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The dynamics of cold strongly magnetized plasma – traditionally the domain of force-free electro-
dynamics – has recently been reformulated in terms of symmetries and effective field theory, where
the degrees of freedom are the momentum and magnetic flux carried by a fluid of cold strings. In
physical applications where the electron mass can be neglected one might expect the presence of ex-
tra light charged modes – electrons in the lowest Landau level – propagating parallel to the magnetic
field lines. We construct an effective description of such electric charges, describing their interaction
with plasma degrees of freedom in terms of a new collective mode that can be thought of as a
bosonization of the electric charge density along each field line. In this framework QED phenomena
such as charged pair production and the axial anomaly are described at the classical level. Formally,
our construction corresponds to gauging a particular part of the higher form symmetry associated
with magnetic flux conservation. We study some simple applications of our effective theory, showing
that the scattering of magnetosonic modes generically creates particles and that the rotating Michel
monopole is now surrounded by a cloud of electric charge.

I. INTRODUCTION

Diverse sets of physical phenomena across vastly differ-
ent length scales are controlled by the dynamics of mag-
netic fields in plasma. The description of such plasmas in
terms of coarse-grained hydrodynamic degrees of freedom
has a long history [1]. A particular regime of a strongly
magnetized plasma is obtained when one considers a sit-
uation where electric charges are sufficiently plentiful as
to screen the electric field to zero, but sufficiently dif-
fuse in that one can ignore their collective stress-energy.
Such a regime is conventionally described by the equa-
tions of force-free electrodynamics (FFE), which describes
the non-linear dynamics of magnetic field lines at zero
temperature [2–4]. Importantly, this theory has no pre-
ferred rest frame. The many applications of this theory
include the study of the magnetospheres of compact as-
trophysical objects [5, 6].

Nevertheless, FFE as conventionally formulated may
be considered incomplete. As a coarse-grained theory
with no intrinsic scales, it is insufficient to describe by it-
self astrophysical phenomena such as (e.g.) coherent ra-
diation and the production of particle winds [7–9]. The-
oretically, though FFE is clearly an approximation, it is
not immediately clear what the small parameter is, nor
how exactly it could be improved to better approximate
reality.

Thus motivated, and with an eye towards astrophysical
applications, [10] (building on a framework constructed
in [11]) reformulated force-free electrodynamics as an ef-
fective field theory. The authors identified a set of sym-
metry principles and wrote down the most general low-
energy action respecting those principles, resulting in
a realization of the force-free plasma as a fluid of cold
strings. The novel symmetry principle making this pos-
sible was that of generalized global symmetries [12], and
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the utility of such symmetries in the description of mag-
netized plasma was first articulated in [11]. To leading
order in derivatives, the theory of [10] is precisely force-
free electrodynamics, where the “strings” are magnetic
field lines. There is however an important conceptual
difference in that one no longer supposes that the inertia
of electric charges is neglected; rather these charges have
been “integrated out” in that they no longer appear in
the low-energy description. A (slightly) different action
principle for an EFT for FFE appears in [13].

Importantly, this effective field theory formalism now
allows for the systematic inclusion of higher-derivative
corrections to FFE. [11] showed that these corrections
can result in qualitatively new physical effects, such as
the generation of nontrivial electric fields parallel to the
magnetic field, i.e. E ·B 6= 0.

A. Light charged modes

However, there is reason to believe that the EFT de-
scription is still incomplete when applied to some actual
physical settings. Imagine the interaction of our FFE
plasma with some extra electric charges that are moving
ultra-relativistically, perhaps due to their initial condi-
tions, or perhaps because the magnetic field strength is
much stronger than the electron rest mass squared, as
in magnetars. Under such conditions, it may be a good
approximation to consider the electron to be massless.

The massless electrons and positrons will then spin
rapidly around the magnetic field lines; quantum me-
chanically, they will sink into the lowest Landau level.
For massless electrons, the energy of the lowest Lan-
dau level is exactly zero1. Thus the motion of the elec-

1 This occurs through a cancellation between the (negative) en-
ergy associated with the Zeeman coupling of the electron spin
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tron transverse to the field lines is gapped, but its mo-
tion along the field lines is gapless2. Furthermore, if we
work on scales longer than the magnetic cyclotron radius
`B ∼ (eB)−

1
2 , particles moving along different field lines

should be essentially uncorrelated.
These gapless modes are expected to be present at low

energies but are clearly not included in the effective de-
scription of [10]. One way to understand this is that
they are associated with an almost-conserved axial cur-
rent, which made no appearance in that discussion.

In this work we will construct an effective description of
such light electric charges and their interaction with the
plasma. We are motivated primarily by practical consid-
erations, and so take the viewpoint that these are simply
“extra” degrees of freedom that are not in equilibrium
with FFE plasma: thus we will sometimes refer to them
as “non-equilibrium” charges. As they move freely only
along the two-dimensional world-sheet swept out by the
field line in spacetime, a great deal of intuition for this
problem can be obtained from the bosonization of two-
dimensional fermions, where a bosonic collective mode
captures the dynamics of the fermionic charge density.

We similarly introduce a new effective 4d bosonic field
Θ(x) that is essentially a bosonized version of the electric
charge current jel along each field line.

jσel = −1

2
nµνε

σρµν∂ρΘ(x) (1)

where here nµν is a unit-norm tensor introduced in [10]
that is proportional to the electromagnetic field strength
Fµν . We will couple this field in a universal manner to
the FFE degrees of freedom. A key technical point is the
identification of a new symmetry principle that ties Θ to
the low-energy degrees of freedom of [10] in a way that
confines the charges to move along field lines.

Though our implementation in terms of EFT is novel,
similar ideas have appeared before. In particular, build-
ing on work in [15, 16], [17] recently performed a mi-
croscopic construction of a similar collective field by di-
rectly bosonizing the Landau levels of a 4d Dirac fermion
along a homogenous magnetic field. However, that work
was a perturbative computation, and the existence of a
force-free limit and the validity of various approxima-
tions is not clear to us. Our hydrodynamic approach is
an attempt to directly arrive at an effective low-energy
description.

to the magnetic field and the (positive) energy of the zero-point
cyclotron motion about the field line. This cancellation is re-
quired by index theorems that govern the realization of the 4d
axial anomaly.

2 At zero EM coupling this statement is obvious. At weak EM
coupling, the situation is somewhat subtle: a single one of these
zero modes – the “center of mass”, i.e. the appropriately defined
uniform sum over states in the lowest Landau level – acquires a
mass by a coupling to the zero mode of the photon (see e.g. [14])
but the majority of them remain massless.

B. Summary

We now summarize the remainder of the paper. In Sec-
tion II we review some useful background material. In
Section III we present our effective description of electric
charges. In Section IV we specialize to a particular the-
ory (fixing various thermodynamic functions that appear
in the general framework) and in Section V we present
some simple applications, i.e. we demonstrate that the
scattering of magnetosonic modes results in particle cre-
ation and that the Michel monopole is now surrounded
by a halo of non-equilibrated charges. In Section VI we
conclude with some directions for future research.

II. BACKGROUND

Here we review some background material. The reader
who is completely familiar both with conventional 2d
bosonization and with the EFT construction of FFE in
[10] should skip to Section III, where the addition of gap-
less electric charges is presented.

A. Review of 2d bosonization

We briefly discuss 2d bosonization. This is textbook
material, see e.g. [18]. Recall the Schwinger model, i.e.
a massless 2d Dirac fermion coupled to 2d electromag-
netism:

S2d =

∫
d2x

(
ψ̄
(
i/∂ − i /A

)
ψ − 1

4e2
F 2

)
(2)

This theory has a vector and axial current, written as

jµV = ψ̄γµψ jµA = ψ̄γµγ3ψ (3)

The vector current is coupled to the gauge field Aµ, and is
what we conventionally call “electric charge”. The axial
current is not actually conserved; a one-loop computation
shows that it is is afflicted by the well-known 2d axial
anomaly:

∂µj
µ
A =

1

2π
εµνFµν . (4)

We can precisely reformulate this fermionic system as a
theory of a single boson φ:

S2d =

∫
d2x

(
− 1

8π
(∂φ)2 − 1

4e2
F 2 +

1

2π
Aµε

µν∂νφ

)
(5)

In this formulation, the vector and axial currents are

jµV =
1

2π
εµν∂νφ jµA =

1

4π
∂µφ . (6)

Note that the bosonic field φ provides an alternative de-
scription of the dynamics of the charge sector, which may
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be more convenient for certain purposes. For example,
the axial anomaly (4) is now visible at the classical level,
as it is equivalent to the equation of motion of the field
φ. Note also that the vector electric current is identically
conserved, unlike in the fermionic description. Many fea-
tures of this story will reappear in our construction be-
low.

B. Review of EFT of FFE

We now turn to FFE, which is often presented as a
theory of the Maxwell field strength tensor Fµν , supple-
mented with the condition that bare electric charges are
present in sufficient quantities to screen the electric field,
but in insufficient quantities for their energy-momentum
exchange with the electromagnetic fields to matter (see
e.g. [4]).

In [10], a different effective theory viewpoint on FFE
was presented. We review this briefly here, referring the
reader to that work for a more in-depth discussion and
motivation of what follows.

As usual in EFT, we begin by identifying conserved
quantities. One of them is the usual stress tensor Tµν ,
whose conservation follows from general covariance in
the presence of a background metric gµν . More interest-
ingly, for a theory including dynamical magnetic fields,
the magnetic flux Jµν ≡ 1

2ε
µνρσFρσ is also a conserved

quantity, as the Bianchi identity guarantees that we have

∇µJµν = 0 (7)

We note that the symmetry associated with this con-
served quantity may be somewhat unfamiliar and is
called a generalized global symmetry [12]. Such symme-
tries are present whenever one has a conserved density of
extended objects (such as magnetic field lines); they were
initially understood in the context of non-Abelian gauge
theory, and have recently begun to be used to constrain
hydrodynamic theories [11, 13, 19–27].

The main idea of [10] is to realize this symmetry not on
the microscopic photon and electrons, but rather on a dif-
ferent set of low-energy collective fields, which are taken
to be two scalar fields Φ1,2 and a vector field aµ called
the worldsheet magnetic photon. The simultaneous level
sets of Φ1,2 determine the magnetic field worldsheets, and
da measures the magnetic flux on each worldsheet. An
example of a simple field configuration is given in Fig-
ure 1. This particular choice of variables may appear
unfamiliar; if so, we direct the reader to formulations
of fluid dynamics from action principles, where one dis-
cusses the motion of a density of particles using Lagrange
coordinates Φ1,2,3(x), and where a scalar phase degree
of freedom is used to capture the dynamics of a con-
ventional U(1) charge jµ bound to the particle density
[28]. The logic here is similar, except that we are here
discussing a density not of 0-dimensional particles but
rather 1-dimensional strings – i.e. magnetic field lines
– as appropriate for a theory with a generalized global

symmetry Jµν rather than a conventional particle num-
ber jµ. It will later be shown to result in the familiar
theory of force-free electrodynamics.

It is very useful to couple Jµν to an external fixed
source field bµν . The symmetry associated with J is then
implemented by demanding that the theory is invariant
under the following simultaneous transformation of dy-
namical field a and source b:

b→ b+ dλ a→ a+ λ (8)

where λ is an arbitrary 1-form3.
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FIG. 1. Example of typical profile for fields for a homogenous
magnetic field pointing in the ẑ direction; it is clear that the
simultaneous level sets of Φ1 and Φ2 – which defines the mag-
netic field line worldsheets – span the (t, z) plane.

It will be very important for our later purposes that
this external source b may be interpreted as an external
electric current density via

jσel = −1

2
εσρµν∂ρbµν . (9)

This relation is explained in detail in [11], and arises
physically from the idea that the natural source for a
theory of dynamical electromagnetism is a fixed exter-
nal charge density. Note that the current is identically
conserved.

Given the external sources b and g, we compute the
conserved quantities from the action as

Tµν ≡ 2√
−g

δS

δgµν
Jµν ≡ 2√

−g
δS

δbµν
. (10)

In addition to this microscopic symmetry, we also de-
mand that the theory is invariant under the following
emergent symmetries of the description:

• Field sheet relabelings, i.e reparametriztions

ΦI → Φ′I(ΦI) (11)

3 The nonlinear transformation of a is similar to that of a 1-form
Goldstone mode [29, 30] but the 1-form shift (12) means that
the symmetry is not spontaneously broken in this phase: this
is a generalization of a similar “chemical-shift” symmetry which
plays the same role in effective actions for conventional hydro-
dynamics [28].
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• String-dependent 1-form shifts:

a→ a+ ω(Φ1, 2) (12)

Here ω is an arbitrary function of Φ1,2, and so varies
from worldsheet to worldsheet. These symmetries should
be thought of as characterizing the low-energy phase
that is force-free electrodynamics. (We stress that differ-
ent choices for these symmetries result in different low-
energy effective theories; see e.g. [13] for a slightly dif-
ferent choice of degrees of freedom and emergent sym-
metry structure, which results in conventional finite-
temperature magnetohydrodynamics, rather than force-
free electrodynamics).

We now write down the most general effective action
that is invariant under these symmetries. It is convenient
to introduce the following 2-form and its magnitude.

Sµν ≡ ∇[µΦ1∇ν]Φ2 s =

√
SµνSµν

2
(13)

We further construct the binormal n and the volume form
ε on the foliation

nµν =
Sµν
s

εµν =
1

2
εµνρσn

ρσ (14)

which are normalized, i.e. which satisfy

nµνn
µν = −εµνεµν = 2, n ∧ n = ε ∧ ε = 0 (15)

Sµν is invariant only under volume-preserving
reparametrizations of the φI , but both n and ε are
invariant (up to a sign) under all reparametrizations.
They are the only such invariant objects at lowest order
in derivatives, and thus we will use them to construct
our effective theory.

It will often be convenient to work with the projectors
parallel and perpendicular to the foliation:

hµν = −εµρενρ, h⊥µν = nµρnν
ρ. (16)

The only invariant scalar to lowest order in derivatives
is

µ =
1

2
εµν (bµν − ∂µaν + ∂νaµ) . (17)

We note that the microscopic generalized global symme-
try (8) requires that a always appear in the combination
b − da, and the string-dependent shift further requires
that this be projected against ε. We note that – as usual
in the construction of such hydrodynamic actions [28]
– both n and µ are taken to be zeroth-order in deriva-
tives; for n this is obvious as it has fixed norm, and for
µ this derivative scaling can be motivated by the that it
measures a conserved magnetic flux that should exist for
arbitrarily long times [10].

We may now use this scalar to write down an invariant
action. As usual for constructing an effective theory, we

will do so in a derivative expansion. For example, the
leading order action in derivatives is

S0[Φ, a; g, b] =

∫
d4x
√
−g p(µ). (18)

where p is an arbitrary function of µ. Borrowing ter-
minology from hydrodynamics, we call this the “ideal”
action: from here we can use (10) to construct the ideal
stress tensor and magnetic flux as

Jµν0 = ρεµν Tµν0 = pgµν − µρhµν , (19)

where ρ = dp
dµ . The equations of motion for this theory

are simply the conservation equations for T and J , which
are:

∇µTµν =
1

2
(db)νρσJ

ρσ, ∇µJµν = 0, (20)

If we further make the choice p(µ) = 1
2µ

2, this the-
ory is precisely equivalent to usual FFE. Recall that
E · B = 1

8εµνρσJ
µνJρσ; if we take J to be given by its

ideal expression (19), we see that E ·B = 0, as required
for ideal FFE.

Of course, the value of the EFT formalism is that it
is now possible to systematically include corrections to
FFE, simply by adding higher derivative terms to the
action (18). We emphasize one particular class of correc-
tions, e.g. consider the following invariant second order
term:

SR[Φ, a; g, b] =
1

2

∫
d4x
√
−gR(µ)∇αεβγ(db)αβγ (21)

This results in the following correction JR to the ideal
flux (19):

J = J0 + JR JµνR = −3∇σ
(
R(µ)∇[σεµν]

)
(22)

Note that on dimensional grounds we have the following
expansion:

R(µ) =
µ

Λ2
+ · · · (23)

with Λ a dimensionful UV scale.4 The EFT breaks down
at this scale, which presumably describes a scale where
the underlying particulate nature of the system becomes
important. For the moment we will be agnostic about its
physical meaning, discussing it further in Section IV.

In the presence of this correction, we generically have
that E · B 6= 0; thus it creates an accelerating electric
field. However, this correction to J is identically con-
served, meaning that within this theory it merely alters

4 All terms appearing in the expansion of R(µ) must be odd in
µ, as otherwise SR is odd under orientation-reversing worldsheet
reparametrizations [10].
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the relationship between the flux J and the dynamical
fields without changing the equations of motion.

As one might expect, this will change once we add light
electric charges for this electric field to pull on in the
next section. The full set of corrections to this theory at
second order in derivatives has been enumerated in [31];
as will be more clear in the later sections, only terms that
source a non-zero E · B 6= 0 will result in qualitatively
new effects, and we will use the term (21) to illustrate
this physics.

From now on, we will refer to the theory reviewed here
as the “FFE sector”, with total action (including possible
higher-derivative corrections) SFFE[Φ, a; g, b].

III. EFFECTIVE THEORY OF
NON-EQUILIBRIUM CURRENTS

A. Electric charge and symmetries

We now finally turn to the addition of non-equilibrium
massless charges; as motivated above, we would like to
couple the FFE EFT described above to a density of
massless electric charges which are confined to move
along field lines. The dynamics of these charges will be
described by an extra degree of freedom. We will con-
tinue to work within an effective field theory framework,
so we will expand both the FFE sector and the dynam-
ics of these charges in a derivative expansion. As usual
in EFT, the theory will be valid at low frequencies, i.e.
ω
Λ � 1, where Λ is a UV scale as in (23).

We note that key object needed to perform the cou-
pling of the charges to the FFE sector already exists
within the FFE EFT; in particular, through (9), we know
that the external source b already has the interpretation
as an electric charge density.

We thus introduce a new dynamical field Θ(x), and
couple it to the FFE degrees of freedom through b. We
write

b(Θ) = b̄+ Θ(x)n (24)

where b̄ is now the fixed external source, and where n
is the binormal defined in (14). To get some intuition
for this choice, take n to be constant (corresponding to a
constant magnetic field): from (9) we see that the electric
current arising from Θ is

jσel = −1

2
nµνε

σρµν∂ρΘ(x) (25)

As desired, this is exactly a current propagating along
the magnetic field directions. Indeed comparing it to the
expression for the 2d vector current (6), we see that Θ
plays a role very similar to the field φ appearing in the
bosonized description of the 2d Dirac fermion.

It is however not enough to demand that the current
flow mostly along the worldsheet. As motivated ear-
lier, the current on each field-sheet should be also essen-
tially uncorrelated, as we are studying infrared physics on

scales much longer than the magnetic cyclotron length.
To ensure that derivatives perpendicular to the world-
sheet do not enter the theory, we further demand invari-
ance under the following symmetry:

• String-dependent scalar shift:

Θ(x)→ Θ(x) + s(x)f(Φ1,Φ2) (26)

Here f is an arbitrary function of Φ1,2, whereas s(x) was
defined in (13). As we will discuss, this symmetry is
closely related to axial charge conservation. We also dis-
cuss the rationale for the factor of s(x) below.

We now write the full action of the system as

S = SΘ[Φ, a,Θ; g, b(Θ)] + SFFE[Φ, a; g, b(Θ)] (27)

where the notation b(Θ) serves to stress that everywhere
b is written in terms of Θ as in (24). Here SΘ is a new
term that describes the dynamics of Θ itself, whereas
SFFE is the FFE theory constructed previously. Note
that SFFE depends on Θ only through b(Θ). This is a
kind of “minimal coupling”, indicating that the charge
degrees of freedom affect the FFE sector only through
their electric charge density (9).

We now discuss the realization of the symmetries. In
particular, it is not at all clear that the FFE sector to-
gether with the coupling (24) is itself invariant under the
shift symmetry (26). To see that it is, note that under
(26), b shifts as

b→ b+ f(Φ1,Φ2)dΦ1 ∧ dΦ2 (28)

where we have used that sn = dΦ1 ∧ dΦ2.
Now the magnetic shift symmetry (8) guarantees that

b can enter the action only as db, or together with the
magnetic worldsheet photon a in the combination (b −
da). db is manifestly invariant under (28). Furthermore,
the 1-form string-dependent shift of a (12) means that b−
da must be projected down onto the worldsheet (e.g. as
in (17)). However this projection is also invariant under
(28), as dΦ1,2 is perpendicular to the worldsheet.

The upshot is that any FFE theory where b enjoys the
symmetries recorded in the previous section can be cou-
pled to a Θ field as in (24) and is automatically invariant
under (26). The factor of s present in that expression
is crucial for this invariance. One way to understand
this is that f(Φ1,Φ2) is not a scalar in the space of Φ1,2

but rather a 2-form, and s transforms in the appropriate
manner to allow us to add it to a true scalar Θ in (26).

B. Charge dynamics

Having coupled Θ to the magnetic field, we now turn
to the dynamics of Θ itself. We would like to construct a
kinetic term for Θ. Arbitrary derivatives of Θ are clearly
forbidden by the shift symmetry (26). The 3-form d(Θn)
is however invariant under all symmetries, and we can
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use it to construct a kinetic term. At leading order in
derivatives, the only candidate is

SΘ = −1

4

∫
d4x
√
−gQ(µ)∇[µ

(
nρσ]Θ

)
∇[µ

(
nρσ]Θ

)
(29)

Here Q(µ) is an arbitrary function of µ. Again to obtain
intuition consider the case where n is constant, in which
case we find

SΘ = −1

2

∫
d4x
√
−gQ(µ)hµν∇µΘ∇νΘ (30)

where from (16) hµν is a projector parallel to the world-
sheet; thus in equilibrium Θ becomes effectively a collec-
tion of two-dimensional fields, each with dynamics only
on the worldsheet.

We note that in situations where n is not constant,
then both derivatives and electric current off the world-
sheet will appear; however the precise manner in which
this happens is dictated by the symmetry principles
above, and is thus a prediction of our EFT.

We now discuss the equations of motion, starting with
that for Θ. The variation of the total action with respect
to Θ takes the form

δΘS = δΘSΘ +
δS

δb̄µν
nµν (31)

where the second term arises from the implicit depen-
dence of b on Θ in (24). Putting in the explicit form
of SΘ and using the definition of J in (36), we find the
following equation of motion:

∇α
[
∇[α

(
nβσ]Θ

)
Q(µ)

]
nβσ + Jµνnµν = 0 (32)

This is a wave equation Θ on the field-sheets, sourced
by a term that depends on the magnetic field. To un-
derstand the source term, note that within our construc-
tion, magnetic domination means that J always points
mostly in the direction of ε – indeed at ideal order, we
see from (19) that it is precisely proportional to ε. As
n = ?ε, the source term Jµνnµν is essentially propor-
tional to J ∧J ∼ E ·B, i.e. to the presence of unscreened
accelerating electric fields. As we describe, under some
circumstances this sourced wave equation can be inter-
preted as pair creation. We note that the term in Jµνnµν
is identically zero in ideal FFE, but is generically active
if higher-derivative corrections such as (22) are included.

C. Axial anomaly and pair creation

This equation of motion is closely related to the
shift symmetry (26). Recall that this is actually in-
finitely many symmetries, parametrized by a free func-
tion f(Φ1,Φ2); thus this leads to infinitely many Noether
charges, one on each worldsheet. As we will argue, this
can be thought of as an independent axial current on each
field line.

To understand this, it is instructive to consider the
contribution to this Noether current not from the full
action, but only from SΘ; denoting this by jµf , we find

jαf = ∇[α
(
nβσ]Θ

)
Q(µ)nβσf(Φ1,Φ2)s(x) (33)

As we have neglected the contribution from the FFE sec-
tor, this is not quite conserved, and instead we have

∇αjαf = −Jµνnµνf(Φ1,Φ2)s(x) (34)

In the case f = 1, this is equivalent after some manip-
ulation to the usual Θ equation of motion (32), though
we can only write the left-hand side of that equation as
a divergence if we re-introduce the field s(x).

This non-conservation equation may be understood as
a hydrodynamic manifestation of the following micro-
scopic Adler-Bell-Jackiw anomaly equation arising in the
theory of fermions coupled to QED:

∇µjµA = − 1

16π2
εµνρσFµνFρσ . (35)

where jµA is the axial current density ψ̄γµγ5ψ.
We see that the role of jµA is played approximately by

∂µΘ, weighted by Q(µ) and projected in an appropriate
manner onto the worldsheet. Thus Θ is something like a
worldsheet axion [32].

It is instructive to examine how this equation relates
to pair creation in a magnetic field; our discussion here
is closely related to the chiral magnetic effect [33] (see
[34] for a review). Consider pair creation of a massless
e± pair by a nonzero E · B. Energetically, the electron
and positron will want to appear in their lowest Landau
level. The spin in this lowest Landau level is correlated
with the magnetic field: for the electron it is aligned and
for the positron it is anti-aligned. Under the influence
of the electric field, the electron and positron will move
off in opposite directions along the magnetic field; thus
for both particle and anti-particle the spin is correlated
with the motion. They both have the same helicity, and
the whole process thus results in the creation of net axial
charge. 5 Microscopically, this process is governed by the
ABJ anomaly (35), which directly relates E ·B to axial
charge creation.

In our hydrodynamic setup, we are describing the same
process, except at scales much longer than the magnetic
cyclotron length. Thus each field line is independent, and
no charge can move from one field line to the next, so we
obtain the stronger relation (34), corresponding to an in-
dependent (non) conservation law on each field line. It is

5 To be more precise: in standard conventions, the particle and
anti-particle both have the same helicity, but for an anti-particle
the chirality is defined to be the opposite of the helicity [33]. The
left-hand side of the (integrated) anomaly equation may be un-
derstood as (the sum of the numbers of particles and anti-particle
with right-handed helicity) minus (the sum of the numbers of
particles and anti-particles with left-handed helicity).
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extremely interesting to see the physics of the anomaly
emerging naturally from our purely hydrodynamic con-
struction. We note also that the resulting expression is
very similar to the bosonization of the 2d axial anomaly
discussed around (6), except that the structure induced
by Φ1,2 provides the information required to sew different
field sheets together.

Finally, while the qualitative physics of the anomaly
does appear from our construction, the right-hand side
of the equation is not precisely F ∧ F , but is only pro-
portional to it, where the constant of proportionality is
“dynamical” in that it depends on details of the thermo-
dynamic function p(µ). There does not appear to be a
protected anomaly coefficient. This is related to the fact
that the right hand side of the anomaly equation (35) is
a dynamical operator and not an external source (as it is
in usual examples of anomalous hydrodynamics [35, 36]),
and thus in a theory of dynamical electromagnetism axial
current is simply genuinely non-conserved. Similar issues
related to non-universality have been studied in [37].

D. Effect of collective mode on FFE

Having exhaustively discussed the equation of motion
of Θ, we return finally to the FFE sector. The stress
tensor and magnetic flux of the system are now obtained
by differentiation of the total action with respect to g
and b̄ respectively:

Tµν ≡ 2√
−g

δS

δgµν
Jµν ≡ 2√

−g
δS

δb̄µν
. (36)

Note that as µ depends on b̄, both J and T receive con-
tributions from SΘ.

As before, the the equations of motion are simply the
conservation equations for the currents:

∇µTµν =
1

2
(db̄)νρσJ

ρσ, ∇µJµν = 0, (37)

with the modification that generically both T and J will
now receive extra contributions from the Θ sector. We
will compute these contributions for a particular choice
of theory below. Note that it is the external source b̄ that
appears on the right hand side of the non-conservation
equation for T ; in most situations it is set to 0.

Finally, we discuss a general feature of the equations
of motion. Let us imagine that the FFE sector has no
higher derivative corrections and is given by (18). In that
case J ∝ ε, and thus the source term in (32) is zero. It
is then consistent to set Θ to 0, and thus all solutions to
FFE remain solutions of the coupled theory. Linearized
fluctuations of Θ about any FFE solution will decouple.
In this sense, in the extreme infrared the addition of this
charged matter does not alter the structure of FFE.

On the other hand, let us now consider moving away
from the extreme infrared, i.e. turning on higher deriva-
tive corrections such as (21). In this case, E · B is no

longer zero, and now the source term in (32) will turn
on Θ. As expected, accelerating electric fields can have
a dramatic effect on free electric charges, including the
hydrodynamic manifestation of the pair creation process
discussed previously. We note that though they are pro-
duced by a term that is higher-order in derivatives, they
can nevertheless have a large effect at long distances due
to non-trivial kinematics. We will study some aspects of
this below.

E. Formal aspects

We now note some formal aspects of the above con-
struction. In particular, the sufficiently universally-
minded reader may be somewhat puzzled that after go-
ing through all the effort of constructing an effective
symmetry-based description of FFE in [10], we then per-
form a brutal operation – i.e. couple in “extra” mass-
less charges – that is motivated not by global symmetry
structure but rather mostly by phenomenological consid-
erations.

We do not really feel that we have a completely sat-
isfactory response to such a reader, but we note that at
a formal level this construction corresponds to gauging a
particular part of the 1-form symmetry associated with
magnetic flux conservation.

To be more precise, in the construction of [10], an ex-
ternal b field couples to the 2-form current J . By making
part of this b field dynamical as in (24),

b = b̄+ Θ(x)n (38)

and providing it with a kinetic term, we are gauging “the
part of the 2-form current perpendicular to the magnetic
field lines.” This means that excitations of those gauged
components of J – i.e. precisely those that create E ·B
– are now parts of a gauge current and not a global one,
and Θ is a new sort of gauge field for these components
of J .

As usual in gauge theory, exciting gauge charges costs
energy in terms of the gradients of Θ, i.e. through the
equation of motion (32), which can be thought of as
Gauss’s law for the new gauge symmetry. (One can com-
pare this to the solution in conventional weak-coupling
electrodynamics, where excitations of the “gauged” elec-
tric charge cost energy in terms of the gradients of the
vector potential).

We find this somewhat suggestive but still incomplete,
as the identification of which part of the 1-form symmetry
we gauge is made through the binormal n, which is itself
still a low-energy construct. Thus we do not see a purely
universal way to characterize this gauging procedure. It
would be extremely interesting if one could be found and
related to the structure of the axial anomaly discussed in
the previous subsection.
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IV. SPECIFIC THEORY

We briefly summarize. Given an EFT construction of
FFE governed by an effective action SFFE, there is a way
to “minimally” couple it to free electric charges confined
to move along string worldsheets, where the dynamics of
these charges is given by SΘ, as in (27):

S = SΘ[Φ, a,Θ; g, b(Θ)] + SFFE[Φ, a; g, b(Θ)] . (39)

For concreteness, in the remainder of this paper we
will work with the specific theory given by (39), where
the FFE sector is given by the choice

SFFE = S0 + SR (40)

with S0 and SR given by (18) and (21) respectively. S0

and SΘ are the unique choices at leading order in deriva-
tives.

One might ask why we do not begin by studying the
theory described by the ideal FFE S0 alone. This is
indeed the answer to leading order in derivatives, and
one can obtain this from the results below by taking
Λ → ∞. As mentioned earlier, at this order the sectors
described by Θ and the FFE sector largely decouple, in
that the non-equilibrium charges satisfy a free wave equa-
tion along fixed magnetic field lines whose dynamics are
given by FFE; a simple way to see this is to note that in
this case the source term for Θ in (32) is identically zero
in ideal FFE.

However, the inclusion of the higher-derivative term
SR – and concommitant nonzero E ·B – results in quali-
tatively new effects, i.e. the physics of pair creation; this
couples the Θ field to the magnetic sector in a novel way.
SR is included to allow such physical effects; we do not
expect the qualitative physics to change from the story
discussed below if generic higher derivative corrections
are added.

We now discuss length scales. This theory contains
three arbitrary functions of µ: p(µ), Q(µ), and R(µ). Us-
ing the fact that both µ and Θ have mass dimension 2
(for the latter, see (24)) the leading order expansion of
each of these quantities in powers of µ is:

p(µ) =
1

2
µ2+· · · Q(µ) =

Q0

|µ|
+· · · R(µ) =

µ

Λ2
+· · ·

(41)
where Λ is some UV mass scale. In all concrete compu-
tations from here on, we will restrict to just the leading
term in each of these expressions.

Notably, both p and Q are scale-free to leading or-
der. The non-analytic behavior of Q(µ) as a function of
µ may seem surprising. To understand this, note that
in the FFE limit the magnitude of the magnetic field
B = µ. Microscopically, the physics of Landau levels is
indeed non-analytic as a function of the magnetic field;
for example, the density of states of Landau zero modes
is controlled by e|B|, and this is the ultimate origin of
the non-analyticity in µ.

At the level of the EFT, Q0 is a free parameter control-
ling the strength of interactions of Θ with the FFE de-
grees of freedom. In principle it can be determined from a
UV description; in Appendix A we discuss a preliminary
attempt at matching with the microscopic treatment of
[17], where the UV completion is provided by Dirac elec-
trons coupled to QED with electromagnetic coupling e.
In that case we find

Q0 =
2π2

e3
(42)

This identification comes with caveats, and we refer the
interested reader to the Appendix for a full discussion.
We will keep Q0 arbitrary in what follows.

Thus this minimal theory has a single length scale Λ−1;
it controls the magnitude of possible E ·B, and thus can
be interpreted as defining the scale over which the perfect
screening of E in the plasma breaks down. An unscreened
E will pair-create charges (parametrized by Θ) through
the source term in (32). These charges will then move
about, interacting nonlinearly with the plasma in a way
that is captured by the evolution equations below.

We will provide an extremely preliminary discussion of
the possible physics arising from this in some applications
to simple geometries (wave scattering about a homoge-
nous background, and the rotating Michel monopole) be-
low.

A. Detailed expressions for stress tensor and flux

For completeness, we write down the stress tensor and
flux. We find

Jµν = (ρ+ ρΘ)εµν − 3∇σ
(
R(µ)∇[σεµν]

)
(43)

where as before ρ = dp
dµ , but ρΘ is a scalar correction

at O(Θ2) to the effective magnetic flux arising from the
µ-dependence of the Θ kinetic term:

ρΘ ≡ −
1

4

dQ

dµ
∇[µ

(
nρσ]Θ

)
∇[µ

(
nρσ]Θ

)
(44)

As the expression for Tµν is somewhat lengthier, we
break it into several pieces:

Tµν = Tµν0 + TµνR + TµνΘ (45)

where Tµν0 was given in (19) and where TR and TΘ arise
from differentiating (21) and (29) with respect to g re-
spectively, and are:

TRµν =
1

2

(
−R(µ)gµν + µ

dR

dµ
hµν

)
∇αεβγ(db)αβγ+

3R(µ)∇[µερσ](db)ναβg
ραgσβ

(46)
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where we remind the reader that b = b̄ + Θn with b̄ the
fixed external source, and

TΘ
µν = −1

4

[(
−Q(µ)gµν + µ

dQ

dµ
hµν

)
(∇nΘ)2

2
+

3Q(µ)∇[µ

(
nρσ]Θ

)
∇[ν

(
nαβ]Θ

)
gραgσβ

] (47)

where the notation (∇nΘ)2 ≡ ∇[µ

(
nρσ]Θ

)
∇[µ

(
nρσ]Θ

)
.

To simplify the above computations, it was helpful to
note that the variation of n with respect to g is:

δgnµν = −1

2
nµνh

⊥
αβδg

αβ (48)

This means that the metric variation of the combination
Θn is proportional to n, and thus takes the same form
as a variation of Θn with respect to Θ. Such variations
vanish on-shell, i.e. when the Θ equations of motion (32)
are imposed. In this situation it is then consistent to
set all metric variations of (Θn) to zero when computing
the stress tensor. We have done so in the above expres-
sions, which are thus valid only on-shell. (Generically
they contain other terms proportional to the Θ equation
of motion multiplying h⊥).

To recap: the degrees of freedom can be taken to be the
FFE variables ε, µ together with the charge mode Θ. The
equations of motion are the conservation equations (49),
which for convenience we reproduce in the case where
b̄ = 0:

∇µTµν = 0, ∇µJµν = 0, (49)

together with the Θ equation of motion, which we write
out explicitly for arbitrary R(µ).

∇α
[
∇[α

(
nβσ]Θ

)
Q(µ)

]
nβσ−3∇σ

(
R(µ)∇[σεµν]

)
nµν = 0

(50)

V. APPLICATIONS

In this section we present some simple applications of
this formalism.

A. Michel monopole

We first discuss how the above theory behaves on the
Michel monopole background, which is an exact solution
to conventional FFE [38]. This is a rotating magnetic
monopole, and is a toy model for the magnetosphere out-
side of a rotating uniformly magnetized star. One should
imagine that the core of the monopole is shielded by the
star radius at r = r?.

In terms of the degrees of freedom ε and µ, the solution
can be written as:

ε = d(t− r) ∧ (dr − r2Ω sin2 θdφ) µ =
q

r2
. (51)

which corresponds to

J =
q

r2
d(t− r) ∧ (dr − r2Ω sin2 θdφ) (52)

Though it is not necessary for our purposes, a valid choice
of the foliation degrees of freedom is

Φ1 = θ, Φ2 = φ− Ω(t− r), a =
q

r
dt (53)

This is a solution to pure FFE. Does it remain a so-
lution to the theory of free charges described above? As
explained in [10], in the presence of the higher derivative
coupling (21), a non-trivial E ·B is created. This has no
effect in the original FFE theory, but in the model with
light charges it sources the Θ field, and we can no longer
set it to zero. Instead we must solve the wave equation
(50):

Q0∇α
[
∇[α 1

|µ|

(
nβσ]Θ

)]
nβσ =

3

Λ2
∇σ
(
µ∇[σεµν]

)
nµν

(54)
where we have inserted the form of Q(µ) and R(µ).

In general, this is now a nonlinear problem that can
only be solved numerically. In this work we tackle it by
taking the scale Λ−1 to be much smaller than any other
scales in the problem, giving us a small parameter in
which we can perform a perturbative expansion.

1. Magnetic worldsheets and dS2

We first examine the kinetic term appearing in (54).
It is convenient to define outgoing time u = t − r and a
rescaled field

Θ(t, r, θ, φ) ≡ 1

r2
Θ̃(r, t, θ, φ) (55)

For future convenience, we define the wave operator on
the left-hand side of (54) as �:

Q0∇α

[
∇[α 1

|µ|

(
nβσ] Θ̃

r2

)]
nβσ ≡ �Θ̃ (56)

We then find:

�Θ̃ =
2Q0

3q

[
(1− r2Ω2 sin2 θ)∂2

r

− 2(∂u + Ω∂φ + rΩ2 sin2 θ)∂r
]
Θ̃

(57)

Note that there are no θ derivatives at all, and so each
latitude completely decouples from the rest. However the
rotation does introduce a φ derivative Ω∂φ. Indeed the
full dependence on (u, φ) is now through the combination
(∂u + Ω∂φ)

Curiously, the operator within square brackets is pre-
cisely the wave operator of two-dimensional de-Sitter
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space written in outgoing Eddington-Finkelstein coordi-
nates:

ds2 = −
(

1− r2

L2

)
du2 − 2dudr (58)

provided we make the substitution

(∂u)dS2
→ (∂u + Ω∂φ)Michel (59)

and where the de Sitter radius L is

L =
1

Ω sin θ
(60)

In particular, the location of the (θ-dependent) de Sit-
ter horizon is r = (Ω sin θ)−1, i.e. at the light cylinder.
Heuristically, the light cylinder is the point where an ob-
server rotating with the star would have to move faster
than light. It acts as a horizon for Alfvenic perturbations
of the background, and apparently also for the charge
fluctuations developed in this paper.

The relevance of dS space to the Michel monopole was
anticipated in [4], where it was pointed out that the in-
trinsic geometry of a Michel field sheet is indeed dS2. It
is thus unsurprising that charges that are confined to this
world-sheet obey the de Sitter wave equation, albeit with
an interestingly shifted notion of dS time (59). Studying
the propagation of waves on this effective curved geome-
try will now require a treatment of boundary conditions
at the de Sitter horizon. We would find it extremely sat-
isfying if the physics of de Sitter horizons were to play
an unexpected role in an understanding of the dynamics
of pulsars, and hope to return to this point in the future.

Finally, as we will require it for the next section, we
note that in the case that Θ depends only on r, the wave
operator above reduces to

�Θ̃ ≡ 2Q0

3q

[(
1− r2Ω2 sin2 θ

)
r2∂2

r − 2rΩ2 sin2 θ∂r
]

Θ̃

(61)
The two independent solutions to this equation are

Θ(r) =
1

r2
(A+B arctanh(rΩ sin θ)) (62)

where we have expressed them in terms of the original
field Θ. Note that the term in B is singular at the light
cylinder.

2. Induced charges

We now return to our original problem of determining
how the Θ field behaves in the presence of the Michel
background. In particular, we will perform a perturba-
tive expansion in powers of Λ−2:

Θ = Θ(0) + Θ(2)Λ
−2 + · · · J = J(0) + J(2)Λ

−2 + · · ·
(63)

Here J(0) is the force-free bare Michel solution, and it
is consistent to set Θ(0) to zero. To find the next order
term, we insert this form into the wave equation (54).
In terms of the wave operator (61), the equation for the
term in Λ−2 becomes

�Θ̃(2) = −8qΩ cos θ

r3
(64)

To solve this equation, we need to specify boundary con-
ditions on the field. We will demand that the solution
remain regular at the light cylinder; this amounts to set-
ting the coefficient B to zero in (62).

At the neutron star surface r = r?, the physics is likely
to be rather complicated and non-linear, and we do not
at the moment have a good understanding of the cor-
rect boundary condition. For simplicity, we impose the
Neumann boundary condition ∂rΘ = 0, noting that a
Dirichlet condition would imply an explicit breaking of
axial symmetry. Our result are largely insensitive to this
choice, changing the final expression only by an O(1) fac-
tor.

With these choices, we find that to leading order in
Λ−2, the Θ field is:

Θ(r) =
3q2(3r − 2r?)

Q0r2r?Λ2
Ω cos θ + · · · (65)

Using the identification (25), the electric current is

jel = −18q2(r − r?)
Ω cos θ

r4Q0r?Λ2
(∂t + Ω∂φ) (66)

This induced current is proportional to the co-rotating
Killing vector of the Michel geometry ∂t + Ω∂φ. It ap-
pears that the electric field created has populated space
with this charge density, which subsequently attempts to
rotate with the star. This rigid rotation happens faster
and faster as we move out in r until it reaches the speed
of light at the light cylinder. The current vector is thus
timelike at small r, null at the light cylinder, and space-
like outside it.

It would be very interesting to understand the conse-
quences of this charge density in more physically realistic
situations with less symmetry. This will likely require nu-
merical simulation.

B. Particle creation by wave scattering

FFE linearized about a homogenous magnetic field
supports two types of linearly dispersing wave excitation;
the transverse Alfven mode and the longitudinal magne-
tosonic (or fast) mode. The addition of the Θ field results
in a new gapless mode that disperses linearly along the
field lines6. To leading order in the linearized theory, all

6 We can compare this with the results of [39], which studies a
model of spontaneously broken axial symmetry coupled to free
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of these modes are independent and do not mix. In this
section we demonstrate that at nonlinear order, the scat-
tering of two magnetosonic waves will generically result
in particle creation.

Consider a homogenous background magnetic field of
magnitude B pointing in the z direction; this corresponds
to

ε0 = dt ∧ dz n0 = dx ∧ dy µ = B (67)

so that the magnetic flux is simply

J0 = Bdt ∧ dz (68)

We first review the dispersion relation of a single mag-
netosonic wave (see e.g. [11]). We work with the FFE
equation of state p(µ) = 1

2µ
2.

Let the spacetime dependence of the wave be eikµx
µ

.
We define the momentum parallel and perpendicular to
the background field to be:

kµ‖ ≡ (h0)µνkν kµ⊥ = (h⊥0 )µνkν , (69)

where the projectors h, h⊥ were defined in (16) and are
here evaluated on the homogenous background field (67).

We now consider linearized perturbations around the
background solution (67), ε → ε0 + δεeikµx

µ

, µ → B +
δµeikµx

µ

. For convenience, let a, b run over the directions
parallel to the field t, z and let i, j run over x, y. By solv-
ing the linearized equations of motion, the components
of δε can be written in terms of the scalar perturbation
δµ:

δεia = − 1

k2
⊥B

kik
bε0baδµ (70)

(Both δεij and δεab identically vanish by the normal-
ization and degeneracy constraints (15) on ε ). For the
FFE equation of state all modes propagate at the speed
of light, and the dispersion relation can be written in a
manifestly Lorentz and rotationally invariant manner as

k2
‖ = −k2

⊥ (71)

Now we turn to the interactions with Θ. A single lin-
earized wave does not turn on the source term in (32);
thus, as mentioned earlier, at the linearized level fluctu-
ations of Θ and of the FFE modes decouple.

However if we consider the superposition of two mag-
netosonic modes with momenta k1, k2, then after some
algebra we find for the source term

Jµνnµν(x) = ei(k1+k2)·xg(k1, k2)δµ1δµ2 (72)

Maxwell EM with a background magnetic field. They find a
mixing between an unscreened E‖ and the axial Goldstone, re-
sulting in a quadratically dispersing mode. Our results differ
because our electromagnetic sector is governed by FFE, where
E‖ is already gapped out and cannot mix with anything.

where the “interaction vertex” g(k1, k2) is the following
symmetric function of the momenta:

g(k1, k2) = − 2

Λ2B

(
k2
⊥,1 + k2

⊥,2

)
k2
⊥,1k

2
⊥,2

nµν0 kµ,1kν,2ε
µν
0 kµ,1kν,2

(73)
Thus we see that non-trivial E · B has been created,
and will generically create electric charges through the
sourced wave equation (32). This is the main result of
this section. It would be very interesting to understand if
this provides a systematic way to understand an energy
cascade from the magnetic field to electric charges, e.g.
during FFE turbulence [40].

We briefly sketch how to go further and determine the
Θ field itself. We must then solve the sourced wave equa-
tion (32), which to lowest order in the perturbations sim-
ply reduces to:

2Q0

3B

(
∂2
t − ∂2

z

)
Θ = −Jµνnµν (74)

As usual this can be solved by introducing a Green’s
function GΘ(x, y) for Θ, which is a delta function in the
transverse directions but propagates gaplessly along the
field lines:

GΘ(x, y) ≡ 3B

2Q0
δ(2)(xi−yi)

∫
d2p

(2π)2
eih

ab
0 pa(x−y)b 1

hab0 papb
(75)

A particular solution to (74) is then simply

Θ(x) = −
∫
d4yGΘ(x, y)Jµνnµν(y) (76)

Combining this expression with (72), it should be clear
that we are constructing a classical solution by evaluat-
ing tree-level Feynman diagrams; in particular, we have
shown that there is an amplitude for two magnetosonic
waves to scatter and create particle charge, and thus the
Feynman rules for this theory have a vertex of the form
shown in Figure 2.

k1

k2

g(k1, k2)

G⇥

�µ1

�µ2

⇥

FIG. 2. “Feynman” diagram associated with the evaluation of
the term computed in (76); solid lines indicate magnetosonic
modes (where in our kinematics the propagators have been
amputated) and dotted line indicates Θ propagator GΘ.
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We note that this is a sort of “inverse pion decay”: con-
ventionally, the π0 (which, like Θ, is roughly a Goldstone
mode for a spontaneously broken axial symmetry) decays
to two electromagnetic excitations (photons) through a
channel mediated by the axial anomaly (35). Here two
electromagnetic excitations (magnetosonic modes) com-
bine through the anomaly-mediated channel (34) to cre-
ate an excitation of Θ.

It would be very interesting to further develop and
understand the physical consequences – if any – of this
diagrammatic expansion.

VI. CONCLUSIONS

In this work, we showed how to couple extra light elec-
tric charges – charges that are not in equilibrium with
the plasma – to the FFE EFT of [10]. We conclude with
some directions for future work.

One original motivation for this study was astrophys-
ical. Ideally, one might hope that this model could pro-
vide a useful caricature of the dynamics of compact astro-
physical objects, where open questions remain regarding
(e.g.) the origins of coherent radiation and the produc-
tion of particle winds [7–9].

In particular, the truncated model described in Sec-
tion IV provides a concrete deformation away from FFE,
parametrized by a single scale Λ that controls the scale
at which unscreened electric fields can self-consistently
appear. Such unscreened fields will subsequently pair-
create and accelerate charges, as captured by ripples in
the collective field Θ. It would be very interesting to
understand the physical consequences of such nonlinear
dynamics in more realistic geometries with less symme-
try than the Michel monopole. This will likely require
numerical simulation. We note that the viewpoint taken
here – deforming in a controlled manner away from FFE
– is the opposite to that taken in usual particle-in-cell
simulations (see e.g. [41, 42]), where one starts micro-
scopically with free Maxwell electrodynamics coupled to
charge dynamics and arrives (at long distances) at FFE.

One clear deficiency of the system is the fact that it
provides a clean description only in situations when the
mass of the electron can be neglected. It is somewhat
nontrivial to study the electron mass as a perturbation;
it seems that any attempt to do so and thus break the ax-
ial shift symmetry (26) also ultimately correlates fluctua-
tions on different field lines, essentially because a massive
electron has a finite transverse radius.

For any potential application to real-life systems, it
is also clearly crucial to understand the magnitude of
scales such as Λ. Such higher-derivative corrections can
in principle be precisely matched to a UV description
(e.g. QED) using the analogue of hydrodynamic Kubo
formulas (see e.g. [43] for a review). We hope to report
on this in the future.
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Appendix A: Comparison to microscopic strong-field
bosonization

Here we compare our theory with the top-down con-
struction of [17], which follows earlier foundational work
in [15] (see also [16] for a similar computation in a differ-
ent context).

We briefly review [17]: there QED with electromag-
netic coupling e is studied with a single species of massive
Dirac fermion on a constant magnetic field background.
The fermion is decomposed into Landau levels, and then
each fermion state in the lowest Landau level is bosonized
into a massless scalar φi with a kinetic term with deriva-
tives only along the magnetic field directions, where i
runs over the N = eBA

2π states in the lowest Landau level.
It is then assumed that all of the bosons φi move in sync,
i.e.

φ1 = φ2 = · · · = φN = Φ . (A1)

An effective action is constructed for Φ and its coupling
to the electromagnetic field, and it is then assumed that
the fields are allowed to vary slowly in the transverse
directions to obtain a 4d dynamical theory. Derivatives
of Φ in the transverse directions do not appear in this
model.

This sounds structurally similar to our EFT. We now
attempt a comparison: this is possible only for small fluc-
tuations around a homogenous background (67). Φ re-
sults in an effective electric current of the form

jµel = − e2

8π2
εµνρσ∂νΦFρσ (A2)

Comparing this to our (25), we see that these take the
same form if we identify

Θ =
e2

4π2
µΦ (A3)

(Here µ is taken to be constant). Comparing now our
kinetic term (30) with that in Eq (3.2) of [17], we see
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that they agree if

Q(µ) =
2π2

e3

1

|µ|
, (A4)

thus motivating the value of Q0 (42) described in the
main text.

We now discuss the issues with such a comparison.
Firstly as our Θ is gapless, the fermion mass m in [17]
must be ignored; as mentioned in that work, this appears
to be a necessary condition for a force-free limit in any
case. A further issue is that even if m is set to zero,
linearized fluctuations of Φ coupled with the electromag-

netic field are still gapped, for essentially the same reason
that the Schwinger model shown in (2) is gapped. This
is clearly not the case for our gapless Θ field, and we be-
lieve that this occurs because the dynamics of the N − 1
fields φi (which remain gapless [14]) have been neglected.

We find it plausible that the gapped mode in [17] is
eaten by the electromagnetic field and helps to sustain
the FFE architecture in the manner originally proposed
in [15], whereas the remaining N − 1 modes remain gap-
less and assemble eventually into our Θ field, carrying
axial current. It would be very interesting to further ver-
ify this picture.
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