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Abstract

In this talk we want to discuss the color confinement criterion which guarantees con-
finement of all colored particles including dynamical quarks and gluons. The most well-
known criterion is the Kugo-Ojima color confinement criterion derived in the Lorenz
gauge. However, it was pointed out that the Kugo-Ojima criterion breaks down for the
Maximal Abelian gauge in which quark confinement has been verified according to the
dual superconductivity caused by magnetic monopole condensations. We give the color
confinement criterion based on the restoration of the residual local gauge symmetry
which can be applied to the Abelian and non-Abelian gauge theories as well irrespective
of the compact or non-compact formulation, and enables us to understand confinement
in all the cases. Indeed, the restoration of the residual local gauge symmetry which was
shown by Hata in the Lorenz gauge to be equivalent to the Kugo-Ojima criterion indeed
occurs in the Maximal Abelian gauge for the SU(N) Yang-Mills theory in two-, three-
and four-dimensional Euclidean spacetime once the singular topological configurations
of gauge fields are taken into account. This result indicates that the color confinement
phase is a disordered phase caused by non-trivial topological configurations irrespective
of the gauge choice.

1 Introduction

Quark confinement is well understood based on the dual superconductor picture [1] where
condensation of magnetic monopoles and antimonopoles occurs. For a review, see e.g. [2]
and [3]. Even if the dual superconductor picture is true, however, it is not an easy task to
apply this picture to various composite particles composed of quarks and/or gluons. In fact,
gluon confinement is still less understood, although there are interesting developments quite
recently, see [4] and reference therein.

In view of these, we recall the color confinement due to Kugo and Ojima (1979) [5]. If the
Kugo and Ojima (KO) criterion is satisfied, all colored objects cannot be observed. Then quark
confinement and gluon confinement immediately follow as special cases of color confinement.
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However, the KO criterion was derived only in the Lorenz gauge ∂ µAµ = 0, even if the
issue on the existence of the nilpotent BRST symmetry is put aside for a while.

The KO criterion is written in terms of a specific correlation function called the KO func-
tion which is clearly gauge-dependent and is not directly applied to the other gauge fixing
conditions.

From this point of view, the maximally Abelian (MA) gauge [6] is the best gauge to be
investigated because the dual superconductor picture for quark confinement was intensively
investigated in the MA gauge.

Nevertheless, Suzuki and Shimada (1983) [7] pointed out that the KO criterion cannot be
applied to the MA gauge and the KO criterion is violated in the model for which quark confine-
ment is shown to occur by Polyakov (1977) [8] due to magnetic monopole and antimonopole
condensation. Hata and Niigata (1993) [9] claimed that the MA gauge is an exceptional case
to which the KO color confinement criterion cannot be applied.

We wonder how the color confinement criterion of the KO type is compatible with the dual
superconductor picture for quark confinement.

We reconsider the color confinement criterion of the KO type in the Lorenz gauge and give
an explicit form to be satisfied in the MA gauge within the same framework as the Lorenz gauge
in the manifestly Lorentz covariant operator formalism with the unbroken BRST symmetry
[10].

For this purpose, we make use of the method of Hata (1982) [11] claiming that the KO
criterion is equivalent to the condition for the residual local gauge symmetry to be restored.
The usual gauge fixing condition is sufficient to fix the gauge in the perturbative framework
in the sense that it enables us to perform perturbative calculations. However, it does not
eliminate the gauge degrees of freedom entirely but leaves certain gauge symmetry which is
called the residual local gauge symmetry. The residual local gauge symmetry can in principle
be spontaneously broken. This phenomenon does not contradict the Elitzur theorem [12]: any
local gauge symmetry cannot be spontaneously broken, because the Elitzur theorem does not
apply to the residual local gauge symmetries left after the usual gauge fixing. The residual
symmetries can be both dependent and independent on spacetime coordinates.

We show that singular topological gauge field configurations play the role of restoring the
residual local gauge symmetry violated in the MA gauge [10]. This result implies that color
confinement phase is a disordered phase which is realized by non-perturbative effect due to
topological configurations.

As a byproduct, we show that the Abelian U(1) gauge theory in the compact formulation
can confine electric charges even in D = 4 specetime dimensions as discussed long ago by
Polyakov [13] in the phase where topological objects recover the residual local gauge symme-
try.

2 The residual gauge symmetry in Abelian gauge theory

Consider QED, or any local U(1) gauge-invariant system with the total Lagrangian density

L =Linv +LGF+FP. (1)

Here the gauge-invariant part Linv is invariant under the local gauge transformation:

Aµ(x)→ Aωµ (x) := Aµ(x) + ∂µω(x). (2)

To fix this gauge degrees of freedom, we introduce the Lorenz gauge fixing condition:

∂ µAµ(x) = 0. (3)
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Then the gauge-fixing (GF) and the Faddeev-Popov (FP) ghost term is given by

LGF+FP = B∂ µAµ(x) +
1
2
αB2 − i∂ µ c̄∂µc. (4)

However, this gauge-fixing still leaves the invariance under the transformation function ω(x)
linear in xµ:

ω(x) = a+ ερ xρ, (5)

since this is a solution of the equation:

∂ µ∂µω(x) = 0=⇒ ∂ µAωµ (x) = ∂
µAµ(x) + ∂

µ∂µω(x) = 0. (6)

This symmetry is an example of the residual local gauge symmetry.
There are two conserved charges, the usual charge Q and the vector charge Qµ, as gener-

ators of the transformation:

δωAµ(x) := Aωµ (x)− Aµ(x) = [i(aQ+ ερQρ), Aµ(x)] = ∂µω(x) = εµ. (7)

This relation must hold for arbitrary x-independent constants a and εµ, leading to the com-
mutator relations:

[iQ, Aµ(x)] = 0, [iQρ, Aµ(x)] = δ
ρ
µ . (8)

The first equation implies that the usual Q symmetry, i.e., the global gauge symmetry is not
spontaneously broken:

〈0|[iQ, Aµ(x)]|0〉= 0, (9)

while the second equation implies that Qµ symmetry, i.e., the residual local gauge symmetry
is always spontaneously broken:

〈0|[iQρ, Aµ(x)]|0〉= δρµ . (10)

Ferrari and Picasso [14] argued from this observation that photon is understood as the massless
Nambu-Goldstone (NG) vector boson associated with the spontaneous breaking of Qµ symme-
try according to the Nambu-Goldstone theorem. See e.g., [15] for more details. Anyway, the
restoration of the residual local gauge symmetry does not occur in the ordinary Abelian case.

3 Color confinement and residual local gauge symmetry

First of all, we recall the result of Kugo and Ojima on color confinement.
Proposition 1: [Kugo-Ojima color confinement criterion (1979)] [5] Choose the Lorenz

gauge fixing ∂ µAµ = 0. Suppose that the BRST symmetry exists. Let Vphys be the physical
state space with 〈phys|phys〉 ≥ 0 as a subspace of an indefinite metric state space V defined
by the BRST charge operator QB as

Vphys = {|phys〉 ∈ V;QB|phys〉= 0} ⊂ V . (11)

Introduce the function uAB(p2) called the Kugo-Ojima (KO) function defined by

uAB(p2)
�

gµν − pµpν
p2

�
=

∫
dD x eip(x−y)〈0|T[(DµC )A(x)g(Aµ × C̄ )B(y)|0〉. (12)
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If the condition called Kugo-Ojima (KO) color confinement criterion is satisfied in the Lorenz
gauge

lim
p2→0

uAB(p2) = −δAB, (13)

then the color charge operator QA is well defined, namely, the color symmetry is not sponta-
neously broken, and QA vanishes for any physical state Φ,Ψ ∈ Vphys,

〈Φ|QA|Ψ〉= 0, Φ,Ψ ∈ Vphys. (14)

The BRST singlets as physical particles are all color singlets, while colored particles belong to
the BRST quartet representation. Therefore, all colored particles cannot be observed and only
color singlet particles can be observed.

Hata [11] investigated the possibility of the restoration of the residual “local gauge sym-
metry” in non-Abelian gauge theories with covariant gauge fixing, which is broken in per-
turbation theory due to the presence of massless gauge bosons even when the global gauge
symmetry is unbroken. Note that “local gauge symmetry” with the quotation marks means
that it is not exactly conserved, but is conserved only in the physical subspace Vphys of the state
vector space V .

Proposition 2: [Hata (1982)] [11] Consider the residual “local gauge symmetry” specified
by ω(x) ∈ su(N) linear in xµ:

ω(x) = TAω
A(x), ωA(x) = εA

ρ xρ, (15)

where εA
ρ is x-independent constant parameters. Then there exists the Noether current

J µω (x) = gJµA(x)xρεA
ρ +FµρA(x)εA

ρ := J µA
ρ(x)ε

ρA, (16)

which is conserved only in the physical subspace Vphys of the state vector space V:

〈Φ|∂µJ µω (x)|Ψ〉= 0, Φ,Ψ ∈ Vphys, (17)

where JµA(x) is the Noether current associated with the global gauge symmetry which is con-
served in V . Then the Ward-Takahashi (WT) relation holds for the local gauge currentJ µA

ρ(x)
communicating toA B

σ (y):∫
dD x eip(x−y)∂ x

µ 〈0|T[J µA
ρ(x)A B

σ (y)]|0〉= i
�

gρσ − pρpσ
p2

�
[δAB + uAB(p2)]. (18)

Thus, if the KO condition in the Lorenz gauge is satisfied

lim
p2→0

uAB(p2) = −δAB, (19)

then the massless “Nambu-Goldstone pole” between J µA
ρ and A B

σ contained in perturbation
theory disappears.
The restoration condition coincides exactly with the Kugo and Ojima color confinement cri-
terion! This means that the residual local gauge symmetry is restored if the KO condition is
satisfied.

We define the restoration of the residual “local gauge symmetry” as the disappearance
of the massless “Nambu-Goldstone pole” from the local gauge current J µA

ρ(x) communi-
cating to the gauge field A B

σ (y) through the WT relation. In this sense, quarks and other
colored particles are shown to be confined in the local gauge symmetry restored phase.
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4 Residual gauge symmetry in the Lorenz gauge

The total Lagrangian density is given by

L =Linv +LGF+FP. (20)

The first term Linv is the gauge-invariant part for the gauge field Aµ and the matter field φ
given by

Linv = −1
4
Fµν · F µν +Lmatter(ψ, Dµψ), (21)

with Fµν := ∂µAν − ∂νAµ + gAµ ×Aν = −Fνµ and Dµψ := ∂µψ− i gAµψ.
The second term LGF+FP is the sum of the the gauge-fixing (GF) term and the Faddeev-Popov
(FP) ghost term where the GF term includes the Nakanishi-Lautrup field B(x) which is the
Lagrange multiplier field to incorporate the gauge fixing condition and the FP ghost term
includes the ghost field C and the antighost field C̄ .

For the gauge field and the matter field, we consider the local gauge transformation with
the Lie algebra-valued transformation function ω(x) =ωA(x)TA given by

δωAµ(x) = Dµω(x) := ∂µω(x) + gAµ ×ω(x),
δωφ(x) = i gω(x)φ(x),

δωB(x) = gB(x)×ω(x),
δωC (x) = gC (x)×ω(x),
δωC̄ (x) = gC̄ (x)×ω(x). (22)

Now we proceed to write down the Ward-Takahashi relation to examine the appearance or
disappearance of the massless “Nambu-Goldstone pole”. We consider the condition for the
restoration of the residual local gauge symmetry for a generalω. We focus on the WT relation∫

dD xeip(x−y)∂ x
µ 〈TJ µω (x)A B

λ (y)〉

=i 〈δωA B
λ (y)〉+
∫

dD x eip(x−y) 〈T∂µJ µω (x)A B
λ (y)〉

=i 〈∂λωB(y) + g(Aλ ×ω)B(y)〉+
∫

dD xeip(x−y) 〈TδωLGF+FP(x)A B
λ (y)〉

=i∂λω
B(y) +

∫
dD xeip(x−y) 〈TδωLGF+FP(x)A B

λ (y)〉 , (23)

where we have assumed the unbroken Lorentz invariance to use 〈0|Aλ(x)|0〉 = 0 in the final
step. Note that this relation is valid for any choice of the gauge fixing condition.

For the Lorenz gauge ∂µA µ = 0, the GF+FP term is given by

LGF+FP =B · ∂µA µ +
1
2
αB ·B − i∂ µC̄ · DµC = −iδB

h
C̄ ·
�
∂ µAµ + α2B
�i

, (24)

where α is the gauge-fixing parameter. The change under the generalized local gauge trans-
formation is given by α-independent expression:

δωLGF+FP(x) = iδB(DµC̄ (x))A∂ µωA(x). (25)
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In the Lorenz gauge, the above WT relation (23) reduces to∫
dD xeip(x−y)∂ x

µ 〈TJ µωA
ν
(x)∂ νωA(x)A B

λ (y)〉

=i∂λω
B(y) +

∫
dD xeip(x−y)∂ µωA(x) 〈T iδB(DµC̄ (x))AA B

λ (y)〉 . (26)

The second term of (26) is rewritten usingδB(DµC̄ ) = δB(∂µC̄+g(Aµ×C̄ )) = −∂µB+gδB(Aµ×C̄ )∫
dD xeip(x−y)∂ µωA(x) 〈T iδB(DµC̄ (x))AA B

λ (y)〉

=−
∫

dD xeip(x−y)∂ µωA(x)∂ x
µ i
∂ x
λ

∂ 2
x
δD(x − y)δAB

+ i

∫
dD xeip(x−y)∂ µωA(x)

�
gµλ −

∂ x
µ ∂

x
λ

∂ 2
x

�
uAB(x − y), (27)

where we have used 〈δBF〉 = 0 for any functional F due to the physical state condition, the
exact form of the propagator in the Lorenz gauge

〈0|TA A
µ (x)BB(y)|0〉= 〈0|T∗(DµC )A(x)iC̄ B(y)|0〉=i

∂ x
µ

∂ 2
x
δD(x − y)δAB, (28)

and the definition of the Kugo-Ojima (KO) function uAB in the configuration space

〈0|T(DµC )A(x)(gAν × C̄ )B(y)|0〉=
�

gµν −
∂ x
µ ∂

x
ν

∂ 2
x

�
uAB(x − y). (29)

Thus, we obtain the general condition in the Lorenz gauge written in the Euclidean form:

lim
p→ 0

∫
dD xeip(x−y)∂µω

A(x)

�
δµλ −

∂ x
µ ∂

x
λ

∂ 2
x

��
δD(x − y)δAB + uAB(x − y)

�
= 0 , (30)

This confinement criterion can be applied to the Abelian and non-Abelian gauge theory as well
irrespective of the compact or non-compact formulation, and is able to understand confine-
ment in all the cases.

In the non-compact gauge theory formulated in terms of the Lie-algebra-valued gauge field,
the choice of ωA(x) as the non-compact variable linear in x ,

ωA(x) = const.+ εA
µxµ = const. + non-compact variable, (31)

is allowed. Indeed, for this choice, the criterion (30) is reduced to

εA
µ lim

p→ 0

�
δµλ − pµpλ

p2

��
δAB + ũAB(p)
�
= 0. (32)

This reproduces the KO condition ũAB(0) = −δAB as first shown by Hata.
For the Abelian gauge theory, the KO function is identically zero uAB(x)≡ 0, i.e., ũAB(0) = 0.

Therefore, the KO condition is not satisfied, which means no confinement in the Abelian gauge
theory.

In the compact gauge theory, however, confinement does occur even in the Abelian gauge
theory, as is well known in the lattice gauge theory. This case is also understood by the above
criterion.
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5 Restoration of residual local symmetry in MA gauge

We decompose the Lie-algebra valued quantity to the diagonal Cartan part and the remainig
off-diagonal part, e.g., the gauge fieldAµ =A A

µ TA with the generators TA (A= 1, . . . , N2− 1)
of the Lie algebra su(N) has the decomposition:

Aµ(x) =A A
µ (x)TA = a j

µ(x)H j + Aa
µ(x)Ta, (33)

where H j are the Cartan generators and Ta are the remaining generators of the Lie algebra
su(N). In what follows, the indices j, k,ℓ, . . . label the diagonal components and the indices
a, b, c, . . . label the off-diagonal components. The maximal Abelian (MA) gauge is given by

(Dµ[a]Aµ(x))a := ∂ µAa
µ(x) + g f a jbaµ j(x)Ab

µ(x) = 0. (34)

The MA gauge is a partial gauge which fix the off-diagonal components, but does not fix the
diagonal components. Therefore, we further impose the Lorenz gauge for the diagonal com-
ponents

∂ µa j
µ(x) = 0. (35)

The GF+FP term for the gauge-fixing condition (34) and (35) is given using the BRST trans-
formation as

LGF+FP =− iδB

n
C̄a
�
Dµ[a]Aµ + α2 B
�ao− iδB

�
c̄ j
�
∂ µaµ +

β

2
b
� j�

, (36)

which reads

LGF+FP =− (Dµ[a]baBa)Ab
µ +

α

2
BaBa − i(Dµ[a]ba C̄a)Dµ[a]bcC c

− i g(Dµ[a]ba C̄a) f bcdAc
µCd − i g(Dµ[a]ba C̄a) f bc jAc

µc j

+ i gC̄a f a jb∂µc jAµb + i g2C̄a f a jb f jcdAc
µCdAµb

− ∂ µb ja j
µ +

β

2
b j b j − i∂ µ c̄ j∂µc j − i g∂ µ c̄ j f jabAa

µC b. (37)

The local gauge transformation of the Lagrangian has the following form

δωL = δωLGF+FP = ∂µJ µω = g∂µJ µ ·ω+ [∂νFµν + gJ µ] · ∂µω
= g∂ µJ j

µω
j +
�
∂ ν f j

µν + gJ j
µ

�
∂µω

j + g∂ µJ a
µω

a +
�
∂ νF a

µν + gJ a
µ

�
∂µω

a

= iδB∂µ c̄ j∂ µω j + iδB∂
µ(Dµ[A ]C̄ )aωa + iδB(Dµ[A ]C̄ )a∂ µωa. (38)

This is BRST exact, showing that the local gauge current J µω is conserved in the physical state
space.
The WT relation in the MA gauge can be calculated in the similar way to the Lorenz gauge
by using (38) as follows. We focus on the diagonal gauge field ak

λ
. Consequently, we obtain

the condition for the restoration of the residual local gauge symmetry for the diagonal gauge
field [10]

lim
p→ 0

∫
dD x eip(x−y)∂ x

µ 〈TJ µω (x)ak
λ(y)〉

= lim
p→ 0

i

∫
dD x eip(x−y)∂ µωk(x)(δµλ�D − ∂µ∂λ)�−1

D (x , y) = 0 , (39)
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where �−1
D (x , y) denotes the Green function of the Laplacian �D = ∂µ∂µ in the D-dimensional

Euclidean space.
If we choose ω j(x) = ε j

νxν, this indeed reproduces non-vanishing divergent result.
However, this choice must be excluded in the MA gauge, since the maximal torus subgroup
U(1)N−1 for the diagonal components is a compact subgroup of the compact SU(N) group. In
some sense, ω j(x) must be angle variables reflecting the compactness of the gauge group.

In the compact gauge theory formulated in terms of the group-valued gauge field, on the
other hand, we must choose the compact, namely, angle variables for ωA,

ωA(x) = const. + angle variable= const. + compact variable. (40)

For concreteness, we consider the SU(2) case with singular configurations coming from the
angle variables. In what follows, we work in the Euclidean space and use subscripts instead
of the Lorentz indices. As the residual gauge transformation, we take the following exam-
ples which satisfy both the Lorenz gauge condition ∂µA A

µ = 0 and the MA gauge condition

(Dµ[a]Aµ)a = 0 (and ∂ µa j
µ = 0).

• For D = 2, a collection of vortices of Abrikosov-Nielsen-Olesen type (1979) [16]

∂µω
j(x) =

n∑
s=1

Csϵ jµν
(x − as)ν
|x − as|2 ( j = 3, µ,ν= 1,2) (x , as ∈ R2), (41)

where Cs (s = 1, . . . , n) are arbitrary constants. This type of ω(x) is indeed an angle variable
θ going around a point a = (a1, a2) ∈ R2, because

ω(x) = θ (x) =: arctan
x2 − a2

x1 − a1
=⇒ ∂µω(x) = −ϵµν xν − aν

(x1 − a1)2 + (x2 − a2)2
(µ= 1,2). (42)

This is a topological configuration which is classified by the winding number of the map from
the circle in the space to the circle in the target space: S1 → U(1) ∼= S1, i.e., by the first
Homotopy group π1(S1) = Z.
• For D = 3, a collection of magnetic monopoles of the Wu-Yang type (1975) [17], which
corresponds to the zero size limit of the ‘t Hooft-Polyakov magnetic monopole (1974) [18]

∂µω
j(x) =

n∑
s=1

Csϵ jµν
(x − as)ν
|x − as|2 ( j = 3, µ,ν= 1,2,3) (x , as ∈ R3). (43)

A magnetic monopole is a topological configuration which is classified by the winding number
of the map from the sphere in the space to the sphere in the target space: S2→ SU(2)/U(1)∼= S2,
i.e., by the second Homotopy group π2(S2) = Z.
• For D = 4, a collection of merons of Alfaro-Fubini-Furlan (1976) [19], instantons of the
Belavin-Polyakov-Shwarts-Tyupkin (BPST) type (1975) [20] in the non-singular gauge with
zero size,

∂µω
j(x) =

n∑
s=1

Csη
j
µν

(x − as)ν
|x − as|2 ( j = 3, µ,ν= 1,2, 3,4) (x , as ∈ R4). (44)

Meron and instanton are topological configuration which are classified by the winding number
of the map from the 3-dimensional sphere in the space to the sphere in the target space:
S3→ SU(2)∼= S3, i.e., by the third Homotopy group π3(S3) = Z.

By taking into account ϵ j
µν = −ϵ j

νµ, η j
µν = −η j

νµ, it is easy to show that all these config-
urations satisfy the Laplace equation �ω j(x) = 0 almost everywhere except for the locations
as ∈ RDof the singularities: �ω j(x) =

∑n
s=1 Csδ

D(x − as). These configurations are examples
of the classical solutions of the Yang-Mills field equation with non-trivial topology.
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We can show that the restoration condition is satisfied for these singular configurations
[10]:

lim
p→0

∫
dD x eip(x−y) (x − as)ν

|x − as|2
�
δµλ�D − ∂µ∂λ
� Γ( D

2 −1)
4πD/2

(|x − y|2) D−2
2

= 0 . (45)

where we have used the expression of the Green function�−1
D (x , y) of the Laplacian�D = ∂µ∂µ

in the D-dimensional Euclidean space given by

�−1
D (x , y) =

∫
dDp
(2π)D

eip(x−y) 1
−p2

= −Γ
� D

2 − 1
�

4πD/2

1
|x − y|D−2

, (46)

where Γ is the gamma function with the integral representation given by

Γ (z) =

∫ ∞
0

d t tz−1e−t (z > 0). (47)

For any D ≥ 2, this integral (45) goes to zero linearly in p in the limit p→ 0 [10]. Therefore,
the restoration of the residual local gauge symmetry occurs.

6 Conclusion and discussion

Â Conclusions: we summarize our results:
• We have reexamined the restoration of the residual local gauge symmetry left even after
imposing the gauge fixing condition in quantum gauge field theories. This leads to a general-
ization of the color confinement criterion.
•We have found an important lesson to understand color confinement in quantum gauge the-
ories that the compactness and non-compactness must be discriminated for the gauge trans-
formation of the gauge field.
• The Kugo-Ojima color confinement criterion can be applied only to the non-compact gauge
theory. This is a reason why the Kugo-Ojima criterion obtained in the Lorenz gauge cannot be
applied to the Maximal Abelian gauge (maximal torus group is a compact group).
• In the Maximal Abelian gauge we have shown that the restoration of the residual local gauge
symmety indeed occurs for the SU(N) Yang-Mills theory in two-, three- and four-dimensional
Euclidan spacetime once the singular topological configurations of gauge fields are taken into
account.
• This result indicates that the color confinement phase is a disordered phase caused by non-
trivial topological configurations irrespective of the gauge choice.
• As a byproduct, we find that the compact U(1) gauge theory can have the disordered con-
finement phase, while the non-compact U(1) gauge theory has the deconfined Coulomb phase.
Â Future perspectives: we have the issues to be investigated in future:
• Gribov copies, existence of BRST symmetry,
• Higgs phase, Brount-Englert-Higgs (BEH) mechanism,
• Finite temperatures,
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