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ABSTRACT: We study complex scalar theories with dipole symmetry and uncover a
no-go theorem that governs the structure of such theories and which, in particular,
reveals that a Gaussian theory with linearly realised dipole symmetry must be Car-
rollian. The gauging of the dipole symmetry via the Noether procedure gives rise to a
scalar gauge field and a spatial symmetric tensor gauge field. We construct a world-
line theory of mobile objects that couple gauge invariantly to these gauge fields. We
systematically develop the canonical theory of a dynamical symmetric tensor gauge
field and arrive at scalar charge gauge theories in both Hamiltonian and Lagrangian
formalism. We compute the dispersion relation of the modes of this gauge theory,
and we point out an analogy with partially massless gravitons. It is then shown that
these fractonic theories couple to Aristotelian geometry, which is a non-Lorentzian
geometry characterised by the absence of boost symmetries. We generalise previous
results by coupling fracton theories to curved space and time. We demonstrate that
complex scalar theories with dipole symmetry can be coupled to general Aristotelian
geometries as long as the symmetric tensor gauge field remains a background field.
The coupling of the scalar charge gauge theory requires a Lagrange multiplier that
restricts the Aristotelian geometries.
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1 Introduction

Fractons [1, 2] are exotic quasiparticles with the distinctive feature of having only
limited mobility. They therefore constitute an unfamiliar and fundamental new (the-
oretical) phase of matter [3, 4]. The bizarre trait of not being able to freely move
offers a novel window to widen our understanding of physical (quantum field) the-
ories, gravitational physics [5, 6], holography [7], and might even have applications
in the context of quantum information storage [2, 8-10]. For further details and
references we refer to the reviews [11, 12].

The restricted mobility of isolated fracton particles can be viewed as a conse-
quence of conservation of their dlpole moment: a point particle of (Constant) charge
q with a conserved dipole moment d= ¢« must remain stationary, Z(t) = 0.

In continuum scalar field theories, a conserved dipole moment arises from global
dipole symmetry, which acts infinitesimally on a complex scalar ®(¢, Z) as & = zg - 2P,
Such a transformation admits an interpretation as a higher moment generalisation
of global U(1) invariance, which acts as 0® = ia®. In this language, the dipole mo-
ment is the first moment as the transformation is linear in Z. Including even higher
moments in the symmetry transformation leads to multipole symmetries [13]. Con-
cretely, a complex scalar theory that describes fracton phases of matter and enjoys
dipole symmetry is [14]

L= 00" — m? |0 — (9,00, — 00,0,P)(9;d*0;d* — &*9,0;9).. (1.1)

Such a non-Gaussian theory was also encountered in the context of the X-cube model
of fracton topological order [15], where they employ a lattice description.

Complex scalar theories with dipole symmetry — including the theory of (1.1)
— have two distinctive features: the absence of a 9;$0;®* term in the action and a



non-Gaussian term, like the last term in (1.1). The absence of the term 0,90;d*
implies that the free theory, i.e., the one containing only ®®* — m?|®|*, has no
notion of particles in the usual sense. Indeed, we will show that the excitations of
the free ungauged theory can be understood as Carrollian particles [16-19], which,
like isolated fractons, have the peculiar property that they cannot move. The non-
Gaussian term breaks the infinite multipole symmetry of the free theory down to
the dipole symmetry and, furthermore, breaks Carroll boost invariance, which means
that the Carrollian spacetime symmetry reduces to Aristotelian spacetime symmetry.
In fact, as we will demonstrate, a Lagrangian that is polynomial in fields and their
derivatives cannot simultaneously be Gaussian, contain spatial derivatives, and have
a linearly realised dipole symmetry: assuming two of those properties implies that
the third will not hold. For a linearly realised dipole symmetry, this leaves on one
hand the case containing spatial derivatives, which is non-Gaussian like (1.1). If, on
the other hand, we give up spatial derivatives, we can have a Gaussian theory. As
we will see, such theories are Carrollian due to a symmetry enhancement that arises
when spatial derivatives are absent as discussed above. Finally, if we demand that the
theory is both Gaussian and contains spatial derivatives, the dipole symmetry can
no longer be linearly realised and the resulting theories are special cases of Lifshitz
field theories with polynomial shift symmetry [20].

Gauging this dipole symmetry requires a purely spatial symmetric tensor gauge
field A;; and a scalar ¢, which we demonstrate by employing the Noether proce-
dure to gauge the dipole symmetry. This symmetric tensor gauge field can be made
dynamical by introducing a suitable gauge invariant action [21, 22|, known generi-
cally as scalar charge gauge theories, and we elucidate their gauge structure using
cohomological tools and calculate their asymptotic charges. A particularly interest-
ing special case of the scalar charge gauge theory is the traceless theory [21, 22],
which is independent of the trace of the symmetric tensor gauge field, 6;;4;;. We
derive this theory from a new perspective by using a Faddeev—Jackiw type approach
(which sidesteps the more elaborate Dirac approach of treating constraint systems)
[23, 24]. Moreover, it turns out that the gauge structure of the symmetric tensor
gauge field share certain similarities with so-called (linearised) partially massless
gravitons [25, 26].

The spacetime symmetries of the theories described above are those of absolute
spacetime: they are Aristotelian [27]. Aristotelian symmetries consists of spacetime
translations and spatial rotations, but do not include boosts that mix time and
space. If we were to include a boost symmetry, Aristotelian geometry becomes either
Lorentzian, Galilean, or Carrollian, depending on the type of boost that is included
in the description.

Coupling field theories to arbitrary geometric backgrounds has the advantage
that it allows us to extract currents by varying the geometry (see, e.g., [28-30]).



While the coupling of scalar charge gauge theories to curved space (without time)
has previously been considered in [31] (see also [32, 33]), the coupling of the complex
scalar theory (such as the theory of (1.1)) to curved spacetime has remained an open
problem. As we will show, the geometric framework for coupling such fracton theories
to curved spacetime is that of Aristotelian geometry [34]. An Aristotelian geometry
is described not by a metric but by a 1-form 7, and a symmetric corank-1 tensor
o»
h*”. For the scalar charge gauge theories we recover an Einstein-like condition [31]

which respectively measure time and space, as well as their “inverses” v* and

that has to be imposed on the background and generalise it to space and time. We
then show that the traceless, and what is novel, the traceful scalar charge gauge
theories can be coupled to curved spacetime subject to the aforementioned Einstein-
like condition. The complex scalar theories, on the other hand, can be coupled
to any Aristotelian geometry, with the caveat that the (now covariant) symmetric
tensor gauge field A,, and ¢ must be background fields, i.e., non-dynamical. For
example, the complex scalar Lagrangian (1.1) coupled to non-dynamical A, and ¢
on an Aristotelian geometry takes the form

L=c [(wa@* —i¢D*) (10, ® + ipD) — m? |B[* — AhwaWX;g] . (12)

where

Xy = P! P (9,20, — BV,0,0) + i A, O?. (1.3)

In these expressions, e is the Aristotelian analogue of the familiar /—g from Lorentzian
geometry, while P! is a spatial projector built out of &, and h*".

Note: As this manuscript was nearing completion we were made aware of the
work [35] which also studies fractons on curved space.

Organisation As an aid to the reader, we here provide an overview of the structure
of this document.

In Section 2, we consider a complex field with dipole symmetry. In Section 2.1,
we study the global symmetries of a theory with dipole symmetry and work out
the general expressions for the associated Noether currents. We then discuss the
classification of Lagrangians with linearly realised dipole symmetry in Section 2.2,
assuming that the Lagrangian is polynomial in the field and its derivatives. Following
this, we derive a no-go theorem in Section 2.4 that tells us that a theory with dipole
symmetry cannot simultaneously have linearly realised dipole symmetry, contain
spatial derivatives, and be Gaussian. We then discuss the symmetry algebra for a
concrete complex scalar theory with dipole symmetry that is very similar to (1.1).
We elaborate in Section 2.6 on the connection of these symmetries to a (static)
Aristotelian spacetime and discuss some coincidental isomorphisms to Carroll and
Bargmann algebras. We end this section with Section 2.7, where we work out the
gauging of the global dipole symmetry using the Noether procedure, which shows
how the symmetric tensor gauge field emerges.



In Section 3, we couple a worldline action to the scalar charge gauge theory,
which we show gives rise to a vanishing total dipole charge (see also [36] for an
alternative approach to fracton worldline theories).

In Section 4, we develop the scalar charge gauge theory using a cohomological
analysis. Starting in Section 4.1, we work out the Poisson brackets and the generator
of gauge transformations, followed by an analysis of the gauge structure in Section 4.2
using generalised differentials. We find it convenient to employ Young tableaux to
elucidate the gauge structure. Following this, we work out the the Hamiltonian
for scalar charge gauge theory in Section 4.3, which we convert from a phase-space
formulation to a configuration space formulation by integrating out the canonical
momentum in Section 4.4. We then consider the special case of 3+1 dimensions
in Section 4.5. Of special interest is the traceless scalar charge theory, which is
independent of the trace of the symmetric tensor gauge field. We develop this from a
novel perspective in Section 4.6 using a Faddeev—Jackiw type approach, which a priori
suggests the existence of two novel scalar charge gauge theories, which, however, turn
out to be field redefinitions of either the traceless or the original theory. We then
compute the spectrum of scalar charge gauge theory in Section 4.7. Finally, we
comment on similarities between the scalar charge gauge theory and the theory of
partially massless gravitons in Section 4.8.

In Section 5, we describe Aristotelian geometry. In Section 5.1, we describe
the geometric data that takes the place of a metric in Aristotelian geometry, while
connections for Aristotelian geometry are discussed in Section 5.2. Finally, we discuss
the procedure of coupling generic field theories to Aristotelian geometry in Section 5.3

We then present one of our main results in Section 6: the coupling of the complex
scalar theory with dipole symmetry to Aristotelian geometry.

This is followed by the coupling of the scalar charge gauge theory to Aristotelian
geometry in Section 7. In Sections 7.1.1 and 7.1.2, we show how to couple the
magnetic and electric sectors to torsion-free Aristotelian backgrounds in ADM-type
variables, which relies on a gauge fixing that leaves only spatial diffeomorphism
invariance. We recover previous results that the spatial geometry must satisfy the
Einstein condition, and we demonstrate that it is not necessary for the theory to
be traceless in order to couple to curved space. In Section 7.2, we show how to
couple the scalar charge gauge theory to any torsion-free Aristotelian geometry and
retaining full (d 4 1)-dimensional diffeomorphism invariance.

We end the paper with a discussion in Section 8.

Furthermore, we include three appendices: in Appendix A, we show that in-
troducing an additional gauge field in an attempt to couple the scalar charge gauge
theory to any curved background breaks the dipole symmetry. In Appendix B, which
is intended as an aid to the reader, we derive electrodynamics in a similar fashion
to how the scalar charge gauge theory is derived in the main text. Finally, in Ap-



pendix C we provide the details behind our conclusion that the analysis that led
to the traceless scalar theory does not lead to any further new scalar charge gauge
theories.

Notation Throughout this document, we employ the following notation: we use
i,7,k, ... as flat spatial indices, which run from 1,...,d, where d is the number of
spatial dimensions. The index position of the spatial components can be raised and
lowered with a Kronecker delta, and we are often cavalier with their position. Greek
indices, u, v, p, ... are used for curved spacetime indices and run from 0, ..., d. These
cannot be raised and or lowered in general. We (anti)symmetrise with weight one,
ie., T = %(Tab + Tpo) and iy = %(Tab — Ty,). Furthermore, “c.c.” stands for
complex conjugation and will appear frequently in expressions involving complex
scalar fields. Moreover, when writing down Lagrangians for complex scalar theories
with dipole symmetry, we write X;; for the following combination of fields

which is invariant up to a phase factor under global dipole transformations. The
covariant version of this object (which we already encountered in (1.3)) is

Xuw = P! P3 (0,20,® — DV ,0,®) + i4,,P* (1.5)

(™ v

which transforms as X;; under local dipole transformations, and where A,, is the
covariant generalisation of the (spatial) symmetric tensor gauge field, which can
either be dynamic or a background field.

2 Complex scalar theories with dipole symmetry

A complex scalar field with dipole symmetry describes the fracton phase of mat-
ter [14]. The requirement of dipole symmetry restricts the form of the action govern-
ing the dynamics of the scalar field, and leads generically to non-Gaussian theories.
As we will show, it is possible to obtain Gaussian theories at the expense of linearly
realised dipole symmetry or the presence of spatial derivatives. The latter case is an
example of a Carrollian theory, while the former is a special case of a Lifshitz field
theory with polynomial shift symmetries.

We will then compute and discuss the symmetry algebra for the prototypical
complex scalar field theory with dipole symmetry [12, 14, 37], which appears in (2.29).
We show using these symmetries that the underlying homogeneous space is a static
Aristotelian spacetime.

Finally, we will discuss the Noether procedure for Lagrangians with linearly
realised dipole symmetry and explicitly show how the gauging of the dipole symmetry
leads to a symmetric tensor gauge field A;; and a scalar gauge field ¢.



2.1 Symmetries and Noether currents

In this section we begin by studying the Noether currents for a generic complex
scalar Lagrangian L[®, ®, 0,®, 0,0;®, c.c.], see equation (2.43) for a concrete model.
We require the Lagrangian to have U(1) and dipole symmetry which are associated
with the following transformations

P'(x) = P () (2.1a)
' (z) = "' D(z). (2.1b)

In addition, we require the Lagrangian to be symmetric under temporal translations,
spatial translations and spatial rotations given respectively by

t'=t+c =2t o' (2') = ®(x) (2.2a)
" =2 +d t'=t P'(2) = ®(x) (2.2b)
a" = R 2 t'=t P'(2) = o(x). (2.2¢)

While we will not require it, some Lagrangians are also invariant under anisotropic
scale transformations

t'=bt 2" = ba' ' (z') = bP*d(z) (2.3)

where the real parameter z is known as the dynamical critical exponent, and Dg is the
scaling dimension of ®. For the first three transformations the Lagrangian transforms
as L'(x') = L(z) while under scaling it should transform as £'(z') = b=¢*L(x) where
d is the number of spatial dimensions.

In order to compute the Noether currents we need to work with the infinitesimal
version of these transformations. If we take z/* = 2 + e£¥(z) + O(g?) and we take
® to transform as (') = exp (ef(x))P(x) where f is any complex function, then
we obtain

00(z) = —&"(2)0,®(x) + f(2)®(z), (2.4)
where we defined ®'(z) = ®(z) + £0®(x) + O(e?). Using that the Lagrangian trans-
forms as a density and is defined up to a total derivative term we have a symmetry
provided that

0L =0, (—LE" + KM) (2.5)
for some vector K*. For our set of symmetry transformations the expressions for &
and f are

=1 £ =0 f=0 time translation

& =0 & =41 f=0 space translation in z*-dir.

=0 Eh=aksl — 2ol f=0 rotation in (z*, z!)-plane (2.6)
=zt =2o f=Dg  anisotropic dilatation

=0 £ = f=i phase rotation

&=0 £ = f =1ix*  dipole symmetry in z*-dir.



The indices k, [ on the right hand side are fixed and end up as additional indices on
the Noether currents.

We now want to compute the conserved currents for each of these symmetries.
An arbitrary variation the Lagrangian L[®, P, ,®, 0;0;9, c.c.] is given by

0L =D {6£ 8750—[.: - 8ia—£ + 81»8-6—5] + 8t(8£6®)

0P oP 00;® 100,0; OP
oL oL oL
8ilaai@6¢+aaa®85® aj@(’?@@a@} +c.c.. (2.7)

In this equation the terms in the first bracket are the equation of motion for the
Lagrangian. A symmetry transformation leaves the Lagrangian invariant up to a
total derivative, i.e.,

0L =0,(—-¢"L+ K"). (2.8)

Hence, for variations that are symmetries, and for fields that are on-shell, the Noether
current J* = (J°, J*) obeys the conservation equation

00 J" + 0,0 =0 (2.9)

where
JO = B—g&p + c.c.] +¢L - K (2.10a)
Jt= [aaaf@‘;@ + aa?gj.@a 0D — 0 aaagq)&b +c. c} +&L - K' (2.10D)

and the c.c. only applies to the terms on the left within the square brackets. The
corresponding conserved charge is then given by

Q= /dda: Jv. (2.11)

Since for the Lagrangians that we will end up working with we find that K* = 0 for
all symmetries, we drop K* from now on.

The energy-momentum tensor is denoted by 7%,. The v = 0 component corre-
sponds to the Noether current for time translation invariance and the v = k com-
ponent corresponds to the Noether current for space translations invariance in the
z*-direction. Under translations we have §& = —¢#9,® = —649,® = —0,P and so
we find that

T°, = [Zﬁa P +c. c} + 6L (2.12a)
. oL oL oL ;



We note that the expression for the stress tensor, 7%, is in general not symmetric
in 7 and j. However, it is well known that Noether currents are only defined up to
improvement terms. In general we are allowed to add any term X*, satisfying the
following off-shell condition

9, X", =0, (2.13)

such that the new current T“,, =T+, + X*  still satisfies 8,j”‘,, = 0. For Lagrangians
that can be coupled to curved space, we will always be able to find an X*, such that
Tli3) = (. This is because the stress tensor can be found as the response to varying
the Lagrangian with respect to the spatial metric h;; of the curved geometry (in
ADM variables) that these theories couple to, and this response is automatically
symmetric. We will discuss this coupling to a background geometry in Section 5.

Let us use ©#, to denote the specific choice of improved energy momentum tensor
for which © = 0 (on flat space spatial indices are raised and lowered with 67 and
d;j). We can then construct a new set of conserved currents J*j, given by

JY = 210%, — 2*e"; (2.14a)

Ji, = 270", — 2O (2.14b)

where 9, J#, = 0 follows from the conservation of ©#, as well as O = 0. This will
be the conserved current associated with rotations in the (jk)-plane.

If the theory under scrutiny is also invariant under anisotropic scale transforma-

tions (2.3), the z-deformed trace of the appropriately improved energy-momentum
tensor ©#, vanishes

20% + 0k, =0. (2.15)

In section 6 we will show that the coupling to curved space can be done in such a
manner that the resulting theory enjoys an anisotropic Weyl symmetry. The Ward
identity for this gauge symmetry is given in (5.31), and on flat space this becomes
(2.15) on-shell.

This allows us to construct yet another conserved dilatation current J} given by

Jp = 2t0% + 2"0°% (2.16a)
Jh = 20 + 2*e7; (2.16b)
where 0, J}, = 0 follows from the conservation of ©#, as well as the condition in (2.15).

This is the conserved current corresponding to the anisotropic scale symmetry.
The U(1) Noether current for our generic scalar Lagrangian is given by

J(OO) = ig—g@ + c.c. (2.17a)
. oc oL | oL



The Noether current associated with the dipole symmetry can then be expressed as
follows

Ty = Ty (2.18a)
Jioy =@ Ty = J7, (2.18b)
where we defined
Ji— |—im %% gicel . (2.19)
0(0;0;®)

The current conservation tells us that J(iO) =0, J7%. The latter equation is equivalent
to

oL oL
iy __ 0P — =
J( —0,J z@a(a ) + 2182@8(@-3]@) +cc.=0. (2.20)

It can be shown! that the latter equation is nothing but the condition that the
Lagrangian viewed as a function of p and 6, where ® = \%pew, does not depend on
0;0.

It can be shown that equation (2.20) holds off shell. The Lagrangian is invariant
under both a global U(1) transformation and a dipole transformation, i.e., under
0P =1 (a + kak) ®. This means that we have

oL oL oL oL
5L = ) 1055 + i + 00 0,0;® |

(0 Ba™) |10 +i0 o5 +10:8p5 5 + 0005555 T o
or or (2.21)
100 20,0 =t ec| = 0.

i 20:3) % 50, T
Using that this must vanish off shell for 5; = 0 and a # 0 as well as for « = 0 and
Bi # 0 we obtain equation (2.20).

2.2 Classification of Lagrangians with linear dipole symmetry

We will assume that the Lagrangian is polynomial in the fields and derivatives of
the fields. The classification problem for such theories with linear dipole symmetry
amounts to finding the most general polynomial solution to (2.21).

ITo show this consider
L(®,d,0;,0,0;®,c.c) = L(p, p,0,;p, 0:0;p, 3;0;0) ,

and vary both sides

oL oL oL oL
20°% " 96°" T 90,9 50,0,8 0%+ ec
oL a,c a,c oL oL oL
—6,0 6 89 20, z,zH—aaa 688]p+8886‘5889
Next use ¢ = % pe'® in the variations on the left hand side and collect all terms proportional to

00;0. Since the right hand side, by assumption, does not contain such terms these terms must add
up to zero. This is precisely the condition (2.20).



For theories that are second order in time derivatives we find Lagrangians of the

form
L=3d* V(o) + L+ LM 4. (2.22)

where £12 and £ contain the most general terms that are quadratic and quartic
in spatial derivatives, respectively. The dots denote terms that are higher order
in spatial derivatives. If we wish to consider theories that are first order in time
derivatives we need to replace the kinetic term with i®*® + c.c.

For example at second order in spatial derivatives we can make the ansatz

L = 020,00, + ;D200 0;D* + 20,00, + c3*0,0,® + 5P 0,D*, (2.23)

where ¢; and c3 are complex-valued functions of ]@]2 and ¢y is a real-valued function
of |®|?. This Lagrangian is manifestly U(1) invariant. Solving (2.20) leads to
Ca

C3 = —Cl|(1)|2 + 5 . (224)

Hence we find
1 1

(2.25)
If we take ¢y to be a constant then the co-term is a total derivative. Hence, ¢, must
be of order |®|2, while ¢; is O(1). It follows that £ is not Gaussian. Using partial
integration the ¢, term can be written as

1

where the prime denotes differentiation with respect to |®|?. Looking at the Hamilto-
nian we see that the ¢; term is not bounded from below while the ¢, term is bounded
from below.

Using similar methods, we can write down an expression for the most general
expression that is quartic in spatial derivatives. Instead of working out this most
general expression, we will work with the following expression

£ = - AX; X5 — AX X

Ji’

(2.27)
where we defined
Xij = 0,20;® — ©9,0,9, (2.28)

and where A and X are real parameters. This Lagrangian satisfies (2.20) for any
values of A and \, and it is bounded from below.

Combining this choice of £ with the kinetic term above leads to Lagrangians
that are reminiscent of some that have previously been considered in the litera-
ture [12, 14]

L=0d* —m?|®° — AX; X}, — AXiu X, (2.29)

Jjo

where m is the mass of the complex scalar.

— 10 —



2.3 Symmetry enhancement

An interesting sub-case for the class of Lagrangians described in section 2.1 is when
there is additional symmetry in the form of the transformation 6 = %dx?(b, where
v is the transformation parameter. This gives rise to the conservation of the trace
of the quadrupole moment. Later on we will see that the gauging of this type of
Lagrangian will lead to a symmetric and traceless tensor gauge field A;;, where the
tracelessness is due to this extra symmetry.

Using equations (2.10a) and (2.10b) we find the following expression for the
Noether current associated with the y-transformation

1
J&)::§x2J&) (2.30a)
) 1 . S~
Ty = §m2J(’0) — 2l JY. (2.30Db)

From this we indeed see that the Noether charge associated with this is the trace
of the quadrupole moment. Furthermore, if we write out the current conservation
equation we get the following condition

0= 000y + 0y = —J", (2.31)

where we used the conservation of the U(1)-current as well as the condition in (2.20).

It can be shown that the condition in (2.31) is the condition for the Lagrangian
to have this additional y-symmetry and thus holds off-shell. Specifically, if we require
the Lagrangian to be invariant under 6® = i(a + z*8% 4+ 372?) we get

1 oL . 0L oL oL
_ k Z 2 ' i .d 0P —
oL = (a—irﬁkw + 57T ) [ZCDGCD —H(I)ad) +z81<baaiq) —i—z@laj@a&aj@ —|—c.c.]
A T.. OLC , oL
. oL
—l—fy[z(b—a(aiaiq)) —|—c.c.] =0.

(2.32)

Using that this must vanish off-shell for arbitrary «, §; and v we recover (2.20) as
well as the condition (2.31).

2.4 No-go theorem

So far we have discussed non-Gaussian theories with spatial derivatives and lin-
early realised dipole theories, c.f.; (2.1b). A theory is Gaussian if its Lagrangian is
quadratic in the fields whose kinetic terms are canonically normalised. In our case
this is the field ®. Additionally, we restrict our attention to Lagrangians that are

- 11 -



polynomial in ® and derivatives thereof. In this case, a Gaussian complex scalar
with linearly realised dipole symmetry is either of the form

L= %(@ci)* — D) — V(|®]?) (2.33)

or

L= — V() (2.34)

depending on whether one wants first or second order time derivatives in the equa-
tions of motion. If we demand that the theory be Gaussian the potential is, up to
an insignificant constant, a mass term V = m2?®®*. Due to the linearly realised
dipole symmetry a gradient term (0;®)(0;9*) is disallowed. These Gaussian models
with linearly realised dipole symmetry are Carrollian. This means their spacetime
symmetries are enhanced by a Carroll boost symmetry

t'=t+ba' = a2 d'(2') = ®(x) (2.35)
which, with d®(z) = —£"0,P(z) + f(z)®(x), is given infinitesimally by
=28 ¢ =0 f=0 Carroll boost in direction z* . (2.36)

These Carroll boosts are actually part of the more general symmetries 0®(z) =
E(2")0,®(x), where £(x?) is an arbitrary real function of the spatial coordinates.
Additionally, we have a second tower of infinite-dimensional symmetries whereby we
can rotate ® with a phase that, again, is any local function of the spatial coordinates.?
If we expand @ in Fourier modes (assuming a quadratic potential V' = m?®®*) then
the modes have a fixed energy E = m, i.e., no dispersion relation, so these modes
(particles) are not propagating in space. To show this we compute the retarded
propagator for the second order time derivative theory with V = m?2®®* which is

proportional to
i(Bt—p-Z)

. d - (&
lg% dEd"p (E —ie)2 —m?2

It is of the form f(¢)d(Z) since there is no momentum dependence in the denominator.

(2.37)

Hence there is only propagation in time and not in space. This result is Carroll boost
invariant.

2This means that this Gaussian (or free) theory without coupling admits an infinite dimensional
BMS-like [38, 39] symmetry algebra, c.f., also [13]. More precisely, this algebra is a semidirect
sum of an Euclidean algebra spanned by the rotations and translations extended by two infinite
dimensional abelian Lie algebras, the “supertranslations”. They have the unfamiliar feature that
the two “supertranslations” do not commute with the actual translations, but their polynomial
order gets reduced by them. For example, the action of the translations P; on the first order
Carroll boosts B; leads to the zeroth order time translations, {P;, B;} = 0;; H. We remark that a
point particle with a conserved dipole moment d= qT also has conserved higher-pole moments and
thus an infinite symmetry.
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It is well-known that the Lagrangian (2.29) is non-Gaussian. Consider now the
case where the potential in (2.34) is of Mexican hat form

V=g <|<I>|2 - %2>2 : (2.38)

Around the false vacuum ® = 0 the theory is non-Gaussian but if we expand around
the true vacuum |®| = v/v/2 and ignore higher order terms the theory becomes
Gaussian with a non-linearly realised dipole symmetry. To see this consider

. . 2 2
L=bd" - AX,; X — g <\q>\2 - %) (2.39)

1, 1 .., A
= 50" +5p°0" = J0p0;p0ip0;p
2

+ %P@P@P@@P - 2P25i3jpai3jp - 2P4aiajeaiaj9 - % (p*—v%)",  (2.40)

where X; is defined in (2.28), and where we used ® = % pe? and expanded around
p =v > 0 by defining p = v + 7. If we keep only quadratic terms in n and 6 we find

1 1, A A
L = 5772 =+ 51)292 — Zf@@mc?jajn — Zv“&&@@ﬁﬂ — gU2772 s (241)
where we performed some partial integrations. The fields n and # now have canon-
ically normalised kinetic terms. This is a theory of Lifshitz type with polynomial
shift symmetries which can be seen as non-linear realisation of the dipole symmetry.
The field 6 is a Lifshitz Goldstone boson and the field 7 is a massive Lifshitz scalar.

The non-linear (in §) symmetry is explicitly given by
80 = o + Bt (2.42)

where « is the constant shift symmetry of conventional Goldstone bosons and f;
parametrises the dipole symmetry which is, up to the exclusion of the time dimension,
also reminiscent of the symmetries of the Galileon [40].

Based on the result of this section and Section 2.1, we conclude that the fol-
lowing three properties cannot all hold at the same time (for Lagrangians that are
polynomial in the fields and their derivatives):

1. linear dipole symmetry
2. spatial derivatives
3. Gaussian

If you assume any two of these the remaining property does not hold. To summarise:
if 1. and 2. hold we have linear dipole symmetry and spatial derivatives at the ex-
pense of obtaining non-Gaussian theories, like the fractonic ones of this work, see,

— 13 —



e.g., (2.43). When 1. and 3. hold we have Gaussian theories with linear dipole sym-
metry, however spatial derivatives derivatives are forbidden, and the theory acquires
a Carrollian symmetry. For the case where 2. and 3. hold we have a Gaussian theory
and spatial derivatives however in that case we cannot have a linear dipole symmetry.
What is still possible is for the dipole symmetry to be nonlinearly realised. These
are special cases of Lifshitz field theories with polynomial shift symmetry, like the
one we have discussed.

2.5 Symmetry algebra

In this section we want to compute the symmetry algebra for the following anisotropic
scale invariant Lagrangian

L= — AX;; X} — AX; X,

oy (2.43)

where X;; is defined in (2.28). This theory has scale symmetry (2.3) with dynamical

critical exponent z = % and the scaling dimension of ® given by Dg = Q%d. Unless

both A and ) vanish it is also non-Gaussian.

To obtain the charges for the Lagrangian in (2.43) and compute their Poisson
brackets we use the Hamiltonian formulation. We start by defining the canonical
momenta II and IT* of ® and ®* by

. oL

=5 =9 = =0 (2.44)
0P 0d*
which we use to obtain the canonical Hamiltonian density
H = TIIT* + AX; X7 + AXu X5, (2.45)

which is bounded from below. The Lagrangian density in Hamiltonian form is then
L7 =TI0 + TI*d* —H (2.46)

from which we can read off the equal time Poisson brackets
{@(2),1(y)} = d(x —y) {0%(2), 1" (y)} = 0(z — ). (2.47)

Next we want to compute the Noether charges associated with the symmetries
of the Lagrangian. We use the expression we found in equation (2.10a) to find the
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following set of Noether charges

QY = /ddxp (2.48a)

Qz@) = /dda: x'p (2.48b)

P = / d*x P (2.48c¢)

My; = / d'z (2'P; — 27 P;) (2.48d)

H= / dz H (2.48¢)

D= / dx (4H + 2Py — Do (11 + &1 ) | (2.480)

where

p =i (DI — O*II*) (2.49a)

P; = 110;® + 11" 0, ", (2.49b)

are the charge density and momentum density, respectively. Starting from the top
we have the U(1) charge, the dipole charge, the momentum, the angular momentum,
the energy and the dilation charge.

It is interesting to note that for general values of Dg and d, the Poisson bracket
{D, H} is given by the following expression

{D,H} = /ddx[ —2(d—2+3Dg)IIT* + (d — 4+ 4Dq>)7—[]. (2.50)
In order for this to be proportional to H, and thus for the algebra to close, we need
Dg = —%, and so we obtain
d+ 4
(D, H} = —%H. (2.51)

The prefactor of % is exactly the value of z for which the theory is scale invariant.

Ultimately find the following nonzero Poisson brackets

{M;j, My} = =46 My, {Mji, P;} = —20;1; Py (2.52a)
{P,QP} = 6,Q (M, Q) = —204,Q5) (2.52b)
{D,H} = —zH {D,P}=-P, {D.Q"}=Q% . (252)

where z = %;
If we set A = —\/d we get a symmetry enhancement. Namely, the Lagrangian

is invariant under 0® = %*y:cQCID which leads to the following Noether charge

1
QW = §/dd:ca:2p. (2.53)
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This can be thought of as the trace of the quadrupole moment. It has the following
nonzero Poisson brackets

{P.QW} = -Q {D,QW} =2Q. (2.54)

Other symmetries?

In this subsection, we work out the most general conditions that a manifest, i.e.,
linearly realised (in field space) symmetry of the form (2.4) must satisfy. For a
variation of this form to be a symmetry, it must be such that the Lagrangian varies
as in (2.8), which for the specific Lagrangian (2.43) leads to the condition

0, K" — %(XUX,:Z XWX (2.55)
X (Aaﬂ (400 — din(ARef + 0,€)) + Ao (404 — 0y (ARef + a,ig“)))
— E(@ 0,0 + 00,07) + D (96" — %' + 2Ref ) + O f + bo* f*
+ (90, 0K} + °0,0°Xy) (A0,€" + A30%¢" )
+ QXX (N0 | + A6i;0° f) + B Xi5(A0,0, f* + N6;;0% )
+2 ((cbajcb — 09,0) X7, + (90,0 — cb*ajd)*)xkl> (NS OkE" + AopdsE") .

A symmetry with a nonzero K* transforms the action into a boundary term, and we
will not consider this case. As we saw above, all the transformations in (2.6) led to
K*#" = 0. Using equation (2.55) we find that a symmetry with K* = 0 must satisfy

0 =X (2009 + 20wE05) — Sudim (4Ref + ,8"))

+ A (405 — 65 (ARef + 0,6M)) (2.56a)
0=00;¢" — & + 2Ref (2.56h)
0 = AD;0;E" + N6;;0°€" (2.56¢)
0 = \0;0; f + N6;;0° f (2.56d)
0=f (2.56¢)
0=¢ (2.56f)
0 = A0 &' + Nowd;E" . (2.56g)

The solutions to these equations split into two cases: when A+ d\ # 0, the equations
above tells us that the most general symmetry is such that

d—2

f=——3—fotia+ iBix’ (2.57a)

=& +wal + for' (2.57b)
d+4

=g+ 5 fot (2.57¢)
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where {fo, @, 5;, &}, &8} are real constants, and w'; is a real antisymmetric matrix.
We see that this exactly reproduces the symmetries of (2.6). If, on the other hand,
A+ d\ =0, we find that

d—2 o

[=-"5"fo+iatifal+ %7932 (2.58a)

& =& +uwhal + for! (2.58b)
d+4

=gt ; fot (2.58¢)

This means that we obtain the additional trace-quadrupole symmetry when A + d\ =0,
just as we observed around (2.53).

2.6 Fracton, Carroll and Bargmann symmetries

In the most general case we consider symmetries given by

{Mij7 Mkl} = _45[k[zMj]l] {Mjka P,L} = —2(51[ka] Arist. static
(M, Q) = =20,5Q)  {P, QP = 0,Q" dipole sym.
{(D,H} = —zH {D,P}=—P, (D,QP} = QP dilatations
{P,QW} = _QZ@) {D,QW} =2QW quadrupole
where z = %. They consist of generators of spatial rotations M;;, spatial and

temporal translations P, and H, the electric charge Q(©), the dipole charge vector Qz@),
the quadrupole scalar Q® and the dilatations D. The first line spans the Aristotelian
static symmetries which get accompanied by the symmetries of the second line once
dipoles are conserved. When we have dilation symmetry the third line gets added.
For quadrupole symmetries one adds the commutation relations of the last line (only
the first term when there is no dilation symmetry).

The subalgebra spanned by (M,;, H, P;) is naturally interpreted as an Aris-
totelian homogeneous space due to the absence of boost symmetries. A homogeneous
space is, up to global considerations, characterised by a Lie algebra g = h+m and a
Lie subalgebra b, where m is spanned by the remaining generators (the + is a vector
space direct sum and should not be understood as a Lie algebra direct sum). For
the case at hand ganst = (M5, H, P;) and bausg = (M;;) giving rise to a (d + 1)-
dimensional manifold which is closely tied to the fact that we have d + 1 remaining
generators m = (H, P;). This homogeneous space is Aristotelian — more precisely,
the static Aristotelian spacetime [27]. We refer to [27, 41] for more details and a
classification of Aristotelian algebras and spacetimes. Having specified the homoge-

neous space one can introduce exponential coordinates as o(t,z) = e in terms

of which the invariants of low rank are given by a 1-form 7 = dt, a degenerate metric
0 d

h = §;;dz'da’ and their duals v = & and 6252, which will play a prominent
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role once we curve our manifold, c.f., Section 5. The action of the symmetries of
the subalgebra h on the coordinates is determined by [h, m] quotiented by b, i.e.,
[h, m] mod . For example, the rotations have a nontrivial action on the coordinates
precisely as given in (2.2).

The relevant part for fractonic physics is the addition of the dipole charge vector
QZ(-Z) and the charge Q. In particular, the existence of a conserved dipole charge and
its nontrivial commutation relation with the translations distinguishes these theories
from non-fractonic theories. The geometry of the enlarged algebra, spanned by
Orrac = (M, H, P;, Q(0), Q’@}, is still naturally interpreted as the (d+ 1)-dimensional
static aristotelian spacetime when we quotient by bhpac = (Mij,Q(O),QZ@) This
is the case since the action generated by the charges () and Q@) acts trivially
on m = (H,P;) and consequently on the spacetime manifold. This is in perfect
agreement with (2.1) where these symmetries only act on the field. To see this
consider

(@, ) mod brae = ~0;Q" mod hrae = 0 mod by (2.60)

or, in other words, the commutation relations of (Q(q), Q%2)> with H and P; do not lead
to elements in (H, P;). The same arguments apply upon introducing the conserved
quadrupole moments. In both cases it is natural from the point of view of the
underlying homogeneous space to quotient by the trivial symmetries, whereby we
land again at our original Aristotelian geometry.

The situation slightly differs upon the introduction of the dilatations. Like for
the other cases we enlarge the quotient b, but stick to m = (H, P;) connected to the
fact that our manifold stays (d + 1)-dimensional. However, the action D on m leads
again to elements in m and to the action (2.3) on the coordinates. Therefore the
homogeneous space and its invariants differ in this case (one could call it a Lifshitz—
Weyl spacetime [42]).

Let us finally comment on two Lie algebra isomorphisms. The algebra spanned
by (M,;, P;, Ql@), Q) is isomorphic to the Carroll algebra and if ng) is interpreted as
boosts and Q(*) as time translations this would indeed also lead to the (flat) Carroll
spacetime. However, as can be seen from (2.1) the action of Qgg) is not naturally
interpreted as a Carroll boost (2.35). Since Carroll boosts are not a symmetry of the
action this observation is merely a coincidental equivalence of Lie algebras and not
of the underlying homogeneous spaces.

Similar remarks apply for the case with an additional conserved quadrupole sym-
metry for which the algebra turns our to be isomorphic to the Bargmann algebra [13],
the unique central extension of the Galilei algebra that exists in any dimension. To
obtain Bargmann spacetime symmetries we would interpret Q® as the time transla-
tion generator, Qz@) would generate translations, P; Bargmann boosts and Q(®) would
be the central extension which is sometimes interpreted as mass.
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While in the current setup the interpretation in terms of Carrollian and Galilean
symmetries seems to be non-conventional, it might still be interesting to see if there
is something to be learned by thinking of them from this other perspective.

2.7 Noether procedure for gauging dipole symmetry

A Lagrangian for which (2.21) vanishes for any « and f3; is a complex scalar theory
with dipole symmetry. If we make o and ; local® for such a theory we obtain

6L = J4o, (o + Bra®) — J98:0; (o + Bra®) (2.61)

as can be explicitly verified.

When we apply the Noether procedure the original matter Lagrangian is called
L (which is zeroth order in gauge fields). To counter the non-invariance of £
we add to it an £(M) which is first order in a set of gauge fields whose variation gives
us the objects Jig, and J# (which are the building blocks of the U(1) and dipole
currents). Since the latter are fully generic we need a scalar field ¢ and a symmetric
tensor gauge field A;;. The expression for L) is then given by

LY = —Jgo+ J9 A, (2.62)
where the gauge fields transform as
0p = O A 0A;; = 0;0;\, (2.63)

where A = a + B,2*. The new Lagrangian is now £© + £ and we need to check
that this is gauge invariant. This is not guaranteed because the objects J(OO) and J
need not be gauge invariant. If they are not we add an £?) (which is second order in
gauge fields) etc. until the procedure stops which happens when £ + £0) + . is
gauge invariant. For (non-)Abelian symmetries (and polynomial Lagrangians) this
always happens after a finite number of steps.

Now, suppose we only assume that £ is U(1) invariant, i.e., the first line of
(2.21) vanishes but we do not assume that there is also a dipole symmetry, so that
the second line of (2.21) does not need to vanish, then varying £ for local o and f;
leads to

oL = J(OO)(()t (o + Bra®) + Jgo)ﬁi (o + Bra®) . (2.64)

Up to a total derivative, this can be rewritten as

oL = J?O)ﬁt (a + kak) — jijaiﬁj (a + kak) + (J(io) — 8jjji> 0; (a + kak) . (2.65)

3Making B; local is in a way taken care of by making « local. The functions a and §8; must
always appear in the combination o + B;x%. The role of j3; is in the second line of (2.21) ensuring
that the Lagrangian has dipole symmetry which is why, from the point of view of an ordinary U(1)
gauging, the spatial part of the U(1) current obeys (2.20). We can write things in this form by
performing a partial integration on the last term in (2.61)
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Applying the Noether procedure to the latter leads to an £(!) given by
£0 = —Jto -+ J9 Ay — (Jioy = ) B, (2.66)
where the gauge fields transform as
0p = O (a + 5kxk) 0B; = 0; (a + kak) 0A;; = 0,0; (a + kak) . (2.67)

If the theory really only has a U(1) symmetry and no dipole symmetry then we can
write A;; = 0;B;) as in that case the Noether current is just given by (J(OO), J(io))'
If however the theory has a dipole symmetry we need to ensure this which can be
achieved by assigning to B; the additional Stiickelberg transformation

§B; = —Y;. (2.68)

The ¥; transformation is there to enforce equation (2.20). Using partial integration
we can rewrite £V as

LY = —Jigyo = Jioy Bi + J7 Ay, (2.69)

where we defined

Ay = Aij — 0iBjy . (2.70)
In this latter formulation the gauge fields transform as
6 =0 (a+ Ba®)  6Bi=0i(a+Ba®) -  §A;=0u%;.  (271)
At the level of the currents the situation is as follows: we have the following responses,
— Jioy0¢ — JioydBi + JIS Ay, (2.72)
where J% = Ji*. This leads to the following Ward identities

0= Jio — 0;7 (2.73b)

for the A = a + Bra* and 3, gauge parameters, respectively. This in turn gives rise
to the charge and dipole conservation equations

0= 0 Jiy) + 0:0;.J7 (2.74a)
0=, (¢"Jfy) + 05 (a7 Ty = J7) . (2.74b)

The gauge field B; is now a Stiickelberg field and can thus be gauged away entirely.
Setting both B; and its total gauge transformation to zero, i.e., §B; = ;A — 3; =0
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tells us that the residual gauge transformations in the gauge B; = 0 are described
by B; = 0;A, and thus in this gauge fll-j = A;; which transforms as 0A4;; = 0;0;A.

Lastly, we want to comment on the Noether procedure for the case where the
Lagrangian has the additional y-symmetry described in section 2.3. In this case, if
we make «, § and v local, the variation of the Lagrangian becomes

1
oL — {0 (oz + Bt + §7x2>

- 1 1 1
- JY [Gﬁj (a + Bt + §7x2) - Eéz»jﬁk@k <oz + Bt + §7x2>] , (2.75)

where we used that J = 0. We therefore need to introduce a scalar field ¢ and a
symmetric traceless tensor gauge field A;;. The expression for LW is then given by

LY = —Jgo+ J9 A, (2.76)

where the gauge fields transform as

1
8¢ = 0, (a + Brx® + 57952) (2.77a)
k 1 2 1 k 1 2

Thus, it is clear that the y-symmetry leads to a tracelessness condition on A;; in the
Noether procedure.

3 Worldline actions and coupling to scalar charge gauge the-
ory

Now that we have identified the gauge fields involved in gauging the dipole symmetry
we can ask ourselves what is the form a worldline action would take that couples to
these fields in a gauge invariant fashion. This would be the analogue of the coupling
of a charged point particle as we are familiar with from electrodynamics where such
couplings lead to the Lorentz force, i.e., a coupling of the form ¢ [ d)\AuX #. The
general form of the action we are looking for is

Stot = SscaT + Sint + Skin (3.1)

where Sscar is the action for the scalar charge gauge theory involving the fields ¢
and A;; (which we will discuss in detail in Section 4) and where Sy, is some yet to
be determined kinetic term for the embedding scalars X* (see further below). The
interaction action is

S = —q /A ff AN [T (6~ X'0i) — X'XIA] (3.2)
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where the dot denotes differentiation with respect to A, the parameter along the
worldline and where \; and Ay denote the endpoints of the worldline parameter.
The embedding coordinates are T' and X?. The gauge fields and its derivatives are
evaluated along the worldline where t = T and 2° = X' The interaction action
is worldline reparametrisation invariant. Under the gauge transformation d¢ = 0;A
and 6A;; = 9;0;A the combination T (¢ — X?9;¢) — X' X7 A;; transforms as

0 [T (¢ — X'0i0) — X inAl-j] =T, (A — X'O;A) + X79; (A — X'9,A)  (3.3a)
d

= (A= X'9;A) (3.3b)

so that S, remains invariant up to boundary terms (endpoints of the worldline). The
gauge variation is precisely zero for the target space symmetries 9, (A — z'9;A) = 0,
ie., A = o+ B;x* with a and 3; constant.

In (3.2) the fields are evaluated along the worldline. In order to compute the
spacetime currents associated with the flow of these objects we write (3.2) as follows

Af . , L
Sy = —q / dtdis / dNS(t — T(N\)d(z — X (V) [T (6 — X'0i6) — X’XJAZ-J} ,
Ai
(3.4)
where the integrand of the A-integral is no longer restricted to the worldline, so for
example ¢ is now a function of ¢, z" and not of T'(\), X*()\) as was the case in (3.2).
Let us define

5aSint = / dtd's (= Jfd6 + J96A;) (3.5)
This leads to
A ) .
J?O) = q/A dNo(t —T(\)T [5(m — X))+ X'0;6(x — X()\))} , (3.6a)
~ . q Z)‘f L. L.
Ji=3 / AN (t — T(N)8(x — X(\)) <X’Xﬂ + XJX@) . (3.6b)
A
We can fix worldline reparametrisation invariance by setting T'= \. If we do this we
obtain
JEJO) =q [(5(3: — X (1)) + X'0;6(x — X(t))} , (3.7a)
Ji = g(S(x —X(1) (X’Xj v XJ‘Xi) , (3.7b)

where the dot now denotes differentiation with respect to t.
Gauge invariance of Sjy tells us that we have the identically conserved equation

/ dtdz |0.T + 0:0;,77| A =0, (3.8)
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for all A that are at most linear in X at the endpoints \; = ¢; and As = ty. This
implies that
O J () + 0:0;J7 =0, (3.9)

as can be explicitly verified by using X?9;6(z—X (t)) = —9,0(z— X (t)). The current is
identically conserved because for the worldline theory there are no other fields (other
than the gauge fields) transforming under the gauge transformation with parameter
A. We can construct d additional (identically) conserved equations, namely the
currents

Joy = Iy, Ty =2 = TV, (3.10)
which obey

aJeg + 0l =0, (3.11)

by virtue of (3.9).
We can define a U(1) and dipole charge in the sense of distributions, i.e., let £(z)
be a test function then we define

QU] = /ddxe(x)J(OO) =q—qX'(t) (0ie(x)) : (3.12a)

=X (t)
=X (@) ~a)
(3.12b)

QP = [ dnela) I = ~aX(OX'(0) (0c(a)

z=X(t)

For € = 1, we obtain the total U(1) and total dipole charge, which are ¢ and zero,
respectively.
The kinetic term is of the form

Siin = /d)\Tf (';(D . (3.13)

This is dictated by translation invariance of 7" and X and rotational symmetry of the

X*. These target space symmetries become global symmetries of the worldline theory.
Finally, the form of the Lagrangian is such that we have worldline reparametrisation
invariance for any f. Well-known examples of such a function f are

X[ X2
| ‘ or —\/1- | ’ : (3.14)
277 17

where the first expression for f is for theories with Galilei invariance and the second

expression for f is for theories with Lorentz invariance. In the case we are dealing
with there is no boost symmetry and hence f is not uniquely fixed.

Let us come back to the fact that the total dipole charge is zero. For a point
particle a nonzero dipole charge is proportional to ¢X* (with respect to some chosen
origin). For this to be conserved the particle cannot move unless the total dipole
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charge is zero. For a point particle this would imply ¢ = 0, but our worldline theory
does not describe a point particle because the charge distribution (3.7a) involves a
derivative of a delta function and so the above argument about immobility does not
apply. Here we have an example of a worldline theory for which the total dipole
charge is zero while the total charge is ¢ and there is no mobility restriction. It
would be interesting to explore the behavior of this type of objects in more detail.

If the scalar charge gauge theory is traceless, the gauge transformations instead
read 0¢ = O,A and 0A;; = 0,0;A — Clléijé)QA. In this case, the gauge invariant inter-
action term is

Af . , L g :
Ai

1 " 1. .
——— XFXP( X70,Ai — =05 X'0A; )| 3.15
IO ( i gl At (3.15)
Under a gauge transformation the Lagrangian transforms into a total derivative term
that is proportional to

d ‘ 1
— (A= XA+ —=X"X"9,;0;A ) . 3.16
It would be interesting to study this action in more detail and to generalise these

results to higher order symmetries.

4 Scalar charge gauge theory

The scalar charge gauge theory was the first continuum model proposed to describe
fracton behaviour [21, 22, 43] (see also the review [12]).

In this section, we develop the scalar charge gauge theory by making dynamical
the gauge fields obtained by gauging the dipole symmetry using the Noether proce-
dure, c.f., Section 2.7. We analyse the gauge sector and cohomology of the theory.
It is useful to contrast this discussion with electrodynamics, which we have added
for convenience in Appendix B, and linearised general relativity which it perfectly
mirrors, see, e.g., the introduction of [44].

By modifying the pre-symplectic potential, we show how the traceless theory
emerges from a Faddeev—Jackiw type analysis of this modified theory. After com-
puting the spectrum of the scalar charge gauge theory, we conclude with some ob-
servations regarding the similarities between the scalar charge gauge theory and the
theory of partially massless gravitons.

4.1 Poisson bracket and gauge generator

The fundamental fields of scalar charge gauge theory are the symmetric fields

Ay ~ 4, (4.1)
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and its canonical conjugate momentum Fj;;. Boxes after the ~ symbol denote Young
tableaux that describe the symmetries of the indices. The indices ¢, 7, ... are spatial,
i.e., they run from 1 to d. The fundamental fields satisfy the equal time Poisson
bracket

{45 (@), Eu(9) } = 6ix010(T — 7)) (4.2)
and, by assumption, we have a gauge symmetry
5AAij = 8183A and 5AEij =0 R (43)

for fixed time ¢. The gauge parameter is a scalar A = A(t, %) ~ @ where the bullet
is the Young tableaux for a scalar.

The gauge symmetries are generated canonically via 0, F = {F, G[A]} with the
gauge generator G. It must have a well-defined functional derivative, i.e., 6G should
not lead to boundary terms upon integration by parts. This means that the gauge
generator consists of two parts G[A] = G[A] + Q[A] [45, 46]

QA = / d%x 9; [20;AE;; — 0;(AE;j)] , (4.5)

where G[A] is a bulk and Q[A] a boundary term. The charge Q[A] does not necessarily
vanish on-shell for gauge parameters A that are nonzero on the boundary. On the
other hand, the bulk term G[A] vanishes on-shell (more precisely on the constraint
surface) and only the boundary term remains, G[A] ~ Q[A]. In this sense gauge
transformations with nonzero Q[A] actually generate physical symmetries and change
the physical state of the system. As we will show next, they also lead to nontrivial
conserved charges. They are called improper gauge transformations [45, 46]. When
Q[A] vanishes the gauge symmetries are proper and are nothing but the redundancies
inherent in our description [45, 46].

The charge conservation equation for our dipole symmetry takes the form (2.73).
For sufficient fall-offs of J(io), this leads to conservation of the charge

Q¥ = [t 1y, Q" =0, (4.6)
as well as the conservation of the dipole charge
Qz@) = /dda: xiJ(OD). (4.7)

The boundary charges (4.5) are compatible with these conserved U(1) and dipole
charges. Verifying this requires the generalised Gauss constraint

0;0; L = _J(Oo) J (4.8)

— 925 —



which follows from coupling our theory to matter as we will show at the start of
Section 4.3. Setting A = «, where « is constant, we obtain from the boundary
charges

Qlo] = a/dd.r J(OO) =aQ" . (4.9)

If we instead set A = B;x%, we get the dipole charge after using (4.8)
QlBir"] = Bi/ddx 2 Iy = B (4.10)

4.2 The gauge sector

Using cohomology [44, 47, 48] (see Appendix C.I in [49] for a concise summary which
is sufficient for the following arguments) we will now construct a gauge invariant
“curvature” or “magnetic field” tensor which has the important property that it
fully characterises the gauge symmetries and satisfy a Bianchi identity. It is use-
ful to contrast the following discussion with electrodynamics, which we provide for
convenience in Appendix B.

As a first step it is useful to rewrite the gauge transformation as a generalised
differential

where d; acts with a derivative on the first and ds on the second column of the Young
tableaux symmetries and we afterwards Young project accordingly to have the right
index symmetries. We can represent these operations as

| |
|
d1 dy
e e

— 9]

|
KT LN RN <N (4.12)

EEN!
Q)

We want to emphasise that dy does not exist for equal height tableaux. These
operations imply that

(d)? = 0= (do)?. (4.13)

We refer to potentials of the form A = dad; A as being pure gauge.
We define the gauge invariant “curvature” or “magnetic field” Fjj; by

Fyjr = (dy A)ijic = 203 Age ~ 12 (4.14)

This tensor is an irreducible GL(d) representation and has mixed symmetry, i.e.,
it is neither totally symmetric nor totally antisymmetric. These curvatures are a
subset of all “hook” symmetric tensors, as denoted by the Young tableaux on the
right hand side of (4.14). In general hook symmetry means that the first two indices
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are antisymmetric Fj;;, = Fij, and an antisymmetrisation over all indices vanishes
Fiiji) = 0. A useful relation, which follows from these symmetries, is
1

By construction the curvature (4.14) vanishes when the potential is pure gauge

In other words, the curvatures do not see the irrelevant pure gauge potentials, some-
thing we can also write as

dydydi A = do(dy)*A = 0. (4.17)

Conversely, a vanishing curvature of an arbitrary potential A;; implies that this
potential is pure gauge, i.e.,

or in short djA=0=—= A = %delA. This shows that only the irrelevant pure gauge
potentials get lost when going to curvatures, i.e., the curvatures fully capture the
gauge symmetries. The relation (4.18) can be shown using the Poincaré lemma and
the symmetry properties of the involved tensors.

The final class of tensors we introduce are tensors with the following Young
tableaux

[=[=]~

This means that Tj;, = Tjijx and Tj.; = 0. A subset of these tensors are differen-
tials of hook symmetric tensors Fji; of the form

If the hook symmetric tensor is the curvature of a potential, see (4.14), it follows
that

which is the generalised differential Bianchi identity.
Conversely, 9 Fji; = 0, where Fjj; is a generic hook symmetric tensor, implies
that Fji; is the curvature of a potential. To see this we start by

8[1-ij]l =0 = Fijk = 26[i]\/[j]k (4.22)
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where we can decompose M;; into a symmetric tensor Am = A]z and an antisymmetric
tensor B;; = —Bj; as

We still have to enforce that Fjjj is a hook symmetric tensor, Fl;j = 28[il§jk] =0
leads then via the Poincaré lemma to Bw = 0;B;). It follows that
OiFj =0 = Fyp = 20,A — 0k0uB;) (& diF =0= F = d,(A — 1d,B))
(4.24)
where
We have the gauge freedom parametrised by ¥; and A,

We can partially gauge fix by demanding that B; = 0, which can be reached by
the gauge transformation ¥; = —B; and A = 0. The residual gauge transformation
leaving this constraint unaltered are then given by ¥; — 9;A = 0. This means the
partial gauge fixed version of our statement above is A;; = flij. This shows that the
Bianchi identity characterises the curvatures that come from gauge potentials.

What we have described is a generalisation of the gauge structure of electrody-
namics and linearised gravity. With the differential operators given in (4.11), (4.14),
and (4.20), respectively, we have also shown that we obtain an exact sequence that
we can schematically depict as

o A L Ay (4.27)

This subsection should be contrasted with Section 2.7 starting around (4.18), where
the Noether procedure led to a similar structure.

4.3 Hamiltonian for scalar charge gauge theory

The phase space Lagrangian (up to total derivatives) is schematically of the form
p¢ — H + constraints. For our theory the only constraint is the (generalised) Gauss
law and the phase space variables are A;; and £;;. This leads to

L[Aij, Eij, ¢ = EijAi; — H — $0,0;Ey5 , (4.28)
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where ¢ is the Lagrange multiplier for the Gauss constraint. This is the Lagrangian
for the source-free part of the theory. If we include matter fields that couple to
our gauge fields then we use that the total variation of the gauge invariant matter
Lagrangian L,.¢[Aij, ¢, ®], where the matter fields are collectively denoted by ®, is
given by

0L omat [Aij, &, @] = —J00 + JI6 A5, (4.29)

where the variations are arbitrary and where we have omitted the terms proportional
to 0.

The first term in (4.28) contains the (pre)symplectic potential from which we
can derive the (pre)symplectic form whose inverse gives the Poisson brackets (4.2)
(see, e.g., [23, 24]). The Lagrange multiplier ¢ is the same field we encountered in
the Noether procedure in Section 2.7.

We now want to define a Hamiltonian H. We demand that H is:

e s0(d)-rotation invariant: this means we use §;; and ¢, ..., to contract all indices.

e Gauge invariant: this means we build H out of only gauge invariant objects
FE;; and Fjji, the analogues of the electric and magnetic field strengths. The
Hamiltonian then commutes with the Gauss constraint and the latter Poisson
commutes with itself so that the Gauss constraint is first-class.

e At most quadratic in E;; so that the Lagrangian corresponding to this Hamil-
tonian is at most second order in time derivatives.

e At most quadratic in Fj;; (for simplicity).
e Bounded from below.

Up to total derivatives there are no linear terms that one can write. The only
candidate is E," but this is a total derivative term in the Lagrangian when expressed
in terms of the gauge potentials. These requirements lead in generic dimension to
the Hamiltonian

h h
ZlFiijijk + o F, Lk - (4.30)

_ g1 g2 2

2

Let us discuss these terms:

e The g; and h; terms are the terms that are commonly discussed in the literature
and mimic electrodynamics, c.f., (B.12).

e The go and hy terms can be added because of the possibility to treat the trace
of A;; separately.

e We could have added a term proportional to Fj;,fir; but using the identity
2F; 1 Fig; = FijipFijk, (which follows from (4.15)) it does not give anything new.
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What remains to be done is to analyse the ranges of the parameters g1, g2, h1, ha.
We start with the electric sector. In order that the electric sector with coupling
constants g; and g is bounded from below we need that g; > 0 and g; + dgs > 0.
This follows from writing F;; in a traceless and traceful part and demanding that
the traceless and traceful parts contribute each non-negatively to the Hamiltonian.
Next, in order to be able to solve for Ej; after varying the phase space integral with
respect to F;;, so that we can integrate it out and obtain the Lagrangian expressed
in terms of the gauge potentials, we must require that g; > 0 and g; + dgo > 0.

In Section 4.6, we will show that the case g; +dg, = 0 plays an important role in
the so-called traceless scalar charge theory, which is a theory with a slightly different
gauge transformation for the field A;;.

Due to the hook symmetry of Fj;; it is more difficult to find the necessary
conditions for the magnetic part of the Hamiltonian to be bounded from below.
We will solve this problem for d > 3 by expressing the Lagrangian in terms of the
magnetic field which we define as follows

1
Byj = EEIZmF}mjv (4.31)
where the capital letter I = iy,...,74_2 denotes a multi-index. It follows from this

definition that the magnetic field is completely traceless. From (4.31) we learn that
Fi, = ! B 4.32
ijk = MQ;‘N Nk - ( . )

Using this we can rewrite the magnetic part of the Hamiltonian as follows

h1 + hQ h2
o2 P 5 g

2(d — 3)! in-du=ai

7_[mag - (433)

11...8d—3J%d—2
Splitting the last two indices of the the magnetic field into its symmetric and anti-
i1ia0j = Biy.(ia_sj) T Biy..lia_sj), We find that h; > 0 as well as
hi+(d—1)hy > 0 in order for the magnetic part of Hamiltonian to be bounded from

symmetric part, B

below. All in all, this means that we get the following conditions for the Hamiltonian
to be bounded from below

gl>0 gl+dgg>0 hi >0 h1+(d—1)h220 (434)

4.4 Lagrangian of scalar charge gauge theory

The phase space action in a generic dimension is defined by
Sl Biod) = [ did's (B = H = 0005+ 00) + Shay (4350

_ / dtdde (Eij(Aij _90;0) — 7—[> + Shaey (4.35h)
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where H is given in (4.30). The Lagrangian is invariant under the gauge transfor-
mations 6A;; = 0;0;A and d¢ = JyA. The term Syq,y, is a suitable boundary action
that depends on the type of variational problem we consider. The term K;, which is
closely related to the charge (4.5), is given by

The Lagrange multiplier ¢ enforces the “generalised Gauss constraint”
0:0;E;; = —Jfy) , (4.37)

where we included a source term J(OO) (which is the response to varying ¢) and has
undetermined time evolution, i.e., it is a redundancy of our theory. The variation
of the phase space action of the scalar charge gauge theory coupled to some matter
sector leads to

) [ ij) z]a @, ] /dtddl' [(Am - aiaj¢ - glEij - 925ijEkk) 5Eij

(
( Eij + M0 Fsj) + ha0i0m . — 120 Fyy o + ,]> SA;
(4.38)
+ (—&@-Eij — J(OO)) 0p + 8u0“} + 5dery , (438C)

4.38a)

where we omitted the variation of the matter fields that we collectively denote by ®
and where we furthermore defined

90 = EZJ5A1] s (439&)
0" = 0,E;j6¢ — Eij0;0¢ — by Fij 6 Aj, — 2hoFy, 0 630 Ay - (4.39b)

ijk

A well-posed variational problem means that the variation of the action vanishes
on-shell and for suitable boundary conditions for the variations. We would like
to consider a Dirichlet problem where we keep the fields ¢ and A;; fixed at the
boundaries. However we are dealing with a theory that depends on second order
spatial derivatives of ¢ and so we also need to say something about what we do with
0;¢ at the boundary. Since ¢ is kept fixed on the boundary the same is true for its
tangential derivatives. So we only need to say something about the normal derivative
of ¢ at the boundary, i.e., n'0;¢ where n' is the outward pointing unit normal at the
boundary. We will keep this fixed as well. Hence for a Dirichlet variational problem
we do not need to choose a nonzero Spqyy.

The degrees of freedom are given by half the total amount of canonical variables
{d(d+1)/2} minus the amount of first class constraints {1}, leading to d(d+1)/2—1
degrees of freedom in d spatial dimensions.

We now want to solve for the momenta £;; to write the action in configuration
space, i.e., in terms of A;;. The variation of E;; tells us that
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We first take the trace of this quantity
(g1 + dgo) By = Ay — 0i0ip = Fui - (4.41)
When ¢, + dg» is nonzero, we can algebraically solve for E;;

G1Eij = Foij — 0ij Forr - (4.42)

g1+d

We discuss the case when ¢g; 4+ dg2 = 0 in Section 4.6. Having solved for E;; using
its equation of motion, we may substitute it back into the phase space Lagrangian
associated with the action (4.35b) to obtain

hy Do

g g
L[Aij, ¢] = ElEijEij + §2E¢¢2 - FuFige — 5 Fijg Fin (4.43a)
1 g2 9 hy o
= —Fy:F,, —————(F,..)* — —F,.. I} —F. .. F 4.43b
291 0i54° 045 291(91 + de)( Ozz) 4 Jktijk — 2 ijg © ikk ( )

This is the analogue of the Maxwell Lagrangian %FOiFOi — %FijFij where c is the
speed of light.

We can learn a few simple facts from dimensional analysis. Both glE”EU and
E”A” have dimensions of energy density. Furthermore gle and Azy have the
same dimension. Only the dimension of the product of g1 * and E;; is determined.
Without loss of generality we can take g; to be dimensionless. Then so must be

go. The dimensions of h; and hs are then velocity squared. We can write equation
(4.43b) as

11 1 ? 9
LlA;, 6] = — |- (FO.. — =0,F, ) o (F )
17 9 ij d 1)+ Ous 2d d 074
g1 (gl + dgs ) (4‘44)
91h1 2 1h2
- 4 Fz]k ) F;j] Ekk )

where we factored out the parameter 1/g;. We can think of g; as a charge. When
we gauged the complex scalar we fixed the charge by saying that 0 = tAd. We
could have said it has charge e and d® = ieA® with g; = 1. Alternatively we keep
d® = iA® but then g; = €2. The two perspectives are related by rescaling the gauge
fields ¢ and A;;.

From the kinetic terms we find that the scaling dimensions of ¢ and A;; are
(d+ z —4)/2 and (d — z)/2, respectively. The scaling dimension of the magnetic
terms FjjpFij and Fij;Figr is 2+ d — z. The magnetic terms are relevant for z > 1.
We can add quartic terms in Fjjj as relevant terms when 2(2+d — z) < d + z, i.e.,
when z > (4+d)/3. When z = (4+d)/3 these terms are marginal which incidentally
is the value of z for which the X, X scalar field theory (2.43) is scale invariant.
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4.5 3+ 1 dimensions

In three spatial dimensions the magnetic field introduced in (4.31) is given by

1
Bij = §€imnanj = 6z'mnamf4nj . (445)
For d = 3, our result (4.33) implies that the Hamiltonian becomes
1 - -
H= 3 0 EijEij + g2 B 4+ i Bi; Byj + thiijl) : (4.46)

where ill = hl + hg and BQ = —hg.
However, in three dimensions we can also write down an additional term that
fulfills our requirements (as listed in section 4.3), namely

We will now show that this term is related to the # term of [50] which is relevant for
a higher spin Witten effect, however we arrive at this term from a complementary
perspective. The following discussion mirrors again the one of electrodynamics, c.f.,
Appendix B.2.

We start by adding the H and H? term and by completing a square we arrive at

0 2 N -
Bij> + QQEii2 + (hl — —) Bisz'j + hQBZ'iji

1
=3 _ Yl 2R
H —2[( glE”+¢g—1

g1
(4.48)
Next we apply the canonical transformation
0
Py = Eij + B [4] Qi = Aij (4.49)

where the square bracket indicates that the magnetic tensor is the one of the A;;
fields. It is of the schematic form of a canonical transformation pg — H(p,q) =
PQ — K(Q, P) + F with generating function F' as can be seen from

Eij(Aij — 0,0;0) — HP=3 = Pj(Qij — 0:0;¢0) — K — %(80}70 + 0 F") . (4.50)
1

The new Hamiltonian is given by
K= % {glPijPij + (711 - i—j) By[Q1By[Q] + haBy[Q)Bi[Q) + g2 Pi®| . (4.51)
and the boundary term is of the form
F°=Q;;By; F' = €3QQu — 2B;;0;0, (4.52)

which we can also write as Oy F° + 0, F" = 2B,»j(Qij — 0,0;¢) as was already shown
in [50].
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241 dimensions

We have not studied the case of 2 + 1 dimensions in detail, but we would like to
mention the possibility of fracton Chern—Simons like theories,

k .
L= 4_ <6abAacAbc + 2¢EabaaacAbc> 5 (453)
T
where a,b,c = 1,2. See, e.g., [12, Section I1.B.3] and references therein for more
details.
Furthermore, we note that the magnetic part of the Hamiltonian (4.30) in 2 + 1
dimensions can be written as
hq ho 1 9 9
Hmag = ZFiijijk + gFijj Fz‘kk = §(h1 + h2)(F122 + F121) (454)
and so the conditions for the Hamiltonian to be bounded from below in d = 2 is
given by

g1>0 gl+2gg>0 hl—l—hQZO (455)

4.6 Traceless scalar charge gauge theory

As we will show in this section, rotational symmetry allows for additional terms in the
Lagrangian that describes the scalar charge gauge theory. These terms modify the
Poisson brackets and thus the gauge transformations and, depending on the details
of these terms, a priori result in three general classes of theories. The first and most
important such class is the traceless scalar charge gauge theory, so called because it
is independent of A;;, i.e.,

0L[Aij, Eij, ¢]

% 5A;

=0. (4.56)
This theory has an additional conserved quantity in the form of the trace of the
quadrupole moment, and it has played a prominent role in the fracton literature; in
particular, it was shown in [31] that these theories can be put on curved space where
the geometry on constant time slices is some Einstein manifold, and where time is
absolute (for more details see the next section). The second class generalises the
traceless theory by allowing for trace-dependence while the gauge transformation is
identical to the one of the traceless theory. This theory depends on one parameter
that measures the dependence on the trace, which has the interpretation of an ad-
ditional scalar. Thus, as we discuss in Appendix C, this theory is just the traceless
theory of case 1 coupled to a scalar in the guise of the trace. The third and final class
of theories have what at first glance appears to be a different set of gauge symmetries
than the other cases, that depend on two parameters, but as we show in Appendix C,
this third case is equivalent to the original theory (4.43b).
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The Lagrangian we considered above may be generalised by including two addi-
tional terms parameterised by two real constants ¢; and cs:

L[Aij, Eij, @] = (Eij + 1055 Er) Aij — H — $(9,0;Eij + c20:0,E55) + 0K
= Eij(Aij + 015z‘jAkk — 0;0;¢ — 20;;01,0r0) — H , (4.57)

where the boundary term K; is
Ki = qbﬁjEZ] — @(bEU —+ Q((b(‘?iEjj — az(bE]]) 5 (458)

and where H is an appropriately chosen invariant Hamiltonian, which has the same
functional form as (4.30) when written in terms of the electric field E;; and the
magnetic field strengths Fjjj.

The new phase space Lagrangian (4.57) differs in two respects from the one
discussed previously in (4.35a). The parameter ¢; modifies the Poisson brackets and
the parameter c¢; modifies the Gauss constraint. Both deformations are compatible
with the underlying Aristotelian symmetries (time and space translations and spatial
rotations).

The term (E;; +01(5ijEkk)Aij modifies the pre-symplectic potential and hence the
symplectic form on phase space and by inverting this new symplectic form we obtain
the modified Poisson brackets. The ‘symplectic’ term in the phase space Lagrangian
can be written as

E(Six0n; + €10450k1) Asj - (4.59)

To determine the Poisson bracket, we need to invert the quantity in parentheses in
the expression above, see, e.g., [23, 24]. This produces the bracket

- S, 1 S
{Aij (Z), B ()} = <5z‘(k5l)j - C_Z(Sijékl) (T —7) (4.60)
for ¢; = —1/d and
— — C — —
{Ai;(Z), Eu(y)} = (51’(1651)3‘ - Tldcldijékl) §(% — 7)) (4.61)

for ¢; # —1/d.

The Gauss constraint is the generator of gauge transformations. The gauge
transformation generated by the constraint imposed by ¢ of some function F' on
phase space is given by

6AF - {F,/ddx A(@ZE?JEU + CgaiaiEjj)}, (462)

so that when ¢; # —1/d we have

Co — C1
" 14 dC1

(SAAZ‘J' - &@A + 5 82A, 5AEij - O, (463)
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while for ¢; = —1/d as well as for ¢; # —1/d and ¢; = —1/d, we get
1
5AAij = 81('3]1\ - Eéij(?QA, 5AEij - 0 . (464)

Note that in the latter case, the trace A;; is gauge invariant. Depending on the values
of ¢; and ¢y, the theory thus splits into three classes. When ¢; = ¢ = —1/d, the
field strength Fjj; as defined above is no longer invariant. Rather, it transforms as

follows under (4.64)
2

and since A;; is gauge invariant, we cannot redefine the field strength by adding a
term to it that makes it gauge invariant. Instead, taking H to be given by (4.30),
gauge invariance requires that the coefficients h; and hy be related as

hi = —hy(d—1). (4.66)

This condition for d = 2 reads hy = —hgy, but equation (4.54) implies that in this
case the magnetic terms add up to zero. Hence the traceless theory with a nontrivial
magnetic sector requires d > 3.

Similarly, the electric field strength Fp;; as defined above is no longer gauge
invariant. Instead, the invariant electric field strength is now

3 . 1.
Foij = Aij — aza]¢ — Edl](Akk — 82¢) , (467)

which is gauge invariant under (4.64). The Lagrangian of the traceless theory is
obtained by integrating out £;; from (4.57), which turns out to imply the condition
g1 + dgo = 0, and produces the result

1 hy hy

Liraceless| Aij, ¢ = _FOijFOij - ZFiijijk + mFijj ikk >

4.68
291 ( )

which is traceless in the sense of (4.56). This is intimately linked to the conservation
of the trace of the quadrupole moment. Furthermore, the fact that the Lagrangian is
independent of A;; gives rise to a Stiickelberg symmetry 0A;; = d;;x with parameter
x that allows us to set A; = 0.

The remaining two cases arise when either ¢; # —1/d and ¢y = —1/d, or ¢q, ¢y #
—1/d but otherwise arbitrary. These cases do not give rise to new theories. This we
demonstrate in Appendix C.

4.7 Spectrum of the scalar charge gauge theory

We now study the spectrum of the scalar charge gauge theory, starting with the
traceful case. We are going to do this by analysing the Fourier decomposition of the
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gauge invariant objects Fj;; and Fp;;. We will need the equations of motion as well
as Bianchi identities. The Bianchi identities* are given by

It should be noted that the antisymmetrisation in (4.69b) only involves i and j and

not 0. The equations of motion of the traceful theory can be obtained from equations
(4.38a)—(4.38¢) and can be expressed as follows

g2
0;0;Fp;; — ———0;0;Fy;; =0 4.70
51 0ij 91+ dga 057 ( a)
1 : g2 :

The goal is to decouple the equations and find wave-like equations for the various
components of Fy;;. If we take the time derivative of equation (4.70b) and apply the
Bianchi identity (4.69b), we get the following equation for Fp;;

9 Foij =[g1ha + gah1 + (d — 1)g2h2] 05 (0mOum Fou — OmOiFomt) + 9171010 Foi
- glhlama(iFOj)m - g1h25i0jF0mm + g1h2ama(iF0j)m ) (4~71)

which no longer involves the magnetic field strength.
The Fourier transformation of the equation above gives

wzﬁom’ = [glhz + g2h1 + (d — 1)g2h2}5ij (kmkmﬁbll - kmleOml) + glh1k2F0ij
- glhlkmk(iﬁbj)m - gthkikjFOmm + thkak(zFOj)m ) (4-72)

where Fy;;(w, k) is the Fourier transform of Fy;(t,z). If we take the trace of this
equation and apply the Gauss constraint (4.70a) we get

CL)QFOJ‘]' = (91 + (d — 1)92) (hl =+ (d — 1)h2) k2ﬁ0jj . (473)

It can be shown, using the strict version of the bounds for the coupling constants
found in (4.55)) and (4.55) that (g1 + (d —1)g2) > 0 and (hy + (d — 1)he) > 0 for
d = 2,3. Hence the velocity squared of this mode is (g1 + (d — 1)g2) (b1 + (d — 1)hs).
We restrict ourselves to the strict versions of the inequalities involving h; and hs in
order that the magnetic sector is nontrivial which is needed for propagation.

To find the rest of the modes it is useful to introduce the following projector

kik;
Zh

4The second may be checked using the explicit expressions in terms of 4;;. In order to maintain
a light notation, since the 0 index in Fyjy, is fixed, we use the convention 20); o, = 9; Fojx — 0 Foi-

Py =6; — (4.74)
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P;; projects along the directions perpendicular to k;. Using this along with equa-
tions (4.70a), (4.73) and (4.72) we find the following modes

w2(ki]€jF0ij> = U%kQ(k}ik’ij‘j) (475&)
w?( Py Foij) = vik* (P Foij) (4.75D)
WQ (-Pimknﬁbmn> = ’U%kj2 (szknFOmn) (475C)
1 . 1 N
W (PP — szan‘j)Fo@'j = v3k* (P Py — (d—_l)PlnIDij)FOij ; (4.75d)

where the velocities are given by

Vi = (g1 + (d = 1)g2) (b1 + (d — 1)hy) (4.76a)
1

v = 591(h1 + h2) (4.76b)

v3 = gih . (4.76c¢)

It follows from the strict versions of the inequalities in (4.55) and (??) that g, (hy +
hs) > 0 as well as g1h; > 0 for d = 2,3. So we see that we get three classes of modes
with three different velocities. We also know that the Gauss constraint in (4.70a)
relates kikjf?mj to PZ-]-PA’OU. Using this we find that there are d(d+1)/2—1 independent
modes, as is to be expected.

We have exclusively focused on the electric sector in this analysis but one can see
from the Bianchi identities and the equations of motions that an oscillating electric
field strength leads to a oscillating magnetic field strength. Furthermore, we observe
that there is no universal velocity as the velocities are not all equal which bodes well
with the earlier observation that these fields are defined on an Aristotelian geometry.
It would be interesting to study the energy-momentum tensor for these theories and
the different states of polarisation.

Next, we turn to the traceless case whose Lagrangian is given in (4.68). Now the
equations of motion are given by

0= 8¢8j150ij (477&)
h

1 ~
0= g—aoF()Z‘j - hlamFm(”) + m(éwalﬂmm - B(ZFJ)”) N (477b)
1 —

where Fyy; is defined in equation (4.67). We now express the Bianchi identities in
terms of F;;

5 1 5 5 . 9 .
20 Foji + 1 <5jkazFou - 5z’kalF0jl> = Fijr — E(Sk[jﬁzi]ll : (4.78b)
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If we differentiate (4.77b) with respect to time and apply (4.78b) and (4.77a) we
get

_ _ d _
8§F0Z-j = glhl <8m8mF0ij — ﬁﬁmﬁ(iﬂ)j)m) . (479)

The Fourier transformation of this equation is given by

d

w2F0ij = g1 (kQFOij - m

where we have defined Fy;(w, k) to be the Fourier transform of ﬁbij(t, x). This then
leads to the following decomposition of the modes

d—2
2(d— 1)
w2(P,;ijnF0mn) = U§k2(HijnF0mn) ) (482)

w? (kjFoig) = vik® (k;Foij) (4.81)

where v3 is given in equation (4.76c). In order to arrive at this result we have
used that the Gauss constraint in (4.77a) is given by kikjFOij = 0 when expressed
in momentum space. Due to the tracelessness of FOij this also means PijF’ol-j = 0.
Using this we find that there are d(d 4+ 1)/2 — 2 independent modes.

As can be seen from the dispersion relations above something special happens
for d = 2. There is only 1 degree of freedom and it is given by k‘jFOZ-j but it does not
propagate. This is related to the fact that Hy,ag = 0 for the traceless case in d = 2.
We can see this from equation (4.54) in combination with the condition in (4.66).

4.8 Similarities and differences with partially massless gravitons

The gauge structure of scalar charge theory bears a striking resemblance to the
linear theory of partially massless gravitons [25, 26|, although they are not the same
theories. In this section, we elucidate the similarities and the differences between
these theories (we follow Section 1 of [51]).

Theories of partially massless gravitons were originally developed to address
the cosmological constant problem (i.e., why the cosmological constant is small and
nonzero by relating its value to the mass of a massive graviton via a gauge symmetry).

On a maximally symmetric curved spacetime, there exists the possibility of con-
sidering particles which are neither fully massive nor fully massless. In particular,
in de Sitter space, where such theories where first developed, it was observed that a
theory of gravitons with more degrees of freedom than a massless theory, but fewer
than in a theory of massive gravity, could be written down [25]. Concretely, such
theories are obtained from massive theories of gravity by imposing a scalar gauge
symmetry that removes one degree of freedom.
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Let us now describe the linear theory of partially massless gravitons using the
Stiickelberg field approach of [52], which is almost identical to the Stiickelberg ap-
proach of Sections 2.7 and 4.2 (see for further details [51]).

The dynamics of a massive graviton H u of mass m on a (3 + 1)-dimensional
maximally symmetric Lorentzian background with metric g,, is described by Fierz—
Pauli theory [53]. For generic m? # 0, this has five degrees of freedom, while for m? =
0, the now massless graviton field H enjoys linearised diffeomorphism invariance,
which leads to the two degrees of freedom of a massless graviton.

Regardless of the value of m?, we can introduce gauge redundancy into the theory
via Stiickelberg fields A, and 1, in terms of which we write H v aS

]:I,u,z/ — Ilyw + v(MAV) + Vuvylb ) (483)

where V is the Levi-Civita connection of §. The new gauge symmetries ¥ and A act
as

6H,, = V2, oA, =V, A-3, 6 = —A. (4.84)

It can be shown [51] that after performing a field redefinition that untangles ¢ and
H,,, and then writing the theory in terms of this redefined H,,,, for the special choice
of background Ricci scalar R = 6m? the action becomes independent of the field 1.
As in Section 2.7, we can then gauge fix A, = 0 (while keeping the field ¢ free),

leading to
2

- m A
5H;W = VuV,,A + ﬁguy s (485)

on a (d + 1)-dimensional background.

Although this procedure is very similar to what we described in Sections 2.7 and
4.2, there are some crucial differences. First and foremost, the additional Stiickelberg
field 1 is a new ingredient that is not part of the construction in (2.70), and the gauge
transformation itself is also different since H),, contains a term linear in A that has no
derivatives acting on A. Second, the role of time is different: the partially massless
graviton H,, has both temporal and spatial components, while the fracton gauge
field A;; only has spatial components. In the same vein, there is no analogue of the
Lagrange multiplier ¢ in the theory of partially massless gravitons.

It would be interesting to explore this analogy further. In particular, there is
a non-linear theory of partially massless gravitons (see, e.g., [51]), and it could be
worthwhile to investigate if a similar construction exists for fractons.

5 Aristotelian geometry

For the remainder of this paper we will concern ourselves with coupling the scalar
field theory and the scalar charge gauge theory to curved spacetime. As explained
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in Section 2.6, the proper geometric framework is that of Aristotelian geometry, the
details of which we provide in this section.

The motivations to place these theories on a curved spacetime are the same as
for relativistic field theories. In no particular order — and without being exhaustive —
understanding the coupling to curved space helps with computing correlation func-
tions of for example the energy momentum tensor, it can aid the search for Weyl-type
anomalies, it helps with formulating a theory of fluid dynamics that obeys the same
conservation equations, etc.

Originally coined by Penrose [54], Aristotelian geometry captures the geometry
of absolute time and space. In the context of gravitational theories, Aristotelian ge-
ometry plays the same role in Hofava—Lifshitz gravity, see e.g., [55, 56], and Einstein—
aether theory® [58] as Lorentzian geometry plays in Einstein gravity.

5.1 Geometric data

The first systematic treatment of Aristotelian geometry in the formulation we will
employ was given in [34], where it was used in the description of boost-agnostic
fluids. An Aristotelian geometry on a (d + 1)-dimensional manifold M consists of
a l-form 7, — the clock form — and a co-rank 1 symmetric tensor b, of Euclidean
signature, whose kernel is spanned by a vector v, i.e., h,v” = 0. As above, Greek

indices p,v,... = 0,...,d are spacetime indices. The degeneracy of h,, implies the
following decomposition

hy = 6abeZef’/, (5.1)
where a,b =1,...,d are purely spatial tangent space indices, where the vielbeins e},

transform under local SO(d) rotations. Crucially, neither h,, nor 7, are assigned par-
ticular tangent space transformations. Hence, Aristotelian geometry can be viewed as
a “proto-geometry” in the sense that Lorentzian, Galilean and Carrollian geometries
all arise from Aristotelian geometry via the introduction of the appropriate boost
symmetry.® Together (7,,¢f) form a square matrix with inverse (v*, k), where the
following relations are satisfied

w, b __ b noa o © 12 —
ele, =9, v'el, =0 = 1,6y T, = —1 e

ap €Z - 'UVTM = (SZ . (52)

i
The last of these relations — the completeness relation — will prove particularly useful
in our considerations of Aristotelian geometry below. The volume form is locally
given by vol = e d?*'x, where e is the determinant of (7,,e%).

At this stage, let’s explicitly exhibit the equivalence between Aristotelian geom-
etry and the geometric description of Einstein—eether theory. In [58], Einstein—ether

SFor the relation between Hofava-Lifshitz gravity and Einstein-sether theory, see [57].
6Sometimes the realisation of the boost symmetry is accompanied by the introduction of addi-
tional gauge fields, such as the mass gauge field in Newton—Cartan geometry.
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theory” is described by a metric g,, and a vector u* satisfying g, utu” = —1. By

defining u, = g, u”, we can formally identify u* = v*, u, = 7, and g, +u,u, = hy,,

which completes the identification between Aristotelian geometry and the geometric
data of Einstein—sether theory.

5.2 Aristotelian connections and intrinsic torsion

We now seek an affine connection satisfying the following Aristotelian analogue of
metric compatibility

V., =V,h,=0, (5.3)
which, via the completeness relation (5.2), also imply that
V¥ =V, 0" =0. (5.4)

Under infinitesimal general coordinate transformations parameterised by &#, an affine
connection I' transforms as

0Ly, = £, + 0,0,87 (5.5)

where £, represents the tensorial part of the transformation. In terms of the
Aristotelian data, this can be achieved by the following affine connection

1
FZV — —U’D@LTV -+ ihp)\ (a'u,h)\l/ + al/h/)\/.t - a)\hl“’) + Y,LLpV ?

(5.6)

where Y/ is an arbitrary tensor, and where the first two terms are required to obtain
the non-tensorial piece 0,0,£” in (5.5). Imposing (5.3) leads to constraints on the
tensor Y. Starting with the condition V,7, = 0, we find that

0=V,7, =071 -10,7,=Y7,=0. (5.7)
Similarly, the condition V,h,, = 0 translates to
0= Vyuhyy = Ouhup — 200 hoyn = =27, K, — 2Y0, hoya (5.8)

where

1
Km/ = _§£vhm/ (59)
is the extrinsic curvature,® which satisfies

V'K, = 0. (5.10)

"Note that the literature on Einstein—sether theory employs the mostly negative signature con-
vention for Lorentzian metrics, while we use the mostly positive signature convention. This leads
to a slight modification of some of the expressions that appear in, say, [58].

8The name “extrinsic curvature” is a bit of a misnomer, since in general it is not an extrinsic
curvature of anything. In the case where 7 obeys the Frobenius condition, and so defines a foliation,
K,,, becomes the extrinsic curvature of the leaves of the foliation.
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The property (5.8) thus implies that
Yu’\y = WM, K K.+ c

s (5.11)
with

Chhor = 0. (5.12)
In summary, metric compatibility in the sense of (5.3) can be achieved with the
following affine connection (which also featured in [34])

1
I, = —v°d,m, + 5hﬂA (Ouhaw + Ouhay — Oahyw) — KT, K + C7 (5.13)
where the tensor C7, is such that
ChLp =0 Cﬁ(yhx)p =0. (5.14)
This is a torsionful connection with torsion given by
2Fﬁw} = -0’71 + 2hP 7 o + ZC'W] (T, + 2C[W , (5.15)
where we defined
Tuw = Qa[yTu] . (516)

In the language of [59], the intrinsic torsion of an Aristotelian geometry”
precisely captured by 7, and K, — in other words, the intrinsic torsion is T7%,. If we
require that the connection we employ is minimal in the sense that the torsion is given
only by the intrinsic torsion, we must have C’{; J = 0. In this case the conditions in
(5.14) imply that Cf, = 0, that is to say, the symmetric part of the C' tensor vanishes
as well. To see this, note that (5.14) implies that 0 = Cowyutv"CrpuwTy), where C’p =
h**Cly,.,, and where without loss of generality we may assume that v*C),,, = 0. ThlS
condition together with our assumption that C'[’; g = 0 imply that C(,.,), = Cyp) = 0.
These conditions together tell us that C),, = 0. Hence, demanding that the torsion
is intrinsic and that the affine connection is metric compatible leads to our final
result for the connection

1
D7y = =007+ 5H @b + 0k = Oabys) = W5 K. (5.17)

A particularly simple class of Aristotelian geometries are those with vanishing
intrinsic torsion, namely those for which

dr=0, K, =0. (5.18)

In this case 7 is locally exact: 7 = dt, but we will assume that this is true globally so
that there is a foliation of the geometry where each leaf is described by ¢ = constant
with ¢ being the absolute time. In this case the elapsed time T} = f% 7 along a given
path v with fixed endpoints is the same as the elapsed time Ty = fw 7 along any
other path v, with the same endpoints.

9 Aristotelian geometry can be viewed as the intersection of Carroll and Newton-Cartan geome-
try, which have intrinsic torsion described by K, and 7, respectively [59].
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ADM type description of torsion-free Aristotelian geometry

We can write the torsion-free Aristotelian data in ADM type variables, i.e.,

T=dt  h=hy(d'+ N'dt) (da’ + Ndt) v=—0,+ N0, (5.19)

and h'' = h'* = 0 with A" the inverse of h;;. The extrinsic curvature K, = —1 L,k
is then given by
1 1
Ki‘ - Eathij — §£Nhij7 (520)

where the second Lie derivative is a d-dimensional Lie derivative along N?. The other
components follow from v* K, = 0. When the intrinsic torsion vanishes we have that
K;; = 0. Equation (5.19) is obviously not the most general ADM-type parametrisa-
tion of an Aristotelian geometry which would have a general unconstrained 7.

5.3 Field theory on Aristotelian backgrounds

Consider a generic field theory described by the action S[®;7,, h,,| with field content
abstractly denoted by ® on a (d + 1)-dimensional Aristotelian background given by
7, and h,. The variation of the action (see also [34]) is given by

0S[®; 7y, hy] = /dd+1x e <—T”(5T# + %T’“’(Wlw + 5¢5<I>) : (5.21)

where T* is the energy current, 7" the momentum-stress tensor'’ and &g is the
Euler-Lagrange equation for ®, and where 7, dh,, and 0® are arbitrary variations.
For simplicity we have assumed that ® is a scalar. Out of the energy current and
the momentum-stress tensor, we can build the energy-momentum tensor T#,, which
is a (1, 1)-tensor given by [34]

T#, = —T"7, + T"h,, . (5.22)

Invariance of the action (5.21) under general coordinate transformations infinitesi-
mally parameterised by the vector £# implies that

1
558 = /dd“x e <—T“5£T/’L -+ §Tuy(5§hw, -+ £¢,§§(I)) =0, (523)
leading to the Ward identity

1
0=e'0,(eT",) + T"9,7, — 51" 0y — E00,P . (5.24)

10Since v#h,,, = 0 the momentum-stress tensor is determined up to a term proportional to v#v.
The projection of T*” along 7, and h,, gives the momentum, while the projection along h,,h,«
gives the stress tensor which is symmetric as a result of the symmetry of TH".
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This can also be written in the following form

0=V,T% T

[po]

79, + 17,1 — €50, (5.25)

(]t o

where we used the connection given in (5.13) that satisfies the Aristotelian analogue
of metric compatibility. On shell, using the equation of motion of the matter fields
®, the Ward identity becomes

0=V,T" —T"

T+ TG, T (5.26)

[nv]

which expresses energy-momentum conservation.

If our theory enjoys anisotropic Weyl invariance, we once more obtain a cor-
responding Ward identity. Under anisotropic Weyl transformations infinitesimally
parameterised by 2, the fields 7, h,, and ® transform as

5QTM = ZQTM 5th, = QQhuV 5Q¢) = —D<1>Q(I), (527)

where Dg is the scaling dimension of ®. Invariance amounts to the statement that
1
(595 = /dd+1$ € (_TH(SQTM + éTMV(SQhIW + g@(SQCI)) == 0, (528)

which to the following ward identity:
— 21, T" +T"h,, — EeDe® = 0. (5.29)
This can also be expressed as
— 21, 0" TH, + hPh,,T", — EeDe® = 0. (5.30)

On shell, using the matter field equations of motion, this leads to the vanishing of
the z-deformed trace of the energy-momentum tensor

— 2z, 0"T", + hPh,,T", = 0. (5.31)

In order to compute the currents in (5.21) it is important that the field theory
is defined on an arbitrary Aristotelian geometry. If we couple a field theory to a
restricted class of geometries such as the torsion-free geometries discussed above
then the restriction to vanishing intrinsic torsion (5.18) has implications for the
field theoretic quantities that we are able to extract as responses to varying the
background sources since imposing conditions on the background also constrains
the allowed variations of the sources. In other words, when we impose that the
background is such that the intrinsic torsion vanishes, the variations we are allowed
to make must preserve this condition and so are no longer arbitrary (see [60] for a
similar discussion in the context of Newton-Cartan geometry). For example, if 7,
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is exact so that 7, = 0,7 for some scalar field T', then 67, must be exact as well,
07, = 0,0T. This means that we only have access to the divergence of the energy
current (which is proportional to the variation of T) when we assume the torsion to
be zero.

Below we will put the complex scalar field theory on an arbitrary Aristotelian
geometry with general intrinsic torsion. For the case of the scalar charge gauge
theory we will restrict ourselves to the case of vanishing intrinsic torsion.

6 Coupling the scalar fields to curved spacetime

We will illustrate the method of coupling the complex scalar theories of Section 2 to
an arbitrary Aristotelian geometry for one specific model. The other theories can be
coupled in a similar fashion.

The particular Lagrangian of a scalar field theory with global dipole symmetry
that we will consider is

L =3 —m? |0 — \(0;00;® — 90,0;0)(0;9*0,d* — *9,0,8*), (6.1)

where ® is a complex scalar of mass m and A is a coupling constant. This Lagrangian
is invariant under the global transformation

® — elletfiag (6.2)

where « is the parameter of a global U(1) transformation, while f; is the parameter
of the dipole transformation. Following the Noether procedure of Section 2.7 we can
gauge this symmetry with the help of A;; and ¢. To this end we define

Xij = azCI)aJCI) — @828]@ + ZAU(I)Z ) (63)

which transforms as X;; — e*AX;; under the gauge transformation (4.3), in which
case the gauge invariant Lagrangian reads

L= (0D — i¢p®)(0,* + ip®*) — m? |D|* — AX;; X}, . (6.4)
The curved space generalisation of the Lagrangian above is
Locaer = ¢ | (070,® + i6®) (10,0" — ip@") — m? |0 = M h7 %, %7, ], (6.5)

where

Xy = P0 B3 (0,90, — OV ,0,®) +iA,, 0, (6.6)
in which V, is covariant with respect to the Aristotelian connection (5.17) and where

the spatial projector P? is defined by

PP = h#Ph, = 6" 4+ vPT, . (6.7)
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The symmetric gauge field A, is defined to be purely spatial, i.e., we demand that

VA, =0. (6.8)
The Lagrangian (6.5) is gauge invariant under the curved space generalisation of the
gauge transformations (2.63):

8¢ = —v"O,N,  OAu = PLPIV,0,A. (6.9)

(™ v

The transformation of the matter field ® is unchanged, i.e., 0® = iAD.

As we will see in the next section and as was discussed in [31] there are restrictions
on the background geometry when coupling the scalar charge gauge theory to a
curved Aristotelian geometry. However, we see here that there are no constraints
on the kind of the Aristotelian backgrounds we can couple the scalar theory to. In
other words, if we are happy to consider the gauge fields ¢ and A, as background
fields, we can put the fracton field theory on any Aristotelian background we like.
As per the discussion in Section 5.3 we can obtain both the energy current and the
momentum-stress tensor by varying the background geometry in (6.5) and similar
Lagrangians for other complex scalar models.

For m = 0, we can generalise (6.5) to be invariant under the following (anisotropic)
Weyl transformations

o1, = 201, Ohy, = 2Qhy, 0P = —DgOP (6.10a)
0p = —20¢ 0A,, =0, (6.10b)

where z = (d+4)/3 and Dy = —(d—2)/3. Note that in d = 2 dimensions z = d = 2
and Dg = 0. In this case the action whose Lagrangian is (6.5) is anisotropic Weyl
invariant. For d = 3 we need to add curvature terms (non-minimal couplings) to
make the theory anisotropic Weyl invariant. First of all we notice that for m = 0 we
have

0 Lscatar = —Dpev”d, (PP*) 18,0 — DA™ b (92 X,,V,0,Q + ©* X V,0,9) .

(6.11)
We have the following useful results
doK,, = (2 — 2)QK,, — h,v°0,Q (6.12a)
6ol = —20°1,0,00 — h*7 hye T, 0 0\
+ WP (ha 0,2 + B0, — h,06Q) (6.12b)
S8R0 = =V 010, + V017, + 2T, 1614, (6.12c)
Rh7P 6o R oy = —h*h7P ((d — 2)V (,00) Q2 + hueh YV ,0,Q) . (6.12d)
Hence for d = 3 we have
1
hHhoPSq (R(W) — Z—lhwh”‘ﬁRaﬂ) = —h'R7PN (, 002 (6.13)
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If we define X, for d = 3 (so that Dy = —1/3) as

~ 5 1 1 N

Xoo = Xpo — gqﬂpyp(f (R(M,) = 2P ﬁRw) (6.14)
then X,, transforms homogeneously under € (i.e., without derivatives).

Using furthermore that
D
v, H — 7¢’K<I> : (6.15)

where K is the trace of K, scales homogeneously under {2 we can write down the
following anisotropic Weyl invariant theory in d = 3 dimensions

1 1 L
Lscatar = € Kv”éu@ +i9p® + §K<I>> (U%@* — D" + §Kc1>*> — AWRPIXE X,

(6.16)
If we compute the energy-momentum tensor of this theory it will obey the z-deformed
traceless condition (5.31).

Referring back to equation (2.15) and the discussion of improvements of the
Noether energy-momentum tensor, it is this result, the Weyl invariant coupling to
an arbitrary Aristotelian space, that guarantees the existence of ©#,, the improved
energy-momentum tensor used in equation (2.15).

If we consider the complex scalar field theory on a fixed curved background we
can ask if it still has a global dipole symmetry. This will be the case provided that
we can set both the gauge fields and their transformations (6.9) to zero. In other
words, the scalar field theory whose Lagrangian on a curved spacetime is given by
(6.5) in which we set ¢ =0 = A, admits a global symmetry of the form 6® = iAP
provided A obeys the conditions

POA=0,  PLPIV,0,A=0. (6.17)

7 Scalar charge gauge theories on Aristotelian geometry

We will now couple the scalar charge gauge theory to curved Aristotelian spacetime.
Unlike for the case of the complex scalar fields, the coupling of the scalar charge
gauge theory to curved spacetime is less straightforward. Perhaps the analogy with
partially massless gravitons makes this somewhat less surprising. The coupling of
the scalar charge theory to curved space (but not spacetime) has previously been
considered in [31]. To facilitate comparison, we begin by coupling the scalar gauge
theory to a gauge fixed torsion-free Aristotelian background that admits a timelike
foliation whose leaves are Riemannian. We recover previous results that the spatial
geometry must be Einstein, and we show how both the traceful and the traceless
scalar charge gauge theory can be coupled to curved space. We furthermore show
that the Einstein condition can be implemented using a Lagrange multiplier. We
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then generalise this coupling to Aristotelian spacetime, which requires a covariant
formalism that we develop.

7.1 Coupling the scalar charge gauge theory to curved space

In order to get started we will first look at a special class of torsion-free Aris-
totelian geometries for which the Riemannian geometry on constant time slices is
time-independent. We will partially gauge fix the (d + 1)-dimensional diffeomor-
phism invariance so that 7 = dt and h,,dz"dz” = hijdxidxj with 0;h;; = 0. In
other words we consider the simpler problem of curving up the geometry on constant
t slices. This is a d-dimensional Riemannian geometry, and we denote by D, the
Levi-Civita connection of this geometry.

7.1.1 The magnetic sector

In this subsection we only consider the magnetic part of the Lagrangian, i.e., the
curved generalisation of

h h
Linag = _Zle’ijz’jk - EQFiijikk- (7.1)
Let us define Fjj;;, to be
Fijk = DiAj — Dj A , (7.2)

and the gauge transformation to be

Note that the right-hand side is symmetric in (i) since we are using the Levi-Civita
connection. The object Fj;, is covariant under d-dimensional general coordinate
transformations of the form x* — 2/* = 2’*(z) but is no longer invariant under the A
gauge transformations. Instead we now find that

SaFye = D;D; Dy — D;D; D\ = Rij' DiA . (7.4)

One way to possibly deal with this is to introduce a new gauge field A; that
transforms as dA4; = 9;A and then to define

Fiji = DiAji — Dj Ay — Riji' Ay = Fyjp, — Rijil Ay (7.5)

However, we will show in appendix A that this procedure leads to a Stiickelberging of
the dipole symmetry in that A;; now always appears in the combination A;; — D Aj.
This includes the matter sector where the presence of the A; leads to a standard
minimal coupling of the complex scalar to (¢, A;) and where the coupling to A;; is
replaced by a coupling to A;; — D(;Aj). However, the field A;; — D;Aj) is not a gauge
field and so its presence does not correspond to any genuine gauge invariance. This
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procedure therefore does away with the need to introduce A;; in the first place and
is therefore unwanted.

Here we will show that for a specific relation between h; and hs the Lagrangian
can be coupled to a curved geometry without invoking A; provided the metric on the
constant time slices is Einstein, thus reproducing a result found in [31]. The curved
generalisation of the magnetic part of the Lagrangian is

hy . hy . . .
Lonag = —Vh (Zlhjmh’m + ghﬂkhmn) W' E g F (7.6)
where Fjj is as in (7.2) and where h = det h;;. The gauge variation of the Lagrangian
is

hq . . . .
OpLmag = —Vh <71h]mh’“” + thth“@”> P Rijka Fimn O A . (7.7)

For d = 3 the Riemann tensor can be written as

R

Rijii = hi Ry — hjp Ry + hjRi — ha Ry, — 3 (hirhji — hjihi) (7.8)
In this case the variation can be written as
mn ! R 1
0Lomag = VI ((h1 + hy)h (R o — §5a)
hi + 2h
+hy (Rm" — ?hmn) St + %Rhmn(sg 0\ . (7.9)

Hence, in order to have invariance in d = 3 we need to assume that the Ricci tensor
is pure trace, i.e., ;; = %hij and furthermore we need to take hy = —hy/2. This is
precisely the value for which the magnetic part is independent of the trace of A;;.

In fact we can generalise this result to general dimension d. The Riemann tensor
for a d-dimensional Einstein manifold is given by

R

Rijr = m

(hirhji — hahgk) - (7.10)

If we substitute this into equation (7.7) we find that the Lagrangian is invariant if we

take hy = —(d — 1)hg, which is the same condition we met in (4.66) in the traceless
theory.
Consider again the case d = 3 with hy = —h;/2. In this case the variation of the

magnetic part of the Lagrangian is

0 Loy = Vhhy (Rm" - ?hmn) (7.11)

1 .. 1 .. . 1 .
x <thﬂFmij@nA 11 FrigOn - W Fy A = Shonn hleiklajA) ,
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where the second parenthesis has been made symmetric and traceless in m and n.
We can make L,,, gauge invariant by adding a Lagrange multiplier term

R
Lo = Vhhy (Rmn — ghmn> Xy s (7.12)
where X,,,, is a traceless symmetric Lagrange multiplier that transforms as
1. .. 1. .. . 1 .
(SAan = — (Z—th]meanA + ZhUFm]’amA + h”Fl(mn)ﬁjA — éhmnhljhklﬂkl@j/&) .
(7.13)
In higher dimensions, the Riemann tensor is no longer determined in terms of the
Ricci tensor, and we generically expect that a similar procedure would involve a
Lagrange multipler with four indices, i.e., Xjj.

7.1.2 The electric sector

We next consider the electric sector. For the moment we still restrict ourselves to
geometries of the form 7 = dt and hy, dztdz” = h;jdx'da? with Oph;; = 0. On such
a geometry the Lagrangian of the electric sector of the scalar charge gauge theory is
given by

1 ., . go .
Leec =Vh (—hzkhﬂF,F — ——=—— (W Fy; 2) : 7.14
1 S Fog P = — 2 (1) (7.19)
where we defined
Fyij = Aij — D;0;¢, (7.15)
which, unlike Fjj, is invariant under gauge transformations
0Fpij = 0. (7.16)

It is thus straightforward to put the electric theory on the curved space described by
T = dt and hy,dztde” = hyda'da?. We stress that we did not need to impose any
condition on g; and gy, like we had to do for h; and hy in the case of the magnetic
sector.

7.1.3 Summary of coupling to curved space

Combining all of the above we obtain the following scalar charge gauge theory in
d + 1 spacetime dimensions and on Aristotelian geometry with absolute time and
time-independent Riemann geometries on the leaves of the foliation,

| go .
L= Vh|=—h*h"Fy Foy — —————(h" Fy;)?
{291 o Fon =+ dgy o)
1 . 1 . ,
_ pimypkn jkpmn le” F ) 1

The magnetic and electric field strengths, respectively, are defined in (7.2) and (7.15),
while the background geometry is subject to the Einstein-like condition (7.10). In
particular, the theory (7.17) is not traceless in the sense of (4.56) since the electric
part depends on the trace of A;;.
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7.1.4 The traceless scalar charge gauge theory on curved space

To end our considerations of scalar charge gauge theories on curved space, let us
explicitly demonstrate how the traceless scalar charge gauge theory couples to curved
space, thereby reproducing the results of [31]. The gauge transformations of the
gauge fields of the traceless theory are

éhijpm and  dp=A, (7.18)

where D?A = b D;D;A. The electric and magnetic field strengths are given by

5Az’j = DZDJA —

- . 1 .
Foij = Ay — DD — E(h“Akl — D?*9) (7.19)

The electric field strength is invariant under (7.18), while the magnetic field strength
transforms as

2
O = Rige! DI\ + Shigi0; (D), (7.21)

which is the straightforward generalisation of (4.65). It is easy to verify that the
theory is gauge invariant on backgrounds that satisfy the relation (7.10).

7.2 Coupling the scalar charge gauge theory to curved spacetime

In this section, we couple the scalar charge gauge theory to any torsion-free Aris-
totelian spacetime. This means that we generalise the previous result by allowing
for time-dependent h;; and that we furthermore add a shift vector N* as in (5.19).
We will however refrain from using the ADM parametrisation here and instead use
a spacetime covariant notation.
We generalise the symmetric tensor gauge field A;; by replacing A;; — A,
satisfying
vrA, =0 and Ay = 0. (7.22)

The absence of torsion implies that the gauge transformation of the symmetric tensor

gauge field can be written as'!

0Au = PIPIV 05\, (7.23)
which preserves (7.22), while the scalar ¢ transforms as

56 = —v"9,A . (7.24)

HUTf we drop the assumption of a torsion-free background, we must explicitly symmetrise the
projectors since V,0,A is no longer symmetric, i.e.,

— PP po
0 A = Pl PV ,0,A.
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We replace the field strengths Fy;; and Fjj, by the following quantity
Frpy =V, Ay =V, Ay — 2P,V V6.
By construction, this field strength satisfies
v F,,,=0,
and transforms under (7.23) as

0F ), = Ru," 0,

(7.25)

(7.26)

(7.27)

Furthermore, by explicitly writing out the definition of the field strength, we see that

3F[WP]:FW0+FPW+FVW:07

(7.28)

which, together with the fact that F),,, is antisymmetric in its first two indices,

implies that the field strength is hook symmetric.
The electric part of the field strength is

— VFRRRAE,,, = —hRhP (MY, AL, + V,0,0)
which transforms as
o (—v”h”“h"’\FWp) = —v"R""hP R " O\ .
The magnetic part of the field strength is
h“"h”’“h’”\FWp = hHIBYRRPA (VA =V, AL,
which transforms as
) (h“"h”“h”’\FWp) = h“”h”"‘h”ARWpaaaA.
7.2.1 The magnetic sector

The Lagrangian with the condition (4.66) already implemented is

1 1
T ey iy Y e p— L) L Y 2
L g €eny ( 4 + Z(d— 1) ) pvplok

and the variation is now

1 1
6 Lonag = €hy (——h“hp"‘ + —h”ph“) P R FyrnOa .

2 d—1

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

One version of the Einstein condition that generalises the condition (7.10) to Aris-

totelian spacetime is
R
d(d—1)

[
Ryw,p” =

(hup P = B hu)

— 53 —

(7.35)



where the (spatial) Ricci scalar is given by
R* = W"R,,.", (7.36)
and where the identity 0 = [V, V, |7, = R,,,,°7, implies that
Ry = Rup” = Rup’ Py . (7.37)

The variation of the magnetic Lagrangian under gauge transformations is

1 1
0 Lmag = €hy <—§h”*hfm + mh”W“) R Ry PP F 508 (7.38)

and vanishes if (7.35) holds.

This is not, however, the most general condition under which the magnetic sector
is gauge invariant: we can, for example, add an additional piece that is both consis-
tent with the symmetries of the Riemann tensor and which satisfies 0 = R,,,,,7 7,:

RS
d(d—1)

g __
Ry’ =

(hup Py — Pl hy,) + 2f 77,5 (7.39)
where f is an arbitrary function that does not contribute to the Ricci tensor.

7.2.2 The electric sector

The Lagrangian of the electric sector is now

1 g2
Loe = ¢ [ ——hPh7™ — —hww) U FypoFore, (740
1 (291 91(g1 + dgs) npo A (740)

and its variation is

1 2
5£elec —e <_hp)\hcm o g2

—h”"h”’") V'Y F o Ryae O\ 7.41
g1 g1(g1 + dgo) npo A ( )

and thus the electric sector is also gauge invariant if (7.35) holds, since (7.30) vanishes
when the Riemann tensor is purely spatial.

Note also that if we instead assume the more general “Einstein condition” of
(7.39), the variation reads

1 2
0Lolec = —€ (—thm - %hﬂ%“) VP E o P T Oa\ = 0, (7.42)
g1 g1l g2

which also vanishes.
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7.2.3 Summary of coupling to curved spacetime

The combined Lagrangian that describes the full theory is given by
L= Eelec + £mag

1 g2
— S, V) L ep— E— Y S L S A 7.43
e[ <291 g1(g1 + dgo) )U o e fn (7:43)

1 1

+hy (== BARPE 4 WA ) B F L Foa | -
! ( 4 2(d—1) ppT o

The background must now satisfy the condition (7.35), which can again be imposed

using an appropriate Lagrange multiplier as in (7.12). In contradistinction to what

we found when coupling to curved space only, for curved spacetime also the electric

sector restricts the coupling to spacetimes which satisfy the Einstein condition (7.35).

8 Discussion and outlook

In this paper we have shown how to couple fractonic theories to curved spacetime.
This spacetime is not the familiar one of Lorentzian geometry, rather, it is an Aris-
totelian geometry described not by a metric but in terms of an Aristotelian structure
consisting of 7, and h,, as discussed in Section 5. We have shown how to couple
the complex scalar theory with dipole symmetry to an arbitrary curved background,
which, to the best of our knowledge, has been an open problem in the theoretical de-
scription of fractons. Additionally we presented how the scalar charge gauge theory
couples to Aristotelian spacetime, generalising previous results in the literature where
the coupling to curved space was considered [31]. We recover previous results that
the background must satisfy an Einstein-like condition (7.39), which we implement
by using a Lagrange multiplier. However, we have shown that it is not necessary for
the scalar charge gauge theory to be traceless to couple to curved spacetime, as long
as the coefficients in the Lagrangian satisfy the condition (4.66).

Along the way, we have derived new results for the complex scalar theory with
dipole symmetry that describes fracton matter. In particular, we have found a no-go
theorem that tells us that such a theory cannot simultaneously enjoy linearly realised
dipole symmetry, contain spatial derivatives, and be Gaussian. The case with linearly
realised dipole symmetry that is also Gaussian thus contains no spatial derivatives,
and we have shown that this an example of a Carrollian theory. Conversely, if the
theory is Gaussian and has spatial derivatives, the dipole symmetry is non-linearly
realised and the theory becomes a special case of a Lifshitz theory with polynomial
shift symmetry. We have gauged the dipole symmetry using the Noether procedure,
and the dynamics of the resulting symmetric tensor gauge field is described by scalar
charge gauge theory, for which we have provided a Faddeev-Jackiw analysis and
elucidated the gauge structure using generalised differentials.
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This opens up a number of interesting avenues for further research, some of which
we list below.

Vector charge gauge theory There exist other interesting rank 2 symmetric gauge
theories, one of them is the “vector charge theory” [21]. It is governed by gauge
transformations of the form A;; — A;; +29,;A;) with the corresponding vector-
flavoured generalised Gauss law 9;E% = p’ and leads to mobility restrictions
of a another kind and gives rise to one-dimensional particles that move on a
line (lineons). Many of the results and tools of this work should generalise to
this case.

Fracton hydrodynamics The theory of fracton hydrodynamics has been consid-
ered in, e.g., [61-65]. As we have shown in this work, fractons couple to Aris-
totelian geometry. In [34], the theory of boost-agnostic fluids was coupled to
Aristotelian geometry, and it would be very interesting to include dipole sym-
metry in the approach of [34] and thus develop a theory of fracton hydrody-
namics on curved space. As demonstrated in that paper, this would allow us to
use the technology of hydrostatic partition functions to extract hydrodynamic
information.

Carroll theories As mentioned in Section 2.4 the free (or Gaussian) uncoupled
matter theory has Carrollian symmetry and the quanta are rather unconven-
tional Carrollian particles. Even though the non-Gaussian and Aristotelian
fractonic theories do not inherit these enhanced symmetries it is tempting to
ask if we can gain further insights into the physics of fractons by perturbing
around the Carrollian theories (see also [37, Appendix AJ).'?

Charge—Dipole symmetries and their spacetimes Much of the fascinating frac-
tonic physics emerged by generalising beyond the usual symmetries (see, e.g., [13]).
For the prototypical charge and dipole symmetries, i.e., the first two lines
in (2.59), this could mean to classify all Lie algebras and their spacetimes with
s0(d) rotations, two vectors, and two scalars. A classification in this direction

which also uncovers further coincidental isomorphisms will be given in a future
work [74].

Gauge structure and asymptotic symmetries Since the scalar charge theory
is a gauge theory the question of conserved charges is intimately related to
asymptotic charges and symmetries. Indeed, in Section 4.2 a first step in this
direction is taken when we recover the charge and dipole charge using a Regge—
Teitelboim type [45, 46] analysis. A more elaborate analysis of the asymptotic

12Curiously this resonates with early ideas of perturbations around Carrollian (“zero signature”)
geometries [66—-68]. See also, e.g., [69-73] for more recent interesting works on Carrollian geometry.
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symmetries might be interesting, especially since boosts, that often complicate
the analysis for the Lorentzian theories, are absent. For this reason we find it
reasonable to expect an enhanced asymptotic symmetry algebra.

Higher spins As emphasised repeatedly, see, e.g., [5, 21, 43] a generalisation to
higher spins might be an interesting endeavor. Especially since many of the
no-go results, as nicely summarised in [75], fail due to the non-Lorentzian sym-
metries and, what is possibly even more relevant, the absence of asymptotic
momentum eigenstates for isolated particles (which helps to circumvent, e.g.,
the Weinberg—Witten theorem [76]). Higher spin symmetries are also closely
tied to gauge symmetries and our elaborations in Section 4.2 uncover the inter-
esting place at which the gauge structure of this fractonic theory sits, see (4.27).
This might present a starting point for generalisations to higher rank and dual
representations (see for instance [44]).

Partially massless fractons In Section 4.8 we have highlighted similarities be-
tween the scalar charge theory and partially massless gravitons. It might be
interesting to understand if there is more to it and if one can formulate a non-
linear theory of “partially massless fractons” (of possibly even higher spin [77—
82]).
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A Stickelberging the dipole symmetry

Consider equation (7.5). We introduce a new gauge field A; which transforms as
0A; = 0;\ and we use this to build the gauge invariant field strength

Fiji = DiAje — Dj Ay — Rijp' Ay = Fyj, — Riji' A, . (A1)
We can write

Fiji = DiAju — Dj Ay — Rijp' Ay = D; (Aji — DjA) — Dj (A — D;Ay)

1 1
where Fj; = 0;A; — 0;A;. Note that the combination
Aj = Ajp — DAy (A.3)

is gauge invariant, so one way of thinking about A; is as a Stiickelberg field that
removes the symmetric tensor gauge symmetry from the theory as we can now per-
form a field redefinition from A;; to fljk and in this new theory the magnetic sector
is a gauge theory for A; that contains a symmetric rank 2 tensor field fljk which is
not a gauge field. Furthermore, the electric field strength of the next section can be
written as

A 1
FOij == Aij - §ao.FZ‘j + Dz (80Aj - jgb) y (A4)

which contains the electric field strength dyA; — 0;¢, Fj; and the non-gauge field Am
Using the identity

0,00;,® — ®D;0;® + D> A;; = D;®D;® — DDy ® + id* Ay, (A.5)

we see that also in the matter sector we can formulate things in terms of the non-gauge
field AZ] Here the covariant derivatives D; contains A; (as well as the Levi-Civita
connection). We see that introducing the A; field amounts to Stiickelberging the
dipole gauge symmetry as there is now no longer an A;; gauge field, and hence this
is the same as saying that there is no dipole gauge symmetry. So this is a non-
solution to the problem of putting the theory on curved space. In order to recover
dipole gauge symmetry on curved space one would have to reinstate the X; gauge
symmetry but that is equivalent to setting A; = 0 with A;; transforming as usual,
which brings us back to square one.

B Electrodynamics

The purpose of this of appendix is mainly pedagogical. We will illustrate some of
the concepts and ideas of the main text in the simpler and more familiar setting of
electrodynamics.
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B.1 The gauge sector

We start by defining the gauge potential A; ~ [i] and its canonical conjugate 7* with
the equal-time Poisson bracket

{Ai(w), 7 ()} = 6]o(z —y). (B.1)

The indices 7, j run from 1 to d, the spatial dimensions.
The gauge transformations are given by

OrA; = O;A oAt =0 (B.2)
where A = A(t,z) ~ ®. They are generated by the gauge generator
GIA] = / e [—A 0,7 + Bi(Ar)] . (B.3)
Using the differential we can write pure gauge potentials as
(dN); = O\ . (B.4)

Since the discussion of the gauge sector follows mutatis mutandis from Section
4.2 we will be brief. Let us emphasise that this discussion is restricted to spatial slices,
but generalises to spacetimes for Poincaré invariant electrodynamics. We define the
gauge invariant “curvature” or “magnetic field”

Fyj = (dA)y; = 20345 ~ ] (B.5)

where the Young tableaux represents the antisymmetry of the indices. The curvature
vanishes when the potential is pure gauge

F; =20,0;,A=0 (& d°A=0). (B.6)

Conversely, a vanishing curvature implies that the potential is pure gauge, i.e.,
F =dA =0 = A = dA, this shows that the curvatures fully capture the gauge
symmetries. The derivative of the antisymmetric tensors is given by

(dT)iji, = 0Ty - (B.7)

The final class of tensors we want to introduce are totally antisymmetric tensors
Tjijk) = Tijr which have the following Young tableaux

Tijk ~ - (B.8)
The differential Bianchi identity follows
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and conversely 01 = 0 implies that T} is the curvature of a potential. Explicitly
8[Z-Tjk] =0 = T;jk = 28[iAj] (<=> dll'=0=T=F = dA) . (B.lO)

In summary, we have shown that there exists an exact sequence that we can schemat-
ically depict as

- 40-5H-5H (B.11)

For the Hamiltonian density we demand rotational invariance and gauge invari-
ant (basically so that the constraints fulfill a first-class system). To lowest order in
derivatives of the gauge invariant quantities this leads to

. ho .
H= gﬂjﬂ-i_}'ZF”F’ij- (Bl?)

In principle the parameters g and h are free and could in principle be set to zero, in
contradistinction to the Poincaré invariant theory. We can then write the Hamilto-
nian action

L[A;, 7t ¢ = m' Ay — H + ¢pdym* — O;(¢r) (B.13a)
= 7'(A; — 9;0) — H (B.13b)

where we have introduced the Lagrange multiplier ¢ which enforces the constraint.
This theory has d — 1 degrees of freedom in d spatial dimensions. The variation is

given by
0L = (~#' + hoWF* + J) 6A; + (A; — gmi — 0i0) or
+ (07" + J°) 8¢ + 9p0° + 0,0 (B.14)
where
0" =n'§ A; 0" = 7'6¢ — hF 5 A, (B.15)
We have to add
oAp = Do\ (B.16)

to the gauge symmetries (B.2) to show that the action is gauge invariant
WL =0. (B.17)

Solving the equations of motion for 7 and substituting it into the action leads to the
“covariant form” of the action

1, . . . h ..
LA 0] = 5 (A= 00) (A = 0'0) — FVE, (8.15)
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The fact that we do not write the first term in the usual Poincaré covariant form
—%F Ui FY; is a manifestation of the Aristotelian structure, where we have no natural
nondegenerate Lorentzian metric that would allow for these index manipulations.

Another perspective is to consider emergent low energy U(1) gauge theories.
In general they are determined by Aristotelian geometry however there might be
emergent Lorentz invariance and a “speed of light” determined by some microscopic
Hamiltonian. In that case, like for, e.g., some U(1) spin liquids, there would then be
a natural nondegenerate Lorentzian metric.

B.2 3+ 1 dimensions

In three spatial dimensions we can use the epsilon tensor to define the magnetic field
as B! = €9%9; Ay = 1¢F Fy;,, which we can use to write the generic term Hamiltonian
(B.12) as H = 3 (g7'm; + hB'B;). However in 3+ 1 dimensions there is the option to
add another term to the Hamiltonian

H =07'B,;. (B.19)

We will now show that this term is closely related to the usual 6 term of the Witten
effect. We start by adding the term to the generic Hamiltonian and complete the

square
H = H W = - (\/— iy f Bi>2+ (h 92) B'B (B.20)
2 NG g
Next we change coordinates according to
) .
Qi = A; P'=7'+ —-B'[A] (B.21)
9

where the square brackets indicate that this is the magnetic tensor of A;. This is a
canonical transformation as can be seen from

where the new Hamiltonian is given by
1 i 62 ;
K=gl9Pbi+{h- 7 B'Q]B;|Q)] (B.23)

and the boundary term or “generating function” F'is
' =Q,B' F' = é5Q,Qp — 208" . (B.24)

This means that the addition of the # term to the Hamiltonian leads, after a canonical
transformation, to an shift in the coupling constants of the B2 term plus a boundary
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term. This means the equations of motion stay unaltered (up to the shift). However,
the addition of the boundary term has nontrivial effects for the charges and quantum
mechanics [83].13

For 2+ 1 dimensions there is the possibility to add an €;; F"/ term to the Hamil-
tonian, which is a boundary term that leaves the EOM unaffected.

C Field redefinitions for cases 2 and 3

In this appendix, we show that the two remaining cases of Section 4.6 do not lead
to new theories, starting with

Case 2: When ¢; # —1/d and ¢; = —1/d, the gauge transformation again takes the
form (4.64), which implies that we cannot construct a gauge invariant field strength
by augmenting Fj;; by adding a suitable term involving A;;. With the Hamiltonian
(4.30), gauge invariance again imposes the condition (4.66). The gauge invariant
electric field strength is the same as in case 1 and thus given by (4.67). The La-
grangian in this case, obtained by integrating out E;; from (4.57), therefore takes
the form

1 -
Lo]A;j, o] = 2_glF0ijFOij +

(dCl + 1)2
2d(g1 + dg2)

. h h
(Ai)? — —1F¢ijijk +

1
] F.. Fy,.

2(d—1) W77
(C.1)

and is not independent of the trace A;; due to the second term in the above expression
for L5, in contrast to the traceless theory we considered above in case 1. In deriving
this result, we have assumed that g; + dgs # 0. The trace A;; is gauge invariant and
hence it is like adding a scalar field to the theory of case 1. We thus conclude that
this case does not lead to an interesting deformation of the scalar gauge theory and
we will not consider it any further.

Case 3: When ¢, ¢y # —1/d the trace A;; is no longer gauge invariant, which can
be used to construct a gauge invariant magnetic field strength invariant
Co— (O

1+ dCQ ’

Fyjr = 20, Ak + 2040, Ay (C.2)
which is gauge invariant under (4.63). The Hamiltonian is again given by (4.30)
written in terms of the field strength above, and there is no longer any constraint on
the parameters go and ho in contrast to cases 1 and 2. The gauge invariant electric
field strength now reads

FOij = AZ] — 00,0 + Cl5ijAkk - 025ij32¢- (C.3)

13To make this more obvious we can write 9y F°+0; F* = ZBi(Qi —0;¢) = 1/4e"P? F,,,, F,,, where
the last equality sign uses a lorentzian metric.
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By integrating out the electric field from (4.57), we see that the Lagrangian in this
case is given by

I - n g2 - 2 hl - - h2 AoF
C[Asy, 6] = 5 FoigFoig — 52— (Fou)? — 2 FoFige — 2 Fygi P (C4
3[ J¢] 201 025 +°0ij 2g1(g1+dgg)( 0 ) 4 gk ik 9 I kk ( )
As in case 2, we have assumed that g; + dgs # 0.
The case ¢; = ¢o # —1/d has the same gauge transformations as used in the
previous sections. In this case the magnetic field strength ﬁ’ijk is the same as in the

undeformed case Fjj; while the electric field strength can be written as

ij = Foij + 10 Fors (C.5)
where Fp;; is the electric field strength of the undeformed theory. In this case the
Lagrangian L3 becomes

1 (1+d01)2 1

sl i, 9] 29, ¥ 0+ 2d(g1 + dg2)  2dgy

h h
(Fois)® = = FipnFigr — = FigFinr

4 2
(C.6)

This theory is not essentially different from the undeformed theory (4.43b) studied
in the previous sections. It is simply related by a redefinition of the parameter gs.
Alternatively, we can start with go = 0 and generate its presence by deforming the
Poisson bracket and Gauss constraint with ¢; = ¢y # —1/d.

Finally, we show that the case ¢; # ¢y and both different from —1/d does not
lead to a new theory either. To see this define

M C1 — Co

which transforms as

Note that the gauge transformation of the Lagrange multiplier ¢ remains unchanged.
In terms of this redefined gauge field, which transforms in the same way as the
original, we can write the invariant magnetic field strength as

while the electric field strength becomes

Fﬂij = /1” — 0,0;0 + 205 (Akk — %) (C.10a)
= Fl)z'j + 025ijF0k:k y (C.10b)

which is the same as (C.5) but with ¢; replaced with ¢y, allowing us to conclude that
this is also the same theory as the undeformed theory (4.43b).
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