullName -> "light",
17 QuantumNumbers -> {Y -> 1/2}
18 }
19

20 };

where the new particle is defined as heavy and has a non-zero mass while the SM Higgs boson is
defined as light (but also has a non-vanishing mass). We also see that U(1) quantum numbers
have to be defined explicitly as is standard in FeynRules. A trilinear coupling between the
heavy scalar and two Higgs bosons, which has a non-trivial gauge structure following the
corresponding Clebsch-Gordan coefficients, has to be defined explicitly like in the following
example

1 M$Parameters = {
2

3 C223 == {
4 ParameterType -> Internal ,
5 Indices -> {Index[SU2D],Index[SU2D],Index[SU2W]},
6 ComplexParameter -> True

4It is actually possible to define also the field components separately as the physical fields. In fact, this can be
advantageous when creating complicated models that take very long to generate in FeynRules.
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7 },
8

9 ...
10 }

and in the corresponding Lagrangian

1 Ltot := Block[{ii,jj,nn},
2 2 C223[ii ,jj,nn] kappatphi tphi[nn] Phibar[ii] Phi[jj] + ...]

As mentioned above the explicit values of the gauge functions are given in a file called modfilen.gauge
(assuming the last FeynRules model file is called modfilen.fr) which, in the example we
are showing would contain the following information

1 replacegaugedata = {
2 fsu2 -> SparseArray[Automatic , {3, 3, 3}, 0,
3 {1, {{0, 2, 4, 6}, {{2, 3}, {3, 2},
4 {1, 3}, {3, 1}, {1, 2}, {2, 1}}},
5 {1, -1, -1, 1, 1, -1}}],
6 Ta -> SparseArray[Automatic , {3, 2, 2}, 0,
7 {1, {{0, 2, 4, 6}, {{1, 2}, {2, 1},
8 {1, 2}, {2, 1}, {1, 1}, {2, 2}}},
9 {1/2, 1/2, -I/2, I/2, 1/2, -1/2}}],

10 C223 -> SparseArray[Automatic , {2, 2, 3}, 0,
11 {1, {{0, 3, 6}, {{1, 3}, {2, 1}, {2, 2},
12 {1, 1}, {1, 2}, {2, 3}}},
13 {1/2, 1/2, -I/2, 1/2, I/2, -1/2}}]}

where we have implemented the usual definitions, fsu2[i,j,k] = εi jk, Ta[a,i,j] = σa
i j/2

and C223[i,j,a] = σa
i j/2.

3.2.1 Background field method

Matchmakereft assumes that the BFM is used when gauge theories are involved. Following
the SU(2)L example, the associated quantum and ghost fields have to be defined on top of the
definition of Wi given above

1 V[102] == {
2 ClassName -> WiQuantum ,
3 SelfConjugate -> True ,
4 Indices -> {Index[SU2W]},
5 Mass -> 0,
6 FullName -> "light"
7 },
8 U[1] == {
9 ClassName -> ghWi ,

10 SelfConjugate -> False ,
11 Indices -> {Index[SU2W]},
12 Ghost -> Wi ,
13 QuantumNumbers -> {GhostNumber -> 1},
14 Mass -> 0,
15 FullName -> "light"
16 },
17 ...

and the Lagrangian involving the SU(2)L part is given by

1 gotoBFM ={Wi[a__]->Wi[a]+ WiQuantum[a]};
2

3 Ltot :=
4 Block[{lag ,mu,nu,ii,aa},
5 lag=-1/4 FS[Wi,mu ,nu ,ii] FS[Wi,mu,nu ,ii]
6 -ghWibar[aa].DC[(DC[ghWi[aa],mu]/. gotoBFM),mu]

10
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7 -DC[WiQuantum[mu ,a],mu] DC[WiQuantum[nu ,a],nu]/2;
8 lag/. gotoBFM
9 ]

Note the compulsory use of Ltot for the name of the total Lagrangian of the model.

3.3 Defining the EFT model

As we have mentioned above, the EFT model has to be a light model (no heavy particles)
and has to include all the relevant operators in a Green basis. The WCs in the EFT need to
have a special format. They have to be named alphaXXX, where XXX stands for an arbitrary
number of alpha-numeric characters (see Section 3.4). The amplitudes that matchmakereft
computes are defined by the operators in the EFT. In that sense, one does not need to include
all the operators of a Green basis but at least all the operators in a certain class (same fields),
including redundant and evanescent operators. 5 Matchmakereft will then generate only
the relevant amplitudes to match these operators. Unless the user is absolutely sure that they
do not need them, renormalizable operators, including kinetic and mass terms, have to be
included in the EFT model.

When performing the matching, matchmakereft will check that all off-shell kinematic
configurations and all gauge directions are correctly matched. If these checks are not satis-
fied, matchmakereft will issue a warning, and store the relevant information. This usually
happens because the user made a mistake when defining the models, either because the model
is not correctly defined or because there are missing operators in the Green basis. See Sec-
tion 5 for common problems and possible solutions when running matchmakereft. When
doing the external momentum expansion all operators of dimension equal or smaller to the
highest dimension of the operators appearing in the EFT will be generated. Thus, one has to
include all operators of smaller dimensions within the same class. Failing to do so will make
the matching fail but the user can check that all problems appear in sectors that are of no
interest for them. Also sometimes some amplitudes are not correctly matched due to the use
of an anticommuting γ5. Our proposed solution should be enough to ensure the correct results
in the SMEFT and similar EFTs but a warning will still be issued and the relevant information
stored so that the user can check if the solution is correct or not.

If the user is interested in the matching result in a physical basis, they have to provide
the corresponding redundancies to reduce the WCs of the Green basis into the ones of the
physical basis. This is done in the file denoted modfilen.red. As an example, let’s consider
the following redundant operators in the SMEFT at dimension 6

OHD = (H
†DµH)†(H†DµH), (12)

RBDH = (H
†
↔
DµH)∂νBµν→ g1OHD + . . . , (13)

R2B = −
1
2
(∂µBµν)(∂ ρBρν)→−

g2
1

2
OHD + . . . , (14)

where the→ indicates an on-shell equivalence. These redudancies imply the following on-shell
condition for the corresponding Wilson coefficients (with obvious notation)

alphaOHD→ alphaOHD+ 2g1alphaRBDH−
g2

1

2
alphaR2B, (15)

which we implement in the file modfilen.red as follows

5See section 2.3 for a discussion about evanescent operators.
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1 finalruleordered ={
2 alphaOHD ->alphaOHD + 2* alphaRBDH*g1 - (alphaR2B*g1^2)/2,
3 ...
4 }

3.4 Protected words

There is quite a bit of flexibility in the process of model definition in matchmakereft but
there are a few words that are protected and should be used only for their specific purpose. In
general, all variables in matchmakereft should be made of alphanumeric characters, without
including any special characters. The list of protected variables are the following

• alpha. All WCs should be defined as alphaXXX where XXX is an arbitrary string of
alphanumeric characters. Similarly no other variable in the model should contain the
substring alpha. An exception to this rule is that when computing the RGEs of an EFT
the Wilson coefficients in the UV model can be kept with their original alphaXXX name
as they will be changed into WCXXX automatically by matchmakereft.

• Ltot. Ltot should be used to define the complete Lagrangian of the model (and it should
not be used for anything else).

• Quantum. Gauge bosons are split into a classical background and a quantum excita-
tion. If the classical gauge boson is defined by ClassName->Vname then the quantum
excitation has to be defined by ClassName->VnameQuantum.

• invepsilonbar is used for the dimensional regularization variable 1/ε̄ so it should not
be use explicitly in the definition of a model. Similarly epsilonbar is used of ε̄.

• Eps[] denotes the FeynRules Levi-civita tensor. When used with four indices it is
interpreted by matchmakereft as the Minkowskian (with + − −− metric signature)
totally antisymmetric tensor and should therefore not be used for the Euclidean one
(with a number of indices different from four it can be used as the Euclidean one). In
case one needs to use the totally antisymmetric rank-4 tensor both with Minkowskian
and Euclidean signatures, the latter should be explicitly defined as a gauge function and
its numerical value defined in the corresponding modfilen.gauge file.

• onelooporder is a dummy variable to identify the one-loop order contribution.

• sSS is a dummy variable to identify the order in external momenta of a specific contri-
bution.

• iCPV= ε0123 is used to fix the sign convention for the Levi-Civita symbol.

4 Matchmakereft usage

An updated version of this manual can be found, once matchmakereft is installed, in the di-
rectory matchmakereft-location/matchmaker/docs/where matchmakereft-location
is the directory listed under Location when the command pip show matchmakereft is
used or the analogous location in Anaconda (see Appendix A).

Matchmakereft can be run in two different ways. The same commands are available in
all different running modes although the syntax is slightly different on each of them.
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4.1 Matchmakereft commmand line interface

The most straight-forward way to run matchmakereft is via the command line interface
(CLI). This is obtained by just typing on the terminal (after matchmakereft has been installed,
see Appendix A for details)

> matchmakereft

The user has then access to the CLI which looks as follows

Welcome to matchmakereft
Please refer to arXiv :2112.10787 when using this code

matchmakereft >

Inside the CLI tab-completion is available and all file paths can be absolute or relative. The
command help gives information on all available commands. The core commands in matchmakereft
CLI are:

matchmakereft > test_installation

This command runs a number of minimal tests to check that matchmakereft has been cor-
rectly installed. The process is verbose and provides information on what is being computed.
It takes about 6 minutes to complete in a core-i7@3.00 GHz laptop.

matchmakereft > copy_models Location

This command copies a number of sample models, including the complete baryon-number
conserving SMEFT at dimension 6, in the directory Location (which can be . for the current
directory).

matchmakereft > create_model modfile1.fr ... modfilen.fr

This command creates a matchmakereft model called modfilen_MM from the FeynRules
model defined in one or more files with names modfile1.fr ... modfilen.fr as de-
scribed in detail in Section 3. The matchmakereft model is created in the same directory
modfilen.fr is present. Both relative and absolute paths can be given as input.

matchmakereft > match_model_to_eft UVModelName EFTModelName

This command performs the complete tree-level and one-loop matching of matchmakereft
UV model with name UVModelName onto a matchmakereft EFT model with name EFTModelName.
The result of the matching is written in a file called MatchingResult.dat under file UVModelName.
Any possible problems with the matching are reported and stored in a file called MatchingProblems.dat
under the same directory. Matchmakereft automatically checks if the matching is run in
RGEmaker or Matching mode.

The result of the matching stored in MatchingResult.dat is a mathematica list called
MatchingResult with four entries and the following structure

1 MatchingResult ={
2 {
3 {{GreenTree ,GreenTreeProblems },{GreenLoop ,GreenLoopProblems }},
4 {{ NormGreenTree ,NormGreenTreeProblems },{NormGreenLoop ,

NormGreenLoopProblems }},
5 {PhysTreeLoop},
6 {GaugeCouplingMatching}
7 }

where GreenTree and GreenLoop stands for the tree level and one-loop matching in the
Green basis, respectively and GreenTreeProblems,GreenLoopProblems are filled if prob-
lems were found in the process of impossing hermiticity as discussed in Section 2.3. The second
level, with the Norm prefix stand for the matching in the Green basis (again separately for tree
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level and one-loop) after canonical normalization. The third level, denoted PhysTreeLoop
stands for the matching in the physical basis in which the tree level and one-loop contribu-
tions have been merged into a single expression (with the dummy variable onelooporder
denoting the one-loop contribution). If no physical basis is defined by providing an empty
modfilen.red file then the Green basis is used as a physical basis. Finally, the fourth level,
denoted GaugeCouplingMatching provides the redefinition of the gauge couplings after
matching as fixed by the corresponding gauge boson canonical normalization in the back-
ground gauge.
matchmakereft > match_model_to_eft_onlytree UVModelName EFTModelName

Identical to match_model_to_eft but only the tree level matching is computed. With this
feature, matchmakereft can be used as an automated basis translator, as one can simply use
the corresponding EFT in a different basis as UV model and the matching will provide the
complete translation between the two bases (see Section 6 for an explicit example).
matchmakereft > compute_rge_model_to_eft UVModelName EFTModelName

This command runs match_model_to_eft UVModelName EFTModelName in RGEmaker
mode (the UV model has to be a light model) and then computes the beta functions for the
WCs of the EFT given the UV model. They are stored in a file called RGEResult.dat under
directory UVModelName. We define the beta function of a WC C as

β(C) = µ
dC
dµ

. (16)

matchmakereft > clean_model ModelName

Matchmakereft is designed for the maximal efficiency so that if a specific process has been
already computed it is not computed again. If for any reason the user wants to recreate the
calculation of all the amplitudes this command should be invoked to clean the previous calcu-
lations.
matchmakereft > check_linear_dependence EFTModelName

Given a set of operators, defined as an EFT model in directory EFTModelName, this command
checks if they are off-shell linearly independent or not. This command is useful when finding
a Green basis as sometimes the off-shell relations between different operators are difficult to
obtain analytically. If the set is not linearly independent matchmakereft will provide the
relations between the different WCs (see Section 6 for an explicit example).
matchmakereft > exit

This command exits the CLI.
For the sake of flexibility the following commands are also available to perform indepen-

dently some of the steps of the calculations:
matchmakereft > match_model_to_eft_amplitudes UVModelName EFTModelName

This command is used to compute all the relevant amplitudes in the UV model and the EFT
but no calculation of the WCs is attempted.
matchmakereft > match_model_to_eft_amplitudes_onlytree UVModelName

EFTModelName

This command is identical to match_model_to_eft_amplitudes but performs only the tree
level calculation.
matchmakereft > compute_wilson_coefficients UVModelName EFTModelName

This command should be run after the call to either match_model_to_eft_amplitudes or
match_model_to_eft_amplitudes_onlytree and it computes the WCs to complete the
matching.
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4.2 Matchmakereft as a Python module

The python CLI described in the previous section provides an interactive experience to user.
However, matchmakereft can be also run by importing matchmakereft into a python script,
a iPython shell or a Jupyter notebook as a module and then running the same commands as in
the CLI adding the parameters of the corresponding function as a string. As an example, the
commands to create a model stored in model UVmodel.fr and to match it to the EFT stored
in directory EFT_MM (which we assume has been already created) are given e.g. by

1 from matchmakereft.libs.mm_offline import *
2 create_model (" UVmodel.fr")
3 match_model_to_eft (" UVmodel_MM EFT_MM ")

All other commands in the CLI are also available to use as functions in a script that imports
matchmakereft.

5 Troubleshooting in matchmakereft

Matchmakereft provides a significant number of cross-checks that usually catch problems
with the installation or with the definition of the models. When a problem is encountered,
matchmakereft tries to provide a useful warning message that can be used to figure out
the origin of the problem. If the user encounters a problem that cannot be solved from the
information provided by matchmakereft we encourage them to check the troubleshooting
section in the latest matchmakereft manual and the Gitlab matchmakereft issue tracker
(https://gitlab.com/m4103/matchmaker-eft/-/issues) to see if the problem has been en-
countered by other users and a solution is available. If no solution can be found, the issue
tracker should be use to pose questions to the matchmakereft developers or to file possible
bugs.

Most of the times an unsuccessful matching is due to a badly defined model. Some common
pitfalls are:

• The complete Lagrangian of the model has to be named Ltot. Using a different name
results in matchmakereft not creating the model properly.

• Operators badly defined in FeynRules (a common example is indices not properly con-
tracted). This results in wrong Feynman rules that lead to incorrect matching.

• Model generation takes too long. This can happen with complicated models, in partic-
ular with effective operators of high mass dimension. As an example, the generation of
the SMEFT model can easily take more than 30 minutes in a core-i7@3.00 GHz lap-
top. In this case it is useful to compute the Feynman rules directly with FeynRules to
check that the model does not have any obvious problems. Also sometimes expanding
in the gauge components can significantly speed up model creation (at the expense of a
reduced gauge degeneracy and therefore a smaller set of cross-checks).

• QGRAF not running correctly. This could happen when vertices with a larger number of
particles than the limit set in QGRAF are present. The solution is to modify correspond-
ingly the limit in the QGRAF source and compile it again.

• FORM not running correctly. This is normally due to variables not being correctly defined
(again due to an incorrect implementation of the model). Running directly with FORM
the offending file can give hints on what is happening.
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• FORM taking too long to run. Amplitudes with many external legs usually involve a very
large number of diagrams that can take a long time to compute. The simplest solution
is to not include the corresponding operators in the EFT model if the user is not inter-
ested in their matching (in the SMEFT case at dimension 6 the operator OH = (H†H)3

is usually the one that takes the longest to be matched). Other options could imply
splitting the diagrams into smaller sets and combining the result after the calculation
(this is how the beta function of the (H†H)4 operator was computed in [24]) but this
process is not straight-forward. We expect to automate this procedure in future versions
of matchmakereft.

• All amplitudes are computed but the matching is unsuccessful. This can be due to a num-
ber of reasons, the most common ones being: the WCs of the EFT model or the couplings
in the UV model have some symmetry properties that have not been implemented in the
corresponding modfilen.symm file; the hermiticity properties of the couplings in the
EFT or UV models have not been properly defined, either in the definition of the model
itself or in the corresponding modfilen.herm file; there are some missing operators in
the Green basis of the EFT model.

6 Physics applications

A preliminary version of matchmakereft has been already used in a number of physical
applications [24, 66, 67] but we list here some of the new applications that matchmakereft
has.

6.1 Cross-checks

As we have emphasized, the large redundancy inherent in the off-shell matching in the BFM
gives us confidence on the correctness of the results computed with matchmakereft. Never-
theless we have tested matchmakereft against some of the few available complete one-loop
matching results in the literature. We have found complete agreement except when explicitly
described. The list of models we have compared to include:

• RGEmaker mode:

– Complete RGEs for the ALP-SMEFT up to mass dimension-5 as computed in [66].
Exact agreement was found up to a typo in the original reference.

– RGEs for the purely bosonic and two-fermion operators in the Warsaw basis [68] as
computed in [15–17] and implemented in DSixTools [29, 30]. Complete agree-
ment was found.

• Matching mode:

– Scalar singlet. The complete matching up to one-loop order of an extension of
the SM with a scalar singlet was recently completed in [69], after several partial
attempts [37,70]. We have found complete agreement with the results in [69].

– Type-I see-saw model, as computed in [71]. Complete agreement was found.

– Scalar leptoquarks, as computed in [64]. We have found some minor differences
that we are discussing with the authors.

– Charged scalar electroweak singlet, as computed in [72]. We agree with the result
except for a sign in Eqs. (4.14), the terms with Pauli matrices in (4.15), (B.4) and
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(B.5) (the latter is the culprit of the opposite sign in terms with Pauli matrices) and
a factor of 2 in Eq. (4.17) and of 4 in (B.7). We have contacted the authors about
these differences.

– Some partial cross-checks have been performed against the results in [73] with full
agreement.

6.2 Complete one-loop matching of a new charged vector-like lepton singlet

In this section we provide the complete tree-level and one-loop matching of an extension of
the SM with a new hypercharge −1, electroweak singlet vector-like lepton E. The Lagrangian
is given by

L= LSM + Ē(i /D−ME)E −
�

λ̃i
¯̀

iφER + h.c.
�

, (17)

where `i and φ stand for the SM lepton doublets and the Higgs boson, respectively and i is a
SM flavor index. See [74] for direct experimental limits on such an extension of the SM.

This model is included in the distribution of matchmakereft and can be obtained via
the copy_models command. Once the model is downloaded, and inside the corresponding
directory, the following commands will generate the complete one-loop matching, including
the complete matching in the Greeen basis. We use the CLI as an example and replace the
output given by matchmakereft with ... ,
matchmakereft > create_model UnbrokenSM_BFM.fr VLL_Singlet_Y_m1_BFM.fr
...
matchmakereft > match_model_to_eft VLL_Singlet_Y_m1_BFM_MM

SMEFT_Green_Bpreserving_MM
...

The non vanishing WCs in the Warsaw basis, including one-loop accuracy are given in the
next sections. In order to reduce clutter we only write explicitly flavor indices when necessary.
Also we use the following notation

bλ̃λ̃∗c ≡ λ̃iλ̃
∗
i , bλ̃Mλ̃∗c ≡ λ̃iMi jλ̃

∗
j , (18)

with Mi j and arbitrary matrix with flavor indices. We also define

LE ≡ log(µ2/M2
E ). (19)

The tree level result agrees with the calculation in [34] (when taking into account the
different notation in the Yukawa coupling).

6.2.1 SM couplings

The SM couplings receive the following (one-loop) corrections:

µ2
H =µ

(0)2
H +

bλ̃∗λ̃c
16π2

�

2M2
E −

1
2
µ
(0)2
H −

1
3

µ
(0)4
H

M2
E

− (µ(0)2H − 2M2
E )LE

�

, (20)

λ=λ(0) +
1

16π2

�

bλ̃∗λ̃c(5g(0)22 µ
(0)2
H − 6λ(0)(4µ(0)2H + 3M2

E ) + 18µ(0)2H bλ̃∗λ̃c)
18M2

E

+
(2M2

E −µ
(0)2
H )bλ̃∗Y (0)e Y (0)†e λ̃c

M2
E

�

(21)

−
1

16π2

�

bλ̃∗λ̃c[−g(0)22 µ
(0)2
H + 6λ(0)M2

E − 3M2
E bλ̃

∗λ̃c]
3M2

E

+
2(−M2

E +µ
(0)2
H )bλ̃∗Y (0)e Y (0)†e λ̃c

M2
E

�

LE , (22)
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Yu =Y (0)u −
1

16π2

��

1
4
+
µ
(0)2
H

3M2
E

�

Y (0)u bλ̃
∗λ̃c+

1
2

Y (0)u bλ̃
∗λ̃cLE

�

, (23)

Yd =Y (0)d −
1

16π2

��

1
4
+
µ
(0)2
H

3M2
E

�

Y (0)d bλ̃
∗λ̃c+

1
2

Y (0)d bλ̃
∗λ̃cLE

�

, (24)

(Ye)i j =(Y
(0)
e )i j −

1
16π2

��

1
4
+
µ
(0)2
H

3M2
E

�

(Y (0)e )i jbλ̃∗λ̃c+

�

3
8
+

3µ(0)2H

4M2
E

�

λ̃iλ̃
∗
k(Y

(0)
e )k j

�

−
1

16π2

�

1
2
(Y (0)e )i jbλ̃∗λ̃c+

�

1
4
+
µ
(0)2
H

2M2
E

�

λ̃iλ̃
∗
k(Y

(0)
e )k j

�

LE , (25)

where the (0) superscript denotes the original parameters in the SM Lagrangian. All other
SM couplings receive no corrections. In the following we express our results in terms of the
physical SM couplings, the ones on the left hand side of Eqs. (20-25).

6.2.2 Bosonic operators

Turning now to dimension 6 bosonic operators, we obtain the following non-vanishing WCs.

αHW =
1

16π2

g2
2bλ̃λ̃

∗c
24M2

E

, (26)

αHB =
1

16π2

g2
1bλ̃λ̃

∗c
8M2

E

, (27)

αHW B =−
1

16π2

g1 g2bλ̃λ̃∗c
6M2

E

, (28)

αH� =
1

16π2

1

M2
E

�

−
g4

1

30
+

�

13g2
1

72
−

5g2
2

24
−
bλ̃λ̃∗c

3

�

bλ̃λ̃∗c+
3
2
bλ̃∗YeY †

e λ̃c

�

+
1

16π2

1

M2
E

��

g2
1

12
−

g2
2

4

�

bλ̃λ̃∗c+ bλ̃∗YeY †
e λ̃c

�

LE , (29)

αHD =
1

16π2

1

M2
E

�

−
2g4

1

15
+

�

13g2
1

18
−
bλ̃λ̃∗c

2

�

bλ̃λ̃∗c+
1
2
bλ̃∗YeY †

e λ̃c

�

+
1

16π2

1

M2
E

�

g2
1

3
bλ̃λ̃∗c+ bλ̃∗YeY †

e λ̃c
�

LE , (30)

αH =
1

16π2

1

M2
E

��

4λ2

3
−

5λg2
2

9
− 2λbλ̃λ̃∗c+

bλ̃λ̃∗cbλ̃λ̃∗c
3

+ 2bλ̃∗YeY †
e λ̃c

�

bλ̃λ̃∗c

+ 2λbλ̃∗YeY †
e λ̃c − 2bλ̃∗YeY †

e YeY †
e λ̃c

�

+
1

16π2

1

M2
E

�

−
2λg2

2

3
bλ̃λ̃∗c+ 4λbλ̃∗YeY †

e λ̃c − 2bλ̃∗YeY †
e YeY †

e λ̃c
�

LE . (31)

All other bosonic operators do not receive any corrections up to one loop.
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6.2.3 Bi-fermion operators

Regarding operators in the Warsaw basis with two fermion fields, the non-vanishing contribu-
tions in our model are the following.

(αeW )i j =−
1

16π2

g2

24M2
E

λ̃iλ̃
∗
k(Ye)k j , (32)

(αeB)i j =−
1

16π2

g1

12M2
E

λ̃iλ̃
∗
k(Ye)k j , (33)

(α(1)Hq)i j =
g2

1

16π2

1

M2
E

�

−
g2

1

45
+

13
216
bλ̃λ̃∗c+

1
36
bλ̃λ̃∗cLE

�

δi j , (34)

(α(3)Hq)i j =
g2

2

16π2

1

M2
E

�

−
5

72
bλ̃λ̃∗c −

1
12
bλ̃λ̃∗cLE
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δi j , (35)

(αHu)i j =
g2

1

16π2

1

M2
E

�

−
4g2

1
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13
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(αHd)i j =
g2

1

16π2

1

M2
E
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∗
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4M2
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(α(3)H`)i j =−
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(αHe)i j =
1

16π2

1

M2
E

�

g2
1

�

2g2
1

15
−

13bλ̃λ̃∗c
36

�

δi j +
1
24
(Y †

e )ikλ̃kλ̃
∗
l (Ye)l j

+

�

−
g2

1

6
bλ̃λ̃∗cδi j +

1
4
(Y †

e )ikλ̃kλ̃
∗
l (Ye)l j

�

LE

�

, (40)
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(αuH)i j =
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1
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bλ̃∗YeY †

e λ̃c

+

�

−
g2

2

6
bλ̃λ̃∗c+ bλ̃∗YeY †

e λ̃c
�

LE

�

(Yd)i j , (42)

(αeH)i j =
λ̃iλ̃

∗
k(Ye)k j

2M2
E

+
1

16π2

1

M2
E

��

2
3
λ−
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2
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−
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2
bλ̃λ̃∗c

�

bλ̃λ̃∗c(Ye)i j +
1
2
bλ̃∗YeY †

e λ̃c(Ye)i j

+
�

5λ−
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�

λ̃iλ̃
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k(Ye)k j +
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(Ye)ik(Y

†
e )kl λ̃l λ̃

∗
m(Ye)mj −

1
4
λ̃iλ̃

∗
k(Ye)kl(Y

†
e )lm(Ye)mj

�
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1
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1
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E

�

−
g2

2

6
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�

4λ−
3
4
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�

λ̃iλ̃
∗
k(Ye)k j

+
3
4
(Ye)ik(Y

†
e )kl λ̃l λ̃

∗
m(Ye)mj

�

LE . (43)

6.2.4 Four-fermion operators

Finally, the following four-fermion operators receive non-vanishing WCs.

(α(1)qq )i jkl =−
1

16π2

g4
1

270M2
E

δi jδkl , (44)

(αuu)i jkl =−
1

16π2

8g4
1

135M2
E

δi jδkl , (45)

(αdd)i jkl =−
1

16π2

2g4
1

135M2
E

δi jδkl , (46)

(α(1)ud )i jkl =−
1

16π2

8g4
1

135M2
E

δi jδkl , (47)

(α(1)qu )i jkl =−
1

16π2

1

M2
E

�

4g4
1

135
δi jδkl +

1
18
bλ̃λ̃∗c(Yu)il(Y

†
u )k j

�

, (48)

(α(8)qu )i jkl =−
1

16π2

1

3M2
E

bλ̃λ̃∗c(Yu)il(Y
†

u )k j , (49)

(α(1)qd )i jkl =
1

16π2

1

M2
E

�

2g4
1

135
δi jδkl −

1
18
bλ̃λ̃∗c(Yd)il(Y

†
d )k j

�

, (50)

(α(8)qd )i jkl =−
1

16π2

1

3M2
E

bλ̃λ̃∗c(Yd)il(Y
†
d )k j , (51)

(α(1)quqd)i jkl =
1

16π2

1

3M2
E

bλ̃λ̃∗c(Yu)i j(Yd)kl , (52)
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(α``)i jkl =
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(αee)i jkl =−
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(α(3)
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(αeu)i jkl =
1
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8g4
1
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(αed)i jkl =−
1
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1
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(α`edq)i jkl =
1
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1

3M2
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bλ̃λ̃∗c(Ye)i j(Y
†
d )kl , (63)
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6.3 Basis translation

Given a specific EFT, defined by its field content and symmetries, there are different options to
choose a basis of operators (either Green or physical). Different bases are useful for different
purposes and it is very useful to have a systematic way to translate the results from one basis
to another. The Rosetta code [75] can be used to translate between popular physical bases
for the dimension 6 SMEFT. However a more general approach, applicable to different EFTs
and any two bases (not necessarily physical) would be very welcome. Matchmakereft can
do this in a straight-forward way by performing the tree-level matching of the new basis (as a
UV model) onto the old one (as an EFT).

As a trivial example we consider the following two operators that appear in the one-loop
integration of a scalar singlet as shown in [70]

OR =(H
†H)(DµH†DµH)

→2λOH +
1
2
OH� +

1
2

�

(Yu)i j(OuH)i j + (Yd)i j(OdH)i j + (Ye)i j(OeH)i j + h.c.
�

, (65)

OT =
1
2
(H†

↔
DµH)2→−2OHD −

1
2
OH�, (66)

where in the second equality we have written these operators in terms of the corresponding
ones in the Warsaw basis (see Appendix D for the definition of the operators).

When using matchmakereft to match at tree level a UV model consisting of the SM plus
the two operators in the new basis, OR and OT , onto the SMEFT in the basis described in
Appendix D we obtain the following tree-level matching in the physical basis (we use β for
the WCs of the operators in the new basis)

αH =2λβR, αHD =− 2βT , αH� =
1
2
(βR − βT ), (67)

αuH =
1
2
βR(Yu)i j , αdH =

1
2
βR(Yd)i j , αeH =

1
2
βR(Ye)i j , (68)

which exactly reproduce the above equations. This is of course just a minimal example to show
the application of matchmakereft to basis translation but complete bases (both Green and
physical) can be translated in an automated way using this procedure.

6.4 Off-shell operator independence

Constructing a Green basis, that can match arbitrary off-shell amplitudes, is in principle straight-
forward. One has to simply write all possible operators and then eliminate those that are re-
lated to others by integration by parts (momentum conservation at the amplitude level) or
gauge (Fierz) identities. However, this procedure is sometimes quite cumbersome in practice,
in particular when there are many (space-time) indices involved. Matchmakereft can be
used in this case to check if the operators defined in the EFT are linearly independent for arbi-
trary off-shell kinematics or not. This is done by checking the rank of the system of equations
obtained by matching the EFT to all vanishing amplitudes. If several operators are linearly
dependent, the rank will be smaller than the number of operators and matchmakereft will
solve the system of equations to provide the relationship of the list of the dependent operators
in terms of a particular set of independent ones. This is achieved by defining an EFT with all
the relevant operators (including possibly linearly dependent ones) and running the command
check_linear_dependece EFTModel (see Section 4 for details). As a word of caution it
should be emphasized that matchmakereft makes no assumption about the space-time di-
mension. Thus, operators that are linearly dependent in D = 4 but not in arbitrary D are listed
as linearly independent in matchmakereft.
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7 Conclusions and outlook

EFTs have become a standard tool in quantum field theory to address multi-scale problems.
Using a mass-independent renormalization scheme, the process of computing observables in
models with disparate scales consists of integrating out particles at the highest mass threshold,
running the WCs by means of the RGEs down to the next threshold, integrating out the particles
at that threshold and so on until we reach the energies at which experimental measurements
are performed. We then compute the corresponding experimental observable using the EFT
relevant at that scale.

The current situation in particle physics seems to indicate that indeed, physics beyond
the SM, if present, is likely to be at a scale much larger than the energies at which we are
performing our experiments. In searches beyond the SM, the relevant EFT seems to be the
SMEFT at energies above the electroweak scale and the LEFT below that scale. The process of
running in the SMEFT, matching to the LEFT and running in the LEFT down to experimental
energies has been recently completed, up to mass dimension 6 and one-loop order, and it
is now available in computer tools. The matching of arbitrary models to the (dimension 6)
SMEFT has been also recently solved at tree level. Thus, the only missing piece to perform a
complete one-loop analysis of the implications of experimental data on new physics models is
the one-loop matching of arbitrary models onto the SMEFT.

In this article we have introduced matchmakereft, a computer tool that performs tree-
level and one-loop matching of arbitrary models onto arbitrary EFTs. Matchmakereft is
robust, efficient, flexible and fully automated and can be trivially used to perform the step
to one-loop matching of new physics models onto the SMEFT to complete the program out-
lined above. Due to its flexibility matchmakereft has many more applications than just the
matching of new physics models onto the SMEFT. First it can match any model onto any EFT.
Thus, it can be used to match new physics models to operators of dimension higher than 6
in the SMEFT (see [76] for the definition of the bosonic sector of a complete Green basis for
the SMEFT at dimension 8), or to other EFTs beyond the SMEFT that can be also phenomeno-
logically interesting, including for instance new light (or heavy particles) like an axion-like
particle or a right-handed neutrino [77]. Matchmakereft is also able to match divergences
in EFTs to compute the RGEs of arbitrary theories. Again this includes other EFTs beyond the
dimension-6 SMEFT (or LEFT) but also renormalizable (or not) arbitrary theories. Other ap-
plications of matchmakereft include an automated basis translation between two (Green or
physical) bases of an EFT or the reduction of an off-shell linearly dependent set of operators
to a minimal Green basis. All these applications are performed in an automated way, with
minimal interaction from the user, that only needs to provide the information of the UV and
the EFT models.

Version 1.0.0 of matchmakereft performs an off-shell matching in the background-field
gauge, thus providing a significant (kinematic and gauge) redundancy that is used to perform
numerous cross-checks of the computed WCs. There are nevertheless some limitations in ver-
sion 1.0.0 that we plan to overcome in future versions of matchmakereft. Among these
some of the most significant are the following:

• Flavor indices are currently not supported for massive particles. There is an experimental
version of this in matchmakereft and we expect to implement it in the near future.

• Amplitudes with many external particles (as required to match operators with many
fields) can have a very large number of Feynman diagrams at one loop. When the num-
ber is very large the calculation can become very slow. We plan to introduce new pro-
cedures to deal with this issue, including the splitting of groups of Feynman diagrams
that contribute to a single amplitude and the parallelization of the calculation to allow

23



SciPost Physics Submission

an efficient computation in multi-core or multi-node computer systems.

Matchmakereft has already been used in several physical applications and we have per-
formed an extensive number of non-trivial cross-checks to ensure the robustness of the calcula-
tions produced by matchmakereft. Its flexibility and efficiency will allow the particle physics
community to analyze in a fully systematic and automated way the one-loop phenomenology
or arbitrary new physics models.
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A Matchmakereft installation

A.1 Prerequisites

In order to be able to run matchmakereft, some prerequisites need to be met. First of all,
the following programs need to be installed:

• Mathematica, version 10 or higher.

• FORM : Installation can be checked by typing form -v in a terminal. Binaries or the
source code can be downloaded from http://www.nikhef.nl/~form/

• QGRAF : Installation can be checked by typing qgraf in a terminal. Binaries or the
source code can be downloaded from http://cfif.ist.utl.pt/~paulo/qgraf.html. Please
note that versions of QGRAF earlier than 3.5 had a maximun multiplicity of vertices
equal to 6 particles. If vertices with more than 6 particles are needed (this can happen if
dimension-8 operators are considered for instance) the source code has to be modified
accordingly and compiled again. The maximum multiplicity of QGRAF v3.5 is 8.

The binaries of both FORM and QGRAF need to be located in some path that is included in the
binary path of the system, in such a way that they can be executed from any possible location.
It is also necessary to have installed

• Python (3.5 or higher) : Installation can be checked by typing python --version
in a terminal. In some systems python3 might have to be explicitly invoked.
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• FeynRules the mathematica package, is needed for the creation of matchmakereft
models. It can be downloaded from https://feynrules.irmp.ucl.ac.be/.

Matchmakereft is available both in the Python Package Index (PyPI) https://pypi.org/
project/matchmakereft/ as well as in the Anaconda Python distribution https://anaconda.
org/matchmakers/matchmakereft. Moreover,

• pip. In order to access packages from PyPI, pip needs to be installed on the system. It is
available in most Linux distributions and can be easily installed on MacOS and Windows.
Installation can be checked by typing pip -V in a terminal. In some systems pip3 has
to be explicitly invoked. General information about installing packages fcan be found
on https://packaging.python.org/en/latest/tutorials/installing-packages/.

• conda. Instructions about Anaconda installation on different OS can be found on https:
//docs.anaconda.com/anaconda/install/index.html. Explicit information about installing
conda packages can be found on https://docs.anaconda.com/anacondaorg/user-guide/
howto/.

A.2 Installing matchmakereft

A.2.1 PyPI

Once pip is installed in the system, matchmakereft can be installed by just typing in a
terminal (we denote the terminal prompt as >)

> python3 -m pip install matchmakereft --user

or by typing

> pip install matchmakereft --user

Alternatively, if the installation has been downloaded from the project web page, it can be
installed via

> python3 -m pip install matchmakereft -x.x.x.tar.gz --user

where the x.x.x correspond to the version being installed.
We can get information about matchmakereft by writing

> pip3 show matchmakereft
Name: matchmakereft
Version: 1.0.0
Summary: One loop matching
Home -page: https :// ftae.ugr.es/matchmakereft/
Author: Adrian Carmona , Achilleas Lazopoulos , Pablo Olgoso , Jose

Santiago
Author -email: adrian@ugr.es, lazopoulos@itp.phys.ethz.ch ,

pablolgoso@ugr.es , jsantiago@ugr.es
License: Creative Commons Attribution -Noncommercial -Share Alike

license
Location: /home/user/.local/lib/python3 .9/site -packages
Requires: requests , yolk3k , setuptools
Required -by:

If matchmakereft is already installed in the system, it is possible to check for possible updates
by writing

> pip install --upgrade matchmakereft --user

whereas one can remove it by typing

> pip uninstall matchmakereft
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A.2.2 Anaconda

For users employing Anaconda python distribution, matchmakereft can be installed by just
typing

conda install -c matchmakers matchmakereft

A.3 Updating the system path

Once matchmakereft is installed, we have to ensure that the corresponding executable is
included in the user path. This can be easily achieved by copying the following two lines in
the ~/.bashrc file (or the equivalent one if a different shell is used)

1 export PY_USER_BIN=$(python -c ’import site; print(site.USER_BASE + "/
bin") ’)

2 export PATH=$PY_USER_BIN:$PATH

If the user prefers to install without the --user option (s)he should ensure that the directory
where the executables are installed is included in the path.

B Dealing with γ5

When computing the matching equations with matchmakereft, we might encounter loop in-
tegrals that involve fermionic traces with chiral projectors, PL,R. Among such traces, those that
contain an odd number of γ5 and six or more γ-matrices are known to be ambiguous, due to the
impossibility of finding a regulator that is Lorenz invariant and preserves the chiral structure
of the theory. In matchmakereft we regulate integrals within Dimensional Regularization,
so we have to face the question of how to compute these traces consistently.

Limiting ourselves, at first, to matching renormalizable UV models to the SMEFT, the cases
we have to deal with, in practice, are few. In order to have a trace in the first place, there can
be no external fermions in the related diagram. Moreover, the ambiguity is proportional to
the fully antisymmetric εµνρσ tensor, and can therefore contribute to the Wilson Coefficient of
one of the few CP violating bosonic operators of the SMEFT, with two or three field strength
tensors. We therefore need two or three external gauge bosons. In order to have a trace with at
least 6 γ-matrices we, therefore need four or three internal fermionic propagators respectively.
In summary, we only need to worry about boxes contributing to H†HXµνX̃µν type operators or
triangles contributing to Xµν X νρ X̃µρ . Triangle diagrams contributing to Xµν X νρ X̃µρ , with fermions
in the internal lines, however, are non-ambiguous because there are no γ5’s involved in the
vertices: all heavy fermions have to be vector-like6.

Next, let’s look at the box diagrams contributing to H†HXµνX̃µν. There are four internal
fermionic propagators, of which one or more can correspond to heavy particles in the UV
model. As mentioned, the corresponding traces have ambiguous and non-ambiguous parts.
The unambiguous part can be computed in any γ5-scheme. The ambiguous part is proportional
to D−4 and is only of interest if it multiplies one of the singularities of the integral. Moreover,
since the UV theory is renormalizable, the maximum number of γ-matrices is 6, which means
that terms in the numerator of such integrals with mass insertions have a lower number of
γ’s and are therefore unambiguous. There are two types of singularities: UV singularities
corresponding to the UV structure of the full theory, and IR singularities that appear after
the hard region expansion is performed. The latter correspond to the UV singularities of the
SMEFT.

6Triangle diagrams with only light particles are ambiguous, but they do not concern us during matching. The
corresponding ambiguities are fixed by the anomaly cancellation mechanism that we assume any EFT has built in.
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The generic structure of the potentially ambiguous part of such box integrals is, up to
couplings and group theory factors:

Iµν ∼
∫

k
Tµ1...µ4µν

4
∏

i=1

(k+ qi)µi

(k+ qi)2 −m2
i

, (69)

where
∫

k ≡
∫ dDk
(2π)D , and Tµ1...µ4µν

denotes a trace with an odd number of γ5 insertions and six
γ’s, e.g.

Tr[γµ1
γ5γµ2

γµγµ3
γ5γνγµ4

γ5]. (70)

Performing the hard region expansion and the tensor reduction we get

Iµν ∼
∫

k
Tµ1...µ4µν

1
∏4

i=1(k2 −m2
i )

 

k4 gµ1µ2µ3µ4
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∑

i

q2
i
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∑
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4qρi qσj
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i )(k
2 −m2
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qµi
i qρm
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1

k2 −m2
m
+
∑
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D
qµi qµ j
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where {µ̂i}= µ jµkµr with j, k, r 6= i, and {µ̂iµ̂ j}= µkµr with k, r 6= i, j.
The first term, of O(p0), is UV singular. It does not lead to ambiguities, though, since

gµ1µ2µ3µ4 makes the γ5-dependent part of the trace vanish. The rest of the terms, of order
O(p2), are UV finite, but can be IR singular, depending on the number of heavy propagators:
for two, three or four heavy propagators, there is no singularity. For one heavy and three light
propagators, however, we do have an IR singularity.

We, therefore, conclude that ambiguous contributions from γ5-odd traces in box integrals
are present only in diagrams with one heavy and three light propagators. They appear as a
product of the ambiguous (D − 4) coefficient of the trace multiplying a 1/ε pole of IR type
resulting from the hard region expansion. We would like to remain within the naive anti-
commuting γ5 scheme when computing traces in matchmakereft. To this end, we wish to
fix the ambiguous contributions of the γ5-odd traces in box integrals with one heavy massive
fermion, a posteriori. We note that the Wilson coefficient we are trying to match must be real:
all operators of the type H†HXµνX̃µν are hermitian. Therefore any contribution from γ5-odd
traces, being imaginary, must be multiplied by a purely imaginary product of couplings of the
full theory. But, in the case that ambiguities are present, i.e. when the UV theory has Yukawa
terms with the Higgs boson, one heavy and one light fermion, leading to box diagrams with
a single fermionic propagators, the corresponding Yukawa couplings are complex conjugates
of each other, by virtue of the hermiticity of the UV Lagrangian. As a result, the product of
all couplings is real and, therefore, the γ5-odd contributions are purely imaginary. They can
be set to zero by hand, at the end of the computation. Note that this does not imply that the
ambiguous contributions are zero: it is the sum of ambiguous and non-ambiguous traces that
are set to zero.
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Note that this procedure also works if the effective theory is not the SMEFT. In such cases,
more than one scalar fields might be present, allowing for non-hermitian operators of the type
φ†

1φ2XµνX̃µν. The constraint that the corresponding wilson coefficient is real does not apply
any more. It is, however still true that the wilson coefficient of this operator should equal the
complex conjugate of the wilson coefficient of the hermitian conjugate operator φ†

2φ1XµνX̃µν.
This is, again, enough to remove the ambiguities.

C A minimal complete example

In this section we demonstrate many of the features of matchmakereft with a concrete ex-
ample involving two scalar fields, a light, but not massless, field φ and a heavy field Φ. Our
model is described by the Lagrangian:

L= 1
2
(∂µφ)

2 −
1
2

m2
Lφ

2 +
1
2
(∂µΦ)

2 −
1
2

M2
HΦ

2 −
λ0

4!
φ4 −

λ2

4
φ2Φ2 −

κ

2
φ2Φ, (72)

which we want to match to the EFT Lagrangian without the heavy scalar,

LEFT =
α4k

2
(∂µφ)

2 −
α2

2
φ2 −

α4

4!
φ4 −

α6

6!
φ6 −

α̃6

4!
φ3∂ 2φ −

α̂6

2

�

∂ 2φ
�2

. (73)

We will use this Lagrangian during off-shell matching. Subsequently, the kinetic term can be
canonically normalized, and the redundant operators can be eliminated. Two of the three
operators of dimension 6 are redundant. We choose φ6 as the independent operator. Using
equations of motion we can readily find that:

φ3∂ 2φ→−α2φ
4 −

1
3!
α4φ

6, (74)
�

∂ 2φ
�2→ α2

2φ
2 +
α2α4

3
φ4 +

α4

36
φ6. (75)

Eliminating these operators from the Lagrangian would induce the shifts

α2 → α2 +α
2
2α̂6 (76)

α4 → α4 − α̃6α2 + 4α2α4α̂6 (77)

α6 → α6 − 5α̃6α4 + 10α̂6α
2
4 (78)

The coupling κ of this model is a dimensionful coupling, and is expected to be parametrically
of the order of the heavy mass scale MH . Thus, κ

MH
is of O(1) and is kept throughout the

matching procedure consistently.
The Feynrules file for the UV model, saved at two_scalars.fr, is shown below.

1 (* --- Contents of Feynrules file two_scalars.fr --- *)
2 M$ModelName = "two_scalars";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[1] == {ClassName -> phiH , SelfConjugate -> True , Mass -> MH,
6 FullName -> "heavy"},
7 S[2] == {ClassName -> phi , SelfConjugate -> True , Mass -> mL,
8 FullName -> "light"}
9 };

10 (* ***** Parameters ***** *)
11 M$Parameters = {
12 MH == {ParameterType -> Internal , ComplexParameter -> False},
13 mL == {ParameterType -> Internal , ComplexParameter -> False},
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14 V == {ParameterType -> Internal , ComplexParameter -> False},
15 lambda0 == {ParameterType -> Internal , ComplexParameter -> False},
16 kappa == {ParameterType -> Internal , ComplexParameter -> False},
17 lambda2 == {ParameterType -> Internal , ComplexParameter -> False}
18 };
19 (* ***** Lagrangian ***** *)
20 Ltot := Block[{mu},
21 + 1/2 * del[phi ,mu] * del[phi ,mu] + 1/2 *del[phiH ,mu] * del[phiH ,

mu]
22 - 1/2 * MH^2 * phiH^2 - 1/2 * mL^2 * phi^2
23 - lambda0 / 24 * phi^4 - kappa / 2 * phi^2 * phiH
24 - lambda2 / 4 * phi^2 * phiH^2
25 ];

Note that we use the keyword FullName to characterize each field as "heavy" or "light".
This is mandatory: matchmaker uses this keyword to distinguish between fields that are in-
tegrated out and those that are light and are also present in the EFT. Also note that all the
parameters that are used in the Lagrangian, masses as well as couplings, must be declared. In
this example all parameters are real.

The Feynrules file for the EFT model, saved at one_scalar.fr, is:

1 (* --- Contents of Feynrules file for the EFT model one_scalar.fr ---
*)

2 M$ModelName = "one_scalar";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[2] == {ClassName -> phi , SelfConjugate -> True , Mass -> 0,
6 FullName -> "light"}
7 };
8 (* ***** Parameters ***** *)
9 M$Parameters = {

10 alpha4kin == {ParameterType -> Internal , ComplexParameter -> False},
11 alpha2mass == {ParameterType -> Internal , ComplexParameter -> False},
12 alpha4 == {ParameterType -> Internal , ComplexParameter -> False},
13 alpha6 == {ParameterType -> Internal , ComplexParameter -> False},
14 alpha6Rtilde == {ParameterType -> Internal , ComplexParameter -> False

},
15 alpha6Rhat == {ParameterType -> Internal , ComplexParameter -> False}
16 };
17 (* ***** Lagrangian ***** *)
18 Ltot := Block[{mu,mu2},
19 1/2 * alpha4kin * del[phi ,mu] * del[phi ,mu]
20 - 1/2 * alpha2mass * phi^2
21 - alpha4 /24 * phi^4
22 - alpha6 * phi ^6/720
23 - alpha6Rtilde /24 * phi^3 * del[del[phi ,mu],mu]
24 - alpha6Rhat /2 * del[del[phi ,mu],mu] * del[del[phi ,mu2],mu2]
25 ];

Note that we have included WCs (denoted by alpha) also for the kinetic and mass terms
(squared), as well as for all operators that are redundant solely due to the equations of motion.

In order for matchmakereft to perform the reduction to the physical basis, we need to
provide a set of relations that express the redundant WCs in terms of the irreducible ones, see
Eq. (78). This is done at one_scalar.red:

1 (* --- Contents of one_scalar.red --- *)
2 finalruleordered = {
3 alpha6 -> - alpha6Rtilde * alpha4 *5 + alpha6Rhat * alpha4 ^2 * 10 +

alpha6 ,
4 alpha4 -> alpha4 - alpha6Rtilde * alpha2mass + 4 * alpha6Rhat *

alpha2mass * alpha4 ,
5 alpha4kin -> alpha4kin ,
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6 alpha2mass -> alpha2mass + alpha6Rhat * alpha2mass ^2
7 }

Note that only the WCs corresponding to physical operators, among those appearing in the
EFT Lagrangian and defined in the file one_scalar.fr, must be present on the left hand side
of the replacement rules in this file. The WCs corresponding to redundant operators appear
only on the right hand side. When these rules are used, both redundant and non-redundant
WCs have been matched and are known as functions of the parameters of the UV theory. The
rules are therefore instructions on how to update the non-redundant WCs, to include the effect
of the redundant ones.

With these files prepared we are ready to proceed with matching. In the matching direc-
tory, where two_scalars.fr,one_scalar.fr,one_scalar.red are present, we can run
matchmakereft:

>matchmakereft

upon which we enter the python interface

Welcome to matchmakereft
Please refer to arXiv :2112.10787 when using this code

matchmakereft >

We first need to create the matchmaker models, i.e. the directories with all the necessary
information for the UV and the EFT models. We do this by

matchmakereft > create_model two_scalars.fr

which has the response

Creating model two_scalars_MM. This might take some time depending on
the complexity of the model

Model two_scalars_MM created
It took 7 seconds to create it.

We can now observe that the directory two_scalars_MM is created. We proceed with creating
the EFT model

matchmakereft > create_model one_scalar.fr
Creating model one_scalar_MM. This might take some time depending on

the complexity of the model
Model one_scalar_MM created
It took 7 seconds to create it.

The one_scalar_MM directory is now created as well, and we are ready for the matching
calculation. This is performed by the match_model_to_eft command:

matchmakereft > match_model_to_eft two_scalars_MM one_scalar_MM

Upon completion, the results of the matching are stored in the UV model directory, in this
case two_scalars_MM. The file two_scalars_MM/MatchingProblems.dat contains trou-
bleshooting information in case the matching procedure failed. In our case it is an empty list,
indicating no problems:

1 problist = {}

The result of the matching procedure is in two_scalars_MM/MatchingResults.dat,
a Mathematica file with a list of lists of replacement rules. The off-shell matching gives the
following results for the WCs of the Green basis. At tree level the non-vanishing contributions
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are,

α
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L , (79)

α
(0)
4 = λ0 −

4κ2m2
L

M4
H

−
3κ2

M2
H

, (80)

α
(0)
6 =
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At one loop we get (we define LM ≡ log( µ
2

M2
H
))
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α̂
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96π2M4
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As can be seen in the equations above, the kinetic operator receives a correction and there-
fore φ is no longer canonically normalized. A field redefinition is needed to obtain a canoni-
cally normalized theory on which we can apply the corresponding redundancies to go to the
physical basis. Matchmakereft does these two processes (canonical normalization and going
to the physical basis) automatically. The resulting WCs in the physical basis read, up to one
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loop order
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Next, we would like to compute the RGE equations for both models. For each model we
need a new pair of Feynrule files as a starting point. We start for the RGEs for the UV model.
The corresponding UV model, located in the file rge_two_scalars_uv.fr is the same as
two_scalars.fr with the very crucial difference that the heavy field H is also declared as
"light" here.

1 S[1] == {ClassName -> H, SelfConjugate ->True , Mass ->MH,
2 FullName ->"light"}

The target model is now at rge_two_scalars_eft.fr. It consists of an EFT Lagrangian
with the field H considered as a light field:

1 (* --- Contents of rge_two_scalars_eft.fr --- *)
2 M$ModelName = "rge_two_scalars_eft";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[1] == {ClassName -> phiH , SelfConjugate -> True , Mass -> 0,
6 FullName -> "light"},
7 S[2] == {ClassName -> phi ,SelfConjugate -> True ,Mass -> 0,
8 FullName -> "light"}
9 };

10 (* ***** Parameters ***** *)
11 M$Parameters = {
12 alpha4kinphi == {ParameterType -> Internal , ComplexParameter -> False

},
13 alpha4kinH == {ParameterType -> Internal , ComplexParameter -> False},
14 alpha2MH == {ParameterType -> Internal , ComplexParameter -> False},
15 alpha2ML == {ParameterType -> Internal , ComplexParameter -> False},
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16 alpha4 == {ParameterType -> Internal , ComplexParameter -> False},
17 alphaV == {ParameterType -> Internal , ComplexParameter -> False},
18 alpha1 == {ParameterType -> Internal , ComplexParameter -> False},
19 alpha4H == {ParameterType -> Internal , ComplexParameter -> False},
20 alpha2 == {ParameterType -> Internal , ComplexParameter -> False},
21 alpha3 == {ParameterType -> Internal , ComplexParameter -> False}
22 };
23 (* ***** Lagrangian ***** *)
24 Ltot := Block[{mu},
25 alphaV * phiH
26 +1/2 * alpha4kinphi* del[phi ,mu] * del[phi ,mu]
27 + 1/2 * alpha4kinH * del[phiH ,mu] * del[phiH ,mu]
28 - 1/2 * alpha2MH * phiH^2
29 -1/2 * alpha2ML * phi^2
30 - alpha4 / 24 * phi^4
31 - alpha1 / 2 * phi^2 * phiH
32 - alpha2 / 4 * phi^2 * phiH^2
33 -alpha3 * phiH^3
34 -alpha4H * phiH^4
35 ];

Note the presence of the new interaction terms Φ3,Φ4: all possible operators of dimension up
to 4, compatible with the symmetries should appear here. Also note that we now have a WC
also for the kinetic term of the Φ field.

We don’t need a rge_two_scalars_eft.red file at all, since all operators of dimension
four present are physical. We can now create the two models with

matchmakereft > create_model rge_two_scalars_uv.fr

and

matchmakereft > create_model rge_two_scalars_eft.fr

and then we can proceed with the RGE computation via

matchmakereft > compute_rge_model_to_eft rge_two_scalars_uv_MM
rge_two_scalars_eft_MM

We then get, as before, inside the rge_two_scalars_uv_MM directory an empty problem
file MatchingProblems.dat, as well as a MatchingResults.dat file. Moreover, there is
another file produced, RGEResult.dat which contains the explicit form of the beta functions
for our UV model.

1 RGEResult = {
2 \[Beta][ alphaV] -> -1/32*( kappa*mL^2)/Pi^2
3 \[Beta][ alpha4kinphi] -> 0,
4 \[Beta][ alpha4kinH] -> 0,
5 \[Beta][ alpha2MH] -> kappa ^2/(16* Pi^2)+( lambda2*mL^2) /(16*Pi^2),
6 \[Beta][ alpha2ML] -> kappa ^2/(8* Pi^2)+( lambda2*MH^2) /(16*Pi^2) +
7 (lambda0*mL^2) /(16* Pi^2),
8 \[Beta][ alpha4] -> (3* lambda0 ^2) /(16*Pi^2) +
9 (3* lambda2 ^2) /(16*Pi^2),

10 \[Beta][ alpha1] ->(lambda0*kappa)/(16*Pi^2) + (kappa*lambda2)/(4*Pi^2)
,

11 \[Beta][ alpha2] -> (lambda0*lambda2)/(16* Pi^2) + lambda2 ^2/(4* Pi^2),
12 \[Beta][ alpha3] -> (kappa*lambda2)/(32*Pi^2),
13 \[Beta][ alpha4H] -> lambda2 ^2/(128* Pi^2)}

Let us now touch upon the topic of tadpole contributions, which will also explain the reason
for the αVΦ operator defined in line 25 of rge_two_scalars_eft.fr. In our model there are
tadpole contributions to many 1LPI diagrams, due to the operator κφ2Φ. They would vanish,
up to one loop, if the mass of the light field was set to zero, but are non-vanishing otherwise.
The resulting finite contributions are taken into account by our matching procedure. However,
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the corresponding poles, which contribute to the beta functions of mL and κ are disregarded,
during the RGE computation. However, there is an easy way to account for them. By adding
the αVΦ term in the Lagrangian of rge_two_scalars_eft.fr, we induce the computation
of the one-point function beta-function: as we see from line 2 of RGEResult.dat, we have

β(αV ) = −
1

32π2
κm2

L . (94)

If, instead of working with tadpole contributions, we would have shifted the field Φ→ Φ+ V
we would have induced an explicit linear term V M2

HΦ and, due to the operators φ2Φ and
φ2Φ2, we would modify the mass term for the light scalar, mL and the κ coupling:

m̃2
L = m2

L −κV +
1
2
κV 2 , κ̃= κ−λ2V. (95)

By setting the tree-level contribution of V such that it cancels loop corrections order by order,
we could eliminate tadpoles from the theory completely. Instead, here, we include their finite
part in the calculation, and we absorb the pole in the renormalization of m2

L and κ. We should
therefore modify the beta functions we read from RGEResult.dat, to account for the tadpole
pole, by

δβ(M2
L ) = κβ(V ) =

κ

M2
H

β(αV ) = −
κ2

16π2

m2
L

M2
H

, (96)

δβ(κ) = λ2β(V ) =
λ2

M2
H

β(αV ) = −
κλ2

16π2

m2
L

M2
H

. (97)

Reading the results of RGEResult.dat and adding these contributions we get
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We can perform the same procedure, but now with the EFT model. We create the model
via the following rge_one_scalar_uv.fr file

1 M$ModelName = "rge_one_scalar_uv";
2 (* **** Particle classes **** *)
3 M$ClassesDescription = {
4 S[2] == {ClassName -> phi ,SelfConjugate -> True ,Mass -> mL,
5 FullName -> "light"}
6 };
7 (* ***** Parameters ***** *)
8 M$Parameters = {
9 mL == {ParameterType -> Internal , ComplexParameter -> False},

10 a4 == {ParameterType -> Internal , ComplexParameter -> False},
11 a6 == {ParameterType -> Internal , ComplexParameter -> False}
12 };
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13 (* ***** Lagrangian ***** *)
14 Ltot := Block[{mu,mu2},
15 1/2 * del[phi ,mu] * del[phi ,mu] - 1/2 * mL^2 * phi^2
16 -a4/24 phi^4 - a6 * phi ^6/720
17 ];
18

which contains the physical operators of the EFT model. Note that we have changed the names
of the couplings to something other than alphaXXX7. We also create rge_one_scalar_eft.fr
and rge_one_scalar_eft.red that are identical with one_scalar.fr and one_scalar.red
defined above. Once again, we can create the two models and run compute_rge_model_to_eft.
The result is
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16π2
, (103)
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4

16π2
+
α2α6

16π2
, (104)
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16π2
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We can now check whether the matching conditions and the RGE equations are consistent
with each other: if we match at µ = MH and we evolve all couplings using the RGEs of the
UV and the EFT model, to a lower scale Q, we should find the same expressions as when we
match directly at µ = Q. Let’s see how this works in the case of the mass coefficient, α2. The
matching condition for α2, at scale µ= MH , gives, see Eq. (91),

α2(MH) = m2
L(MH)−

1
16π2

�

11κ2m4
L

3M4
H

+
3κ2m2

L

2M2
H

+
1
2
λ2M2

H + κ
2

�

. (106)

We can use Eq. (103) to evolve α2 from MH to a lower scale Q. In the leading-log approxima-
tion it reads,

α2(Q) = α2(MH) +
1
2

LQβ(α2) = α2(MH) +
1
2

LQ
α2α4

16π2
, (107)

where LQ ≡ log( Q2

M2
H
). Replacing the tree-level matched values of α2 and α4 we get

α2(Q) = m2
L(MH)−

1
16π2

�

11κ2m4
L

3M4
H

+
3κ2m2

L

2M2
H

+
1
2
λ2M2

H + κ
2

�

(108)

−
LQ

16π2

�

2κ2m4
L

M4
H

+
3κ2m2

L

2M2
H

−
λ0m2

L

2

�

. (109)

If the matching condition for α2 had no tree-level contribution, this would be the full expres-
sion for α2(Q). In our case, however, there is a tree-level contribution, m2

L(MH). We need to
use the RGE equation of the UV model, for mL , Eq. (98) to evolve it to the scale Q. We then
get

α2(Q) = m2
L(Q)−

1
16π2

�

11κ2m4
L

3M4
H

+
3κ2m2

L

2M2
H

+
1
2
λ2M2

H + κ
2

�

(110)

−
LQ

16π2

�

2κ2m4
L

M4
H

+
3κ2m2

L

2M2
H

+
λ2M2

H

2
+ 2κ2

�

. (111)

Had we match directly at the scale µ = Q using Eq. (91), we would have found exactly the
same result.

7If alphaXXX names are used then matchmakereft automatically changes them to WCXXX.
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Similarly for α4, matching at µ= MH and evolving to µ=Q, with the help of the RGEs for
both the UV and the EFT couplings, gives

α4(Q) = λ0 −
4κ2m2

L

M4
H

−
3κ2

M2
H

+
1

16π2

�

332κ4m2
L

3M6
H

+
149λ2κ

2m2
L

3M4
H

−
80λ0κ

2m2
L

3M4
H

−
λ2

2m2
L

3M2
H

+
25κ4

M4
H

+
20λ2κ

2

M2
H

−
7λ0κ

2

M2
H

�

+
1

16π2
LQ

�

60κ4m2
L

M6
H

+
34λ2κ

2m2
L

M4
H

−
16λ0κ

2m2
L

M4
H

+
16κ4

M4
H

+
14λ2κ

2

M2
H

−
6λ0κ

2

M2
H

−
3λ2

2

2

�

, (112)

in agreement with what we would get by matching directly at µ=Q, see Eq. (93).

D SMEFT Green basis

Here we present a Green basis of the dimension 6 SMEFT including two and four-fermion
evanescent operators. As far as possible, we will follow the notation and the conventions
used in the model file included with matchmakereft. We present first the renormalizable SM
Lagrangian, which reads

LSM = −
1
4

GA
µνGAµν −

1
4

W I
µνW

I µν −
1
4

BµνBµν + (DµH)†DµH −m2H†H −λ(H†H)2

+ i[¯̀ /D`+ ē /De+ q̄ /Dq+ ū /Du+ d̄ /Dd]− [¯̀YeeH + q̄YuuH̃ + q̄Yd dH + h.c.] . (113)

Hereinafter, we omit flavor and gauge indices whenever possible. Otherwise, we use i, j, k, l, . . .
as flavor indices and A, B, C , . . . and I , J , K , . . . for the adjoint representation of SU(3) and
SU(2), respectively. We will use on the other hand a, b, c, . . . and r, s, t, . . . for the fundamental
representation of the color and the electroweak group, respectively. In the model file com-
ing along with matchmakereft we use a slightly different notation for the couplings in the
renormalizable Lagrangian. For instance,

Yu→ alphaOlambdau, λ→ alphaOlambda, m2→ alphaOmuH2, . . . . (114)

We refer the reader to the model file SMEFT_Green_Bpreserving.fr for more details.
The doublet H̃ is defined by H̃ = iσ2H∗ as usual and we assume the following definition

for the covariant derivative

Dµq = (∂µ − ig3TAGA
µ − ig2

σI

2
W I
µ − ig1Y Bµ)q, (115)

where TA = λA/2 with λA and σI the Gell-Mann and Pauli matrices, respectively. Correspond-
ingly, the field strength tensors are

GA
µν = ∂µGA

ν − ∂νGA
µ + g3 f ABC GB

µGC
ν , (116)

W I
µν = ∂µW I

ν − ∂νW
I
µ + g2ε

I JKW J
µW K

ν , (117)

Bµν = ∂µBν − ∂νBµ, (118)

and their covariant derivatives

(DρGµν)
A = ∂ρGA

µν + g3 f ABC GB
ρGC

µν, (119)

(DρWµν)
I = ∂ρW I

µν + g2ε
I JKW J

ρW K
µν, (120)

(DρBµν) = ∂ρBµν, (121)
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with f ABC and εI JK the SU(3) and SU(2) structure constants, respectively.
The B-number preserving dimension 6 Green basis is presented in Tables 1-9. We follow

the convention of denoting operators in the Warsaw basis [68] by O, whereas redundant and
evanescent operators are denoted by R and E , respectively. We should stress that in our case,
redundant and evanescent operators do not vanish when using equations of motion or going
to D = 4 dimensions, being reduced to the operators in the physical basis in this case. We
follow the notation of [64] regarding redundant operators and include evanescent operators
with two and four fermions as well as possibly featuring charge conjugation. We use the
shorthand notation γµ1...µn ≡ γµ1 . . .γµn with no (anti)symmetrization. In the case of four
fermion operators with charge conjugation we do not include for the moment structures with
three gammas, which we plan to include in the near future.

We denote by iCPV= ε0123 ∈ {1,−1} with εαβµν the Levi-Civita tensor, in such a way that
for D = 4 e.g.

σµνεµνρσ = 2iCPV iσρσγ5, (122)

with σµν = i
2[γ

µ,γν] and

γ5 = iγ0γ1γ2γ3 = iCPV
i

4!
εµναβγ

µγνγαγβ . (123)

At any rate, dual tensors are defined by

X̃µν =
1
2
εµναβXµν, with X = G, W, B. (124)

We follow [27] for our definitions of evanescent operators, with the difference that we do
not define them to be zero. Considering at most three gamma matrices, they read

E(2)LR = PLγ
µνPL ⊗ PRγµνPR = 4(1+ aevε)PL ⊗ PR, , (125)

E(2)RL = PRγ
µνPR ⊗ PLγµνPL = 4(1+ a′evε)PR ⊗ PL , (126)

E(3)LL = PRγ
µνλPL ⊗ PRγµνλPL = 4(4− bevε)PRγ

µPL ⊗ PRγµPL , (127)

E(3)RR = PLγ
µνλPR ⊗ PLγµνλPR = 4(4− b′evε)PLγ

µPR ⊗ PLγµPR, (128)

E(3)LR = PRγ
µνλPL ⊗ PLγµνλPR = 4(1+ cevε)PRγ

µPL ⊗ PLγµPR, (129)

E(3)RL = PLγ
µνλPR ⊗ PRγµνλPL = 4(1+ c′evε)PLγ

µPR ⊗ PRγµPL , (130)

while

PLγ
µνPL ⊗ PLγµνPL = (4− 2ε)PL ⊗ PL − PLσ

µνPL ⊗ PLσµνPL , (131)

PRγ
µνPR ⊗ PRγµνPR = (4− 2ε)PR ⊗ PR − PRσ

µνPR ⊗ PRσµνPR, (132)

assuming the following basis of the space of Lorentz singlets and pseudo-singlets in D = 4
¦

Γ i
1 ⊗ Γ

i
2 | i = 1, . . . , 10

©

=
¦

PL ⊗ PL , PR ⊗ PR, PL ⊗ PR, PR ⊗ PL , PRγ
µPL ⊗ PRγµPL ,

PLγ
µPR ⊗ PLγµPR, PRγ

µPL ⊗ PLγµPR, PLγ
µPR ⊗ PRγµPL ,

PLσ
µνPL ⊗ PLσµνPL , PRσ

µνPR ⊗ PRσµνPR

©

. (133)

In order to be consistent with flavor, we further assume that aev = a′ev, cev = c′ev. There-
fore, at the end of the day the one-loop matching will be dependant on four free parame-
ters: iCPV,aEV,bEV and cEV. However, physical observables computed with the obtained
dimension-6 EFT can not depend on such parameters.
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One final important remark should be made. In the model file .fr of the SMEFT used by
matchmakereft to do the matching, the operator of the Warsaw basis O(3)

`equ is replaced by

E [2]
`equ since matchmakereft and FORM use always γµν instead of its antisymmetric version
σµν. After doing the matching, such operator is reduced onto the one present in the Warsaw
basis by the relation (we use α, β and γ for the WCs of physical, redundant and evanescent
operators, respectively)

�

α
(3)
`equ

�

i jkl
=
�

γ
[2]
`equ

�

i jkl
−
�

1−
ε

4

�
�

γ
[2]
`equ

�

ilk j
−

1
8

�

γ`uqe

�

ilk j

−
1
8

�

γc
ue`q

�

l jik
−
�

1−
ε

4

�
�

γ
c [2]
ue`q

�

l jik
. (134)

X3 X2H2 H2D4

O3G f ABC GAν
µ GBρ

ν GCµ
ρ OHG GA

µνGAµν(H†H) RDH (DµDµH)†(DνDνH)

O
Ý3G

f ABC
eGAν
µ GBρ

ν GCµ
ρ O

H eG
eGA
µνGAµν(H†H) H4D2

O3W εI JKW Iν
µ W Jρ

ν W Kµ
ρ OHW W I

µνW
Iµν(H†H) OH� (H†H)�(H†H)

O
g3W

εI JK
fW Iν
µ W Jρ

ν W Kµ
ρ O

HfW
fW I
µνW

Iµν(H†H) OHD (H†DµH)†(H†DµH)

X2D2 OHB BµνBµν(H†H) R′HD (H†H)(DµH)†(DµH)

R2G −1
2(DµGAµν)(DρGA

ρν) O
HeB

eBµνBµν(H†H) R′′HD (H†H)Dµ(H†i
←→
D µH)

R2W −1
2(DµW Iµν)(DρW I

ρν) OHW B W I
µνBµν(H†σI H) H6

R2B −1
2(∂µBµν)(∂ ρBρν) O

HfW B
fW I
µνBµν(H†σI H) OH (H†H)3

H2XD2

RW DH DνW
Iµν(H†i

←→
D I
µH)

RBDH ∂νBµν(H†i
←→
D µH)

Table 1: Physical and redundant bosonic operators.
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ψ2D3 ψ2XD ψ2DH2

RqD
i
2q
�

DµDµ, /D
	

q RGq (qTAγµq)DνGA
µν O(1)Hq (qγµq)(H†i

←→
D µH)

RuD
i
2u
�

DµDµ, /D
	

u R′Gq
1
2(qTAγµi

←→
D νq)GA

µν R′(1)Hq (q i
←→
/D q)(H†H)

RdD
i
2 d
�

DµDµ, /D
	

d R′
eGq

1
2(qTAγµi

←→
D νq)eGA

µν R′′(1)Hq (qγµq)∂µ(H†H)

R
`D

i
2`
�

DµDµ, /D
	

` RWq (qσIγµq)DνW I
µν O(3)Hq (qσIγµq)(H†i

←→
D I
µH)

ReD
i
2 e
�

DµDµ, /D
	

e R′Wq
1
2(qσ

Iγµi
←→
D νq)W I

µν R′(3)Hq (q i
←→
/D Iq)(H†σI H)

ψ2HD2 + h.c. R′
fWq

1
2(qσ

Iγµi
←→
D νq)fW I

µν R′′(3)Hq (qσIγµq)Dµ(H†σI H)

RuHD1 (qu)DµDµ eH RBq (qγµq)∂ νBµν OHu (uγµu)(H†i
←→
D µH)

RuHD2 (q iσµνDµu)Dν eH R′Bq
1
2(qγ

µi
←→
D νq)Bµν R′Hu (u i

←→
/D u)(H†H)

RuHD3 (qDµDµu) eH R′
eBq

1
2(qγ

µi
←→
D νq)eBµν R′′Hu (uγµu)∂µ(H†H)

RuHD4 (qDµu)Dµ eH RGu (uTAγµu)DνGA
µν OHd (dγµd)(H†i

←→
D µH)

RdHD1 (qd)DµDµH R′Gu
1
2(uTAγµi

←→
D νu)GA

µν R′Hd (d i
←→
/D d)(H†H)

RdHD2 (q iσµνDµd)DνH R′
eGu

1
2(uTAγµi

←→
D νu)eGA

µν R′′Hd (dγµd)∂µ(H†H)
RdHD3 (qDµDµd)H RBu (uγµu)∂ νBµν OHud (uγµd)( eH†iDµH)
RdHD4 (qDµd)DµH R′Bu

1
2(uγ

µi
←→
D νu)Bµν O(1)H` (`γµ`)(H†i

←→
D µH)

ReHD1 (`e)DµDµH R′
eBu

1
2(uγ

µi
←→
D νu)eBµν R′(1)H` (`i

←→
/D `)(H†H)

ReHD2 (` iσµνDµe)DνH RGd (dTAγµd)DνGA
µν R′′(1)H` (`γµ`)∂µ(H†H)

ReHD3 (`DµDµe)H R′Gd
1
2(dTAγµi

←→
D νd)GA

µν O(3)H` (`σIγµ`)(H†i
←→
D I
µH)

ReHD4 (`Dµe)DµH R′
eGd

1
2(dTAγµi

←→
D νd)eGA

µν R′(3)H` (`i
←→
/D I`)(H†σI H)

ψ2XH + h.c. RBd (dγµd)∂ νBµν R′′(3)H` (`σIγµ`)Dµ(H†σI H)

OuG (qTAσµνu) eHGA
µν R′Bd

1
2(dγ

µi
←→
D νd)Bµν OHe (eγµe)(H†i

←→
D µH)

OuW (qσµνu)σI
eHW I

µν R′
eBd

1
2(dγ

µi
←→
D νd)eBµν R′He (e i

←→
/D e)(H†H)

OuB (qσµνu) eHBµν RW` (`σIγµ`)DνW I
µν R′′He (eγµe)∂µ(H†H)

OdG (qTAσµνd)HGA
µν R′W`

1
2(`σ

Iγµi
←→
D ν`)W I

µν ψ2H3 + h.c.

OdW (qσµνd)σI HW I
µν R′

fW`
1
2(`σ

Iγµi
←→
D ν`)fW I

µν OuH (H†H)q eHu

OdB (qσµνd)HBµν RB` (`γµ`)∂ νBµν OdH (H†H)qHd

OeW (`σµνe)σI HW I
µν R′B`

1
2(`γ

µi
←→
D ν`)Bµν OeH (H†H)`He

OeB (`σµνe)HBµν R′
eB`

1
2(`γ

µi
←→
D ν`)eBµν

RBe (eγµe)∂ νBµν
R′Be

1
2(eγ

µi
←→
D νe)Bµν

R′
eBe

1
2(eγ

µi
←→
D νe)eBµν

Table 2: Physical and redundant operators with two fermions.
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Four-quark Four-lepton Semileptonic

O(1)qq (qγµq)(qγµq) O
``
(`γµ`)(`γµ`) O(1)

`q (`γµ`)(qγµq)

O(3)qq (qγµσIq)(qγµσIq) Oee (eγµe)(eγµe) O(3)
`q (`γµσI`)(qγµσIq)

Ouu (uγµu)(uγµu) O
`e (`γµ`)(eγµe) Oeu (eγµe)(uγµu)

Odd (dγµd)(dγµd) Oed (eγµe)(dγµd)
O(1)ud (uγµu)(dγµd) Oqe (qγµq)(eγµe)

O(8)ud (uγµTAu)(dγµTAd) O
`u (`γµ`)(uγµu)

O(1)qu (qγµq)(uγµu) O
`d (`γµ`)(dγµd)

O(8)qu (qγµTAq)(uγµTAu) O
`edq (`e)(dq)

O(1)qd (qγµq)(dγµd) O(1)
`equ (`r e)εrs(qsu)

O(8)qd (qγµTAq)(dγµTAd) O(3)
`equ (`rσ

µνe)εrs(qsσµνu)

O(1)quqd (qru)εrs(qsd)

O(8)quqd (qr TAu)εrs(qsT
Ad)

Table 3: Baryon and lepton number conserving operators with four fermions.

Ψ2XH + h.c. Ψ2XD

EuG q̄TAσµνu eH eGA
µν EGq q̄TA(σµνγρ + γρσµν)qDρ eG

A
µν EGd d̄ TA(σµνγρ + γρσµν)dDρ eG

A
µν

EuW q̄σIσµνu eHfW I
µν E ′Gq iq̄(TAσµν /D−

←
/DσµνTA)qGA

µν E ′Gd id̄(TAσµν /D−
←
/DσµνTA)dGA

µν

EuB q̄σµνu eHeBµν E ′
eGq

iq̄(TAσµν /D−
←
/DσµνTA)qeGA

µν E ′
eGd

id̄(TAσµν /D−
←
/DσµνTA)d eGA

µν

EdG q̄TAσµνdH eGA
µν EWq q̄σI(σµνγρ + γρσµν)qDρfW

I
µν EBd d̄(σµνγρ + γρσµν)d∂ρeBµν

EdW q̄σIσµνdHfW I
µν E ′Wq iq̄(σIσµν /D−

←
/DσµνσI)qW I

µν E ′Bd id̄(σµν /D−
←
/Dσµν)dBA

µν

EdB q̄σµνdHeBµν E ′
fWq

iq̄(σIσµν /D−
←
/DσµνσI)qfW I

µν E ′
eBd

id̄(σµν /D−
←
/Dσµν)deBµν

EeW
¯̀σIσµνeHfW I

µν EBq q̄(σµνγρ + γρσµν)q∂ρeBµν EW`
¯̀σI(σµνγρ + γρσµν)`DρfW I

µν

EeB
¯̀σµνeHeBµν E ′Bq iq̄(σµν /D−

←
/Dσµν)qBµν E ′W` i¯̀(σIσµν /D−

←
/DσµνσI)`W I

µν

ψ2HD2 + h.c. E ′
eBq

iq̄(σµν /D−
←
/Dσµν)qeBµν E ′

fW`
i¯̀(σIσµν /D−

←
/DσµνσI)`fW I

µν

EuH q̄σµνDρuDσ eHεµνρσ EGu ūTA(σµνγρ + γρσµν)uDρ eG
A
µν EB`

¯̀(σµνγρ + γρσµν)`∂ρeBµν

EdH q̄σµνDρdDσHεµνρσ E ′Gu iū(TAσµν /D−
←
/DσµνTA)uGA

µν E ′B` i¯̀(σµν /D−
←
/Dσµν)`Bµν

EeH
¯̀σµνDρeDσHεµνρσ E ′

eGu
iū(TAσµν /D−

←
/DσµνTA)ueGA

µν E ′
eB`

i¯̀(σµν /D−
←
/Dσµν)`eBµν

EBu ū(σµνγρ + γρσµν)u∂ρeBµν EBe ē(σµνγρ + γρσµν)e∂ρeBµν

E ′Bu iū(σµν /D−
←
/Dσµν)uBµν E ′Be iē(σµν /D−

←
/Dσµν)eBµν

E ′
eBu

iū(σµν /D−
←
/Dσµν)ueBµν E ′

eBe
iē(σµν /D−

←
/Dσµν)eeBµν

Table 4: Evanescent operators with two fermions.
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L̄RR̄L R̄RR̄R L̄LR̄R

Equ (q̄u)(ūq) E (8)uu (ūγµTAu)(ūγµTAu) E [3]qu (q̄γµνρq)(ūγµνρu)
E (8)qu (q̄TAu)(ūTAq) E [3]uu (ūγµνρu)(ūγµνρu) E [3](8)qu (q̄γµνρTAq)(ūγµνρTAu)

Eqd (q̄d)(d̄q) E [3](8)uu (ūγµνρTAu)(ūγµνρTAu) E [3]qd (q̄γµνρq)(d̄γµνρd)

E (8)qd (q̄TAd)(d̄ TAq) E (8)dd (d̄γµTAd)(d̄γµTAd) E [3](8)qd (q̄γµνρTAq)(d̄γµνρTAd)

E [2]qu (q̄γµνu)(ūγµνq) E [3]dd (d̄γµνρd)(d̄γµνρd) L̄LL̄L

E [2](8)qu (q̄γµνTAu)(ūγµνTAq) E [3](8)dd (d̄γµνρTAd)(d̄γµνρTAd) E (8)qq (q̄γµTAq)(q̄γµTAq)

E [2]qd (q̄γµνd)(d̄γµνq) Eud (ūγµd)(d̄γµu) E (3,8)
qq (q̄γµσI TAq)(q̄γµσI TAq)

E [2](8)qd (q̄γµνTAd)(d̄γµνTAq) E (8)ud (ūγµTAd)(d̄γµTAu) E [3](1)qq (q̄γµνρq)(q̄γµνρq)

L̄RL̄R E [3]ud (ūγµνρd)(d̄γµνρu) E [3](3)qq (q̄γµνρσIq)(q̄γµνρσIq)

E [2]quqd (q̄rγ
µνu)εrs(q̄sγµνd) E [3](8)ud (ūγµνρTAd)(d̄γµνρTAu) E [3](8)qq (q̄γµνρTAq)(q̄γµνρTAq)

E [2](8)quqd (q̄rγ
µνTAu)εrs(q̄sγµνTAd) E ′ [3]ud (ūγµνρu)(d̄γµνρd) E [3](3,8)

qq (q̄γµνρσI TAq)(q̄γµνρσI TAq)

E ′ [3](8)ud (ūγµνρTAu)(d̄γµνρTAd)

Table 5: Evanescent operators with four fermions involving only quarks.

L̄RR̄L R̄RR̄R L̄LR̄R

E
`u (¯̀u)(ū`) Eeu (ēγµu)(ūγµe) E

`qde (¯̀γµq)(d̄γµe)

E
`d (¯̀d)(d̄`) Eed (ēγµd)(d̄γµe) E [3]

`u (¯̀γµνρ`)(ūγµνρu)
Eqe (q̄e)(ēq) E [3]eu (ēγµνρu)(ūγµνρe) E [3]

`d (¯̀γµνρ`)(d̄γµνρd)

E [2]
`edq (¯̀γµνe)(d̄γµνq) E [3]ed (ēγµνρd)(d̄γµνρe) E [3]qe (q̄γµνρq)(ēγµνρe)

E [2]
`u (¯̀γµνu)(ūγµν`) E ′ [3]eu (ēγµνρe)(ūγµνρu) E [3]

`qde (¯̀γµνρq)(d̄γµνρe)

E [2]
`d (¯̀γµνd)(d̄γµν`) E ′ [3]ed (ēγµνρe)(d̄γµνρd) L̄LL̄L

E [2]qe (q̄γµνe)(ēγµνq) E
`q (¯̀γµq)(q̄γµ`)

L̄RL̄R E (3)
`q (¯̀γµσIq)(q̄γµσI`)

E [2]
`equ (¯̀rγ

µνe)εrs(q̄sγµνu) E [3]
`q (¯̀γµνρq)(q̄γµνρ`)

E
`uqe (¯̀ru)εrs(q̄se) E [3](3)

`q (¯̀γµνρσIq)(q̄γµνρσI`)

E [2]
`uqe (¯̀rγ

µνu)εrs(q̄sγµνe) E ′ [3]
`q (¯̀γµνρ`)(q̄γµνρq)

E ′ [3](3)
`q (¯̀γµνρσI`)(q̄γµνρσIq)

Table 6: Semileptonic four-fermion evanescent operators. We use the shorthand
notation γµ1...µn ≡ γµ1 . . .γµn with no (anti)symmetrization.
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R̄RR̄R L̄LL̄L L̄LR̄R

E [3]ee (ēγµνρe)(ēγµνρe) E (3)
``

(¯̀γµσI`)(¯̀γµσI`) E [3]
`e (¯̀γµνρ l)(ēγµνρe)

L̄RR̄L E [3]
``

(¯̀γµνρ l)(¯̀γµνρ`)

E (3)
``

(¯̀γµσI`)(¯̀γµσI`) E [3](3)
``

(¯̀γµνρσI l)(¯̀γµνρσI`)
E [3]
``

(¯̀γµνρ l)(¯̀γµνρ`)
E [3](3)
``

(¯̀γµνρσI l)(¯̀γµνρσI`)

Table 7: Leptonic four-fermion evanescent operators. We use the shorthand notation
γµ1...µn ≡ γµ1 . . .γµn with no (anti)symmetrization.

L̄cLL̄Lc R̄cRR̄Rc R̄cRL̄Lc

E c
qq (qc

arqbs)(q̄bsq
c
ar) E c

uu (uc
aub)(ūbuc

a) E c
udqq (uc

adb)(q̄brεrsq
c
as)

E c ′
qq (qc

arqbs)(q̄asq
c
br) E c

dd (d c
adb)(d̄bd c

a) E c [2]
udqq (uc

aγ
µνdb)(q̄brεrsγµνq

c
as)

E c [2]
qq (qc

arγ
µνqbs)(q̄bsγµνq

c
ar) E c

ud (uc
adb)(d̄buc

a) L̄cRR̄Lc

E c ′[2]
qq (qc

arγ
µνqbs)(q̄asγµνq

c
br) E c ′

ud (uc
adb)(d̄auc

b) E c
qu (qc

aγ
µub)(ūbγµqc

a)
E c [2]

uu (uc
aγ
µνub)(ūbγµνu

c
a) E c

qd (qc
aγ
µdb)(d̄bγµqc

a)

E c [2]
dd (d c

aγ
µνdb)(d̄bγµνd c

a) E c ′
qu (qc

aγ
µub)(ūaγµqc

b)

E c [2]
ud (uc

aγ
µνdb)(d̄bγµνu

c
a) E c ′

qd (qc
aγ
µdb)(d̄aγµqc

b)

E c ′[2]
ud (uc

aγ
µνdb)(d̄aγµνu

c
b)

Table 8: Evanescent operators with four fermions involving only quarks and featur-
ing charge conjugation. We use the shorthand notation γµ1...µn ≡ γµ1 . . .γµn with no
(anti)symmetrization.

L̄cLL̄Lc R̄cRR̄Rc R̄cRL̄Lc

E c
``

(`c
r`s)(¯̀s`

c
r) E c

ee (ece)(ēec) E c
ue`q (uce)(¯̀rεrsq

c
s )

E c
q` (qc

r`s)(¯̀sq
c
r) E c

eu (ecu)(ūec) E c [2]
ue`q (ucγµνe)(¯̀rγµνεrsq

c
s )

E c ′
q` (qc

r`s)(q̄r`
c
s ) E c

ed (ecd)(d̄ec) L̄cRR̄Lc

E c [2]
``

(`c
rγ
µν`s)(¯̀sγµνq

c
r) E c [2]

ee (ecγµνe)(ēγµνec) E c
`e (`cγµe)(ēγµ`c)

E c [2]
q` (qc

rγ
µν`s)(q̄sγµνq

c
r) E c [2]

eu (ecγµνu)(ūγµνec) E c
qe (qcγµe)(ēγµqc)

E c ′[2]
q` (qc

rγ
µν`s)(q̄rγµν`

c
s ) E c [2]

ed (ecγµνd)(d̄γµνec) E c
`u (`cγµu)(ūγµ`c)

E c
`d (`cγµd)(d̄γµ`c)

E c
qed` (qcγµe)(d̄γµ`c)

Table 9: Semileptonic and leptonic evanescent operators with four fermions featur-
ing charge conjugation. We use the shorthand notation γµ1...µn ≡ γµ1 . . .γµn with no
(anti)symmetrization.
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