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Abstract

Consider a generic quantum spin chain that can be mapped to free quadratic fermions via
Jordan-Wigner (JW) transformation. In the presence of arbitrary boundary magnetic fields,
this Hamiltonian is no longer a quadratic Hamiltonian after JW transformation. Using ancil-
lary sites and enlarging the Hamiltonian we first introduce a bigger quadratic Hamiltonian.
Then we diagonalize this enlarged Hamiltonian in its most generic form and show that all
the states are degenerate because of the presence of a zero mode. The eigenstates of the
original spin chain with boundary magnetic fields can be derived after appropriate projec-
tion. We study in depth the properties of the eigenstates of the enlarged Hamiltonian. In
particular we find: 1) the eigenstates in configuration bases, 2) calculate all the correlation
functions, 3) find the reduced density matrices, 4) calculate the entanglement entropy. We
show that the generic eigenstate of the enlarged Hamiltonian (including the eigenstates of
the original spin chain) breaks the parity number symmetry and consequently one needs
to take care of some technicalities regarding the calculation of the reduced density matrix
and entanglement entropy. Interestingly we show that the entanglement structure of these
eigenstates is quite universal and independent of the Hamiltonian. We support our results
by applying them to a couple of examples.
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1 Introduction

There exist many quantum spin chains which can be transformed into quadratic fermion models
using Jordan Wigner (JW) transformation, the spin-1/2 X Y chain is just one example of such spin

2



SciPost Physics Submission

chains. These fermionic models have been studied thoroughly in the past, and it was shown that
they are exactly solvable [1]. In the context of the non-interacting fermions, the calculation of
some quantities such as reduced density matrix (RDM) [2,3], entanglement [4–7] and formation
probabilities [8–10] can be written in terms of correlation functions, which reduces the adversity
of such calculations. The connection to the free fermion models also makes it possible to study
the Rényi entanglement entropy for excited eigenstates of free fermions and related spin chains
[11–19].

Most of the above mentioned studies were based on the bulk properties, however, there are
also studies regarding the entanglement entropy in systems with boundaries and impurities. In
the presence of boundaries analytical and numerical calculations of the entanglement entropy can
be more challenging due to the lack of the translational symmetry. The entanglement entropy
of a few quantum chains in the presence of the boundaries has been studied with analytical and
numerical techniques, see for instance [20–27]. An interesting consequence of presence of the
boundary is the breach of connection between spin chains and quadratic fermion models, specially
in subsystem entanglement [27,28]. An spin chain (containing L spins) with arbitrary boundary
magnetic fields can be modeled as: bulk Hamiltonian plus boundary terms,

H
SpinChain

= H
bulk
+H

boundary
. (1)

The H
boundary

resembles the effect of boundary on far end sites or spins. For instance, a general

boundary condition produced by external magnetic fields reads as H
boundary

= ~B
1
.~S

1
+ ~B

L
.~S

L
, where

~S1, ~SL are spin operators at the beginning and end of the chain, and ~BL , ~B1 denote the preferred
direction of alignment of boundary magnetic fields. While such a non uniform boundary condition
can be physically valid for a spin chain, the fermionization of such a spin chain would end up in a
non-physical fermion model. A fermion model which violates the parity symmetry will break the
locality. Locality forbids a Hamiltonian that does not commute with fermionic parity symmetry
[29–31]. However, as far as one is concerned with spin model this violation is not a problem.

Some spin models, such as the XXZ chain, with arbitrary direction of boundary magnetic fields
(ADBMF) have been already exactly solved by the thermodynamic Bethe ansatz method [32–44].
However, calculation of some quantities such as the entanglement entropy seems out of reach at
this moment. In this work we take advantage of a method proposed in [45,46], see also [47–49] to
transform a generic quantum spin chain; with H

bulk
that can be mapped to the Hamiltonian of free

fermions; with non uniform magnetic field at the boundaries into a quadratic fermion Hamiltonian.
It is done by adding auxiliary spins to the system with coupling to the boundary spins and enlarging
the Hilbert space of the original model. Afterward, we would be able to fermionize the spin system
via JW transformation and make use of postulation of quadratic fermion Hamiltonians to study
the quantities of interest. The quadratic (or bi-linear) form of Hamiltonian in fermionic operators
is crucial since the Hamiltonian can be diagonalized exactly and the correlation functions can be
reduced to the expectation values of pairs of fermionic operators (Wick theorem [50]). To retrieve
the eigenstates of original model, we can use particular projection of new model’s eigenstates.
In [45], the same method was used to study a fermionic model with linear operator terms, which
breaks the parity. In this case, the author couples the auxiliary fermions to every other in the
system, and gets a quadratic Hamiltonian.

Starting from the enlarged bi-linear fermionic representation of the Hamiltonian, similar
to [45, 47, 49], the degeneracy of (at least) two is expected. This degeneracy results in degen-

3



SciPost Physics Submission

erate ground states with opposing parities, which allows us to find a superposition for the ground
state with broken parity number. However, for such an eigenstate, we would not be able to use
conventional methods to find the RDM, entanglement and so forth. We study the aspects of this
state and how it is related to the ground states of the original boundary magnetic field (BMF)
Hamiltonian. Also, the comparison of the correlation of this state with those of the parity symme-
try states is investigated. Such an investigation enables us to make an ansatz for RDM based on
the correlation matrices. This ansatz was first proposed in [49] for a special type of parity broken
state and special type of subsystem. Here, we generalize the previous results and provide a proof
for consistency of this ansatz. In addition, the RDM has been calculated in different methods. We
also show that all of these results can be extended to arbitrary enigenstates of the Hamiltonian
(1).

Having the RDM in terms of correlation matrices facilitates the calculation of entanglement.
For the parity broken state the behavior of entanglement entropy with respect to parity number
is intriguing. In this paper, we mostly deal with a connected subsystem starting from one end of
the chain to some point in the middle of the system. An interesting observation is that based on
the way one breaks the parity of the ground state entanglement can be minimized or unaffected.
Besides, we show that with an adjustment to the Peschel method [2,3,5,51,52], it is possible to get
the entanglement of parity broken state in terms of entanglement of parity protected ground states.
With these results, we will be able to study the effect of boundary conditions on the entanglement
of subsystem, in particular, change in the direction of magnetic field at boundaries on the value of
entanglement entropy.

It is worth mentioning that one can treat the enlarged Hamiltonian as a model of interest and
study its different properties independent of the quantum spin chain with boundaries. This might
be an interesting approach to study a phenomena like spontaneous breaking of parity number
symmetry. Having this in mind most of our studies and results go beyond just the quantum spin
chains with ADBMF. We find the correlations, reduced density matrix and entanglement for generic
eigenstates of the enlarged Hamiltonian. Quite surprisingly, the general features of the results are
quite independent of the bulk Hamiltonian.

The remainder of this paper is structured as follows: In section 2 we first summarize the main
results of the paper. In section 3, we start by general quadratic Hamiltonian that one can derive
after the addition of extra sites. We, provide a general discussion on diagonalization of such a
system, and the connection to the eigenstates of our original model, the BMF Hamiltonian. In
section 4, we use the result of diagonalization of quadratic Hamiltonian to find the correlation
matrices for the generic eigenstates including the most interesting ones, i.e. states with ±1 parity
and the one with no parity. Section 5 contains study of the reduced density matrix (RDM). We first
present a general formulation of RDM using Berezin integration of Grassmann variables, followed
by the RDM in terms of correlation matrices. We address the RDM not only for typical eigenstates
of Hamiltonian, but also eigenstates which break the parity. With the results of former sections, we
study the entanglement in section 6. Notably, we dig to the behavior of entanglement for a state
which defies the parity symmetry. In section 7 we give an interesting physical interpretation of
the parity-broken state based on three-part system. This gives a simple way to reproduce some of
our results in especial cases. Finally, in section 8, we look at some interesting examples of systems
with no parity symmetry. The first being free fermion model with no bulk term, and the second
being the X Y -spin chain with arbitrary boundary magnetic fields.
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2 Summary of Main Results

Consider the spin chain Hamiltonian

H
SpinChain

= H
bulk
+ ~B

1
.~S

1
+ ~B

L
.~S

L
, (2)

where ~S1 and ~SL , are spin operators at the beginning and end of the chain, and ~BL , ~B1 are arbitrary
boundary magnetic fields. We consider here bulk Hamiltonians, i.e. H

bulk
, that can be mapped to

quadratic free fermions via Jordan-Wigner (JW) transformation. The above Hamiltonian does not
have quadratic form after JW transformation and a priory is not clear that can be solved exactly.
However, using the ancillary spins, S0 and SL+1 one can transform the above Hamiltonian to

H = H
bulk
+ Bx

1 S x
0 S x

1 + B y
1 S x

0 S y
1 + Bz

1Sz
1 + Bx

L S x
L S x

L+1 + B y
L S y

L S x
L+1 + Bz

LSz
L (3)

The above Hamiltonian after JW transformation has a quadratic form and can be solved exactly.
The Hamiltonian (5) is considered with this goal in mind. The eigenstates and eigenvalues of the
original Hamiltonian can be found with proper projections. The section 3 of this paper shows how
this procedure can be done in its most general form. The idea of using ancillary sites to solve
boundary spin chains is already explored before in [45–49], however, in this work we solve the
problem in its most general form without restricting to a particular Hamiltonian. The eigenstates,
eigenvalues and correlation functions are found in the most general cases in sections 3 and 4.

Interestingly all the eigenstates of the Hamiltonian (3) have at least the degeneracy of two
due to the presence of a zero mode. In the fermionic language the vacuum, i.e. |0〉η, and the state
with the zero mode excited, i.e. η†

0 |0〉η, are degenerate. This means one can define

|β〉=
1

p

1+ |β |2
�

|0〉η + βη
†
0 |0〉η

�

; (4)

as the most generic ground state of this Hamiltonian1. In particular, the ground state of the
boundary quantum spin chain can be derived out of the especial cases of β = ±1. Due to its
generality in sections 3 and 4 we study some basic properties of this state such as parity and
correlation functions. This state has also an interesting interpretation as three part system which
we will explore in section 7.

In section 5 we give two different forms for the reduced density matrix of the generic |β〉 state.
We first find the reduced density matrix in fermionic coherent basis. The presented form can be
used to calculate the Rényi entanglement entropy as it was shown in section 6. We also think that
this form is useful to calculate the formation probabilities in the configuration basis which are
although interesting for their own sake, we are not going to explore them in this paper. The second
method is a generalization of the results of [49] for generic eigenstates of the generic Hamiltonians
with arbitrary β . It is an extension of a method which is based on making an ansatz for the
reduced density matrix and then fix the exact form by matching the correlation functions [53].
Our result for β = ±1 gives also the reduced density matrix of the quantum spin chain with
arbitrary boundary magnetic fields. Using the results of this section in section 6 we write an exact
formula for the entanglement entropy of the |β〉 state which its complexity grows polynomially

1Note that the same can be done with all the eigenstates. Our results can be extended for the |β〉 states made of
each eigenstates.
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with the size of the subsystem. As before, this also solves the problem of the calculation of the
entanglement entropy of the eigenstates of the Hamiltonian (2).

In section 7 we show that the |β〉 state has a very interesting property. It can be written like a
three-part system which helps to understand the entanglement of the ancillary sites with the rest
of the system using this simple interpretation. This property makes studying the Hamiltonian (3)
and its entanglement content interesting for its own sake independent of the original motivation
of solving the quantum spin chain with arbitrary boundary magnetic fields. This has been the
main motivation to start with the fermionic version of the enlarged Hamiltonian in section 3.

All of the discussions up to section 8 are independent of the Hamiltonian and also valid for
arbitrary eigenstates of the Hamiltonians (2) and (3). In section 8 we give two explicit examples.
The first one is a slight generalization of the Hamiltonian (3) without a bulk term. In the first
sight this seems oversimplification but interestingly a lot of entanglement properties of the generic
Hamiltonian have similar features which was the main motivation for its presentation. To give
a non-trivial example we also study the entanglement entropy in the XY chain. The boundary
entropy of this model is already studied in [49], however, here we fill a few holes such as the
presentation of the exact extra zero modes present in the Ising chain which their form is essential
to calculate the entanglement entropy exactly.

3 The Hamiltonian

In this section, we introduce a general bi-linear fermionic Hamiltonian which is related to spin
chain Hamiltonians with boundary magnetic field (1). We first study the general properties of this
model and point out the evident zero mode of the model. In subsection 3.3, we tend to present
the diagonalization procedure using the standard methods. Later, in subsection 3.5, we look into
the particular eigenstates of the Hamiltonian which does not respect the parity number symmetry.
Finally, subsection 3.6 presents a set of selection rules to retrieve the eigenvalues of the boundary
magnetic field (BMF) model. Interestingly the structure that unfold is very similar to the ones
in [49], see also [47] with a slightly different notation.

3.1 General properties

We are going to study the quadratic fermionic Hamiltonian of the form:

H = H0 +Hb (5)

where

H0 =
L
∑

i, j=1

�

c†
i Ai jc j +

1
2 c†

i Bi jc
†
j +

1
2

ciB
∗
jic j

�

−
1
2

tr(A∗), (6)

and

Hb =
L
∑

j=1

�

α0
j (c0c j − c†

0c j) +α
L+1
j (c jc

†
L+1 + c jcL+1) +H. C.

�

. (7)

As we mentioned in the introduction, Hb part can be related to the boundary terms. Note that
the above Hamiltonian is a bit more general than just the extension of a quantum chain with
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boundaries because the added extra sites 0 and L + 1 are coupled to all the sites. Note also that
we are not bounded here to any particular dimension. That means all of the upcoming results, as
far as we do not talk about spin chains, are valid in arbitrary dimensions. Here, A matrix should
be Hermitian and B matrix should be anti-symmetric. The Hamiltonian can be written as:

H=
1
2

�

c† c
�

M

�

c
c†

�

, (8)

where
�

c† c
�

stands for
�

c†
0 · · · c†

L+1 c0 · · · cL+1

�

. The matrix M in (8) should look like
below.

M=





































0 −α0
1 · · · −α0

L 0 0 −α0
1
∗ · · · −α0

L
∗ 0

−α0
1
∗ −αL+1

1
∗
α0

1
∗ −αL+1

1
∗

... A ...
... B ...

−α0
L
∗ −αL+1

L
∗
α0

L
∗ −αL+1

L
∗

0 −αL+1
1 · · · −αL+1

L 0 0 αL+1
1
∗ · · · αL+1

L
∗ 0

0 α0
1 · · · α0

L 0 0 α0
1
∗ · · · α0

L
∗ 0

−α0
1 αL+1

1 α0
1 αL+1

1
... −B∗ ...

... −A∗ ...
−α0

L αL+1
L α0

L αL+1
L

0 −αL+1
1 · · · −αL+1

L 0 0 αL+1
1
∗ · · · αL+1

L
∗ 0





































. (9)

For later use, we define the following spin operators at positions 0 and L + 1,

σx
0 = c0 + c†

0 and σx
L+1 = (1− 2c0c†

0)
L
∏

l=1

(1− 2c†
l cl)(cL+1 + c†

L+1). (10)

These operators commute with each other and the Hamiltonian (5); i.e.

�

H,σx
L+1

�

=
�

H,σx
0

�

=
�

σx
0 ,σx

L+1

�

= 0. (11)

The above relations are important in upcoming sections.

3.2 Zero mode eigenstates

The M matrix in (8) has at least two eigenvectors with zero eigenvalues. These eigenvectors
correspond to the modes with zero energy. Later on in this paper, we present a formulation (section
3.3) which simplifies the effort to find the correlations (section 4), reduced density matrix (section
6) and other properties of the system such as entanglement. To use such a formulation, one needs
to identify and write the zero eigenvectors in a correct form (see the following subsection).

Due to the form of the M matrix (9), we expect to have two zero modes. These zero modes do
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not depend on the parameters and interactions of the system. They can be written as:

�

�u1
0

�

=







































p
aeiθ1

0
...
0

q

1
2 − aeiφ1

p
aeiθ1

0
...
0

−
q

1
2 − aeiφ1







































,
�

�u2
0

�

=







































q

1
2 − aeiθ2

0
...
0

−
p

aeiφ2
q

1
2 − aeiθ2

0
...
0

p
aeiφ2







































. (12)

The orthogonality condition of these states requires the following equality to hold for the param-
eters

θ1 − θ2 = φ1 −φ2. (13)

The above zero modes are independent of the parameters of the Hamiltonian. In the rest, for the
sake of simplicity, we take all the angles (θ1,θ2,φ1,φ2) to be zero and put a = 1

4 . Taking other
values does not change the upcoming results. Depending on the values of coupling parameters
there could arise more zero modes in spectrum of M matrix2.

3.3 Diagonalization

In this subsection, we want to briefly review the diagonalization and find the eigenstates of the
Hamiltonian. First, we introduce a new operator J which acts on the eigenstates of the matrix M
as

J

�

u
v

�

=

�

v∗

u∗

�

. (14)

It is easy to show that the operator J anticommutes with the matrix M, i.e. {M,J} = 0. As
a consequence, if |V 〉 is an eigenvector of matrix M with eigenvalue λ then the vector J |V 〉 is
also an eigenvector with eigenvalue −λ. It means that finding the eigenstates corresponding to
positive eigenvalues is enough; we can get the eigenstates for negative eigenvalues by acting on
the eigenstates of the positive eigenvalues with operator J [54].

As a result of operator J, the Hamiltonian (8) can be diagonalized in the following form:

H=
1
2

�

c† c
�

U†UMU†U

�

c
c†

�

=
1
2

�

η† η
�

�

Λ 0
0 −Λ

��

η

η†

�

; (15)

The matrix Λ is a diagonal matrix with non-negative entries and matrix U has the block from:

U=

�

g h
h∗ g∗

�

. (16)

2See section 8.2.
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The Hamiltonian can also be written with respect to new fermionic operators (Bogoliubov
fermions) as

H=
∑

k

λkη
†
kηk −

1
2

tr(Λ), (17)

where
�

η

η†

�

= U

�

c
c†

�

. (18)

From (14) and special form of U matrix, we get the following constrains on the elements of g and
h matrices:

gk,L+1 = hk,L+1 and gk,0 = −hk,0 for k 6= 0 (19)

To conclude the diagonalization part, we write the explicit expression of η operators:

ηk =
L+1
∑

j=0

gk jc j + hk jc
†
j = gk0(c0 − c†

0) +
L
∑

j=1

(gk jc j + hk jc
†
j ) + gkL+1(cL+1 + c†

L+1); k 6= 0, (20)

η0 =
1
2

�

c0 + cL+1 + c†
0 − c†

L+1

�

. (21)

From above, we can also write the c-fermions in terms of η-operators as:

ck =
L+1
∑

j=1

(g∗j,kη j + h j,kη
†
j ); k 6= 0, L + 1, (22)

c0 = 1
2η0 +

1
2η

†
0 +

L+1
∑

j=1

(g∗j,0η j − g j,0η
†
j ), (23)

cL+1 = 1
2η0 −

1
2η

†
0 +

L+1
∑

j=1

(g∗j,L+1η j + g j,L+1η
†
j ). (24)

This final result means that the following commutation (anticommutation) relations hold (for
k 6= 0)

�

σx
L+1,ηk

�

=
�

σx
L+1,η†

k

�

= 0, (25)
�

σx
0 ,ηk

	

=
�

σx
0 ,η†

k

	

= 0. (26)

Anticommutations (26) will be useful in subsection 3.6 for sectorization of eigenstates of the
Hamiltonian (5).

3.4 Eigenstates in configuration basis

The vacuum state |0〉η is the state which is annihilated by the action of all ηk operators,

ηk |0〉η = 0, ∀ k. (27)

One can write the |0〉η as a superposition of configurations of the c-fermions [2]. It is called the
configurational basis of such a state. For even size, if the parity of |0〉η is +1 then we have:

|0〉η =
�

det[I+R†R]
�−1

4 e
1
2
∑

i, j Ri j c
†
i c†

j |0〉c (28)

9



SciPost Physics Submission

where c j |0〉c = 0 for all j, and the R matrix is an antisymmetric matrix defined as g.R+ h = 0.
The (28) works only for the case where parity of the |0〉η is +1, and/or the matrix g is invertible.
Otherwise, to use the above equation, one needs to do a canonical transformation to change the
parity of the vacuum for η-fermions, and/or to make the g invertible [55].

Such a canonical transformation could be the following change in the creation and annihilation
operators:

(

c j → c̃†
j ,

c†
j → c̃ j .

(29)

We call this transformation Tilda transformation. If we do such a change for even number of the
indices, the parity would not change (in the case where g matrix is not invertible). For odd number
of sites, it will change the parity of the state |0〉η. As an example, when the vacuum state has parity
−1, we do the tilda transformation

c j → c̃†
j and c†

j → c̃ j (30)

for only one specific index j. Regardless of selected j, the entanglement properties of the vacuum
would not change. If we choose j = 0 then this transformation can be written in operator form as
eP = ei

π
2 σ

x
0 .

As a matter of fact, any eigenstate of Hamiltonian (5) (with parity +1) can be written in
configurational basis in an exponential form. Excited states are created by exciting different modes
on the vacuum (27) as:

|ψ〉= |k1, k2, · · · , kN 〉=
∏

k j∈E
η†

k j
|0〉 ; Eψ =

∑

k j∈E
λk j
−

1
2

tr(Λ), (31)

where the set E can be any subset of indices from 0 to L+1. We denote the set of indices of excited
modes as E and the set of indices which are not excited as Ē (Ē∪E = {0,1, · · · , L + 1}). Assume
that we can write the following excited state in the configurational form as:

|ψ〉= Cψe
1
2
∑

i, j Rψi j c
†
i c†

j |0〉c , (32)

where Cψ = (det[I+Rψ
†
Rψ])−

1
4 . For this excited state we have:

η
k j
|ψ〉= 0; k j ∈ Ē,

η†
kn
|ψ〉= 0; kn ∈ E.

(33)

Therefore, from the above equation, we get:

gk j lR
ψ

lm + hk j m = 0; k j ∈ Ē, (34)

h∗kn lR
ψ

lm + g∗knm = 0; kn ∈ E. (35)

The generalized formula for the Rψ would be:

gRψ + h= 0, (36)

10
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where g and h are generalized versions of g and h given by

gnm =

(

gnm i f n ∈ Ē

h∗nm i f n ∈ E
hnm =

(

hnm i f n ∈ Ē

g∗nm i f n ∈ E
(37)

Note that same as the case of vacuum state, one should make sure that the g has an inverse, and
state |ψ〉 has the right parity. If not one should use the canonical (Tilda) transformation to be
able to write a typical eigenstate in configuration basis. The (32) gives an excited eigenstate in
the configuration basis which is advantageous in the study of entanglement in later sections.

3.5 Parity broken state

The quadratic Hamiltonian (5) commutes with the parity operator defined as P = (−1)N̂ where
N̂ =

∑L+1
l=0 c†

l cl is the fermion number operator. This means that the eigenstates of the Hamiltonian
have fixed parity P = ±1. One can have eigenstates that do not respect the parity and these types
of states are very interesting to study. For instance, these types of states are related to the ground
state of spin systems with boundary magnetic fields which one example is given in section 8.2.

We define a parity broken state (β-defected parity state) as:

|β〉=
1

p

1+ |β |2
�

|0〉η + βη
†
0 |0〉η

�

; (38)

where β can be a complex number. The expectation value of parity for such a state is given by

P(β) = 〈β |P |β〉=











|β |2−1
|β |2+1 P0 = −1,

1−|β |2
1+|β |2 P0 = +1,

(39)

where P0 is the parity of vacuum state. The first excited state after the vacuum is created by η†
0 |0〉

which inevitably has the same energy as the vacuum, while this excited state has parity -P0. In
fact β can be considered as a parameter which can be tuned to break the parity.

We define the state |G±〉 by taking β = ±1 as:

|G±〉=
1
p

2

�

|0〉η ±η
†
0 |0〉η

�

. (40)

These states are especial cases of β-broken parity states and have interesting properties which
cares for special attention. As an example, these states are related to the ground state of Hamil-
tonian with boundary magnetic field (see 1). Other useful properties of these two states are

σx
0 |G±〉= ±|G±〉 and σx

L+1 |G±〉= δ± |G±〉 . (41)

The δ± = ± can be calculated with respect to the expectation values of Majorana fermions [49].
For instance, one can write:

δ+ = (i)
L+1Pf[D], (42)

11
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where

D =















0 〈γ̄0γ1〉 〈γ̄0γ̄1〉 · · · 〈γ̄0γL+1〉
〈γ1γ̄0〉 0 〈γ1γ̄1〉 · · · 〈γ1γL+1〉
〈γ̄1γ̄0〉 〈γ̄1γ1〉 0 · · · 〈γ̄1γL+1〉

...
...

...
...

〈γL+1γ̄0〉 〈γL+1γ1〉 〈γL+1γ̄1〉 · · · 0















. (43)

in above, Pf[D] is the Pfaffian of the matrix D, and Majorana fermions are defined as γ j = c†
j + c j

and γ̄ j = i(c†
j − c j). In (43), the 〈· · · 〉 stands for the expectation value with respect to the vacuum

state of the η-operators (|0〉).

3.6 Eigenstates of boundary magnetic field model

Since the eigenstates of boundary magnetic field model is related to those of Hamiltonian (5),
we are going to present selection rules to get the desired eigenstates. In fact, Hilbert space of
Hamiltonian (5) is 4 times bigger than BMF Hamiltonian.

The Hilbert space of Hamiltonian (5) can be divided into 4 sub-spaces. Each sub-space can
be identified using eigenvalues of operators σx

0 and σx
L+1 acting on states |G±〉. We can make the

following argument: consider δ+ = 1, which means |G+〉 belongs to the sector marked by the pair
(〈G±|σx

0 |G±〉 , 〈G±|σ
x
L+1
|G±〉). Then due to commutation (anticommutation) relations (25) and

(26) all the states
n
∏

j=1

η†
k j
|G+〉 , n is even. (44)

also belong to (+,+). Note that in the above expression 0 < k j < k j+1 < L + 1 which means
that the dimension of (+,+) sub-space is 2L . Next, in this case (δ+ = +1), the state |G−〉 and the
following states belong to (−,−) sector,

n
∏

j=1

η†
k j
|G−〉 , n is even. (45)

For the two other sectors we have:

n
∏

j=1

η†
k j
|G+〉 , n is odd. (−,+),

n
∏

j=1

η†
k j
|G−〉 , n is odd. (+,−),

(46)

12
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In the case of δ+ = −1, we have the following eigenstates for each sector,

n
∏

j=0

η†
k j
|G+〉 , n is even, (+,−), (47)

n
∏

j=0

η†
k j
|G−〉 , n is even, (−,+), (48)

n
∏

j=1

η†
k j
|G+〉 , n is odd, (−,−), (49)

n
∏

j=1

η†
k j
|G−〉 , n is odd, (+,+). (50)

As an example in the (+,+) sector, we can write:

|φk〉= |+〉0 ⊗ |ϕk〉 ⊗ |+〉L+1
, (51)

where |φk〉 is an eigenstate of Hamiltonian (5), |+〉
0,L+1

are eigenstates of σx at the position 0 and
L + 1. The |ϕk〉 is an eigenstate of the BMF model. Knowing |φk〉, we can obtain the |ϕk〉.

The above argument means that to know the sector (+,+) we need to figure out the value of
δ+. The ground state of the Hamiltonian with boundary magnetic field is going to be one of the
following two states:

|G+〉 δ+ = +1, (52)

η†
min
|G−〉 δ+ = −1. (53)

It is interesting to mention that exist transformations which change the sign of boundary cou-
plings in the Hamiltonian (5). Such transformations could be TbL

= σz
L+1 and Tb1

= σz
0 where they

change the sign of x and y component of boundary couplings (
−→
b 1,
−→
b L or equivalently α0

1, αL+1
L ),

without affecting the energy spectrum of the Hamiltonian:

T †
b1

T †
bL

H(b1,x , b1,y , b1,z , bL,x , bL,y , bL,z)TbL
T

b1
= H(−b1,x ,−b1,y , b1,z ,−bL,x ,−bL,y , bL,z). (54)

As a consequence, if the eigenstates of the BMF Hamiltonian (1) is found in one of the sectors of
the Hilbert space of the Hamiltonian (5), then other sectors are related to the eigenstates of BMF
Hamiltonians with different signs of boundary couplings. For example, if a typical eigenstate of
the BMF Hamiltonian like |ϕk〉, is in the (+,+) sector, then from (51) we have |+〉

0
⊗|ϕk〉⊗ |+〉L+1

for the eigenstates of Hamiltonian (5). The action of Tb1
TbL

on a state like |φk〉 would be

Tb1
TbL
|φk〉= |−〉0 ⊗ |ϕk〉 ⊗ |−〉L+1

, (55)

which is equal to changing the sign of boundary couplings. Therefore, |ϕk〉 would be an eigen-
state of BMF Hamiltonian with boundary couplings: −b1,x , −b1,y , −bL,x and −bL,y . Equivalently,
spectrum of of BMFH with negative couplings at boundary can be found in the (−,−) sector of
Hamiltonian (5).

13
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4 Correlation functions

In this section, we would like to calculate the correlation matrix for different eigenstates of the
system. It is more convenient to calculate the correlation matrices for Majorana fermions. For
instance, one can use Majorana fermion correlations to calculate the entanglement in the system
(for particular eigenstates). We introduce Majorana fermions as γi = ci + c†

i and γ̄i = i(c†
i − ci).

We symbolize the correlation matrices as:

〈γ̄ jγk〉= iG jk, 〈γ jγk〉= K jk, 〈γ̄ jγ̄k〉= K̄ jk. (56)

It is useful to write the later two point correlation in a block matrix form denoted by Γ as:

Γ =

�

K − I −iGT

iG K̄ − I

�

. (57)

One can easily find all the different elements of the Γ matrix. It is possible to write G, K and K̄ in
terms of correlation matrices of c-fermions

K= F† + F+C−CT + I,

K̄= −F† − F+C−CT + I,

G= −F† + F+C+CT − I,

(58)

where Ci j = 〈c
†
i c j〉 and Fi j = 〈c

†
i c†

j 〉. The C is a Hermitian matrix and F is antisymmetric. Therefore,
K and K̄ are Hermitian, and we can conclude that G is real. Knowing these properties, we can
prove that the Γ correlation matrix is Hermitian too. All the analysis so far are valid for arbitrary
eigenstates of the Hamiltonian (5). In the rest, the correlations for vacuum and zero mode excited
eigenstate (ZME state or η†

0 |0〉η) will be presented in details. The calculation of correlations of
excited quasi-particle eigenstates is presented in appendix A.

4.1 Correlations for vacuum state

Using the notation introduced in (15), we calculate the correlations for the vacuum of η’s. In this
case, we can write C

0
= h†.h and F

0
= h†.g, where superscript zero stands for the expectation

values calculated in the vacuum state. Putting these relations in (58), we get

K
0
=(h† + g†).(h+ g),

K̄
0
=(h† − g†).(h− g),

G
0
=(h† − g†).(h+ g).

(59)

Therefore, for the vacuum of η-operators, we can find the correlations in terms of the elements of
U matrix, which means correlation matrix calculations are straightforward. The above-mentioned
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correlation matrices have the form (i, j 6= 0, L + 1):

C
0
=



















1
2 −

∑k=L+1
k=1 g∗k,0hk, j

−1
4 −

∑k=L+1
k=1 g∗k,0 gk,L+1

−
∑k=L+1

k=1 h∗k, j gk,0 (h†.h)i, j
∑k=L+1

k=1 h∗k, j gk,L+1

−1
4 −

∑k=L+1
k=1 g∗k,L+1 gk,0

∑k=L+1
k=1 g∗k,L+1hk, j

1
2



















(60)

F
0
=



















0 −
∑k=L+1

k=1 g∗k,0 gk, j
1
4 −

∑k=L+1
k=1 g∗k,0 gk,L+1

∑k=L+1
k=1 gk, j g

∗
k,0 (h†.g)i, j −

∑k=L+1
k=1 gk, j g

∗
k,L+1

−1
4 +

∑k=L+1
k=1 g∗k,L+1 gk,0

∑k=L+1
k=1 g∗k,L+1 gk, j 0



















. (61)

Using the relation (58), for the correlation of Majorana fermions, we can write:

K
0
=





















1 0 0

0 (h† + g†).(h+ g)i, j 2
∑k=L+1

k=1 (h∗k, j + g∗k, j)gk,L+1

0 2
∑k=L+1

k=1 g∗k,L+1(hk, j + gk, j) 1





















, (62)

K̄
0
=





















1 −2
∑k=L+1

k=1 g∗k,0(hk, j − gk, j) 0

−2
∑k=L+1

k=1 (h∗k, j − g∗k, j)gk,0 (h† − g†).(h− g)i, j 0

0 0 1





















, (63)

G
0
=





















0 −2
∑k=L+1

k=1 g∗k,0(hk, j + gk, j) −4
∑k=L+1

k=1 g∗k,0 gk,L+1

0 (h† − g†).(h+ g)i, j 2
∑k=L+1

k=1 (h∗k, j − g∗k, j)gk,L+1

−1 0 0





















(64)

To calculate the higher point correlation functions, one can use the Wick theorem, which is com-
putationally favorable.

4.2 Correlations for ZME state

From now on (for the sake of simplicity), we are going to indicate the ZME state by |;〉 = η†
0 |0〉.

This state is degenerate with the vacuum, which is crucial for later studies. For this eigenstate, we
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get (i, j 6= 0, L + 1):

C
;
=





















1
2 −

∑k=L+1
k=1 g∗k,0hk, j

1
4 −

∑k=L+1
k=1 g∗k,0 gk,L+1

−
∑k=L+1

k=1 h∗k, j gk,0 (h†.h)i, j
∑k=L+1

k=1 h∗k, j gk,L+1

1
4 −

∑k=L+1
k=1 g∗k,L+1 gk,0

∑k=L+1
k=1 g∗k,L+1hk, j

1
2





















(65)

F
;
=





















0 −
∑k=L+1

k=1 g∗k,0 gk, j
−1
4 −

∑k=L+1
k=1 g∗k,0 gk,L+1

∑k=L+1
k=1 gk, j g

∗
k,0 (h†.g)i, j −

∑k=L+1
k=1 gk, j g

∗
k,L+1

1
4 +

∑k=L+1
k=1 g∗k,L+1 gk,0

∑k=L+1
k=1 g∗k,L+1 gk, j 0





















. (66)

As a result, the correlation matrices C and F are only different in only two elements from state |0〉
to the state |;〉. It can be observed that the correlation matrices K, K̄ does not change from state
|0〉 to |;〉. Form of the Majorana correlation matrices are presented below as:

K
;
= K

0
, K̄

;
= K̄

0
, (67)

G
;
=





















0 −2
∑k=L+1

k=1 g∗k,0(hk, j + gk, j) −4
∑k=L+1

k=1 g∗k,0 gk,L+1

0 (h† − g†).(h+ g)i, j 2
∑k=L+1

k=1 (h∗k, j − g∗k, j)gk,L+1

1 0 0





















. (68)

Similar to the result of previous subsection, for higher point functions, one make use of the Wick
theorem to calculate the quantity of interest.

4.3 Correlations for the general parity broken state

In this subsection we study the correlation function of general states that break the parity, such
as |β〉 defined in (38). Calculating correlations (or any expectation value) with respect to the
state |β〉, is not as trivial as the calculations for eigenstates, since we are not able to use the Wick
theorem. However, there could be many subtleties when we come across quantities which are
evaluated with respect to |β〉.

For instance, such a subtlety could be calculation of one point function with respect to the |β〉:

〈β | c j |β〉=
Re[β]

1+ |β |2
δ j,0 +

iIm[β]
1+ |β |2

δ j,L+1 (69)

The above means that one point correlation functions are not necessarily zero for the state |β〉.
In general, we can say that 〈β | Ô |β〉 is not necessarily zero, if operator Ô has odd number of
fermionic operators. Nonetheless, if Ô does not depend on c0, c†

0, cL+1 and c†
L+1 then we can
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write 〈β | Ô |β〉 = 〈0| Ô |0〉. With this condition, we can assume that the state |β〉 obeys the Wick
theorem. In the following, we denote the correlation matrices by superscript β for the state |β〉.
These correlations have the form:

C
β

=





















1
2 −

k=L+1
∑

k=1
g∗k,0hk, j

−1
4

1−|β |2
1+|β |2 −

k=L+1
∑

k=1
g∗k,0 gk,L+1

−
k=L+1
∑

k=1
h∗k, j gk,0 (h†.h)i, j

k=L+1
∑

k=1
h∗k, j gk,L+1

−1
4

1−|β |2
1+|β |2 −

k=L+1
∑

k=1
g∗k,L+1 gk,0

k=L+1
∑

k=1
g∗k,L+1hk, j

1
2





















, (70)

F
β

=





















0 −
k=L+1
∑

k=1
g∗k,0 gk, j

1
4

1−|β |2
1+|β |2 −

k=L+1
∑

k=1
g∗k,0 gk,L+1

k=L+1
∑

k=1
gk, j g

∗
k,0 (h†.g)i, j −

k=L+1
∑

k=1
gk, j g

∗
k,L+1

−1
4

1−|β |2
1+|β |2 +

k=L+1
∑

k=1
g∗k,L+1 gk,0

k=L+1
∑

k=1
g∗k,L+1 gk, j 0





















. (71)

Based on the above calculations, the correlations for |β〉 can be written in terms of correlations of
vacuum and ZME state. For rest of the correlation matrices, we have:

K
β

= K
0
, K̄

β

= K̄
0
, (72)

G
β

=



















0 −2
k=L+1
∑

k=1
g∗k,0(hk, j + gk, j) −4

k=L+1
∑

k=1
g∗k,0 gk,L+1

0 (h† − g†).(h+ g)i, j 2
k=L+1
∑

k=1
(h∗k, j − g∗k, j)gk,L+1

1−|β |2
1+|β |2 0 0



















. (73)

For a higher point correlation like Ô, when operator Ô contains fermionic creation and annihila-
tion operators at position 0 or L+1, then the relation between 〈Ô〉0 and 〈Ô〉β would not be trivial.
For example, in some cases, one can have Wick theorem for the |β〉 too. Some of the interesting
cases are listed in table 1.

Results of this part can be extended to the zero parity state. Form of the correlation matrices
for the state |G±〉 (40), can simply be obtained by putting β →±1.
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Table 1: Terms “even" and “odd" mean that the operator Ô contains even or odd products of c-
operators. Also, k, l 6= 0, L+1 and the Einstein summation rule is assumed. The notation 〈· · · 〉0 stands
for the expectation value calculated in the vacuum state.

Ô has no c(†)0 and c(†)L+1

even odd

〈β | c0Ô |β〉
Re[β]
1+|β |2 〈Ô〉0 g∗k,0 〈0|ηkÔ |0〉

〈β | c†
0Ô |β〉

Re[β]
1+|β |2 〈Ô〉0 −g∗l,0 〈0|ηlÔ |0〉

〈β | cL+1Ô |β〉
iIm[β]
1+|β |2 〈Ô〉0 g∗k,L+1 〈0|ηkÔ |0〉

〈β | c†
L+1Ô |β〉

−iIm[β]
1+|β |2 〈Ô〉0 g∗l,L+1 〈0|ηlÔ |0〉

〈β | c†
0c0Ô |β〉 1

2〈Ô〉0
2Re[β]
1+|β |2 〈(g

∗
l,0ηl − gl,0η

†
l )Ô〉0

〈β | c†
L+1cL+1Ô |β〉 1

2 〈0| Ô |0〉
−2iIm[β]

1+|β |2 〈(g
∗
l,L+1
ηl + g

l,L+1
η†

l )Ô〉0

〈β | c†
0cL+1Ô |β〉 1

4
|β |2−1
|β |2+1〈Ô〉0 − g∗

l,0
g

k,L+1
〈ηlη

†
kÔ〉0

Re[β]
1+|β |2 〈g

∗
l,L+1
ηlÔ〉0 +

iIm[β]
1+|β |2 〈g

∗
l,0
ηlÔ〉0

〈β | c†
0c†

L+1Ô |β〉
1
4

1−|β |2
1+|β |2 〈Ô〉0 − g∗

l,0
g

k,L+1
〈ηlη

†
kÔ〉0

Re[β]
1+|β |2 〈g

∗
l,L+1
ηlÔ〉0 −

iIm[β]
1+|β |2 〈g

∗
l,0
ηlÔ〉0

Ô has no γ̄0 and γL+1

〈β |γ0Ô |β〉
2Re[β]
1+|β |2 〈0| Ô |0〉 0

〈β | γ̄0Ô |β〉 0 −2i g∗k,0 〈0|ηkÔ |0〉
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5 Reduced Density matrix

In this section, we calculate the density matrix and reduced density matrix (RDM) of the partic-
ular states introduced previously. We are going to use the configurational basis result of 3.4 and
coherent basis formulation to calculate the density matrix and RDM. The RDM will be presented
in both coherent basis and operator form. The operator form of RDM is useful to calculate the
entanglement content of the states, while the coherent basis form of the RDM can be used to study
the formation probabilities. In subsection 5.1, we start with the β-broken parity state (38). We
calculate the total density matrix and then the RDM in coherent basis and operator format. In
subsections 5.2, 5.3 and 5.4 we present the same calculations for the states |0〉η, |;〉 and |G±〉,
respectively.

5.1 β parity broken state

We start by calculating the reduced density matrix for the state |β〉 defined in (38). The total
density matrix of a particular state |ψ〉 is defined as ρ = |ψ〉 〈ψ|. We prefer to calculate the
density matrix for the state |β〉 explicitly in an exponential form using the definition (28). With
the +1 parity for the state |0〉η, the density matrix has the form

ρβ = |β〉〈β |= |Cβ |2e
1
2 Ri j c†

i c†
j
(1+ βM0kc†

k) |0〉c c〈0| (1+ β
∗M∗

0l cl)e
−

1
2 R∗i j ci c j

, (74)

where |Cβ |2 =
�

(1+|β |2)
p

det[I+R†R]
�−1

and M= h∗.R+g∗. To proceed, we use the Fermionic
coherent state defined as

�

�ξ
�

= |ξ1ξ2 · · ·ξN 〉= e−
∑N

k=1 ξkc†
k |0〉c , (75)

where ξk are Grassmann variables. Therefore, we can write (following similar procedure as [2])




ξ
�

�ρβ
�

�ξ′
�

= ρβ(ξ,ξ′) = |Cβ |2e
1
2 Ri j ξ̄i ξ̄ j

(1+ βM0kξ̄k)(β
∗M∗

0lξ
′
l + 1)e

−
1
2 R∗nmξ

′
nξ
′
m

. (76)

To obtain the reduced density matrix (RDM), we divide the system into two parts (subsystem)
1 and 2. Here, we denote parts of any matrix that correspond to the subsystem 1 (2) with the
subscript 1 (2)3 . We trace out the subsystem 2 to find the RDM for subsystem 1, ρ

1
= tr

2
ρ. In

order to do so, we use the trace formula for operators in the coherent basis. Therefore, we have:

ρ
β
1(ξ,ξ′) =

∫

∏

l∈2

dξ̄ldξl e
−
∑

n∈2
ξ̄nξn
〈ξ1, · · · ,ξk,−ξk+1, · · · ,−ξL|ρβ

�

�ξ′1, · · · ,ξ′k,ξk+1, · · · ,ξL

�

,

(77)
where ξ1, · · · ,ξk belong to the subsystem 1 and ξk+1, · · · ,ξL belong to the subsystem 2. For the
details of calculation, see appendix A. The final result after partial tracing the (76) is:

ρ
β
1 (ξ,ξ′) = Cβ

�

� 1
β
+L1.ξ̄+L2.ξ′

�� 1
β∗
+L3.ξ̄+L4.ξ′

�

− Pf[W]
�

e

1
2

�

ξ̄ ξ′
�

Ω











ξ̄

ξ′











, (78)

3For instance, the A12 stands for the sub-matrix of A that rows and columns belong to subsystem 1 and 2 respectively
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where the Cβ and the introduced matrices are given by:

Cβ =
|β |2

q

det
�

I+R22
†R22

�

(1+ |β |2)
q

det
�

I+R†R
�

, (79a)

Ω=







R11 0

0 −R11
∗






+







R12 0

0 R12
∗






A−1







R12
T 0

0 R12
†






, (79b)







L1 L2

L3 L4






=







M1 0

0 M∗
1






+







M2 0

0 −M∗
2






A−1







RT
12 0

0 R†
12






, (79c)

W =







M2 0

0 −M∗
2






A−T







MT
2 0

0 −M†
2






, (79d)

A=







R22 −I

I −R∗22






. (79e)

It is useful also to have the RDM in the operator format (for example to calculate the Rényi en-
tanglement entropy). To derive the operator form for ρ

1
from equation (78), we rewrite the

exponential term as

Exp
�1

2

�

ξ̄ ξ′
�

Ω







ξ̄

ξ′







�

= Exp
�1

2Xi jξ̄iξ̄ j

�

Exp
�

Yi jξ̄iξ
′
j

�

Exp
�1

2Zi jξ
′
iξ
′
j

�

(80)

with properly defined matrices X , Y and Z. Using the relations cic j

�

�ξ
�

= ξiξ j

�

�ξ
�

and



ξ
�

� c†
i c†

j =



ξ
�

� ξ̄iξ̄ j , one can replace ξ̄iξ̄ j with c†
i c†

j and ξ′iξ
′
j with cic j in the left and right ex-

ponentials. The cross term can be rewritten Yi jξ̄iξ
′
j → ln(Y)i jc

†
i c j . The final operator form of

RDM (78) is given as:

ρ
β
1 (c, c†) = Cβ e

1
2



c† c



M

















c

c†

















e
1
2 tr ln(

1
2Ω12−

1
2Ω

T
21)
�

Pf[W]−L3T 22L2

+
�

L1T 22c† + (L1T 21 +L2)c +
1
β

��

L3T 22c† + (L4 +L3T 21)c +
1
β∗

�

�

(81)

where

M= lnT ; T =







1
2Ω12 −

1
2Ω21

T + 2Ω11(ΩT
12 −Ω21)−TΩ22 2Ω11(ΩT

12 −Ω21)−T

2(ΩT
12 −Ω21)−TΩ22 2(ΩT

12 −Ω21)−T






, (82a)
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Ω=







R11 0

0 −R11
∗






+







R12 0

0 R12
∗






A−1







R12
T 0

0 R12
†






; A=







R22 −I

I −R∗22






(82b)

W =







M2 0

0 −M∗
2






A−T







MT
2 0

0 −M†
2






(82c)







L1 L2

L3 L4






=







M1 0

0 M∗
1






+







M2 0

0 −M∗
2






A−1







RT
12 0

0 R†
12






. (82d)

Also, T 11, T 12, T 21 and T 22 stand for the sub-matrices (blocks) of matrix T . In the above ex-
pression, to move the exponential with fermionic operators, we have used the following relation,
coming from Baker-Hausdorff formula,

F−1







c

c†






F = T







c

c†






⇒







c

c†






F = FT







c

c†






; F = e

1
2

�

c† c

�

M











c

c†











. (83)

In the expression of RDM, having all the creation and annihilation operators in the argument of
exponential is preferred (some of calculations would be simplified). For this reason, we present
another calculation of ρβ1 in the appendix B, where using a trick, we managed to get the RDM with
two exponentials. The above equations are valid for the RDM of |β〉-state, which also means, for
any given bi partition, one can use (81). However, it should be noted that the spin and fermion
representations for solvable quantum chains lead to different RDMs. For more details see section
5.5.

We can propose an ansatz to write the RDM for |β〉 in term of correlation matrix. Although
computationally favorable, the down side of such an ansatz is that we could only use it for a
particular type of bipartition. while we can not apply Wick theorem to |β〉, one can use the Γ

β

matrix to calculate the RDM of a subsystem which starts from one boundary. One has to make an
adjustment to the Peschel method. Such a procedure for β = ±1 has been shown in [49]; here we
are extending that result.

Since the Γ β matrix is a skew symmetric matrix it can be written in a block form using an
orthogonal matrix V as:

VΓ
β
VT =







0 iν

−iν 0






, (84)

where ν is a diagonal matrix. Then, we can define the following fermionic operators:






d†

d






=

1
p

2
W







γ

γ̄






=

1
2







I iI

I −iI






V







γ

γ̄






. (85)
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Similar to the results in [49], one can make an ansatz for the RDM of the subsystem 1. To be
precise, we are assuming that the subsystem 1 is a connected bipartite of the system starting from
site 0 to `. The ansatz should have a form like below with respect to the operators that diagonalize
the Γβ matrix.

ρ
β

1(d, d†) = g(d0, d†
0, d†

0d0)×
∏̀

k=1

�1+ νk

2
d†

kdk +
1− νk

2
dkd†

k

�

,

where g is an arbitrary function to be determined. From correlation matrices (section 4), we can
realize that

g(c0, c†
0, c†

0c0) =
Re[β]

1+ |β |2
(c†

0 + c0) +
1
2

I. (86)

This ansatz satisfies the expectations of the state |β〉 including one point functions (69). It is
easy to show that c† + c =

p
2
�

W †
11d† + W T

11d
�

, where W is the unitary transformation which
diagonalizes the matrix Γ β . Then, in terms of d and d† operators we have:

ρ
β

1(d, d†) =
Re[β]

1+ |β |2
�

p
2

2 d0 +
p

2
2 d†

0 +
1
2 I
�

×
∏̀

k=1

�1+ νk

2
d†

kdk +
1− νk

2
dkd†

k

�

, (87)

The ansatz (87) respects the generalized Wick’s theorem, which means that this RDM produces
all the correlation functions correctly. As an example, one point function is not necessarily zero
for the |β〉:

〈d†
k〉β =

1
p

2

Re[β]
1+ |β |2

δk,0, (88)

〈dk〉β =
1
p

2

Re[β]
1+ |β |2

δk,0. (89)

Based on (72), (73) and (57), the first row and column of matrix Γ β is zero which evidently
means it has a zero eigenvalue, ν0 = 0. From the earlier statement it can be inferred that the
matrix which diagonalizes the Γ β -called W - has the following form:

W =







W11 W12

W11
∗ W12

∗






; W11 =

















1 0 · · · 0

0
...

ω

0

















. (90)

The reason we have defined the W as above is that the d† and d should be related with a conjugate

transpose transformation. From (84), The W and V matrices are related by W ∝





I iI

I −iI



V,

which means we can write:






d†

d






=

1
p

2







W11γ+W12γ̄

W ∗
11γ+W ∗

12γ̄






. (91)
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We know that 〈γ̄i〉β = 0 and 〈γi〉β = δi,0, then we can write 〈d†
k〉β = (W11)k,0. Making use of the

relation (90), we have 〈d†
k〉β ∝ δk,0. For the 〈dk〉β case, we use the fact that d and d† are related

by a conjugation, which means that 〈dk〉β ∝ δk,0 and the proof is complete.
Note that, the above calculation is also valid for states |G+〉, |G−〉 and any state created from

the action of η†’s on these states. Consequently, with a proper Γ matrix, a similar ansatz to (87)
can be used to study the entanglement for all the states belonging to the four sectors created with
|G±〉 as introduced in subsection 3.6.

5.2 Vacuum state

As it was mentioned before the limit β → 0 in the |β〉, gives the |0〉η. Equivalently,
lim
β→0

ρβ = ρ0 = |0〉
η η
〈0| . Simply, we are going to apply this limit on the results of subsection

5.1 to find the required quantities in this subsection. For instance, in the limit β → 0, the only
nonzero term in (78) is |Cβ |2 1

|β |2 . Therefore for the RDM of vacuum state in the coherent basis we
have:

ρ0
1(ξ,ξ′) =

q

det
�

I+R22
†R22

�

q

det
�

I+R†R
�

e

1
2

�

ξ̄ ξ′
�

Ω











ξ̄

ξ′











, (92)

where:

A=







R22 −I

I −R∗22






, (93a)

Ω=







R11 0

0 −R11
∗






+







R12 0

0 R12
∗






A−1







R12
T 0

0 R12
†






. (93b)

The operator form of RDM reads as

ρ0
1(c, c†) =

q

det
�

I+R22
†R22

�

q

det
�

I+R†R
�

e

1
2



c† c



M

















c

c†

















e
1
2 tr ln(

1
2Ω12−

1
2Ω

T
21) ,

(94)

where

M= lnT ; T =







1
2Ω12 −

1
2Ω21

T + 2Ω11(ΩT
12 −Ω21)−TΩ22 2Ω11(ΩT

12 −Ω21)−T

2(ΩT
12 −Ω21)−TΩ22 2(ΩT

12 −Ω21)−T






, (95a)

Ω=







R11 0

0 −R∗11






+







R12 0

0 R∗12






A−1







RT
12 0

0 R†
12






; A=







R22 −I

I −R∗22






. (95b)

23



SciPost Physics Submission

Since one can use Wick theorem for the state |0〉η, the RDM can be written in terms of Majorana
fermions and their correlations (introduced in section 4) in subsystem 1. The reduced density
matrix can be written as [53]:

ρ0
1(γ, γ̄) = [det

I− Γ 0
1

2
]

1
2 e

1
4

�

γ γ̄

�

ln
I+Γ0

1
I−Γ0

1











γ

γ̄











, (96)

where the
�

γ γ̄

�

contains all the Majorana fermions of subsystem 1. The Γ 0
1 stands for the

correlation matrix defined in section 4 calculated for the vacuum state and subsystem 1. The
constant in (96) can be simplified as:

det[
I− Γ 0

1

2
] = det[K0

1]det[
K̄0

1 −G0
1.K0

1
−1.G0

1
T

4
]. (97)

5.3 ZME state

The ZME state can be obtained by the limit |;〉= lim
β→∞

|β〉. Therefore, the RDM ρ; = |;〉〈;| in the

operator form will be the large β limit of the results of the subsection 5.1.

ρ
β
1 (c, c†) = C; e

1
2



c† c



M

















c

c†

















e
1
2 tr ln(

1
2Ω12−

1
2Ω

T
21)
�

Pf[W]−L3T 22L2

+
�

L1T 22c† + (L1T 21 +L2)c
��

L3T 22c† + (L4 +L3T 21)c
�

�

(98)

where

W =







M2 0

0 −M∗
2






A−T







MT
2 0

0 −M†
2






; A=







R22 −I

I −R∗22






, (99a)

M= lnT ; T =







1
2Ω12 −

1
2Ω21

T + 2Ω11(ΩT
12 −Ω21)−TΩ22 2Ω11(ΩT

12 −Ω21)−T

2(ΩT
12 −Ω21)−TΩ22 2(ΩT

12 −Ω21)−T






, (99b)

Ω=







R11 0

0 −R11
∗






+







R12 0

0 R12
∗






A−1







R12
T 0

0 R12
†






, (99c)







L1 L2

L3 L4






=







M1 0

0 M∗
1






+







M2 0

0 −M∗
2






A−1







RT
12 0

0 R†
12






. (99d)
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The above equation is lengthy and calculation of entanglement seem difficult with the above
RDM. However, since the ZME state has an opposite parity with respect to |0〉η. One can use the
Tilda transformation introduced in the subsection 3.4 to write the ZME state as:

|;〉= C;e
1
2
∑

i, j R;i j c̃
†
i c̃†

j ˜|0〉c (100)

with properly defined R; matrix and constant C;. The above Gaussian form for the ZME state will
simplify some of the calculations exceedingly. For instance, using the (100), it is possible to write
a shorter notation for RDM as:

ρ;1(c, c†) = C;
′
e

1
2

�

c† c

�

M;











c

c†











, (101)

where C;
′

is the normalization factor and M; = lnT ; which we have:

T ; =







1
2Ω
;
12 −

1
2Ω
;
21

T
+ 2Ω;11(Ω

;
12

T −Ω;21)
−TΩ;22 2Ω;11(Ω

;
12

T −Ω;21)
−T

2(Ω;12
T −Ω;21)

−TΩ;22 2(Ω;12
T −Ω;21)

−T






, (102a)

Ω; =







R;11 0

0 −R;11
∗






+







R;12 0

0 R;12
∗






A;−1







R;12
T

0

0 R;12
†






; A; =







R;22 −I

I −R;22
∗






. (102b)

The Wick theorem can also be applied to ZME state. Likewise, it is possible to write the RDM
in terms of correlation matrices and Majorana fermions of subsystem 1. We can write the RDM
as:

ρ;1(γ, γ̄) =[det
I− Γ ;1

2
]

1
2 e

1
4

�

γ γ̄

�

ln
I+Γ;

1
I−Γ;

1











γ

γ̄











.

(103)

In the above expression, the matrix Γ ;
1

is defined in subsection 4.2, and the subscript stands for
the correlation matrix for the subsystem.

5.4 Zero parity eigenstates

The zero parity eigenstates |G±〉 are the cases where β = ±1. Using the results of (78) and (81),
the RDM matrix in coherent basis and operator form for |G±〉 are given by setting β = ±1.

5.5 Spin versus fermion representation

Although the previous considerations are advantageous numerically to study RDM’s, we have
to point out that the RDM for the spin representation and the fermionic representation (of the
Hamiltonian) are not identical, necessarily. Correspondingly, the entanglement entropies could
end up to be different. Based on the way of selecting the subsystem, RDM’s (of spin and fermion
representations) could be different or equal. This difference can be expected due to the non-local
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structure of the Jordan-Wigner transformation [28]. In general, we are interested in two scenarios
for subsystem bipartition as demonstrated in the figure 1.

For start, if our desired state (like |0〉 and |;〉) is an eigenstate of parity operator, then RDM
has equal form in spin and fermion representations for types (a) and (b) of subsystems in figure
1. Since the effect of the Jordan-Wigner strings disappears in these cases. This statement is true
for any boundary as long as boundary terms do not break the parity symmetry. If subsystem is not
connected, then starting from fermionic representation, to obtain a spin correlation function (like
〈σx

i σ
x
j 〉), one needs information about the string of sites between two blocks of subsystem in the

fermionic picture, while, this is not necessary if one asks only for fermionic correlations.

(a)

(b)

(c)

ℓ

ℓ

Figure 1: The three subsystem block configurations we consider here. (a) a block of length ` starting
from the boundary. (b) is a block of length ` at a distance from the boundary. The case (c) shows a
disconnected subsystem which does not start from any of boundary points.

In the related case to our study, which we are dealing with an open boundary case and a state
which does not respects the parity (like |β〉), then the relation between spin and fermion version
of RDM is more peculiar. Essentially, the string of σz ’s from Jordan-Wigner transformation would
break off the correspondence between spins and fermions for a subsystem separated from the
boundary, similar to (b) in figure 1. It is an anomaly of parity broken state that the RDM of
any interval starting from the boundary is the same for spins and fermions. While not starting
from one of the boundaries of the chain, other techniques should be used to find the RDM of spin
representation [27]. The arguments that are presented in this part can be summarized in the table
2.

Table 2: A handy representation of the statements in the section 5.5. In the below, ρ
spin

stands
for the RDM in the spin representation and ρ

fermion
is the RDM in the fermionic representation of the

Hamiltonian. The subsystem types are demonstrated in figure 1. In addition, we have assumed the
restriction on β 6= 0,∞.

State

Subsystem
type (a) type (b) type (c)

|0〉, |;〉 ρ
spin
= ρ

fermion
ρ

spin
= ρ

fermion
ρ

spin
6= ρ

fermion

|β〉 ρ
spin
= ρ

fermion
ρ

spin
6= ρ

fermion
ρ

spin
6= ρ

fermion
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6 Entanglement Entropy

Given the reduced density matrix ρ
A

describing knowledge of the state of a subsystem A, the Rényi
entanglement entropy is given by:

Sn(A) =
1

1− n
log(tr

A
ρn

A
). (104)

The Rényi entanglement entropy can be seen as the generalized version of von Neumann entan-
glement measure. In the limit α→ 1, Rényi EE produces the Von Neumann EE (SvN ),

SvN (A) = −tr
A
[ρ

A
logρ

A
]. (105)

The difficulty of calculation of the entanglement grows exponentially with size of the subsystem.
One can find a basis which RDM is diagonal, however, it would still be computationally disadvan-
tageous.

It is possible to have special structure for the RDM to simplify the entanglement calculation.
For instance having a Gaussian form for RDM simplifies the calculation, or being able to write
the RDM in terms of correlation matrices. In the rest of this section, we first present the result
of entanglement for the vacuum state and the ZME state which are basically the results in [4–7].
We are going to give the entanglement in terms of the eigenvalues of the correlation matrices and
Gaussian form of the RDM. Next, we will discuss the entanglement calculation for a general parity
broken state such as |β〉 and the limiting cases of |G±〉 which are new.

6.1 Vacuum and ZME state

Since the Wick theorem can be applied to the vacuum state we were able to write the RDM as (94).
Using the equations (94) and (104), we can trace the RDM and write the Rényi entanglement for
this state as

S0
n(A) =

1
1− n

log
�

Cαdet
�

I+ enM�

1
2
�

, (106)

where the constant C is given by

C=

È

det
�

I+R22
†R22

�

È

det
�

I+R†R
� e

1
2 tr ln(

1
2Ω12−

1
2Ω

T
21). (107)

The matrices M and Ω are already defined in (95). This relation is computationally favorable,
since all we need to calculate is a determinant.

As it was written in section 5.2, we could have also express the RDM in terms of correlation
matrices of Majorana fermions (96). Therefore, it is possible to find the entanglement in terms
of the correlation matrix Γ 0 (of the vacuum state) for the subsystem A. Therefore, using the RDM
(96) and the trace formula for Gaussian function of fermions, the Rényi EE is given by

S0
n(A) =

1
2(1− n)

logdet
�

(
1+ Γ 0

A

2
)n + (

1− Γ 0
A

2
)n
�

=
1

(1− n)

∑

j

log
�

(
1+ ν0

j

2
)n + (

1− ν0
j

2
)n
�

(108)

where the set of {±νk} are the eigenvalues of Γ 0
A for the subsystem A. The above relation is

favorable because it is straightforward to find the correlation matrix for states that obeys Wick
theorem.

27



SciPost Physics Submission

The entanglement for the ZME state can have a similar form. For instance, in subsection (5.3),
it was mentioned that through some canonical transformations it is possible to write the RDM in
Gaussian form (101). Similar to previous state, using the Gaussian form of RDM and tracing that,
we can get the Rényi entanglement for subsystem A same as (106) but we have to use R; instead
of R0. On the other hand, the Wick theorem can be applied to the ZME state. Hence, it is possible
to relate the EE to the correlation matrices, similar to (108). We only need to use the Γ ;A given in
section 4.2.

Based on the form of Γ ;A and Γ 0
A, one can deduce that for any subsystem A which does not

include the last lattice point L+1, they have equal set of eigenvalues ({ν0}= {ν;}). It also means
that the entanglement S0

α and S;α are equal. It means that the states |0〉 and |;〉 have the same
entanglement properties for any given model (A and B matrices which depend on the model).

6.2 General β-parity broken state

Unlike the vacuum and ZME states, there are not many computationally easy methods to study
the entanglement entropy for a state such as |β〉. Namely, we can not use the correlation matrix
blindly for this state. In this subsection, we first focus on a computationally favorable method to
study the EE for such state. Then, we offer a relation for special type of bipartition which relies
on correlation matrix. For start, when n ∈ N we can use Berezin integrations to find the ρβA

n
. The

steps of calculation are written in appendix C. The Rényi entanglement entropy for n= 2 is given
by:

tr(ρβA
2
) =Cβ2

Pf[B]
¦

� 1
|β |2

+ Pf[W]
�2
+ Pf[W]

�

CB
−T
CT |

1,2
+CB−TCT |

3,4

�

−
CB−T
CT |

2,4

β2
−
CB−T
CT |

1,3

β∗2
+

1
|β |2

�

CB
−T
CT |

1,2
+CB

−T
CT |

3,4
−CB

−T
CT |

2,3

−CB
−T
CT |

1,4

�

+ Pf[C.B
−T
.CT ]

©

.

(109)

Where,

B =





















Ω
11

0 −Ω
12

I

0 Ω
11

I Ω
12

−Ω
21
−I Ω

22
0

−I Ω
21

0 Ω
22





















, C=





















−L1 0 L2 0

−L3 0 L4 0

0 L1 0 L2

0 L3 0 L4





















. (110)

The Ω and L are given by (79). Also, the notation X|r,s stand for the element of the matrix X
at the position (r, s). The above expression can be used for any bipartition of the system. How-
ever, we are restricted to the n = 2. From section 4.3, we expect to see no β-dependence in the
entanglement entropy when the subsystem does not contain boundary points [28]. Despite that,
the entanglement content would not be the same from spin perspective to the fermion one. For
the case of general parity broken state, if subsystem is not a connected bipartition starting from
boundary, then spin entanglement and fermion entanglement do not agree.
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In section 5.1, we proved that it is possible to have an ansatz to write the RDM in the diagonal
form of (87). Using this form of RDM one can write the Rényi EE as:

Sβn (A) =
1

1− n

l
∑

j=1

log
�

(
1+ ν j

2
)n + (

1− ν j

2
)n
�

+
1

1− n
log[(1

2 + fβ)
n + (1

2 − fβ)
n], (111)

where fβ =
Re[β]
1+|β |2 , and it is the eigenvalue of the zeroth part of RDM (87). In the above ν j ’s are

the eigenvalues of correlation matrix Γ β . The formula above simplifies the entanglement studies,
however, it is valid for a certain type of the subsystems. The set A should be connected subsystem of
the system containing the site 0 (first site). Otherwise, we would not be able to get entanglement
from correlations of the system.

It is crucial to mention that form of correlation Γ β , in (72) and (73), indicates that the eigen-
values of Γ βA for any subsystem 0 ∈ A and L+1 /∈ A are the same as Γ 0

A. This statement means that

there is a relation between entanglements S0
n(A), S;n(A) and Sβn (A) (only when n 6= 1);

S0
n(A) = S;n(A) = Sβn (A) +

1
1− n

log[
21−n

(1
2 + fβ)n + (

1
2 − fβ)n

]. (112)

6.3 Zero parity eigenstates

The Rényi entanglement for states |G±〉 can be computed in different ways. One can use the (109)
in the limit β → 1. However, similar to section 5.4, it is possible to have an ansatz to write the
RDM in the diagonal form of (87). Using this form of RDM one can write the Rényi EE as [49]:

S±n (A) =
1

1− n

l
∑

j=0

log
�

(
1+ ν j

2
)n + (

1− ν j

2
)n
�

− log2. (113)

In the above ν± are the eigenvalues of correlation matrix Γ±. The above formula simplifies the
entanglement studies, however, it is valid for a certain type of the subsystems. The set A should
be connected subsystem of the system containing the site 0 (first site). Otherwise, we would not
be able to get entanglement from correlations of the system.

It is crucial to mention that form of correlation Γ±, in (72) and (73), indicates that the eigen-
values of Γ±A for any subsystem 0 ∈ A and L+1 /∈ A are the same as Γ 0

A. This statement means that
there is a relation between entanglements S0

n(A), S;n(A) and S±n (A);

S0
n(A) = S;n(A) = S±n (A) + log2. (114)

And it is correct for any valid choices of A and B matrices. In fact, one can extend this argument
to any excited state created from |0〉, |;〉 and |G±〉 with excitation of same modes, as in

|ψ〉=
∏

k j∈E
η†

k j
|0〉 , |φ〉=

∏

k j∈E
η†

k j
|;〉 , |χ±〉=

∏

k j∈E
η†

k j
|G±〉 .

where set E does not contain mode zero. The general form of correlations for states above can be
found in appendix A. Based on the results of that appendix, we conclude that

Sψn (A) = Sφn (A) = S
χ±
n (A) + log2. (115)
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7 Physical interpretation of the parity-broken state

In this section, we give a simple interpretation of the |β〉 state which helps to understand some
simple cases of the results that we presented so far. This sate can be written as follows:

|β〉=
1

p

2(1+ |β |2)

�

(1+ β) |G+〉+ (1− β) |G−〉
�

. (116)

In the spin representation the above state can be written in an interesting form. Consider δ+ = 1
then we can write

|β〉=
1

p

2(1+ |β |2)

�

(1+ β) |+〉0 |φ++〉 |+〉L+1 + (1− β) |−〉0 |φ−−〉 |−〉L+1

�

, (117)

where |φ−−〉 and |φ++〉 are normalized states. The above form suggests that the whole system can
be considered as two qubit with one qubit at site 0 (L + 1) and the other the rest of the system.
Interestingly, the entanglement structure of these three parts is independent of the size of the
system and one can easily calculate for example the entanglement of the site 0 (L + 1) with the
rest, i.e. Sn(0) (Sn(L + 1));

Sn(0) = Sn(L + 1) =
1

1− n
log[(1

2 + fβ)
n + (1

2 − fβ)
n], (118)

which is consistent with the equation (111). We note that one can generalize the above argu-
ment for all the |β〉 states that can be made out of the eigenstates. The extension to δ+ = −1 is
straightforward. Finally, there is one extra piece that one can add to this story by considering the
following mixed state:

ρβ =
1

2(1+ |β |2)

�

|1+ β |2 |G+〉 〈G+|+ |1− β |2 |G−〉 〈G−|
�

. (119)

One can easily show that the reduced density matrix of the above state is exactly equal to the
reduced density matrix of the |β〉 state which is guarantied because of the especial form of the
state. This makes the preparation of states with the desired reduced density matrix very easy.
However, it is clear that in the mixed state scenario the von Neumann entropy does not have
entanglement interpretation anymore.

8 Examples

In this section, we provide a couple of examples to show how the general results that we derived
can be applied in specific cases. The first example which we are able to do the entire calculation
analytically is the Hamiltonian (5) with A = B = 0. There are a few good reasons to study this
Hamiltonian. First of all, for this Hamiltonian one can follow all the calculations analytically and
show the validity of all the presented results. Second, it is a Hamiltonian that can be used to di-
agonalize a Hermitian Hamiltonian with linear creation and annihilation operators which makes
it worth studying. Finally interestingly the entanglement structure that emerges from this Hamil-
tonian is entirely universal. In other words the general Hamiltonians with generic parameters
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0

1 2 L-1 L

L+1

Figure 2: In this figure the type of interaction among fermions at different sites, for A = B = 0 is
demonstrated. As one can see, there is no particle hoping among sites 1 to L and the only allowed
hoping is from sites 0 or L + 1 with the rest of sites.

end up to have similar entanglement structure. This is shown in the example of XY chain with
arbitrary boundary magnetic fields which is the second example of this section. The boundary
conformal entanglement entropy at the critical point in this case has been studied already in [49],
however, here we are more concentrated on general aspects of entanglement with respect to the
β parameter and boundary magnetic fields.

8.1 A= B = 0

We are going to focus on the entanglement properties here of the case where the A and B matrices
are zero. The coupling of fermions in the system has been demonstrated in figure 2. A detailed
study is presented in Appendix D for diagonalization and correlations of this special case.

For the vacuum state and ZME state, which Wick theorem is applicable as it was stated in
section 6.1, we can relate the Rényi entanglement to the eigenvalues of correlation matrix Γ in-
troduced in (57). In a special type of system bipartition, we could also use the Γ± to find entan-
glement for the |G±〉 case. For any connected subsystem which contains the site 0 (or site L + 1),
the (positive valued) eigenvalues of correlation matrices Γ 0, Γ ; and Γ± are given by the set:

{ν}=







{0,

√

√

1−
(
∑`

j=1 |α j |2)(
∑L

j=`+1 |α j |2)

(
∑L

j=1 |α j |2)2
, 1, · · · , 1} `≤ L,

{1, · · · · · · , 1} `= L + 1.
(120)

The fact that we get the same eigenvalues for each of the states above was explained in section
6. Based on the form of correlation matrices similar (up to a zero eigenvalue) eigenvalues was
expected. Using the eigenvalues above the entanglement will be given by (`≤ L)

S0
n(`) = S;n(`) =

1
1− n

log
�

(
1
2
+

1
2

√

√

√
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(
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j=1 |α j |2)(
∑L

j=`+1 |α j |2)

(
∑L

j=1 |α j |2)2
)n

+(
1
2
−

1
2

√

√

√

1−
(
∑`

j=1 |α j |2)(
∑L

j=`+1 |α j |2)

(
∑L

j=1 |α j |2)2
)n
�

+ log2, (121)

S±n (`) = S0
n(`)− log2. (122)

In case where all the αi ’s are constant, we would get

S0
n(`) =

1
1− n

log
�

(1
2 +

1
2

r

L2−`L+`2

L2 )n + (1
2 −

1
2

r

L2−`L+`2

L2 )n
�

+ log 2, (123)
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In the thermodynamic limit (L→∞), we simply get S0
n(`) = S;n(`) = log2 and S±n (`) = 0.

For any connected bipartition of system with length `which does not contain the 0th and L+1th

sites, eigenvalues of Γ 0 and Γ ; are given by

{ν}=







{ (
∑L

k=`+1 |αk|2

(
∑L

k=1 |αk|2)2
, 1, 1, · · · , 1}; `≤ L,

{0, 1,1, · · · , 1}; `= L + 1.
(124)

With this type of bipartition for the system, then the correlation matrix can be used to calculate
the entanglement for states |0〉 and |;〉. While for the state |G±〉 we can not, despite the fact that
the Γ± has the same eigenvalues.

In the case of general β-state, and when αi ∈ R, the von Neumann entanglement will be:

Sβ
vN
(A) =− 1

2 log
�

(
1
4
− fβ)

ΣlΣL−l

4Σ2
L

�

− fβ log
�1+ 2fβ
1− 2fβ

�

−
q

Σ2
L−ΣlΣL+Σ2

l
2ΣL

log
�ΣL +

q

Σ2
L −ΣlΣL +Σ2

l

ΣL −
q

Σ2
L −ΣlΣL +Σ2

l

�

.

(125)

Where in the above Σl =
∑l

j=1α
2
j and fβ =

Re[β]
1+|β |2 . It is particularly interesting to see the behavior

of entanglement with respect to the β . As it was mentioned previously, parameter β can be thought
as a parameter which breaks the parity continuously. In figure 3, we have demonstrated a typical
behavior of EE for different values of β in complex plain when all αi ’s are real constants. As
you can see, for real values of β , the entanglement is maximum for β = 0,∞ and minimum for
β = ±1, which the first one corresponds to vacuum and ZME state and second one is the |G±〉. On
the other hand, for the purely imaginary β , entanglement is constant and equal to S0

2
(l) for any

value of β which is not a trivial observation.

Figure 3: Plot of von Neumann entanglement entropy with respect to β . We already expected that the
entanglement to be minimum for the case of β = ±1 which is apparent in the figure. In the case where
β is purely imaginary, we notice that the EE is again maximum and would not change. This figure is
valid for a connected subsystem starting from site 0, for a general set of couplings in the Hamiltonian
and size of the full system and subsystem.
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8.2 Modified XY chain with boundary magnetic field

In this section, we consider the modified transverse field XY chain with arbitrary direction of
the boundary magnetic field. We are interested in the following XY Hamiltonian [49] with open
boundary conditions

H
X Y
=J

L−1
∑

i=1

�1+ γ
4
σx

i σ
x
i+1 +

1− γ
4
σ

y
i σ

y
i+1

�

−
h
2

L
∑

i=1

σz
i

+
1
2

�

b1,xσ
x
0σ

x
1 + b1,yσ

x
0σ

y
1 + b1,zσ

z
1 + bL,xσ

x
Lσ

x
L+1 + bL,yσ

y
Lσ

x
L+1 + bL,zσ

z
L

�

(126)

where
−→
b1 = (b1 sinθ1 cosϕ1, b1 sinθ1 sinϕ1, b1 cosθ1) and

−→
b L = (bL sinθ1 cosϕ1, bL sinθ1 sinϕ1, bL cosθ1)

are constant vectors. Form of HX Y
suggests that we can diagonalize and find the eigenstates

analytically. Using the Jordan-Wigner transformation

c†
l =

l−1
∏

j=0

σz
jσ
+
l , (127)

where σ±n =
σx

n±iσ y
n

2 , we can map the Hamiltonian (126) to the free fermion Hamiltonian (8), with
properly chosen matrices M (see appendix E for a demonstration of this matrix). The diagonal-
ization process has been explained in details in section 3.3. The above Hamiltonian is related to
an XY chain with boundary magnetic fields as:

H
X Y
= J

L−1
∑

i=1

�1+ γ
4
σx

i σ
x
i+1 +

1− γ
4
σ

y
i σ

y
i+1

�

−
h
2

L
∑

i=1

σz
i +

1
2
(
−→
b1.−→σ1 +

−→
b L .−→σ L). (128)

In the above expression, we can think of
−→
b1 and

−→
b L as magnetic fields at boundaries of our spin

chain. If we add two auxiliary spins at positions 0 and L + 1, if they can only interact with the
x component of spins at position 1 and L, then we get (126). It is apparent that HX Y

commutes
with σx

0 and σx
L+1. Due to this fact it is possible to divide the Hilbert space of HX Y

in four distinct
sectors, labeled by the eigenvalues of σx

0 and σx
L+1. Therefore, the eigenstates of Hamiltonian

(128) would be found in one of these sectors. This procedure has been explained in section 3.6.

8.2.1 Determination of BMF Hamiltonian eigenstates

The eigenstates of Hamiltonian (128) can be found with a correct projection in the Hilbert space of
(126), which was mentioned in the section (3.6). Here, we focus on the XY-chain case and present
(apparent) patterns to find the ground state of (128). Based on results of (52) and (53), one can
identify the ground state of BMF spin chain in |G+〉 or η†

min |G−〉 by finding the δ+. Numerical
investigations suggests that the value of δ+ does not depend on the parameters such as γ, h (fixing
J = −1) and strength of the magnetic field at boundaries. The size of the full system however

changes the value of δ+; For equal directions of boundary fields (
−→
b1 and

−→
b L) we get:

(

δ+ = −1 L even,

δ+ = +1 L odd.
(129)
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Nonetheless, the change in the directions of BMF’s at ends of the chain can affect the value of δ+.
Figure 4 shows the δ+ with respect to the change in the azimuthal and polar angle of direction
of the magnetic field at boundaries. If one eliminates the BMF at one end of the system (either
by putting θ1 = 0,π or b1 = 0), then changing the direction or strength of BMF at the other end
would not affect the δ+ outcome.

To be able to use the relation (81), one need to have the unitary transformation U, which
diagonalizes the Hamiltonian, in the form given by (16). Necessary condition is to make sure
that eigenstates of M corresponding to zero modes are written correctly, they are orthogonal and
satisfy the (14). We have already introduced the zero mode of the system in section 3.2, which
explains the 2-fold degeneracy of the ground state. However, based on some values of coupling
parameters (such as uniform external magnetic field or direction of boundary fields) there could
arise more zero modes in the spectrum of M matrix. For instance, when γ = 1 and ϕ1,ϕL =

π
2

(and general bulk and boundary magnetic fields h,
−→
b1,
−→
b L), we would have extra zero mode and

more degeneracy. For this values, the extra zero modes eigenvectors of M would be (besides (12))
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where ζ
1,L
=

h−b
1,L cosθ

1,L
b

1,L sinθ
1,L

. This is an exact zero mode which comes from the fact that BMF’s does

not have any component in the x-direction. In general, there could be more zero modes for large
sizes. It does not seem easy to identify analytically all the points where we face degeneracy more
than the two mentioned. To study entanglement, one should be careful with the zero modes. As
an example, numerical investigations suggests that for L >> 1, we would expect one more zero
mode for h> 1 and independent from BMF values.

8.2.2 Entanglement studies

Regarding the entanglement, we have looked into the entanglement properties of parity broken
state |β〉. For instance, the behavior of von Neumann entanglement entropy is plotted with respect

34



SciPost Physics Submission

to the parameter β in the figure 5 for fixed and equal angles of boundary fields. Looking to the
discussion of section 6.2, the entanglement entropy obeys the relation

S0
n(A) = S;n(A) = Sβn (A) +

1
1− n

log[
21−n

(1
2 + fβ)n + (

1
2 − fβ)n

], fβ =
Re[β]

1+ |β |2
. (131)

Since the relation above is general and does not depend on parameters of the model, it is expected
to see the same behavior of entanglement entropy with the change in the β as in figure 3.

For most parts of this article, we are interested in case where the boundary magnetic fields
are the same in both edges, i. e., ~b1 = ~bL . Another compelling observation would be the effect of
the boundary field direction (same in both ends) on the entanglement of a particular state such
as |G+〉. Results have been demonstrated in figure 6. For specific angles of BMF in the x y-plane,
we observe a huge change in the value of entanglement entropy.

For the small magnetic field (h< J as in figure 6a), there are two degenerate ground states for
BMF Ising model: one can write 1

2(|→→ · · · →〉+ |←← · · · ←〉) as the ground state. When ϕ ≈ 0,
the first spin prefers |→〉 over the other possibility, |←〉, which lowers the boundary entanglement 4

. As ϕ→ π
2 , 3π

2 , both possible state of x-spin for the first spin would be equally probable, since the
boundary magnetic field aligns the first spin in the (positive or negative) y direction. This would
result in increase in entanglement. As the angle θ increases, the intensity of BMF interaction ~b1.~S1

opposes the uniform magnetic field h in the system. So, we would expect smaller jumps in the
entanglement for bigger θ .

In the large magnetic fields (h> J as in figure 6c or the paramagnetic state) the ground state
is not degenerate, being all spins almost aligned in the direction of h. When BMF in the xy-plan
is small (θ ≈ 0,π), entanglement would not change much by change in ϕ. Although almost
constant, entanglement is a bit higher for small θ ∼ 0 rather than θ ∼ π. As the intensity of BMF
in xy-plan increases (for example θ = π

4 ), first few spins at the beginning of the chain would get
out of all parallel positioning and the entanglement changes with the angle of ϕ.

9 Conclusions

In this paper we investigated a generic quantum spin chain Hamiltonian with arbitrary boundary
magnetic fields. As far as the bulk Hamiltonian can be mapped to free fermions even though
the boundary terms are not quadratic with respect to free fermions we were able to diagonalize
the Hamiltonian exactly. This was done using two ancillary extra sites and later projection of
the eigenstates. The extended Hamiltonian was studied in depth and many properties of the
Hamiltonian was studied including eigenstates in configuration bases, the correlation function of
eigenstates and the reduced density matrix. The extended Hamiltonian always has at least one
zero mode which guaranties the presence of degeneracy. To get the eigenstates of the original
spin chain one needs to go to the sector in which the parity number symmetry is broken. We
studied comprehensively these eigenstates and found the correlation functions, reduced density
matrix and the entanglement entropy. Interestingly the general features are independent of the
parameters of the Hamiltonian and one can get universal results for the reduced density matrix

4Size of the subsystem has considered to be small so effect of boundary entanglement be more apparent
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Figure 4: Different values of δ+ for difference in the directions of boundary fields
~b1 = (sinθ1 cosϕ1, sinθ1 sinϕ1, cosθ1) and ~bL = (sinθL cosϕL , sinθL sinϕL , cosθL). We have defined
∆ϕ = ϕL−ϕ1 and∆θ = θL−θ1. The direction of boundary field at the first site is fixed by θ1 = ϕ1 =

π
200

and we change the angles at end point of the chain. On the right, we have L = 9 and left hand side
corresponds to L = 10. Rest of the parameters are: J = −1, γ= 1/2 and h= 0.518.

Figure 5: In above, the typical behavior of von Neumann entropy with respect to parameter β is
plotted for a subsystem of length ` starting from boundary of the chain. Size of the full system is
L = 30 and subsystem is l = 14. Rest of the parameters are: J = γ= 1, h= 1

2 , b
L,x ,y
= 1, b

1,x ,y
= 1 and

b1,L,z = 0.

and entanglement for generic eigenstates. The procedure used here can be extended for the other
similar situations such as local breaking of the parity number symmetry in quantum spin chains
due to local magnetic field impurity. It can be also useful to study local quantum quenches in
quantum spin chains.
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(c) h= 3
2

Figure 6: In this figure, the von Neumann entropy is plotted with respect to the angles of BMF, for
three values of magnetic field, h = 1

2 , 1, 3
2 respectively. We have put b1,x = bL,x = sin(θ ) cos(φ),

b1,y = bL,y = sin(θ ) sin(φ) and b1,z = bL,z = cos(θ ). Rest of parameters are: L = 30, l = 2, β = +1,
J = −1 and γ= 1. To better manifest the change in the entanglement entropy, size of the subsystem is
selected to be close to the beginning of the chain. We observe that there is a change in the entanglement
at ϕ = π

2 , 3π
2 . As mentioned before, there is (one) more zero mode in the eigenvalues of M matrix in

(9) for h > 1. However, this is not an exact zero mode and for size L = 30, it is small but not zero.
Therefore, observation above is intact.
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Appendix A Correlations for excited quasiparticle eigenstates

In section 4, we introduced the correlation functions and the method to produce these matrices for
the ground state. In this part, we are going to present the method to calculate the correlations for
excited quasiparticles (31) using the unitary transformation U which diagonalize the Hamiltonian.

The quasiparticle excited state such as |ψ〉 is defined by

|ψ〉= |k1, k2, · · · , kN 〉=
∏

k j∈E
η†

k j
|0〉

η
(A.1)

where set E could be any subset of modes. For this state, we start by calculating the 〈ψ| c†
i c j |ψ〉

and 〈ψ| c†
i c†

j |ψ〉

〈c†
i c j〉ψ = 〈0|

∏

k j∈E
ηk j

∑

k,l

(h∗l iηl + gkiη
†
k)
∑

n,m

(g∗mjηm + hn jη
†
n)
∏

k j∈E
η†

k j
|0〉 , (A.2)

〈c†
i c†

j 〉ψ = 〈0|
∏

k j∈E
ηk j

∑

k,l

(h∗l iηl + gkiη
†
k)
∑

n,m

(h∗mjηm + gn jη
†
n)
∏

k j∈E
η†

k j
|0〉 . (A.3)

Using the Wick theorem we can simplify these expressions to get:

〈c†
i c j〉ψ = (h†.h)i, j +

∑

k j∈E
(gk j ,i g

∗
k j , j
− h∗k j ,i

hk j , j),

〈c†
i c†

j 〉ψ = (h
†.g)i, j +

∑

k j∈E
(gk j ,ih

∗
k j , j
− h∗k j ,i

gk j , j).
(A.4)

Therefore, using the definitions (58), we can write the K, K̄ and G for the state |ψ〉 in a short
version as

Kψi j = (h
† + g†).(h+ g)i j − 2iℑ

�∑

k j∈E
(h∗k j ,i

+ g∗k j ,i
)(gk j , j + hk j , j)

�

, (A.5)

K̄ψi j = (h
† − g†).(h− g)i j − 2iℑ

�∑

k j∈E
(h∗k j ,i

− g∗k j ,i
)(hk j , j − gk j , j)

�

, (A.6)

G
ψ

i j =(h
† − g†).(h+ g)i j + 2ℜ

�∑

k j∈E
(g∗k j ,i

− h∗k j ,i
)(hk j , j + gk j , j)

�

. (A.7)

The prior expressions are useful for the study of entanglement in excited quasiparticle states.
One can use the Γ

ψ
to calculate the RDM for a given subsystem A using the relation

ρ
ψ

A
(γ, γ̄) = [det

I− Γψ
A

2
]

1
2 e

1
4

�

γ γ̄

�

ln
I+Γ
ψ

A

I−Γ
ψ

A











γ

γ̄











, (A.8)

where γ and γ̄ are the Majorana fermions defined in section 4. Equivalently, it is possible to use
the preceding correlations to find the R

ψ
matrix (as in (32)), R

ψ
= F

ψ∗
(I − C

ψ
)−1, which could

lead to finding the RDM.
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For excited states created from ZME state, we can do the same calculations. These quasiparticle
excited state are created as:

�

�φ
;

�

= |n1, n2, · · · , nN 〉=
∏

n j∈E
η†

n j
|;〉 , (A.9)

where n j 6= 0. Having the correlation matrices for the above states allows us to study the excited
state entanglement for these states likewise. To write such matrices, we can use the result of
section 4.2. Correlations for the family of ZME excited states are demonstrated in 40. The matrices
Kφ; and K̄φ; have the same form as (A.5) and (A.6), therefore, we have not included their forms.

As it was explained in subsection 3.6, one could divide the Hilbert space of Hamiltonian (5)
into four different towers which one of the these towers or sectors corresponds to the eigenstates
of boundary magnetic field Hamiltonian (1). We devote this part to find the correlation functions
for states in a given tower, given the ground state for the tower (sector), can be found with |G±〉.
The base of calculation is similar to the above cases, therefore here we only hand out the final
result. For start, an excited state in one of the sectors has the form

�

�χ
±

�

=
∏

m j∈E
η†

m j

�

�G
±

�

. (A.10)

In the preceding expression, set E contains excited modes acting on
�

�G
±

�

and 0 /∈ E. For a general
case of E we can write the correlations as in page 41. Similar to the ZME and the |G±〉 case, the
matrices Kχ± and K̄χ± have the same form as Kψ and K̄ψ in (A.5) and (A.6).
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Appendix B Reduced density matrix calculations

In this appendix, we are presenting the calculations of (81) in details. Starting from (77), we can
write

ρ
β
1(ξ,ξ′) =

∫

∏

l∈2

dξ̄ldξl e
−
∑

n∈2
ξ̄nξn
〈ξ1, · · · ,ξk,−ξk+1, · · · ,−ξL|ρβ

�

�ξ′1, · · · ,ξ′k,ξk+1, · · · ,ξL

�

=|Cβ |2e
1
2 (R11)i j ξ̄i ξ̄ j−

1
2 (R

∗
11) jiξ

′
jξ
′
i

∫

∏

l∈2

dξ̄ldξl e−ξ̄nξnF({ξn}, {ξ′i}, {ξ̄ j}, {ξ̄m})

×
�

e−
1
2 (R12)inξ̄i ξ̄n−

1
2 (R21)ni ξ̄nξ̄i e

1
2 (R22)mnξ̄mξ̄n e−

1
2 (R

∗
22)nmξnξm+

1
2 (R

∗
12) jmξ

′
jξm+

1
2 (R

∗
21)mjξmξ

′
j
�

,
(B.1)

where in the above Einstein summation convention is used. To clarify the notation above, the
indices i, j belong to subsystem 1 and indices n, m to subsystem 2. Eventually, the function F is
given by

F({ξn}, {ξ′i} , {ξ̄ j}, {ξ̄m}) = 1+ β(M1)0 jξ̄ j − β(M2)0mξ̄m + β
∗(M∗

1)0iξ
′
i

+β∗(M∗
2)0nξn + |β |2(M1)0 j(M

∗
1)0iξ̄ jξ

′
i + |β |

2(M1)0 j(M
∗
2)0nξ̄ jξn

−|β |2(M2)0m(M
∗
1)0iξ̄mξ

′
i − |β |

2(M2)0m(M
∗
2)0nξ̄mξn. (B.2)

In (B.1) we have divided R into four submatrices R11, R12, R21 = −R12
T and R22, according to

the part we are tracing out (or not). Although these submatrices do not need to have same size,
R11 and R22 should be square matrices. We write the (B.1) in the compact form:

ρ1(ξ,ξ′) = |Cβ |2e

1
2

�

ξ̄ ξ′
�











R11 0

0 −R∗11





















ξ̄

ξ′











∫

DηF(ξ′i , ξ̄ j ,η)e
1
2η

TAη+λTη. (B.3)

where Dη= dξ̄dξ and

ηT =
�

ξ̄ ξ

�

, λT =
�

−ξ̄R12 −ξ′R∗12

�

, (B.4)

A =







R22 −I

I −R∗22






. (B.5)

It is much easier to solve the integration in (B.3) with this new variables. In the expression of F ,
the first, second, forth and sixth terms do not depend on the variables of integration. Therefore,
for those terms we can write:

ρ
β
1 (1

st, 2nd, 4th, 6th,ξ,ξ′) = |Cβ |(det
�

A
�

)
1
2
�

1+ βM1ξ̄
��

1+ β∗M∗
1ξ
′�e

1
2

�

ξ̄ ξ′
�

Ω











ξ̄

ξ′











, (B.6)
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where

Ω=







R11 0

0 −R11
∗






+







R12 0

0 R12
∗






A−1







R12
T 0

0 R12
†






. (B.7)

For the terms with linear Grassmann variables in the integration we first substitute η→ η+A−1λ

in (B.3). Using the Berezin integration techniques in presented in [56], we are left with

ρ
β
1 (3

rd, 5th, 7th, 8th,ξ,ξ′) = |Cβ |(det
�

A
�

)
1
2 (det

�

W
�

)
1
2 F(ξ̄1,ξ′1)e

1
2

�

ξ̄ ξ′
�

Ω











ξ̄

ξ′











, (B.8)

with

F(ξ̄1,ξ′1) = |β |2Pf
�

W
�

+







−βM2 0

0 β∗M∗
2






A−1λ+ |β |2M1ξ̄×







0 0

0 M∗
2






A−1λ (B.9)

+|β |2







−M2 0

0 0






A−1λ×M∗

1ξ
′ + |β |2

�

−M2 0

�

A−1λ×
�

0 M2
∗
�

A−1λ,

W =







M2 0

0 −M∗
2






A−T







MT
2 0

0 −M†
2






. (B.10)

Putting (B.6) and (B.8) together, after some algebraic manipulations, we get to (78).
We could have used another trick to solve the Berezin integrations to get RDM. This method

ends up in having two exponentials in the final result. The trick is to write the linear Grassmann
variable in the integration as exponentials, like:

(Mξ̄)k1
· · · (Mξ̄

�

kN

�

M∗ξ′
�

k1
· · · (M∗ξ′

�

kN
=

∫

∏

i

dθ̄idθie
∑

k j
θk j
(Mξ̄)k j

+θ̄k j
(M∗ξ)k j . (B.11)

In the above relation, θ and θ̄ are Grassmann variables too.
If we start again from density matrix expression in coherent basis (76), and rewrite it as:

ρβ(ξ,ξ′) =|Cβ |2e
1
2 Ri j ξ̄i ξ̄ j

(1+ βM0kξ̄k + β
∗M∗

0lξ
′
l + |β |

2M0kM
∗
0l ξ̄kξ

′
l)e

−
1
2 R∗nmξ

′
nξ
′
m

=ρβ(1,ξ,ξ′) +%β(2,ξ,ξ′) +%β(3,ξ,ξ′) +ρβ(4,ξ,ξ′),
(B.12)

where the ρβ(1,ξ,ξ′) and ρβ(4,ξ,ξ′) are the density matrices corresponding to the vacuum-
vacuum state and excited-excited state, and the %β(2,ξ,ξ′) and %β(3,ξ,ξ′) are density cross terms
corresponding to the vacuum-excited (and exited-vacuum) state terms. We are going to partial
trace each term separately and then put the results together afterwards. For the first term in
(B.12), we have:

ρ
β
1 (1,ξ,ξ′) =

Cβ

|β |2
e

1
2

�

ξ̄ ξ′
�

Ωβ











ξ̄

ξ′











, (B.13)
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where again

Cβ =
|β |2

q

det
�

I+R22
†R22

�

(1+ |β |2)
q

det
�

I+R†R
�

, A=







R22 −I

I −R∗22






, (B.14a)

Ω=







R11 0

0 −R11
∗






+







R12 0

0 R12
∗






A−1







R12
T 0

0 R12
†






. (B.14b)

For the last term in (B.12), we can write:

ρβ(4,ξ,ξ′) = |Cββ |2
∫

dθ̄dθ eθ (Mξ̄)+θ̄ (M∗ξ′)e
1
2 Ri j ξ̄i ξ̄ j e−

1
2 R∗i jξ

′
iξ
′
j . (B.15)

For the reduced density matrix we get

ρ
β
1(4,ξ,ξ′) =|Cββ |2

∫

dθ̄dθ e
1
2 (R11)i j ξ̄i ξ̄ j−

1
2 (R

∗
11) jiξ

′
jξ
′
i eθ (M1.ξ̄)+θ̄ (M∗

1.ξ′)
∫ L+1

∏

l=k+1

dξ̄ldξl e−ξ̄lξl

× e−θ (M2ξ̄)+θ̄ (M∗
2ξ)
�

e−(R12)inξ̄i ξ̄n+
1
2 (R22)mnξ̄mξ̄n e−

1
2 (R

∗
22)nmξnξm+(R∗12) jmξ

′
jξm
�

(B.16)

We denote the terms on the left of second integral as F(ξ̄,ξ,θ , θ̄ ). If we introduce new Grassmann

variables ηT =
�

ξ̄ ξ

�

and λT =
�

−ξ̄R12 − θ (M)0 −ξ′R∗12 + θ̄ (M
∗)0

�

, then we can write the

integral as

ρβ
1
(4,ξ,ξ′) =

∫

dθ̄dθF(ξ̄,ξ′,θ , θ̄ )

∫

Dη e
1
2η

TAη+λTη (B.17)

where A has been defined previously. Solving the first integral we get:

ρβ
1
(4,ξ,ξ′) = Cβ e

1
2

�

ξ̄ ξ′
�

Ω











ξ̄

ξ′











∫

DΘe
1
2Θ

TωΘ+η′TJΘ (B.18)

where ΘT =
�

θ̄ θ

�

, DΘ = dθ̄dθ , η′T =
�

ξ̄ ξ′
�

, and Ω and Cβ are given by (79b) and (79a)

respectively. Finally, if we take the last integral in the equation (B.18), we get

ρβ
1
(4,ξ,ξ′) = CβPf[ω]e

1
2

�

ξ̄ ξ′
�

Ω′











ξ̄

ξ′











(B.19)

where
Ω′ = Ω+Jω−1J T (B.20a)

ω=







0 (M∗
2)0

−(M2)0 0






A−1







0 −(M2)T0

(M2)
†
0 0






, (B.20b)
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J =







−R12 0

0 −R12
∗






A−1







0 M∗
2

−M2 0






−







0 M∗
1

M1 0






. (B.20c)

To do the same calculation for cross term %β(2,ξ,ξ′) in equation (B.12), we have

%β(2,ξ,ξ′) = |Cβ |2βM
0l
ξ̄

l
e

1
2 Ri j ξ̄i ξ̄ j−

1
2 R∗i jξ

′
iξ
′
j

(B.21)

If we use the equation (B.11) and write the ξ behind the exponential as
(Mξ̄)0 =

∫

dθ eθ (Mξ̄)0 =
∫

dθ eθM0l ξ̄l , where θ is a new Grassmann variables. We can
write the density matrix as

%β(2,ξ,ξ′) =|Cβ |2β
∫

dθ eθ (Mξ̄)0 e
1
2 Ri j ξ̄i ξ̄ j e−

1
2 R∗i jξ

′
iξ
′
j . (B.22)

Equivalently, If we introduce new Grassmann variables ηT =
�

ξ̄ ξ

�

then we can write the inte-

gral as

%β(2,ξ,ξ′) =

∫

dθF(ξ̄,ξ′,θ )

∫

Dη e
1
2η

TAη+λTη, (B.23)

where we have denoted the terms on the left of second integral by F(ξ̄,ξ,θ ) and

λT =
�

−ξ̄R12 − θ (M2)0l ′ −ξ′R∗12

�

(B.24)

Taking the integration on η, we have:

%β(2,ξ,ξ′) =
Cβ

β∗
e

1
2

�

ξ̄ ξ′
�

Ω











ξ̄

ξ′











∫

dθeθζ (B.25)

where Ω is the same as (79b) and Cβ is given by (79a). Then, we can take the integral over the θ
above and write the final result as

%β(2,ξ,ξ′) =
Cβ

β∗

�

ΥA−1RT + Υ ′
�

η′e
1
2η
′TΩη′

(B.26)

where η′T =
�

ξ̄ ξ′
�

, and Also we have

Υ =
�

M2 0

�

1×2L′

Υ ′ =
�

M1 0

�

1×2l

R=







R12 0

0 R∗12







2l×2L′

(B.27)

For the other cross density (third term in equation (B.12)) we have:

%β(3,ξ,ξ′) =
Cβ

β

�

− ΥA−1RT + Υ ′
�

η′e
1
2η
′TΩβη′

(B.28)
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which

Υ =
�

0 M2
∗
�

1×2L′

Υ ′ =
�

0 M1
∗
�

R=







R12 0

0 R∗12







2l×2L′

(B.29)

Putting equations (B.13), (B.19), (B.26) and (B.28) together and moving and reordering some
parts we can write the RDM for the state |β〉 as

ρβ
1
(ξ,ξ′) = Cβ

� 1
|β |2

+ Pf[Ω2]e

1
2

�

ξ̄ ξ′
�

Jω−1J T











ξ̄

ξ′











+Kβ







ξ̄

ξ′







�

e
1
2 (Ω11)i j ξ̄i ξ̄ j e

Yi j ξ̄iξ
′
j e

1
2 (Ω22)i jξ

′
iξ
′
j
,

(B.30)
where 2Y = Ω12 −Ω21

T and

Kβ =
�

1
β∗M1

1
βM1

∗
�

+
�

1
β∗M2 − 1

βM2
∗
�

A−1







R12
T 0

0 R12
†






(B.31)

To write the RDM in operator format, we have to reorder it. Then, the final result is

ρ
β
1 (c, c†) = Cβ e

1
2 (Ω11)i j c†

i c†
j
� 1
|β |2

e
(ln
Ω12−Ω21

T

2 )i j c†
i c j
+ (Kβ1 )kc†

ke
(ln
Ω12−Ω21

T

2 )i j c†
i c j

+ e
(ln
Ω12−Ω21

T

2 )i j c†
i c j
(Kβ2 )l cl

�

e
1
2 (Ω22)i j ci c j

+ CβPf[Ω2]e
1
2 (Ω

′
11)i j c†

i c†
j
e
(ln
Ω′12−Ω

′
21

T

2 )i j c†
i c j

e
1
2 (Ω

′
22)i j ci c j

.

(B.32)

The Kβ1 stands for the first block part of vector Kβ (and the same argument for Kβ2 ). To find a

shorter notation for the ρβ1 (c, c†) we use the relation [57]

e

1
2



c† c



M1

















c

c†

















e

1
2



c† c



M2

















c

c†

















e

1
2



c† c



M3

















c

c†

















= e

1
2



c† c



M

















c

c†

















(B.33)

where eM = eM1 eM2 eM3 . Therefore, we can write (B.32) as

ρ
β
1 (c, c†) = Cβ

� 1
|β |2

e

1
2

�

c† c

�

M











c

c†











e
1
2 tr lnY

+ Pf[Ω2]e

1
2

�

c† c

�

M′











c

c†











e
1
2 tr ln(Y+Y)

+ (Kβ1 )kc†
ke

1
2

�

c† c

�

M











c

c†











e
1
2 tr lnY

+ e

1
2

�

c† c

�

M











c

c†











e
1
2 tr lnY

(Kβ2 )l cl

�

.

(B.34)
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To move the exponentials to one side (left or right) of the (B.34), we use the relation (83). There-
fore, we can write the (B.34) as

ρ
β
1 (c, c†) = Cβ e

1
2

�

c† c

�

M











c

c†











e
1
2 tr ln(

1
2Ω12−

1
2Ω

T
21)
� 1
|β |2

+
�

Lβ1 Lβ2

�







c†

c







�

+ Cβ Pf[Ω2]e

1
2

�

c† c

�

M′











c

c†











e
1
2 tr ln(

1
2Ω
′
12−

1
2Ω
′
21

T )

(B.35)

where we have:

M= ln







1
2Ω12 −

1
2Ω21

T + 2Ω11(ΩT
12 −Ω21)−1Ω22 2Ω11(ΩT

12 −Ω21)−1

2(ΩT
12 −Ω21)−1Ω22 2(ΩT

12 −Ω21)−1






, (B.36a)

M′ = ln







1
2Ω
′
12 −

1
2Ω
′
21

T + 2Ω′11(Ω
′
12

T −Ω21
′)−1Ω′22 2Ω′11(Ω

′
12

T −Ω′21)
−1

2(Ω′12
T −Ω′21)

−1Ω′22 2(Ω′12
T −Ω′21)

−1






(B.36b)

Ω=







R11 0

0 −R11
∗






+







R12 0

0 R12
∗






A−1







R12
T 0

0 R12
†






; A=







R22 −I

I −R∗22






(B.36c)

Ω′ = Ω+Jω−1J T , ω=







M∗
2(A

−1)22M
†
2 −M∗

2(A
−1)21M

T
2

−M2(A−1)12M
†
2 M∗

2(A
−1)11M

T
2






(B.36d)

J =







−R12 0

0 −R12
∗






A−1







0 M∗
2

−M2 0






−







0 M∗
1

M1 0






, (B.36e)

Kβ =
�

1
β∗M1

1
βM1

∗
�

+
�

1
β∗M2 − 1

βM2
∗
�

A−1







R12
T 0

0 R12
†






(B.36f)

Lβ1 = 2Kβ1 (Ω
T
12 −Ω21)

−1, Lβ2 = 2Kβ1 (Ω
T
12 −Ω21)

−1Ω22 +Kβ2 . (B.36g)

Kβ1 stands for the first block part of vector Kβ . Since, we can think of Kβ as a vector made from

two block vectors (and the same argument for Kβ2 ).
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Appendix C Entanglement calculations of general β parity broken
state

To calculate the n= 2 Rényi EE, we start by:

tr(ρβA
2
) = tr(ρβA IρβA ). (C.1)

We can use the Identity resolution and tracing formula of Grassmann variables to write:

I=

∫

∏

l

dξ̄ldξl e
−ξ̄.ξ

�

�ξ
�


ξ
�

� , (C.2a)

trO =
∫

∏

i

dξ̄idξie
−ξ̄.ξ




−ξ
�

�O
�

�ξ
�

. (C.2b)

Therefore, it is possible to calculate the trace of ρ2 in terms of Berezin integrals of Grassmann
variables:

tr(ρβA
2
) =

∫

∏

i

dξ̄idξi

∏

l

dη̄ldηl e
−ξ̄.ξe−η̄.η




−ξ
�

�ρ
β
A |η〉〈η|ρ

β
A

�

�ξ
�

. (C.3)

We can use the result of (78) to write the integrand in the expression above as:

tr(ρβA
2
) =Cβ 2

∫

∏

i

dξ̄idξi

∏

l

dη̄ldηl e
−ξ̄.ξe−η̄.η�(

1
β
−L1.ξ̄+L2.η)(

1
β∗
−L3.ξ̄+L4.η)− Pf[W]

�

e

1
2

�

ξ̄ η

�

Ω′

 

ξ̄

η

!

�

(
1
β
+ L1.η̄+ L2.ξ)(

1
β∗
+ L3.η̄+ L4.ξ)− Pf[W]

�

e

1
2

�

η̄ ξ

�

Ω

 

η̄

ξ

!

,

(C.4)

By defining a new Grassmann variable such as:

θ =





















ξ̄

η̄

η

ξ





















, (C.5)

the integral (C.3) can be written in a simpler form as:

tr(ρβA
2
) = Cβ2

∫

Dθ f(θ )e
1
2 θ

T.B.θ , (C.6)

where in the above Dθ =
∏

idθ̄idθi , and also

f(θ ) =
�

(
1
β
+C.θ |1)(

1
β∗
+C.θ |2) + Pf[W]

��

(
1
β
+C.θ |3)(

1
β∗
+C.θ |4) + Pf[W]

�

.
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The new B and C matrices are defined below

B =





















Ω
11

0 −Ω
12

I

0 Ω
11

I Ω
12

−Ω
21
−I Ω

22
0

−I Ω
21

0 Ω
21





















, C=





















−L1 0 L2 0

−L3 0 L4 0

0 L1 0 L2

0 L3 0 L4





















. (C.7)

The rest of matrices are given by (79). Before proceeding to solve the integral above, we have to
clarify couple of points here. First, the notation C.θ |r stand for the r th row of the matrix product
C.θ . Second, the f(θ ) produce terms with product of odd number of Grassmann variables such as
C.θ |r or C.θ |r3

C.θ |r2
C.θ |r1

, the integration on these terms will be zero automatically. Therefore,
The above integral is straightforward to solve, and the final result of tracing is given by (109).

In some cases B does not have an inverse for odd n. However, it is still possible to take the
Grassmann integrations.

Appendix D Exact diagonalization of A=B=0

In the case where A and B are zero then the Hamiltonian (5) becomes

H =
L
∑

j=1

�

α0
j (c0c j − c†

0c j) +α
L+1
j (c jc

†
L+1 + c jcL+1) +α

0
j
∗(c†

j c
†
0 − c†

j c0) +α
L+1
j
∗(cL+1c†

j + c†
L+1c†

j )
�

.

(D.1)
This model can be related to a linear fermionic model such as the model discussed in [45]

H =
L
∑

j=1

α jc j +α
∗
j c

†
j . (D.2)

In fact, with a specific projection, one can find the eigenstates of (D.2) in the Hilbert space of
(D.1). We can write the new form of the M matrix (9)

M=































































































0 −α0
1 −α0

2 · · · −α0
L−1 −α0

L 0 0 −α0
1
∗ −α0

2
∗ · · · −α0

L−1
∗ −α0

L
∗

0

−α0
1
∗

0 0 · · · 0 0 −αL+1
1
∗

α0
1
∗

0 0 · · · 0 0 −αL+1
1
∗

−α0
2
∗

0 0 −αL+1
2
∗

α0
2
∗

0 0 −αL+1
2
∗

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

−α0
L−1
∗

0 0 −αL+1
L−1
∗

α0
L−1
∗

0 0 −αL+1
L−1
∗

−α0
L
∗

0 0 · · · 0 0 −αL+1
L
∗

α0
L
∗

0 0 · · · 0 0 −αL+1
L
∗

0 −αL+1
1 −αL+1

2 · · · −αL+1
L−1 −αL+1

L 0 0 αL+1
1
∗

αL+1
2
∗ · · · αL+1

L−1
∗

αL+1
L
∗

0

0 α0
1 α0

2 · · · α0
L−1 α0

L 0 0 α0
1
∗

α0
2
∗ · · · α0

L−1
∗

α0
L
∗

0

−α0
1 0 0 · · · 0 0 αL+1

1 α0
1 0 0 · · · 0 0 αL+1

1

−α0
2 0 0 αL+1

2 α0
2 0 0 αL+1

2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−α0
L−1 0 0 αL+1

L−1 α0
L−1 0 0 αL+1

L−1

−α0
L 0 0 · · · 0 0 αL+1

L α0
L 0 0 · · · 0 0 αL+1

L

0 −αL+1
1 −αL+1

2 · · · −αL+1
L−1 −αL+1

L 0 0 αL+1
1
∗

αL+1
2
∗ · · · αL+1

L−1
∗

αL+1
L
∗

0































































































. (D.3)
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It can be shown that Λ has only two nonzero diagonal elements, λ1 and λ2 and the rest of eigen-
values are zero. For nonzero eigenvalues, we have

λ1,λ2 =
p

2

√

√

√

√

√

L
∑

j=1

(|α0
j |2 + |α

L+1
j |2)±

√

√

√

√

�

�

�

L
∑

j=1

(α0
j +α

L+1
j )(α0∗

j −α
L+1∗
j )

�

�

�

2
. (D.4)

Then, M would have only four nonzero eigenvalues and the rest are zero independent of size. The
next step is to find the eigenvectors to construct the U matrix. In (12), we have already introduced
two eigenvectors of zero mode. Using the orthogonality condition, and the condition that if |u〉 is
an eigenvector with eigenvalue λ then J |u〉 is also an eigenvector with eigenvalue −λ, therefore,
we can find and present only half of the eigenvectors. For simplicity, we assume α0

j = α
L+1
j = α j ,

then eigenvectros of positive modes. we have:

�

�u+1
�

=







u

v






;

uL+1 = u0 = −v0 = vL+1 = 1

ui = −
2α∗i

r

∑L
j=1 |α j |2

else= 0

(D.5)

�

�u+2
�

=







u

v






;

uL+1 = −u0 = v0 = vL+1 =
αL
|αL |

vi =
2αi

r

∑L
j=1 |α j |2

αL
|αL |

else= 0

(D.6)

For eigenvectros of zero modes, we have:

�

�u0
1

�

=







u

v






;

uL+1 = u0 = v0 = −vL+1 = 1

else= 0
(D.7)

�

�u0
k

�

=







u

v






;

ui = −
αkα

∗
i

∑k−1
j=1 |α j |2

; i < k 6= 0

uk = 1

else= 0,

(D.8)

where k = 2, 3, · · · , L. With this expressions for eigenvectors, we can construct the unitary ma-
trices U. Having the exact U, we can calculate correlation matrices (see section 4). putting these
eigenvectors together, one can construct the U.

Having the U matrix, we can directly calculate the δ+ introduced in (42). The calculation of
δ+ shows that

δ+ =

(

+1 if L even

−1 if L odd
(D.9)
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D.1 Vacuum state in configuration basis

Another method to calculate the entanglement of subsystem in a particular state is to use a more
direct way. We could use the equation (28) to calculate the entanglement. Using the results of
subsection 3.4 for A,B= 0 we can find the form of R matrix as:.

R=













0
α jp

|α1|2+···+|αL |2
1

−αip
|α1|2+···+|αL |2

0 αip
|α1|2+···+|αL |2

−1
−α jp

|α1|2+···+|αL |2
0













(D.10)

where,

|0〉η =
1

p

det[I+R†R]
e

1
2
∑

i, j Ri j c
†
i c†

j |0〉c .

Numerical investigations suggest that for even sizes we get exactly the same expression, and for
odd sizes we get the minus of the vacuum (αi ∈ R).

D.2 Correlations

For the special case of A,B = 0, the correlation matrices look pretty much simple in terms of the
parameters αi ’s. We are going to demonstrate the matrix form of correlations for general αi ∈ C.
For start, in the vacuum state, correlations looks like below. (In the following expressions indexes
n and m are the number of rows and columns respectively.)

C0 =

















1
2

αm

4
Æ
∑

k |αk|2
−1

4

α∗n

4
Æ
∑

k |αk|2
α∗nαm

2(
∑

k |αk|2)
α∗n

4
Æ
∑

k |αk|2

−1
4

αm

4
Æ
∑

k |αk|2
1
2

















, F0 =

















0
α∗m

4
Æ
∑

k |αk|2
1
4

−α∗n
4
Æ
∑

k |αk|2
0

α∗n

4
Æ
∑

k |αk|2

−1
4

−α∗m
4
Æ
∑

k |αk|2
0

















K0 =

















1 0 0

0 δnm −
m−n
|m−n|

iℑ[α∗nαm]
∑

k |αk|2
−iℑ[αn]
Æ
∑

k |αk|2

0 iℑ[αm]
Æ
∑

k |αk|2
1

















, K̄0 =

















1 iℑ[αm]
Æ
∑

k |αk|2
0

−iℑ[αn]
Æ
∑

k |αk|2
δnm −

m−n
|m−n|

iℑ[α∗nαm]
∑

k |αk|2
0

0 0 1

















G0 =

















0 ℜ[αm]
Æ
∑

k |αk|2
0

0 −δnm +
ℜ[α∗nαm]
∑

k |αk|2
ℜ[αn]

Æ
∑

k |αk|2

−1 0 0
















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For the case where the state is ZME state (|;〉) then the correlation matrices look like below.

C; =

















1
2

αm

4
Æ
∑

k |αk|2
1
4

α∗n

4
Æ
∑

k |αk|2
α∗nαm

2(
∑

k |αk|2)
α∗n

4
Æ
∑

k |αk|2

1
4

αm

4
Æ
∑

k |αk|2
1
2

















, F; =

















0
α∗m

4
Æ
∑

k |αk|2
−1

4

−α∗n
4
Æ
∑

k |αk|2
0

α∗n

4
Æ
∑

k |αk|2

1
4

−α∗m
4
Æ
∑

k |αk|2
0

















G; =

















0 ℜ[αm]
Æ
∑

k |αk|2
0

0 −δnm +
ℜ[α∗nαm]
∑

k |αk|2
ℜ[αn]

Æ
∑

k |αk|2

1 0 0

















, K; = K0, K̄; = K̄0.

Finally, for this case when the state is |G±〉 then the correlations look like below.

C± =

















1
2

αm

4
Æ
∑

k |αk|2
0

α∗n

4
Æ
∑

k |αk|2
α∗nαm

2(
∑

k |αk|2)
α∗n

4
Æ
∑

k |αk|2

0 αm

4
Æ
∑

k |αk|2
1
2

















, F± =

















0
α∗m

4
Æ
∑

k |αk|2
0

−α∗n
4
Æ
∑

k |αk|2
0

α∗n

4
Æ
∑

k |αk|2

0
−α∗m

4
Æ
∑

k |αk|2
0

















,

G± =

















0 ℜ[αm]
Æ
∑

k |αk|2
0

0 −δnm +
ℜ[α∗nαm]
∑

k |αk|2
ℜ[αn]

Æ
∑

k |αk|2

0 0 0

















, K± = K0, K̄± = K̄0.
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Appendix E M matrix for modified X Y chain

In this appendix, the exact forms of the matrices A and B for modified X Y spin chain is demon-
strated. For |~b1|= 1 and |~bL|= 1, they can be written as:

A=

















































0 − sinθ1eiφ1

2 0 ...

− sinθ1e−iφ1

2 −h+ cosθ1 − J
2 0 ...

0 − J
2 −h − J

2 0 ...

0 0 − J
2 −h − J

2 0 ...

. . .

. . .

. . −h+ cosθL − sinθL e−iφL

2

· · · 0 − sinθL eiφL

2 0

















































, (E.1)

B=

















































0 − sinθ1e−iφ1

2 0 · · ·

sinθ1e−iφ1

2 0 − Jγ
2 0 · · ·

0 Jγ
2 0 − γJ

2 0 ...

... 0 Jγ
2 0 − γJ

2 0 ...

. .

. .

. . . . . Jγ
2 0 − sinθL e−iφL

2

. . . . . 0 sinθL e−iφL

2 0

















































. (E.2)

With the help of (8) and (9), one can construct the actual M matrix.
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