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Abstract

We study strongly coupled mass-deformed-CFT on a fixed de Sitter spacetime
in three dimensions via holography. We elucidate the global causal structure of
the four-dimensional spacetime dual to the de Sitter invariant vacuum state. The
conformal boundaries of de Sitter appear as spacelike defects sourced by the mass
deformation, which extend into the bulk as curvature singularities in AdS. We
compute all one- and two-point functions of the deformed-CFT stress tensor and
a scalar operator order-by-order in the mass deformation for a simple holographic
model. These correlation functions admit a spectral representation as a sum of
simple poles corresponding to normalisable modes in the bulk.
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1 Introduction

De Sitter spacetime is both physically relevant and mathematically significant. Its
physical relevance is its description of a universe expanding at an accelerating rate,
applicable at early times in inflationary cosmology, and at late times as we enter an
era dominated by a cosmological constant. It is also of mathematical significance as
one of only three maximally symmetric Lorentzian geometries. For these reasons it
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is important to develop a good understanding of quantum field theories (QFT) on de
Sitter backgrounds.

Weakly coupled QFTs on fixed de Sitter is a well-studied and rich field of research.
Light scalars in de Sitter backgrounds (|m| � H) exhibit infrared divergences if interac-
tions are treated as perturbatively small. In Starobinksky’s stochastic approach [1–3],
this is addressed by splitting fields into long- and short-wavelength parts compared to
the Hubble scale. The long wavelength parts then evolve classically and stochastically
according to a Langevin equation with a white noise term arising from short wavelength
modes. Starobinsky’s approach, and generalisations of it, have been the focus of many
subsequent studies [4–22]. For reviews on infrared issues in de Sitter see [23,24].

In this work we adopt a fresh perspective and compute QFT correlation functions on
de Sitter directly at strong coupling. This sidesteps issues encountered by working with
perturbatively small coupling constants, and at the same time provides a complemen-
tary insight into general properties of correlation functions on de Sitter backgrounds
at any value of the coupling. Strong coupling is made accessible through holographic
duality, where we may set the QFT to live on a fixed de Sitter metric with Hubble
parameter H,

ds2
dS3

= −dt2 + e2Htd~y2 =
−dη2 + d~y2

H2η2
, (1)

where the conformal time η = −H−1e−Ht. Conformal field theories (CFT) provide the
best understood examples of holographic duality, however since de Sitter spacetime
(1) is in the same conformal class as Minkowski they do not capture any dynamics for
which the curved de Sitter background plays an important role.1 This motivates the
study of non-conformal field theories.

Therefore here we turn our attention to non-conformal holographic QFTs. This is
achieved by introducing a mass as a deformation parameter of a CFT,

S = SCFT +

∫
ddxm(x)O(x). (2)

Since m breaks conformal symmetry there is no longer a relation to vacuum QFT on
Minkowski spacetime under a Weyl transform, instead, Weyl transformations reveal an
equivalence to studying QFT on Minkowski spacetime in the presence of a spacelike
defect. The defect is located at the future conformal boundary of de Sitter, η → 0.
The vacuum state in de Sitter is characterised by constant energy density despite
the accelerated expansion; one interpretation of this is a balance between particle
production and its dilution due to the expansion of the universe. The bulk global
structure of the vacuum is given by domain wall solutions in a dS-invariant foliation of
the bulk, where the leaves of the foliation are appropriately marshalled by the defect.
The geometries are akin to a Janus solution, but where the defect is spacelike and

1Up to the role played by possible conformal anomalies.
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separates two copies of de Sitter.
Such states have been considered in a series of previous works [25–29] and also more

recently in [30–34]. In these papers they are shown to exhibit properties commensurate
with dynamical attractors; homogeneous deviations from vacuum relax exponentially
fast in time (power law in the scale factor) exhibiting features which elicit comparison
to hydrodynamic equilibrium and quasinormal modes. It is interesting to ask how far
the analogy to hydrodynamic equilibrium and quasinormal modes goes, especially since
the state is not an equilibrium state. To this end, we compute two-point functions of
currents as the ultimate arbiter of relaxation towards any given state. We do this
for scalar, vector and tensor channels and at finite spatial momentum. We find no
further similarities to hydrodynamics; the underlying reason is the high amount of
residual isometries. Since the domain walls are dS invariant there can be no meaningful
dispersion at finite momentum as would be the case in hydrodynamics, only modes
organised into de Sitter eigenfunctions.

For completeness we would like to point out several other holographic treatments
of cosmological spacetimes in the literature. In this work we place importance on
breaking away from conformal theories and we do so with a mass term. Another way
to break conformality is to work with confining spacetimes, for instance by spatially
compactifying the spacetime to dSd×S1 [35–38]. In a distinct paradigm, one may
consider working with the quantum theory of gravity with dSd+1 future asymptotics
working through a Euclidean QFT dual [39–41]. Or holographic treatments of the static
patch of dSd, [42]. Within fluid-gravity, a cosmological expansion can be introduced
provided the scale factor is treated within a derivative expansion [43].

The paper is organised as follows. In section 2 we present the holographic model,
the geometry corresponding to the vacuum state in the presence of a mass, includ-
ing its global causal structure as it embeds into AdS4. In section 3 we compute the
one-point functions for this state. In section 4 we perform a gauge-invariant decom-
position of fluctuations organised by dS isometries and compute two-point functions
and normalisable mode spectra. In section 5 we present a novel Bessel function basis
for expressing CFT two-point functions, a by-product of our analysis. In section 6 we
present a free fermion calculation and compare with our strong-coupling holographic
results. We finish with a discussion of results and future directions in section 7.

2 Bulk geometry for the massive dS3 vacuum

Throughout this work, where a specific holographic model is required we adopt the
following bulk action,

S =
1

2κ2

∫
M4

√
−Gd4x

(
R + 6− 1

2
(∂φ)2 + φ2

)
, (3)
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where the AdS4 radius L = 1 and the bulk scalar mass term (distinct from the mass
deformation we consider) corresponds to a ∆ = 2 scalar operator in the dual field
theory. To construct the corresponding bulk solutions we adopt the following domain
wall ansatz,

ds2 = GDW
ab dXadXb = dz2 − P (z)ds2

dS3
φ = φ̄(z) (4)

where ds2
dS3

is the dS3 metric given in (1), resulting in the following equations of motion,

φ̄′′ +
3P ′

2P
φ̄′ + 2φ̄ = 0, (5)

6H2 +
3(P ′2)

2P
− 1

2
P
(
12 + 2φ̄2 + (φ̄′)2

)
= 0. (6)

See [44] for a general treatment of such domain walls. In accordance with the preceding
discussion, we wish to impose boundary conditions at the conformal boundary (here
taken to be z → −∞) which implements the mass-deformation of the theory. In detail,
near the boundary as z → −∞ we have the following expansion

P = e−2z
(
P(0) + P(2)e

2z + P(3)e
3z + . . .

)
(7)

φ̄ = φ̄(1)e
z + φ̄(2)e

2z + . . . (8)

and we impose that the boundary metric is given by ds2
dS3

and the scalar sources a
mass deformation, viz.

P(0) = −1, φ̄(1) = m. (9)

The bulk solutions are constructed by imposing regularity for a certain region of the
spacetime. This is best understood by referring to the global structure of the spacetime
which we will elucidate momentarily. The final outcome of this analysis is the following
bulk solution, which can be constructed analytically as a perturbative expansion in m,

P = −e−2z

(
1− H2

4
e2z

)2

− (−144 + 112Hez − 32H2e2z + 4H3e3z +H4e4z)

1152
(
1 + H

2
ez
)2 m2 +O(m)4

φ̄ =
ez(

1 + H
2
ez
)2m−

e2z(40 + 12Hez + 14H2e2z +H3e3z)

576H
(
1 + H

2
ez
)6 m3 +O(m)5. (10)

This corresponds to the solutions detailed in ingoing coordinates in [27]. In appendix A
we present the coordinate transformation between the ingoing coordinate system and
the domain wall coordinates used here. The corresponding one point functions for these
geometries are presented in section 3 after performing appropriate renormalisation.
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2.1 Global structure

The above solutions are constructed in coordinates such that the boundary covers the
inflationary patch of dS3, and the portion of the bulk region covered depends on whether
domain wall (4) or ingoing (110) coordinates are used. The goal of this section is to
elucidate the global structure by appealing to the complete spacetime. We start this
discussion on the boundary where we identify the requisite Weyl transformation, and
then turning to the bulk coordinate transformations which implement it. Our approach
is to start at m = 0 where the leading scalar behaviour is a probe, remarkably this
leads to the identification of a convenient ansatz which elucidates the global structure
of the geometry at finite m.

2.1.1 Weyl

On the boundary, we first perform a Weyl transformation which maps from the infla-
tionary patch of dS3 to Minkowski spacetime. This is straightforward once considering
conformal time parameter η = −H−1e−Ht for which the boundary metric (1) becomes,

−dη2 + d~y2

H2η2

Weyl−−−−−−→ −dη2 + d~y2 (11)

Under this Weyl transformation, the deformation (9) transforms as follows,

φ̄(1) = m
Weyl−−−−−−→ m

−Hη, (12)

and hence the future conformal boundary of dS3 is described by a singular spacelike
source function in R1,2 resembling a defect. This singularity extends into the bulk as
we shall now show.

2.1.2 Global bulk, m = 0

At m = 0 where the bulk geometry is identically AdS4, given by the first term for P (z)
in (10). Consider the following bulk coordinate transform which implements the Weyl
transform (11),

z = log

(
− r

Hτ

2τ 2 − 2
√
τ 4 − r2τ 2

r2

)
, η = τ

τ 2 − r2 −
√
τ 4 − r2τ 2

τ 2 −
√
τ 4 − r2τ 2

. (13)

In addition this transform obeys the following features: it preserves the time coordinate
on the boundary, i.e. limr→0 η = τ , and satisfies z → −∞ as r → 0 when η < 0
in accordance with the boundary limit. Under this transformation the leading bulk
line element takes on standard Poincaré form together with the leading bulk scalar
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contribution (10),

ds2 = r−2(dr2 − dτ 2 + d~y2) +O(m)2, φ̄ =
r

r − τ
m

H
+O(m3). (14)

Hence the singularity on the boundary at τ = 0 extends into the bulk along the null
surface τ = r, to leading order in m. Whilst informative, the Poincaré patch is still only
a portion of the full spacetime. The next step along the path to the global structure is
mapping from the plane to the Lorentzian cylinder, Rt×S2, such that the bulk solution
at m = 0 is written in global AdS4 coordinates. First switching to polar coordinates
on the boundary, d~y2 = dR2 +R2dΦ2, then let

r =
sin r̄

cosT + cos θ cos r̄
, τ =

sinT

cosT + cos θ cos r̄
, R =

sin θ cos r̄

cosT + cos θ cos r̄
(15)

the bulk metric and scalar become

ds2 = csc2 r̄
(
−dT 2 + dr̄2 + cos2 r̄dΩ2

2

)
+O(m)2, φ̄ =

sin r̄

sin r̄ − sinT

m

H
+O(m)3 (16)

where dΩ2
2 = dθ2 + sin2 θdφ2. Here the boundary is at r̄ = 0 and the origin is at

r̄ = π/2. The profile of φ̄ shows that the singularity (within the domain T ∈ [−π, π])
is located along the null surfaces T = r̄ and T = π − r̄, to leading order in m.

2.1.3 Global bulk, m 6= 0

Remarkably, the chain of coordinate transformations which implements the boundary
Weyl transformation to the Lorentzian cylinder, discussed above at m = 0, generalises
straightforwardly to arbitrary m. The final general vacuum solution takes the form of
AdS4 written in global coordinates up to an overall conformal factor, Ω, as follows:

ds2 = Ω(Y )2 csc2 r̄
(
−dT 2 + dr̄2 + cos2 r̄dΩ2

2

)
, (17)

φ̄ = F (Y ) . (18)

where we have introduced

Y ≡ sinT

sin r̄
. (19)

As such, identification of the causal structure of the solutions is now straightforward
as the conformal diagram is identical to AdS4, up to the locations of bulk singularities.
The resulting equations of motion are ODEs in the variable Y alone, a manifestation
of the underlying dS3 isometries of (17). In particular, the isometries of (17) are given
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by the dS3 isometry group, realised by the following 6 Killing vectors,

ξD = sinT cos r̄ cos θ∂T + cosT sin r̄ cos θ∂r̄ + cosT sec r̄ sin θ∂θ (20)

ξP1 = − sinT cos r̄ sin θ cos Φ∂T − cosT sin r̄ sin θ cos Φ∂r̄

+(1 + cosT sec r̄ cos θ) cos Φ∂θ − (cot θ + cosT csc θ sec r̄) sin Φ∂Φ (21)

ξP2 = − sinT cos r̄ sin θ sin Φ∂T − cosT sin r̄ sin θ sin Φ∂r̄

+(1 + cosT sec r̄ cos θ) sin Φ∂θ + (cot θ + cosT csc θ sec r̄) cos Φ∂Φ (22)

ξK1 = sinT cos r̄ sin θ cosφ∂T + cosT sin r̄ sin θ cos Φ∂r̄

+(1− cosT sec r̄ cos θ) cos Φ∂θ − (cot θ − cosT sec r̄ csc θ) sin Φ∂Φ (23)

ξK2 = sinT cos r̄ sin θ sinφ∂T + cosT sin r̄ sin θ sin Φ∂r̄

+(1− cosT sec r̄ cos θ) sin Φ∂θ + (cot θ − cosT sec r̄ csc θ) cos Φ∂Φ (24)

ξM = ∂Φ, (25)

where θ,Φ are the polar and azimuthal angle on the S2, and the vectors have been
labelled in a way which indicate their role in the Euclidean global conformal algebra
in two dimensions. Each of these leave Y invariant. The boundary of this spacetime
is the Einstein static universe R× S2, and the dS3 region of interest is conformal to a
piece of this, as illustrated in figure 1.

Some comments on the privileged coordinate Y are now in order. The AdS bound-
ary to the past of η = 0 is reached by Y → −∞ (i.e. the blue square region in figure
1), and the AdS boundary to the future of η = 0 is reached by Y → +∞ (i.e. the white
square region in figure 1), with a fixed point corresponding to the location of the defect,
i.e. the singularity in the source function. The values Y = ±1 correspond to radial
null lines departing from and arriving at the defect, respectively. This is illustrated
in figure 2 where contours of Y are shown on the conformal diagram for the solution,
which is identical to the conformal diagram for global AdS up to the inclusion of the
new singularities in red.

Starting with this new ansatz, (17), (18) we can revisit the perturbative analysis.
In particular, the solution at leading order in m is given by,

Ω2(Y ) = 1 +O(m)2, (26)

F (Y ) =
Y + cF

(Y + 1)(1− Y )

m

H
+O(m)3. (27)

This leaves a clear choice to either eliminate the incoming singularity at Y = −1 or the
outgoing singularity at Y = 1. Eliminating the incoming singularity (choosing cF = 1)
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Figure 1: dS3 is conformal to a portion of R × S2, here shown as a blue region (the
azimuthal angle Φ is suppressed). The spacelike conformal boundaries of dS are shown
in red, and correspond to the singular loci of a mass deformation of a CFT living in
dS3. The infilling bulk geometry is conformal to AdS4, given by (17) when foliated by
constant Y surfaces. The blue square region corresponds to the part of the conformal
boundary reached when Y → −∞ and the white square region to Y → +∞.

and continuing to higher orders in m gives,

Ω2(Y ) = 1− 1

12(Y − 1)2

m2

H2
− 5

432(Y − 1)3

m4

H4
+O(m)6, (28)

F (Y ) =
1

1− Y
m

H
+

3− 5Y

72(Y − 1)3

m3

H3
+
−175 + 619Y − 645Y 2 + 129Y 3

51840(Y − 1)5

m5

H5
+O(m)7,

(29)

which matches the geometry (10) up to a coordinate transformation.
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m = 0 m 6= 0

Y
=
−1

Y
=
−
1

Y
=

1

Y
=

1

Y = 0

Y
→

+
∞

Y
→
−
∞

Y
=
−1

Y
=
−
1

Y
=
Y
−
∗

Y
=
Y

+
∗

Y
=
Y −
∗

Y = 0

Y
→

+
∞

Y
→
−
∞

← I+ (dS3) ← I+ (dS3)

← I− (dS3) ← I− (dS3)

Figure 2: Conformal diagrams corresponding to the global extension (17), showing the
effect of introducing the mass deformation to the field theory on dS3, m. Each point
is an S2 which shrinks to zero size at the origin of coordinates indicated by the dashed
line, and the remaining lines are level sets of Y = sinT

sin r̄
. Y → −∞ corresponds to a

portion of the AdS boundary R× S2 before the defect, i.e. the blue line in this figure,
corresponding to the blue square region shown in figure 1. Y → +∞ corresponds to
the complement of the blue region on the boundary, i.e. the white square region shown
in figure 1. The green shaded region shows the development of data prescribed in the
blue dS3 region at the boundary together with suitable choice of vacuum along the
past portion of null surface at Y = −1. Left panel: At m = 0 the bulk is exactly
AdS4 and the probe scalar singularity is null, as shown by the red lines along Y = 1
in the left panel. Right panel: With m 6= 0 the bulk is conformal to AdS4 and the
singularity is split into timelike and spacelike components at Y = Y ±∗ in (31), shown
in red.
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We now turn our attention to the location of the singularity at finite m. The
perturbative expressions for the scalar F (Y ) make this identification subtle, since each
order in m comes with an additional factor of (1 − Y )−1 which naively appears to
invalidate the perturbative expansion there. Non-perturbatively, we find that this
coincides with the existence a logarithmic singularity by constructing a solution in the
neighbourhood of a fiducial singular point Y∗,

F = ±
√

3 log(Y − Y∗) + F0 + F1(Y − Y∗) + . . . , Ω2 = h0(Y − Y∗) + . . . . (30)

This behaviour has been confirmed by direct numerical construction in the Y -variable.
With the singularity characterised, Y∗ can be computed perturbatively in m by match-
ing the functional form of (F ′)−1 in the vicinity of the singularity, finding two such
solutions Y∗ = Y ±∗ ,

Y ±∗ = 1± 1

2
√

3

m

H
+O(m)2. (31)

Thus, m causes the singularity to split into a timelike and spacelike component, as
illustrated in the right panel of figure 2. Additionally, at this point Ω vanishes order by
order in m. Going beyond perturbation theory, we can numerically construct solutions
by solving the ODEs in Y at finite m. This is achieved by a shooting method, between
an expansion near the boundary at Y = −∞ where we impose the source amplitude
m, and an expansion about Y = −1 constructed to be manifestly regular there. By
counting data appearing in these expansions and comparing to the order of the ODEs
one concludes that there is indeed a one-parameter family of solutions which can be
labelled by m. Once such a solution is constructed, it can be further integrated from
Y = −1 towards Y = 1, reading off the location of the singularity encountered along
the way at Y −∗ . The results of this exercise are shown in figure 3 and show agreement
with the perturbative calculation (31) for small m.

3 One-point functions

The only two scales available are the mass deformation m and the Hubble constant H.
Furthermore, the bulk geometry is manifestly dS3 invariant. The one point functions
therefore must take the form,

〈O〉0 =
H2

2κ2
F
(m
H

)
, (32)

〈Tµν〉0 = −H
3

2κ2

m

3H
F
(m
H

)
gdSµν , (33)

where the relationship between the two expressions is in accordance with the trace Ward
identity, (126), ensuring that the same function F appears in both. The background
geometries are given in the domain wall form (4), and to convert these to Fefferman-
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m/H

←perturbation theory O(m)

Figure 3: The location of the spacelike singularity Y −∗ as a function of the mass defor-
mation parameter m. The red line shows the leading slope predicted by perturbation
theory, i.e. the negative branch of (31).

Graham gauge is straightforward, requiring only a change of the bulk radial variable,

z =
1

2
log ρ. (34)

With this mapping complete we can simply read off the one-point functions from the
near boundary data according to (132) and (133). See appendix B for details of the
holographic renormalisation procedure. In a neighbourhood around m = 0 utilising
the perturbative solutions we find,

F = −m
H
− 5

72

m3

H3
+

43

17280

m5

H5
+O(m)7, (35)

in agreement with the results of [27]. As m/H →∞ the scale m dominates and is the
only scale that enters the expressions (32) and (33). This is reflected in the asymptotic
behaviour of F at large argument, given by

F = Fasy
m2

H2
(36)

for some constant Fasy. We can determine this constant by appealing to the bulk
equations of motion, and appropriately scaling the bulk radial coordinate by m and
taking the large m limit. This leads to an exact set of equations governing the large
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m behaviour.2 Such a numerical analysis gives the approximate value Fasy ' −0.37.
These two asymptotic regions are connected numerically for all m as shown in figure
4.

-8 -6 -4 -2 0 2 4

-5

0

5

log(−F)

logm/H

small m perturbation theory →

← leading large m behaviour

Figure 4: Asymptotic behaviour of the one-point functions as given by the function
F appearing in (32) and (33) shown on a log-log plot. The red line gives the small
m behaviour as in (35) and the blue line gives the asymptotically large m behaviour
where the one-point functions are independent of H as in (36). The black points are
the numerical results at finite m.

4 Fluctuations and two-point functions

In order to compute correlation functions we first need to solve the equations of motion
for linearised fluctuations on top of the domain wall background,

Gab = GDW
ab (z) +Hab(z, x), φ = φ̄(z) +Hφ(z, x), (37)

where GDW
ab (z), p(z) are given in (4). These fluctuations must obey suitable regularity

conditions in the bulk and be consistent with the choice of vacuum. Once solved, we
may read off the corresponding sources h(0)µν , hφ(1) by moving to Fefferman-Graham
gauge, and in particular their effect on the near-boundary data required to evaluate
normalisable modes and two-point functions.

2This procedure is not dissimilar to taking the planar limit of a black hole in global AdS by
parametrically suppressing the curvature scale of the sphere. Here it is the de Sitter expansion which
is suppressed.
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This calculation is facilitated by an appropriate spin-decomposition of the fluctua-
tions,

Hzz = X (38)

Hzµ = P (z) (∂µV + Vµ) (39)

Hµν = P (z)
(
−2ψgdSµν + 2∇dS

(µ ∂ν)χ+ 2∇dS
(µων) + γµν

)
(40)

Hφ = S (41)

where γµν is transverse traceless and ωµ, Vµ are divergence free with respect to gdSµν .3

The functions appearing here, X, V, Vµ, ψ, χ, ωµ, γµν , S each depend on all coordinates,
z, t, xi. There is gauge-dependence which can be reached by performing linearised
diffeomorphisms by a vector ξa, whose overall effect is to adjust the metric and scalar
perturbations by Lie derivatives of the fields,

Hab → Hab + 2∇(aξb), Hφ → Hφ + ξa∂aφ̄. (42)

A convenient way to proceed is to partially fix this gauge dependence by choosing
the fluctuations to obey Hzz = Hzµ = 0 which makes later comparison to Fefferman-
Graham gauge straightforward. This corresponds to X = V = Vµ = 0. There is then
a residual gauge redundancy which preserves this choice, given by ξa obeying,

∂zξz = 0, (43)

∂µ

(
ξz
P

)
+ ∂z

(
ξµ
P

)
= 0, (44)

for which we can write the most general solution,

ξz(z, x) = fz(x), ξµ(z, x) = P (z)

(
fµ(x)− ∂µfz(x)

∫ z dq

P (q)

)
. (45)

Among the remaining variables, performing this residual transformation corresponds
to adjusting the set of metric fluctuations. We further decompose ξµ = Zµ + ∂µZ such
Zµ is divergence-free and further discuss the tensors, vectors and scalars separately in
their respective sections 4.1, 4.2, 4.3 below.

In all cases it will become convenient to further decompose the fluctuations Φ ∈
{X, V, Vµ, ψ, χ, ωµ, γµν , S} via separation of variables according to the de Sitter symme-
tries present in the background domain wall. We choose to do this utilising commuting
labels corresponding to the two translation generators, ∂

∂yi
(i = 1, 2), and the Casimir

operator �dS3 , such that

∂jΦ = ikjΦ, �dS3Φ = λΦ. (46)

3This ansatz is the decomposition adopted in [45] generalised to a dS3 boundary metric.
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Under separation of variables keeping the regular solution this leads to fluctuations of
the form4

Φ = Φk,λ(z) ηJν(kη) eikiy
i

, (47)

where the Bessel index ν is determined by λ through λ = H2 (1− ν2). This separation
results in the bulk fluctuation equations becoming ODEs in domain wall radial variable
z only, with λ, ki appearing as parameters.

4.1 Tensors: γµν

The transverse traceless tensor γµν is unaffected by the residual gauge transformations
described above and is automatically gauge invariant. The most general form of γµν is
given as follows,

γ00 = 0, (48)

γ0i = −hiJν(kη)eik·yγ(z), (49)

γij =
1

k2η2
(η∂η − 2)(ηJν(kη))∂(ie

ik·yhj)γ(z), (50)

where hi is a constant polarisation 2-vector satisfying hik
i = 0. The field γ(z) obeys

the following radial equation of motion,

γ′′ +
3P ′

2P
γ′ − λ

P
γ = 0, (51)

which we solve order-by-order inm, expanding λ =
∑

k=0 λk
(
m
H

)k
, γ(z) =

∑
k=0 γk(z)

(
m
H

)k
alongside the expansion of P , subject to regularity in the bulk. From this solution we
may read off the asymptotic data near the AdS boundary and extract the fluctuation
γ’s contribution to g(3)µν and g(0)µν (see Appendix B for details). Using the expres-
sion for the one-point function in the presence of sources, (125), we may perform a
variation of 〈Tµν〉 with respect to this transverse traceless fluctuation and recover the
appropriate two-point function,

〈Tµν(ν1, k1)Tρσ(ν2, k2)〉 = Πµνρσ(ν1, k1; ν2, k2)A(ν1, k1), (52)

where Πµνρσ is a projection tensor which encodes the variation for transverse traceless
perturbations,

Π ρσ
µν (ν1, k1; ν2, k2) =

δgTT
(0)µν(ν1, k1)

δgTT
(0)ρσ(ν2, k2)

. (53)

The projector (53) encodes conservation of spatial momenta and is also diagonal in
Bessel index, proportional to δν1ν2 . To illustrate the structure of the remaining ampli-

4The other eigenfunction of �dS3
, ηYν(kη) diverges.
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tude A, we present it to order m4,

A(ν, k) =
H3

2κ2

[
ν(ν2 − 1) +

3ν2 + 8ν − 19

24(ν − 2)

m2

H2

+

(
35

864
− 23

1536(ν − 2)
+

3

256(ν − 2)2
+

1

18(ν − 3)
+

25

512(ν − 4)

)
m4

H4

+ O
(m
H

)6
]
. (54)

The most salient observation here is that (54) contains poles appearing at specific
integer values of the Bessel index, ν = 2, 3, . . .. Not only simple poles, but higher order
poles too. The higher order poles appearing in this m expansion are symptomatic
of the simple pole locations receiving perturbative corrections order-by-order in m.
These corrected simple pole locations correspond precisely to normalisable modes in
the bulk which can be computed directly by setting fluctuations of the source to zero
and imposing bulk regularity. This fixes a discrete spectrum of modes, reminiscent of a
quasinormal mode calculation in a black hole background. See Appendix E for further
details. This calculation reveals modes located at ν = νtn = n+O(m) for n = 2, 3, . . ..
The first few modes are given as follows,

νt2 = 2 +
1

32

m2

H2
− 103

36864

m4

H4
+

50929

212336640

m6

H6
+O(m)8, (55)

νt3 = 3 +
1

864

m4

H4
− 49

311040

m6

H6
+O(m)8, (56)

νt4 = 4 +
5

12288

m4

H4
− 119

5308416

m6

H6
+O(m)8, (57)

νt5 = 5 +
13

518400

m6

H6
+O(m)8, (58)

νt6 = 6 +
35

4718592

m6

H6
+O(m)8, (59)

and to the order we are working we also require νtj = j+O(m)8 for j = 7, 8. With these
modes known, we find the following spectral representation of the two point function,
after a suitable resummation to incorporate the corrected mode locations,

A(ν, k) =
3H3

2κ2

(
ν

3
(ν2 − 1) +

ν

24

m2

H2
+
∞∑
j=2

rtj
ν − νtj

)
− 7

12
m 〈O〉0 (60)

where the expectation value 〈O〉0 given by in section 3 (which takes the perturbative
expansion (35)) captures all corrections to A that are independent of ν. Thus it takes
the form of a contact term multiplied by a projection operator, and as such it is
reminiscent of a Dilaton pole, see section 5.1 of [46]. The residues rtj are determined

15



order-by-order in this procedure and we present the first few in Appendix C.

4.2 Vectors: ωµ

Among the vectors the residual diffeomorphisms act to transform the perturbation
variables as follows:

ωµ → ωµ + P−1Zµ (61)

where P−1Zµ = fµ(x) by (45), hence an appropriate gauge invariant variable is simply

v̂µ = ω′µ. (62)

For functions with arbitrary dependence on (t, x, y) the momentum constraints reveal
that

v̂µ = 0, (63)

trivialising the vector perturbations in d = 3.

4.3 Scalars: ψ, χ, S

Among the scalars the residual diffeomorphisms act to transform the perturbation
variables as follows:

ψ → ψ +
P ′

2P
ξz (64)

χ → χ+
1

P
Z (65)

S → S + φ̄′ξz (66)

From this we can identify gauge invariant combinations,

ζ = −ψ +
P ′

2P

S

φ̄′
(67)

φ̂ = −
(
S

φ̄′

)′
, (68)

ν̂ = χ′ +
S

P φ̄′
(69)

where in constructing φ̂ we utilised (43) and constructing ν̂ we utilised (44). The
Hamiltonian and momentum constraint equations give,

φ̂ =
2PH2

P ′
ν̂ − 2P

P ′
ζ ′, ν̂ = −2(3H2 + λ)P ′

Qλ

ζ +
Q−3H2

H2Qλ

ζ ′, (70)
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where for convenience we have defined the background quantity Qα(z) ≡ 12H4P −
2H2P 2(6+ φ̄2)−α(P ′)2. Thus, once ζ is determined all other gauge invariant variables
are determined by the above relations. All equations of motion are satisfied once ζ
obeys the following ODE in the bulk radial direction, z,

ζ ′′ +

(
Q′−3H2

Q−3H2

− Q′λ
Qλ

− 12H4P ′

Q−3H2

+
3P ′

2P

)
ζ ′ (71)

−H2

(
Qλ(Qλ + 3(3H2 + λ)(P ′)2) + 2(3H2 + λ)P (−P ′Q′λ +Qλ(2H

2 + P ′′))

PQ−3H2Qλ

)
ζ = 0.

Equivalently, we may use the following second order differential equation for φ̂(z),

φ̂′′ +

(
− 4φ̄

φ̄′
+

2H2

P ′
− 2P

P ′
− φ̄2P

3P ′
− Pφ̄′2

6P ′

)
φ̂′ (72)

+

(
− 10− φ̄2 − 8φ̄2

φ̄′2
+

40H2φ̄

φ̄′P ′
− 40φ̄P

φ̄′P ′
− 20φ̄3P

3φ̄′P ′
− 10φ̄P φ̄′

3P ′
− λ

P

)
φ̂ = 0,

which we solve by expanding order-by-order in m/H: λ =
∑

k=0 λk
(
m
H

)k
, φ̂(z) =∑

k=0 φ̂k(z)
(
m
H

)k
alongside an expansion of the background fields φ̄, P . The equation

of motion (72) gives rise to two integration constants, one corresponding to the choice
of source and one determined through regularity. The physical fields are then uniquely
determined through (70) and (67), (68), (69) up to gauge transformations completing
the calculation of the scalar two point functions. Consider the variation of the action
with respect to the scalar sources,

δSscalars =

∫
d3x
√
g(0)

(
1

2
〈Tµν〉 δgµν(0) + 〈O〉 δφ(1)

)
(73)

=

∫
d3x
√
g(0) 〈O〉

(
S(1) +mψ(0)

)
= −m

∫
d3x
√
g(0) 〈O〉 ζ(0) (74)

with 〈O〉 = 〈O〉0 + S(2) and where here it is understood that δgµν(0) corresponds only to
the scalar pieces. That is to say, the piece of the source fluctuation which implements
a Weyl transform does not appear as guaranteed by the trace Ward identity, leaving
only the linear combination ζ(0). Hence

〈O(x1)O(x2)〉 =
−1

m

1
√
g(0)

δS(2)(x1)

δζ(0)(x2)

∣∣∣∣
ζ(0)=0

, (75)

or, for our decomposition into Bessel functions,

〈Oν1(k1)Oν2(k2)〉 =
S(2)

S(1) +mψ(0)

δν1ν2δ
(2)(k1 + k2). (76)
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We find for the first few orders

〈〈Oν(k)Oν(−k)〉〉 = H

[
ν +

(
1

6(ν − 1)
+

5

54(ν − 2)

)
m2

H2

+

(
− 1

24(ν − 1)
+

1

72(ν − 1)2
+

2017

27648(ν − 2)
+

19

1152(ν − 2)2

− 5

192(ν − 2)3
− 1

36(ν − 3)
− 71

13824(ν − 4)
+

5

3072(ν − 6)

)
m4

H4

+ O
(m
H

)6
]
, (77)

where the double angle brackets indicate we have dropped the Kronecker and Dirac
delta factors.

As in the tensor case, the m-expanded scalar two point function contains poles (both
single and higher order) at integer values of the Bessel index ν. These correspond to the
leading behaviour of normalisable modes where sources are turned off and regularity
imposed in the bulk. Performing an explicit calculation to compute the mode spectrum,
we find they are located at ν = νsn = n + O(m) where n ∈ Z+. Our computation of
these modes extends the analogous calculation performed in [27] to finite k.5 The first
few modes are given by

νs1 = 1 +
1

12

m2

H2
− 1

54

m4

H4
+

1591

622080

m6

H6
+O(m)8, (78)

νs2,± = 2∓ i
√

2

4

m

H
+

11

192

m2

H2
∓ 37i

√
2

12288

m3

H3
+

1855

221184

m4

H4
± 2076503i

√
2

1132462080

m5

H5
+O(m)6,

(79)

νs3 = 3− 1

216

m4

H4
+

337

777600

m6

H6
+O(m)8, (80)

νs4 = 4− 5

4096

m4

H4
− 589

15925248

m6

H6
+O(m)8, (81)

νs5 = 5− 37

1036800

m6

H6
+O(m)8, (82)

νs6 = 6− 35

2359296

m6

H6
+O(m)8, (83)

and to the order we are working we also require νsj = j +O(m)8 for j = 7, 8, 10, 12, 14.
Again, as with the tensor calculation, knowing the location of these poles order-by-
order in m allows a suitable resummation of the scalar two point function (77) such
that it is entirely expressible as a sum over simple poles located at the mode indices

5The corresponding frequencies given in [27] are obtained through ωthere = −i(ν + 1)H, which can
be seen at small η or k since ηJν(kη) ∼ ην+1 ∼ e−(ν+1)Ht.
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νsj with residues rsj ,

〈〈Oν(k)Oν(−k)〉〉 = H

(
ν +

rs1
ν − νs1

+
∑
±

rs2,±
ν − νs2,±

+
∞∑
j=3

rsj
ν − νsj

)
. (84)

Note the lack of higher order poles. This procedure uniquely determines the residues
rsj order-by-order in m, the first few of which can be found in Appendix C.

Finally we note that there are two additional scalar two-point functions,
〈
T µµO

〉
and

〈
T µµT

ν
ν

〉
which follow from Ward identities given in (126). In particular taking

further variations of the trace Ward identity gives
〈
T µµO

〉
= −〈O〉0 and

〈
T µµT

ν
ν

〉
= 0.

5 A Bessel function decomposition of CFT two-

point functions

In this paper we have obtained expressions for two-point functions perturbatively in m
– see (84) for scalars and (60) for tensors. As previously discussed, these are naturally
expressed using spatial wavevector ki and a Bessel index ν leading to the separation of
variables ∼ ηJν(kη)eik·y. The leading m = 0 terms in (84) and (60) correspond to the
CFT result, and as such represent a novel decomposition of standard CFT two-point
functions. The goal of this section is to demonstrate this decomposition explicitly;
starting with two point functions expressed in the Bessel function basis, we perform a
change of basis and recover standard momentum-space expressions for CFT two-point
functions, namely, for a scalar operator of dimension ∆ in d-dimensional Minkowski
spacetime [47,48],6

〈O(ω, k)O(ω′, k′)〉 =
∣∣k2 − ω2

∣∣∆− d2 δ(ω + ω′)δ(d−1)(k + k′). (85)

First, we generalise our result for the scalar two-point function (84) to general ∆, d,
working at m = 0. Consider a scalar operator of dimension ∆, Oφ, with a source
function φ(d−∆) in dSd. We set the source φ(d−∆) to be an eigenfunction of the type
discussed above, and via a probe holographic calculation imposing regularity, read off
the resulting vev in the presence of the source, 〈Oφ〉φ(d−∆)

. After Weyl transforming to

Minkowski space, −dτ 2 + dy2
d−1, we find,7

φ(d−∆)(ν) = τ
δ−1

2 Jν(kτ)eik·y,

〈Oφ(ν)〉φ(d−∆)
= −2−δe−iπδΓ

(
1− δ

2

)
Γ
(

1
2
− n+ δ

2

)
Γ
(
1 + δ

2

)
Γ
(

1
2
− n− δ

2

) τ−
δ+1

2 Jν(kτ)eik·y. (86)

6Reached from de Sitter by a Weyl transformation.
7Here and in appendix D we have set 2κ2 = 1.
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where δ = 2∆ − d. When ∆ = 2, d = 3, (δ = 1) this reduces to the result considered
earlier in this paper, i.e. the m = 0 limit of (84).

Next, we wish to change the basis so that all τ dependence appears as a plane wave,
e−iωτ , by summing (86) over the index ν with appropriately chosen coefficients. This
is a simple exercise when δ = 1, due to the following generating function for Jν(x),

e
x
2 (t− 1

t ) =
∞∑

n=−∞

tnJn(x) (87)

which informs the correct choice of coefficients when summing the source term in (86)
to obtain,

∞∑
ν=−∞

tνφ(d−∆)(ν) = eik·y−iωτ ,where t− 1

t
= −2i

ω

k
. (δ = 1) (88)

Applying the same sum to the vev, we obtain,

∞∑
ν=−∞

tν 〈Oφ(ν)〉φ(d−∆)
=

∞∑
ν=−∞

−ν
τ
tνJν(kτ)eik·y (δ = 1)

= − t
τ
∂t

(
e
kτ
2 (t− 1

t )
)
eik·y = ±

√
k2 − ω2eik·y−iωτ (89)

thus completing the derivation of the standard CFT two-point function in momentum
space (85) at δ = 1, up to normalisation factors. In appendix D we extend this result
to all odd δ, which requires several additional steps due to the powers of τ appearing
in the source function.

5.1 Mass corrections

In the presence of the mass deformation, m, we may go beyond the CFT result and
compute corrections to (85). As shown in both the tensor (60) and scalar (84) two-
point function calculations, corrections in m lead to the addition of simple poles at
non-integer values of the Bessel index (after suitable resummation of the perturbative
expansion). Let us consider one such correction of this type, which we denote by the
sum S, and compute its contribution to the momentum space result in flat space. The
general correction to the flat-space vev of interest takes the form,

S =
∞∑

n=−∞

ant
nτ−1Jn(kτ), (90)

for a source with frequency and momentum ω, ki, where an are independent of τ . We
now perform the Fourier transform of this expression from τ to ω′ which gives us the
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contribution to the two-point function describing the response at ω′ for a source at ω.
At m = 0 the two-point function was proportional to δ(ω+ω′) but this is no longer the
case at m 6= 0 since the deformation breaks time-translation invariance. Restricting
for concreteness to 0 < ω′ < k the Fourier transform is given by,

S̃ = −i
∞∑

n=−∞

ant
n

(
sin(nπ)

2πn
− in sin

(
n
(
π
2

+ ψ′
))

nπ

)
, (91)

where ψ′ is an angle. This angle arises since we have the quantity t′ =
−iω′+

√
k2−(ω′)2

k

which for the conditions 0 < ω′ < k is unit norm and thus may be represented by
−π

2
< ψ′ < 0 where t′ = eiψ

′
. For a simple pole at n0, i.e. an = 1

n−n0
, the sum (91) can

be evaluated directly,

2πn0S̃ =

(
t

t′

)n0
[
B

(
t

t′
; 1− n0, 0

)
−B

(
t′

t
; 1 + n0, 0

)]
+ (−tt′)n0

[
B

(−1

tt′
; 1 + n0, 0

)
−B (−tt′; 1− n0, 0)

]
+ iπ, (92)

where B(z;x, y) is the incomplete Euler beta function and t = −iω+
√
k2−ω2

k
.

6 Free fermion

A mass deformation in dS3 corresponds to a ∆ = 2 operator, which we denoted above
as O. In three dimensions this is the dimension of a mass term for a fermion. In this
section we consider a massive free fermion theory on dS3 to assess which features of the
above analysis are sensitive to the coupling strength and which are intrinsic to massive
theories placed on dS3.

We begin with the two-, three- and four-point functions for O = ψ̄ψ where ψ is a
Euclidean free massless two-component fermion on R3. As it is a CFT, these take the
general form,

〈O(x1)O(x2)〉0 =
α

|x12|4
, (93)

〈O(x1)O(x2)O(x3)〉0 =
αC

|x12|2 |x23|2 |x31|2
, (94)

〈O(x1)O(x2)O(x3)O(x4)〉0 =
1

x4
12x

4
34

f(u, v), (95)

where the subscript 0 indicates that these are computed for the massless theory. Ap-
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pearing in these expressions are the conformally invariant cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (96)

We evaluate the remaining data α,C, f by direct calculation in position space. The
propagator is given by 〈

ψ(x1)ψ̄(x2)
〉

=
i/x12

4π|x12|2
. (97)

Each O insertion introduces a single factor of the Dirac matrices γµ. For the two point
function using tr(γµγν) = 2δµν we recover the normalisation α = 1/(8π2). For the
three point function the result can only depend on two differences x12, x23 with the
third determined x31 = −x12−x23. Since tr(γµγνγρ) = 2εµνρ we can see that the three
point function must therefore vanish since there are not enough linearly independent
variables to construct a nonzero contraction with εµνρ. Thus C = 0. For the four
point function, a more detailed calculation is required. There are 4 contractions for
each diagram that contributes to 〈O(x1)O(x2)O(x3)O(x4)〉0 and 6 total diagrams. It is
useful to note the identity tr(γµγνγργσ) = 2(δµνδρσ−δµρδνσ+δµσδνρ) used in evaluating
the final trace. Summing all diagrams gives the final result,

f(u, v) = α2 u
1/2

2v3/2

(
1− u− v − u3/2 − v3/2 + u5/2 + v5/2 − uv3/2 − vu3/2

)
. (98)

As a check one may verify that this expression obeys the required crossing identities,(v
u

)2

f(u, v) = f(v, u), f(u, v) = f

(
u

v
,

1

v

)
. (99)

The above expressions (93), (94), (95) can be used within conformal perturbation
theory to evaluate two point functions for the massive theory. Consider a conformal
field theory SCFT deformed by a scalar operator O of dimension ∆ with spacetime-
dependent coupling

S = SCFT +

∫
ddxm(x)O(x). (100)

Then a correlation function in the full theory can be constructed by computing CFT
correlation functions with the following insertion,

e−
∫
ddxm(x)O(x) =

∞∑
n=0

(−1)n

n!

∫
ddx1 . . . d

3xn (m(x1)O(x1) . . .m(xn)O(xn)) (101)
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Let us first consider the leading correction to the one point function,

〈O(x1)〉 = 0−
∫
d3x2m(x2) 〈O(x1)O(x2)〉0 +O(m)2. (102)

First performing the two spatial integrals we obtain,

〈O(x1)〉 =
im

8πH

∫
dτ2

1

τ2

1

τ 2
12

+O(m)2, (103)

and hence choosing a contour for the τ2 integral which picks up the pole at τ2 = 0 we
find

〈O(x1)〉 =
m

4Hτ 2
1

+O(m)2. (104)

The final step is to perform a Weyl transformation with Ω = (Hiτ)−1 and analytic
continuation τ = iη to go from a theory on g = dτ 2 + d~x2 to a theory on dS3 with line
element Ω2g = (H2η2)−1(−dη2 + d~x2),

〈O〉Ω2g = −H2 1

4

m

H
+O(m)2, (105)

which matches the holographic result at this order (32) up to a constant.
Next we consider two point functions evaluated perturbatively in m up to order

m2. We have,

〈O(x1)O(x2)〉 = 〈O(x1)O(x2)〉0 (106)

−
∫
ddx3m(x3) 〈O(x1)O(x2)O(x3)〉0

+
1

2

∫
ddx3d

dx4m(x3)m(x4) 〈O(x1)O(x2)O(x3)O(x4)〉0 .

At order m2 there are a set of integrals to perform, explicitly given here by inserting
the above expression (95) with the result (98). To order m,

〈O(x1)O(x2)〉 =
1

8π2 |x12|4
+O(m)2. (107)

Which matches the holographic result for the scalar two-point function, including the
vanishing of the order m term. In future work it would be interesting to evaluate the
contribution of the data appearing in the four-point function through f(u, v) which
here appears at order m2.

Finally, for completeness we also present the free fermion result (107) on de Sitter
spacetime, labelled by spatial momenta ki. Let x = (τ, ~x). Fourier transforming in
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~x1, ~x2 gives 〈
O~k1

(τ1)O~k2
(τ2)
〉

=
1

32π3

k

τ12

K1 (kτ12) δ(2)(~k1 + ~k2) +O(m)2, (108)

Where K1 is a modified Bessel function. Finally we perform the Weyl transformation,〈
OL
~k1

(η1)OL
~k2

(η2)
〉

Ω2g
= − 1

32π3

H4η2
1η

2
2

η2
12

(−ikη12K1 (−ikη12)) δ(2)(~k1 + ~k2) +O(m)2.

(109)
where OL(η) ≡ O(iη). Note that the term in parenthesis goes to 1 in the limit k → 0.

7 Discussion

In this work we have studied strongly-coupled non-conformal QFTs in fixed de Sitter
backgrounds via holography. Non-conformality was introduced via a mass deformation
of a CFT. We computed scalar, vector and tensor two-point functions directly at strong
coupling for a particular holographic model in d = 3.

One of our motivations was gaining a new perspective on correlation functions
of massive quantum fields in fixed de Sitter backgrounds. By working directly at
strong coupling one may hope to evade infrared issues which arise in perturbative
approaches [1, 2]. Our work is based around a deformed holographic CFT and when
m→ 0 we recover standard CFT results in a controlled fashion. It would be interesting
to revisit weak coupling calculations starting from the perspective of a CFT.

Through holography, the dS3-invariant vacuum state for a massive theory is realised
as an asymptotically-AdS4 geometry [27]. Here, we have elucidated the global causal
structure of this geometry. The mass deformation leads to a defect-like singular source
on the boundary of AdS that propagates into the bulk forming a spacelike singularity.
The spacetime is of domain-wall form, foliated by dS-invariant slices. This dS-invariant
foliation already existed for the CFT case at m = 0 where the bulk is exactly AdS, but
we have found that it is robust to adding the mass deformation and persists at finite
m 6= 0 too. The warp-factor changes and the sliding freedom of the m = 0 foliation is
pinned by the defect when m 6= 0. As a consequence, the dS-invariant slices naturally
organise the holographic computation of correlation functions, where fluctuations sit
in representations of the dS isometry algebra.

An interesting outcome of the two-point function calculations was their simplicity
when expressed in a spectral representation as a sum over simple poles. These poles
correspond to normalisable modes of the bulk spacetime. To see this emerge when
working perturbatively in small m requires an additional resummation step. The scalar
normalisable modes had been computed before at k = 0 [27] and we have extended
them to k 6= 0 and also computed tensor modes. The vector modes were trivial. While
it is tempting to think of these modes as akin to QNMs of black holes, we have shown
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that their k-dependence does not contain any non-trivial dispersive information; the
k dependence is entirely determined by the dS-isometries present in the state. Thus
we do not see any further analogies to hydrodynamic-like excitations as was enticingly
conjectured in [27].

Our work provides several interesting directions going forward. Here for simplicity
we have focussed our attention on dS3, but of course extending our work to correlation
functions on dS4 and making appropriate connections to cosmological observations is
a desirable next step. To understand the role of strong coupling, in section 6 we set in
motion a calculation of a free-fermion in conformal perturbation theory. The composite
operator ψ̄ψ plays the role of the ∆ = 2 operator Oφ in the holographic calculation
and it would be valuable to continue this calculation to higher orders in m to identify
which features are robust under changes in coupling strength.

Finally, and tangentially, the existence dSd-foliation of AdSd+1 at m = 0 leads to
a novel basis in which to expressing CFTd correlation functions in Minkowski space.
Fluctuations are plane waves in spatial directions and their time dependence are given
by Bessel functions. We have explicitly provided a map between this representation
and the standard momentum space expression. In future work it would be interest-
ing to explore whether this (apparently simpler) Bessel basis provides computational
conveniences or conceptual advantages for computations of CFT correlators in general.
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A Ingoing coordinates

In [27] the following ansatz was utilised,8

ds2 =
−Hdvdx−H2g(x)dv2 + e2HvH2f(x)2d~y2

x2
, φ = p(x) (110)

with bulk equations of motion consisting of a second order equation for f and p with
g determined algebraically. In [27] bulk regularity was required for x ∈ (0, xAH ] where
xAH labels the location of an apparent horizon in the bulk, whose location is determined

8Here m = Hp1 where p1 is the deformation parameter defined in [27].
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by the condition,9

(f(2x+ g)− xgf ′)
∣∣
x=xAH

= 0. (111)

It is a simple matter to show that the solutions constructed in these coordinates can
be mapped to domain wall form (4) under the following coordinate transformation

x = X(z), v = t+
1

2H
log

(
g(X(z))

f(X(z))

)
. (112)

The resulting dtdz cross terms vanishing courtesy of the bulk equations of motion
leaving a metric of the form (4) with warp factor

P (z) = −H
2g(X(z))

X(z)2
, (113)

where the remaining function X(z) simply determines the domain wall choice of radial
coordinate through,

(X ′(z))2 = X(z)2g(X(z)). (114)

Finally we can comment on the apparent horizons and the regularity criterion
adopted by [27] to enforce bulk regularity. There, regularity was required up to xAH
given by (111). In the AdS coordinate extension, this surface corresponds to a fixed
value Y = YAH , though note that the generator of this apparent horizon is not a radial
geodesic and carries angular momentum. In particular, to leading order its location is
given by

YAH = 1− 1

61/3

(m
H

) 2
3

+O(m)4/3. (115)

Note that while YAH < Y −∗ which ensures that it plays its desired role of delineating the
region containing the singularity, it does not appear to carry any particular physical
significance (as is to be expected from an apparent horizon).

B Holographic renormalisation

In order to compute one and two-point functions from holography, a consistent treat-
ment of UV divergences is required [49–51]. Our starting point, as is standard, is to
change coordinates so that the metric takes Fefferman-Graham form,

ds2 =
dρ2

4ρ2
+

1

ρ
gµν(ρ, x)dxµdxν (116)

9This expression corrects a typo in (2.22) of [27].
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where xµ are coordinates on dS3. This only needs to be done near the boundary, where
the bulk fields gµν , φ take the following small ρ expansions,

φ(ρ, x) = φ(1)(x)ρ
1
2 + φ(2)(x)ρ+O(ρ)

3
2 (117)

gµν(ρ, x) = g(0)µν(x) + g(2)µν(x)ρ+ g(3)µν(x)ρ
3
2 +O(ρ)2 (118)

where we have explicitly included up to the required order where VEVs appear, and
the labels indicate the scaling dimension of each term. For instance, the operator dual
to the bulk field φ is dimension 2 and so we keep O(ρ), while the boundary stress tensor

is dimension 3 and so we keep O(ρ)
3
2 . Among the data appearing here, φ(0) and g(0)

are source data while the equations of motion determine g(2) as

g(2)µν = −R(0)µν +
1

4
g(0)µνR(0) −

1

8
φ2

(1)g(0)µν (119)

and place constraints on the remaining data g(3), φ(2),

gµν(0)g(3)µν = −2

3
φ(1)φ(2), (120)

∇µ
(0)g(3)µν = −1

3
φ(1)∂νφ(2). (121)

Next we introduce a regulator at ρ = ε and analyse the structure of divergences that
appear in the regulated action as ε→ 0. The small ε expansion can be systematically
inverted in terms of local terms intrinsic to the boundary [], and give a divergent action
−Sct where

Sct =
1

2κ2

∫ √−γ (−R(γ)− 4− 1

2
φ2

)
. (122)

Subtracting these divergences from the regulated bulk action gives

Ssub = Sreg + Sct. (123)

with the renormalised action Sren = limε→0 Ssub. Variations of the renormalised action
give general expressions for the one point functions in the presence of sources,

〈O〉 =
1
√
g(0)

δSren

δφ(1)

=
1

2κ2
φ(2), (124)

〈Tµν〉 =
2
√
g(0)

δSren

δgµν(0)

= − 1

2κ2

(
3g(3)µν + g(0)µνφ(1)φ(2)

)
. (125)

Combining this with constraints on the near boundary data arising from bulk equa-
tions of motion (120), (121) give rise to the following trace and diffeomorphism Ward
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identities, 〈
T µµ
〉

= −φ(1) 〈O〉 , ∇µ 〈Tµν〉 = −〈O〉 ∂νφ(1). (126)

We are now in a position to compute correlation functions by successive derivatives
with respect to sources. In this paper we consider up to two point functions and for
this purpose we examine solutions to the bulk equations of motion consisting of the
background domain wall solution with metric and scalar fluctuations around it. In
Fefferman-Graham form,

gµν(ρ, x) = ḡµν(ρ, x) + hµν(ρ, x) (127)

φ(ρ, x) = φ̄(ρ) + hφ(ρ, x), (128)

where the background domain wall solution is labelled with a bar, whose source func-
tions are

ḡ(0)µν = gdSµν , φ̄(1) = m. (129)

In accordance with the use of Fefferman-Graham coordinates the fluctuations have a
near-boundary form,

hµν(ρ, x) = h(0)µν(x) + h(2)µν(x)ρ+ h(3)µν(x)ρ
3
2 +O(ρ)2 (130)

hφ(ρ, x) = hφ(1)(x)ρ
1
2 + hφ(2)(x)ρ+O(ρ)

3
2 . (131)

Here h(0)µν(x), hφ(1)(x) are recognised as linearised source functions, while h(2)µν(x) is
determined by the near boundary equations of motion as in (119). These sources appear
as Dirichlet boundary conditions to the bulk solution, and through the requirement
of bulk regularity determine the remaining data as linear functionals of them, i.e.
h(3)µν

[
h(0)µν(x), hφ(1)(x)

]
and h(2)φ

[
h(0)µν(x), hφ(1)(x)

]
. We thus arrive at the following

formal expressions for the desired one-point functions,

〈O(x)〉0 =
1√
ḡ(0)

δSren

δhφ(1)(x)

∣∣∣∣
hφ(1)=h(0)µν=0

=
1

2κ2
φ̄(2), (132)

〈Tµν(x)〉0 =
2√
ḡ(0)

δSren

δhµν(0)(x)

∣∣∣∣
hφ(1)=h(0)µν=0

= − 1

2κ2

(
3ḡ(3)µν + ḡ(0)µνφ̄(1)φ̄(2)

)
.(133)
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C Spectral decomposition residues

The residues appearing in the tensor two point function of (60) are as follows:

rt2 = − m2

8H2

(
1− 23

576

m2

H2
− 14477

6635520

m4

H4
+

66506857

133772083200

m6

H6
+ . . .

)
(134)

rt3 = − 1

54

m4

H4

(
1− 1

9

m2

H2
+

607

51840

m4

H4
+ . . .

)
(135)

rt4 = − 25

1536

m4

H4

(
1− 193

4320

m2

H2
− 10541

6635520

m4

H4
+ . . .

)
(136)

rt5 = − 13

6480

m6

H6

(
1− 53

312

m2

H2
+ . . .

)
(137)

rt6 = − 1225

1179648

m6

H6

(
1− 88633

907200

m2

H2
+ . . .

)
(138)

rt7 = − 257

1814400

m8

H8
(1 + . . .) (139)

rt8 = − 1225

25165824

m8

H8
(1 + . . .) (140)

The residues appearing in the scalar two point function of (84) are as follows:

rs1 =
m2

6H2

(
1− 1

4

m2

H2
+

109

4536

m4

H4
+

109672267

10059033600

m6

H6
+ . . .

)
(141)

rs2,± =
5

48

m2

H2

(
1± i7

√
2

160

m

H
+

2017

5760

m2

H2
± i982129

√
2

22118400

m3

H3
− 164027

8847360

m4

H4

±i12471749309
√

2

7927234560000

m5

H5
− 3680038951367

535088332800000

m6

H6
+ . . .

)
(142)

rs3 = − 1

36

m4

H4

(
1− 7

225

m2

H2
+

1543

90720

m4

H4
+ . . .

)
(143)

rs4 = − 71

13824

m4

H4

(
1 +

2317

20448

m2

H2
− 1619171

94224384

m4

H4
+ . . .

)
(144)

rs5 = − 37

103680

m6

H6

(
1− 103

14504

m2

H2
+ . . .

)
(145)
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rs6 =
5

3072

m4

H4

(
1− 1111

14400

m2

H2
+

9812941

995328000

m4

H4
+ . . .

)
(146)

rs7 = − 4723

362880000

m8

H8
(1 + . . .) (147)

rs8 =
101

2419200

m6

H6

(
1− 14102555

104251392

m2

H2
+ . . .

)
(148)

rs10 =
25

1572864

m6

H6

(
1− 7788127

108864000

m2

H2
+ . . .

)
(149)

rs12 =
55200281

64377815040000

m8

H8
(1 + . . .) (150)

rs14 =
65

301989888

m8

H8
(1 + . . .) (151)

D CFT two point functions for odd δ

In this appendix we generalise a result obtained in the main text in section 5 from
δ = 1 to general odd δ = 1 + 2M . This demonstrates recovery of standard CFT two
point function in momentum space from an appropriate sum of Bessel functions.

We have the following pair of source, s, and vev, vM , in the presence of source,

s = τM
∞∑

n=−∞

cnJn(kτ)eik·y (152)

vM = 2−1−2Mτ−1−M Γ (1/2−M)

Γ (3/2 +M)

∞∑
n=−∞

cn
Γ (1 +M − n)

Γ (−M − n)
Jn(kτ)eik·y, (153)

where the summation coefficients cn are to be determined in order to get a plane wave
source function. The obstacle here compared with the δ = 1 (M = 0) case is the
appearance of τM in the source which prevents a direct application of the generating
function (87). However, powers of τ can introduced into (87) to create a new generating
function by applying the following identity,

Jn(kτ) =
kτ

2n
(Jn−1(kτ) + Jn+1(kτ)) (154)

recursively M times to generate τM , giving,

e
t2−1

2t
kτ =

∞∑
n=−∞

cnτ
MJn(kτ) (155)

with cn(k) =

(
k

2

)M M∑
q=0

(
M

q

)
Γ(n− q)n

Γ(n+M − q + 1)
tn+M−2q. (156)

30



Thus, (156) is precisely the choice of cn we make in our summation to ensure the
summed source in (153) becomes a plane wave, s = e−iωτ+ik·y where ω is given by t, k
as in (88). To find the two point function we now need the vev in the presence of this
source under this sum. With (156) the vev becomes,

vM =

(
k

2

)M
2−1−2Mτ−1−M (157)

×
M∑
q=0

(
M

q

) ∞∑
n=−∞

Γ (1 +M − n)

Γ (−M − n)

Γ(n− q)n
Γ(n+M − q + 1)

tn+M−2qJn(kτ)eik·y,

a somewhat unwieldy infinite sum over Jn(kτ). Since the result will be a momentum
space two point function, we can express the result of this sum in the following form,

vM = fM(ω, k)e−iωτ+ik·y, (158)

with the two-point function fM (up to momentum conservation delta functions) to
be determined. We have already computed f0 in the main text. We now proceed
inductively. Our result hinges on the following relation,

−�vM =
QM

QM+1

vM+1, where QM ≡
(−1)M

(2M − 1)!!(2M + 1)!!
, (159)

which we will shortly prove using (157). Once this is established, by (158) we have

fM+1 =
QM+1

QM

(k2 − ω2)fM , (160)

and with f0 = ±(k2 − ω2)
1
2 we have our final result,

fM = ± (−1)M

(2M − 1)!!(2M + 1)!!

(
k2 − ω2

) 1+2M
2 . (161)

This matches the known result for a CFT two point function in momentum space (85)
up to normalisation.

D.0.1 Proof of (159)

Let us write (157) as follows,

vM = kMτ−1−M
∞∑

n=−∞

aMnJn(kτ)eik·y (162)
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where aMn are τ -independent coefficients that which can be easily read off from (157),

aMn =

(
1

2

)M
2−1−2M Γ (1/2−M)

Γ (3/2 +M)

Γ (1 +M − n)

Γ (−M − n)

M∑
q=0

(
M

q

)
Γ(n− q)n

Γ(n+M − q + 1)
tn+M−2q

=
tM+n

21+3M

Γ (1/2−M) Γ (1 +M − n) Γ(1 + n)

Γ (3/2 +M) Γ (−M − n) Γ(1 + n+M)
2F1

(
−M,−M − n, 1− n,− 1

t2

)
(163)

The calculation then proceeds by computing the left hand side and right hand side of
(159) and showing equality.

Left hand side. Compute �vM = (−k2 − ∂2
τ )vM . Where τ derivatives act on

Jn(kτ) they can be removed by successive use of the formula,

J ′n(z) =
1

2
(Jn−1(z)− Jn+1(z)) . (164)

What remains is an expression with mixed index Jn with non-homogeneous powers of
τ in the prefactors. Next, homogenise the powers of τ by raising powers of τ where
appropriate using the identity (154). Doing this step a handful of times gives an ex-
pression whose coefficients are all proportional to τ−1−M . Finally, shift the summation
index n such that all terms appear as Jn. The result is,

�vM = −k2+Mτ−1−M
∞∑

n=−∞

(
(M + n)(M + n− 1)

4(n− 1)(n− 2)
aM,n−2 (165)

+
n2 +M2 +M − 1

2(n2 − 1)
aM,n +

(M − n)(M − n− 1)

4(n+ 1)(n+ 2)
aM,n+2

)
Jn(kτ)eik·y.

Right hand side. Starting with vM+1 raise the powers of τ from τ−2−M to τ−1−M

using (154), and subsequently adjust the summation index n such that all terms once
again appear as Jn. The result is

vM+1 =
k2+Mτ−1−M

2

∞∑
n=−∞

(
aM+1,n−1

n− 1
+
aM+1,n+1

n+ 1

)
Jn(kτ)eik·y. (166)

Equality. By comparing the coefficients of Jn in (165) and in (166) using the
expression for aMn in (163) one can easily verify that (159) holds.

E Regularity conditions for normalisable modes

For the normalisable mode computations presented in this paper we have required a
regularity condition in the bulk. The purpose of this section is to provide further
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technical details on this procedure.
We begin with separation of variables, (47). To assess regularity of the result-

ing mode we turn to the ingoing coordinates presented in Appendix A. This involves
changing z, η to x, v where x is the new radial coordinate and v labels the ingoing
null slice. There are non-regular terms at x = x∗ ≡ 1/3 which must be removed. The
computation is performed order-by-order in m. We expand both the radial field Φk,λ(z)
and the Bessel function ηJν(kη) order-by-order in m. To expand the Bessel note that

near x = x∗ we have η ∼ (x− x∗)
1
2

(
1 +

∑∞
k gk(x)

(
m
H

)k)
where g(k) are finite around

x = x∗. We also perturbatively correct the index of the Bessel, ν =
∑

k νk
(
m
H

)k
where

λ = H2(1− ν2). At leading order in m eliminating the non-regular terms at x = x∗ –
which take the form (x− x∗)p and log(x− x∗) – requires that ν0 ∈ Z. To go to higher
orders in m requires that the index of the Bessel is expanded perturbatively around
this integer value ν0. Thus in doing so we are led to evaluate expressions of the form
for small ε,

Jν0+ε(kη) ≈ Jν0(kη) + ε∂νJν(kη)
∣∣
ν=ν0

+ ε2
1

2!
∂2
νJν(kη)

∣∣
ν=ν0

+O(ε)3. (167)

A compendium of these derivatives can be found in [52]. In summary, analysing the
regularity involves studying Bessel functions and their derivatives for small argument.

For the tensors, the procedure to turn off the sources is clear since the γµν are gauge
invariant fluctuations. The solution of the second order differential equation for the
radial dependence produces two constants at each order, which together with the λk
correction at the given kth order, are the only free parameters. Expanding around the
boundary x = 0 (47), the sourcelessness condition is imposed by requiring the vanishing
of the coefficient going with x. This already fixes one constant of integration in terms
of the others. The regularity condition gives the remaining constraint, allowing us to
determine λk and leaving a free parameter which gives the amplitude of the mode at a
given order.

For the scalars, the sourcelessness and regularity conditions are imposed as follows.
We solve the second order equation for the gauge invariant combination φ̂, getting
two free parameters at each order in m. With it we solve the equation for S, getting
one extra parameter and we completely determine the gauge invariant combination ζ.
Therefore, together with λk, we have four undetermined parameters at each order. We
impose regularity around x∗ in φ̂. We impose the vanishing of the coefficient going with
x in the near boundary expansion of S and the vanishing of the constant coefficient in
the near boundary expansion of ζ. These three conditions determine λk and impose
two extra relations on the remaining constants, giving as a result a free parameter for
the amplitude at each order.
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