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Abstract1

The dynamical correlations of nonlocal operators in general quadratic open2

fermion systems is still a challenging problem. Here we tackle this problem by3

developing a new formulation of open fermion many-body systems, namely, the4

characteristic function approach. Illustrating the technique, we analyze a fi-5

nite Kitaev chain with boundary dissipation and consider anyon-type nonlocal6

excitations. We give explicit formula for the Green’s functions, demonstrating7

an asymmetric light cone induced by the statistical angle φ and an increasing8

relaxation rate with φ. We also analyze some other types of nonlocal operator9

correlations such as the full counting statistics of the charge number and the10

Loschmidt echo in a quench from the vacuum state. The former shows clear11

signature of a nonequilibrium quantum phase transition, while the later ex-12

hibits cusps at some critical times and hence demonstrates dynamical quantum13

phase transitions.14
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1 Introduction34

The interaction of a quantum system with its environment [1–3] can lead to various dissi-35

pation behaviors and the emergence of new collective phenomena, such as nonequilibrium36

phases and phase transitions driven by dissipation [4–9], universality and dynamic scaling37

behaviors at quantum transitions [10–16]. Understanding and controlling the behavior of38

quantum dissipative systems is also fundamental to the development of quantum-enhanced39

cutting-edge technologies such as quantum computing [17], quantum metrology [18], quan-40

tum state preparation or quantum reservoir engineering [19–28]. Although significant ex-41

perimental advancements have been made in this context [29–32], dissipative quantum42

many-body problems are still quite challenging in theory. Within the so-called Markovian43

approximation, the open systems’ Liouvillian dynamics is described by the Lindblad mas-44

ter equation [33,34] for the time-dependent density matrix. A standard way of analyzing45

the master equation is by means of perturbation methods [35,36]. In addition, some exact46

solutions of the nonequilibrium steady states and the full spectrum of the Liouvillian have47

been obtained in some specific representative cases [37–46].48

One specific instance that has attracted many interests is the open fermionic system-49

s with quadratic Lindbladian [47–57], which can be solved exactly. However, even for50

such simple solvable systems, the dynamics of nonlocal operators is still challenging and51

desires efficient computation methods. Here we use nonlocal operators to refer to those52

operators containing a string operator of the form Ôj = exp[iφ
∑

l≤j ĉ
†
j ĉj ] (or more gen-53

erally, an exponential function of bilinear fermion operators). Such operators appear in54

many important physical problems. For example, string order parameters have been used55

to characterize topological properties of quantum systems [58–61]. They also emerge in56

the studies of the Tonks-Girardeau gas [62, 63], the impenetrable anyons [64, 65], the XY57

Heisenberg chain [66], and the full counting statistics of quantum transport [67, 68]. The58

dynamical correlation functions of nonlocal operators in dissipative systems have not been59

investigated systematically, even in quadratic open systems. It represents a challenging60

and highly nontrivial theoretical problem.61

Motivated by such challenges, here we put forward a new theoretical approach to open62

fermion systems by applying the idea of mappings between the Liouville-Fock space K and63

a Grassmann algebra G, which can map operators to analytic functions of Grassmann vari-64

ables and vice versa. The quantum master equation is transformed to a partial differential65

equation of the characteristic function of the density matrix, and all physical observables66

can be expressed in terms of this function. We name this new approach as characteristic67

function approach since the K-G mappings and the characteristic function are essential68

concepts. This method could be seen as a fermion analogue of the phase-space method69

widely used in quantum optics [69,70].70

Our method, which can be useful for generic open fermion systems, is then applied71

to general quadratic fermion systems with linear Lindblad operators. We give exact so-72

lutions of the master equation, the steady state, the single-particle Green’s function, the73
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dynamical response function, and most importantly, the dynamical correlations of nonlo-74

cal operators. These general results are then applied to the Kitaev chain with boundary75

dissipation [50,71,72]. We obtain the spectrum of the matrix that determines the dissipa-76

tive dynamics of the system, finding an excited state quantum phase transition (ESQPT)77

and its relationship with the nonequilibrium quantum phase transition (NQPT). We also78

compute the Green’s functions of nonlocal excitations, namely, the hard-core anyons with79

statistical angle φ, and find that the propagation of the excitations displays an asymmet-80

ric light-cone for φ 6= 0, π, and the relaxation rate increases with the statistical angle. In81

addition, other types of nonlocal operator correlations such as the full counting statistics82

(FCS) of the charge number in a subsystem and the Loschmidt echo in quench dynamics83

can also be analyzed easily in our new approach and explicit formulas can be obtained.84

The FCS shows clear signature of the NQPT mentioned above, while the Loschmidt e-85

cho rate function exhibits cusps at some critical times in the quench from the vacuum86

state, giving evidence of dynamical quantum phase transitions (DQPT) in this dissipative87

system. These analyses demonstrate the feasibility and powerfulness of the characteristic88

function approach.89

This paper is organized as follows. In Sec.2, we present the general formalism of the90

characteristic function approach and use it to give the exact solutions of various physical91

properties of the open fermion systems with quadratic Lindbladian, with emphasis on the92

dynamical correlations of nonlocal operators. In Sec.3 we analyze the boundary-driven93

Kitaev chain as an example, focusing on the Green’s function of the hard-core anyons, the94

full counting statistics of the charge number in a subsystem, and the Loschmidt echo rate95

in a quench dynamics from the vacuum state. We conclude in Sec.4 with a summary of96

our main results and some discussions.97

2 The characteristic function approach98

2.1 Basic Formalism99

We first develop a new general approach to solve quantum master equations of fermion100

systems. The basic idea is quite simple: the Liouville-Fock space K generated by fermion101

creation and annihilation operators {ĉ†1, ĉ1, . . . , ĉ
†
N , ĉN} and the Grassmann algebra G gen-102

erated by Grassmann variables {ξ̄1, ξ1, · · · , ξ̄N , ξN} have the same dimension 22N and103

hence we can construct one-to-one mappings between these two spaces. In analogy to the104

phase-space functions and characteristic functions widely used in quantum optics [69], we105

define the mapping Θ from K to G as the characteristic function of the operators in K:106

Θ : Â ∈ K → AC(ξ̄, ξ) ≡ Tr[D̂(ξ)Â], (1)

where D̂(ξ) ≡ eĉ
†ξ−ξ̄ĉ is the fermion analogue of the boson displacement operator. In-107

versely, we have108

Ω : AC(ξ̄, ξ) ∈ G → Â =

∫

dξ̄dξ AC(ξ̄, ξ)

[

eiπN̂ + 1

2
D̂†(ξ) +

eiπN̂ − 1

2
D̂(ξ)

]

, (2)

where N̂ =
∑

i ĉ
†
i ĉi is the total fermion number operator. It’s straightforward to prove109

that Θ and Ω are reciprocal linear mappings. To do this, it’s enough to show that for any110
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analytic function f(η̄, η) ∈ G, we have f = Θ[Ω(f)].111

Θ[Ω(f)] =

∫

dᾱdα f(ᾱ, α)Tr
[

eiπN̂ D̂†(α)D̂(η)
]

=

∫

dᾱdα f(ᾱ, α)Tr
[

eiπN̂ D̂(η − α)
]

D(α|η/2)

=

∫

dᾱdα f(ᾱ, α)
∏

k

[(αk − ηk)(ᾱk − η̄k)]D(α|η/2)

= f(η̄, η).

We should note that the parity of the operators in K and the functions in G has significance112

in making these mappings. See Appendix.A for some details and useful formulas.113

Using these mappings we can transform problems in the Liouville-Fock space, for exam-114

ple, the quantum master equation, to problems in the Grassmann algebra, and transform115

back if necessary. The advantage is that for functions in the Grassmann algebra we have116

rich analytic and algebraic tools.117

Now consider an open system of N sites with spinless fermions, whose dynamics is118

described by the quantum Lindblad master equation [33, 34] with Lindbladian L (we set119

h̄ = 1)120

∂tρ = L(ρ) = −i[Ĥ, ρ] +
∑

µ

(

2L̂µρL̂
†
µ − {L̂†

µL̂µ, ρ}
)

(3)

where L̂µ are the so-called Lindblad or jump operators. Although the characteristic func-121

tion approach is a quite general theory for treating open fermion systems, here, for sim-122

plicity and as a starting point, we focus on general quadratic Hamiltonians123

Ĥ =
1

2
(ĉ†, ĉ)H

(

ĉ
ĉ†

)

, (4)

and linear Lindbaldian operators124

L̂µ = L†
µ

(

ĉ
ĉ†

)

, L̂†
µ = (ĉ†, ĉ)Lµ, (5)

where (ĉ†, ĉ) = (ĉ†1, ĉ
†
2, . . . , ĉ

†
N , ĉ1, . . . , ĉN ), Lµ(L

†
µ) are 2N -dimensional column (row) vec-125

tors, while H is a 2N × 2N matrix satisfying the symmetry requirement126

H+ τxH
T τx = 0, (6)

where τx,y,z denote the Pauli matrices in the particle-hole subspace. Although such a127

quadratic Lindbaldian can be solved exactly by various methods [48–56], the computation128

of dynamical correlations of nonlocal operators is still a nontrivial and challenging problem.129

In the characteristic function approach we transform the quantum master equation of the130

density matrix into an equation for its characteristic function F (ξ̄, ξ) ≡ Tr[D̂(ξ)ρ],131

∂tF + (ξ̄, ξ) [iH +X+]

(

∂̄
∂

)

F = −1

2
(ξ̄, ξ)X−

(

ξ
ξ̄

)

F, (7)

where132

X± =
∑

µ

[

LµL
†
µ ± τx(LµL

†
µ)

∗τx

]

, (8)
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and (∂̄, ∂) = (∂/∂ξ̄1, . . . , ∂/∂ξ̄N , ∂/∂ξ1, . . . , ∂/∂ξN ). The solution with initial condition133

F (ξ̄, ξ; t = 0) = F0(ξ̄, ξ) is134

F = F0

[

(ξ̄, ξ)Q(t)
]

exp

[

−1

2
(ξ̄, ξ)M(t)

(

ξ
ξ̄

)]

, (9)

where the arguments of F (ξ̄, ξ; t) have not been written explicitly for brevity, and135

Q(t) = e−(X++iH)t, Q̄(t) = e−(X+−iH)t, M(t) =

∫ t

0
dt′ Q(t′) X− Q̄(t′). (10)

The solution of Eq.(9) is a linear mapping from F0(ξ̄, ξ) to F (ξ̄, ξ; t), which will be denoted136

as F (ξ̄, ξ; t) = Ut[F0(ξ̄, ξ)]. Obviously, F (ξ̄, ξ; t) = Θ[ρ(t)] = Θ[eLt(ρ0)] = Ut[Θ(ρ0)], or137

more generally,138

Θ ⋆ eLt = Ut ⋆Θ, (11)

where ⋆ denotes the composition of two linear mappings.139

2.2 Physical observables140

Now let’s discuss some physical properties of the open fermion system based on the solution141

given by Eq.(9). We remark that the results in this subsection could also be obtained by142

other methods, however, here we briefly present these results to show the completeness of143

our new method.144

(i) The steady state can be obtained by taking the limit t → ∞. If all the eigenvalues145

λα of (X++ iH) have positive real parts, i.e., Reλα > 0, then Q(t) → 0 while M(t) → M∞146

as t → ∞, and the characteristic function approaches to147

F∞ = exp

[

−1

2
(ξ̄, ξ)M∞

(

ξ
ξ̄

)]

. (12)

This is a Gaussian state determined solely by the Hamiltonian and the dissipators, inde-148

pendent of the initial state. On the contrary, if some eigenvalues λα have zero real parts,149

Q(t) may not approach to zero and the system would have no unique steady state.150

(ii) The covariance (or equal-time correlation) matrix can be expressed in terms of the151

characteristic function:152

C ≡
〈(

ĉ
ĉ†

)

(ĉ†, ĉ)

〉

=
1

2
1+

(

∂̄
∂

)

(∂, ∂̄)F (ξ̄, ξ)

∣

∣

∣

∣

0

(13)

where f(ξ̄, ξ)|0 means taking ξ = ξ̄ = 0 at last. For the steady state described by Eq.(12),153

we have154

C∞ =
1

2

(

1+M∞ − τxM
T
∞τx

)

=
1

2
1+M∞. (14)

(iii) The nonequilibrium Green’s functions, which describe the excitations in the steady155

state, can also be expressed in terms of the characteristic function. For example, the156

retarded Green function can be obtained through157

GR(t) ≡ −iθ(t)

〈{(

ĉ(t)
ĉ†(t)

)

, (ĉ†, ĉ)

}〉

s

= −iθ(t)

(

∂̄
∂

)

Ut

[(

ξ̄, ξ
)

Fs(ξ̄, ξ)
]

∣

∣

∣

∣

0

, (15)

where Fs is the characteristic function of the steady state ρs. For the Gaussian state given158

by Eq.(12) the retarded Green function simply reads GR(t) = −iθ(t)Q(t).159
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(iv) Furthermore, the dynamical response function or the density-density correlation160

function can be defined as161

Dij(t) ≡ −iθ(t)〈[n̂i(t), n̂j ]〉, (16)

where n̂j = ĉ†j ĉj . Using the same technique as that for the Green’s functions we can obtain162

its expression in the steady state given by Eq.(12):163

Dij(t) = −iθ(t)
{

[QM∞]ij [Q̄]ji − [Q]ij [M∞Q̄]ji

−[QM∞]i+N,j[Q̄]j,i+N + [Q]i+N,j[M∞Q̄]j,i+N

}

, (17)

where the time dependence of Q(t) and Q̄(t) have not been written explicitly for brevity.164

In the same manner all dynamical correlation functions of local operators can be obtained165

by taking derivatives of the characteristic function, just as in Eq.(15).166

2.3 Dynamical correlations of nonlocal operators167

Now we turn to our main problem: the dynamical correlations of nonlocal operators. We168

would call the exponential of a general bilinear form of fermion creation and annihilation169

operators as Gaussian operators, and denote them as170

Γ̂2(K) ≡ exp

[

1

2
(ĉ†, ĉ)K

(

ĉ
ĉ†

)]

, (18)

where K is a 2N × 2N matrix satisfying K+ τxK
T τx = 0. String operators can be treated171

as a special kind of Gaussian operators.172

We would consider two types of dynamical correlations of nonlocal operators, namely,173

Type-I: Tr
{

Γ̂2(K1)e
Lt

[

Γ̂2(K2)Γ̂2(K0)
]}

, (19)

which is a scalar and174

Type-II: Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

, (20)

which is a 2N × 2N matrix. Note that the Lindbladian superoperators in the above two175

equations are different, and this difference is explained in Appendix.B. We will give explicit176

formulas for these correlation functions. Before that, it’s convenient to define the following177

matrices: B0 ≡
[

1+ eK0
]−1

, W20 ≡ eK2eK0 , W02 ≡ eK0eK2 ,178

B20 ≡
1

2
1+

1

2
Q(t)

1−W20

1+W20
Q̄(t) +M(t),

B02 ≡
1

2
1+

1

2
Q(t)

1−W02

1+W02
Q̄(t) +M(t),

and R20 ≡ B0 + eK2(1 − B0), R02 ≡ B0 + (1 − B0)e
K2 , S20 ≡ B20 + (1 − B20)e

K1 ,179

S02 ≡ B02 + (1−B02)e
K1 .180

Using the three linear mappings Ω,Θ and Ut, we have181

Tr
{

Γ̂2(K1)e
Lt

[

Γ̂2(K2)Γ̂2(K0)
]}

= Tr
{

Γ̂2(K1)Ω ⋆ Ut ⋆Θ
[

Γ̂2(K2)Γ̂2(K0)
]}

.
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Now we compute the three mappings one by one:182

(i). Θ
[

Γ̂2(K2)Γ̂2(K0)
]

=
√

det(1+W20) exp

[

−1

2
(ξ̄, ξ)

1

1 +W20

(

ξ
ξ̄

)]

,

(ii). Ut ⋆Θ
[

Γ̂2(K2)Γ̂2(K0)
]

=
√

det(1+W20) exp

[

−1

2
(ξ̄, ξ)

(

Q(t)
1

1+W20
Q̄(t) +M(t)

)(

ξ
ξ̄

)]

=
√

det(1+W2) exp

[

−1

2
(ξ̄, ξ)B20

(

ξ
ξ̄

)]

,

(iii). Ω ⋆ Ut ⋆Θ
[

Γ̂2(K2)Γ̂2(K0)
]

=
√

det(1+W20)
√

detB20 Γ̂2(KB20
),

where KB20
is defined through B20(1+ eKB20 ) = 1. Note that in (ii) we have changed the183

matrix in the exponential to B20 to satisfy the requirement B20 + τxB
T
20τx = 1. Finally,184

taking the trace gives the result:185

Tr
{

Γ̂2(K1)e
Lt

[

Γ̂2(K2)Γ̂2(K0)
]}

=
√

det(1+W20) det S20. (21)

When t = 0, Q = 1,M = 0, and B20 = [1 + W20]
−1, then we can obtain the static186

correlation function Tr
{

Γ̂2(K1)Γ̂2(K2)Γ̂2(K0)
}

=
√

det [1+ eK1eK2eK0 ].187

Two remarks should be added here. (1) An issue of the determinant formulas is that188

the sign of the square root of the determinant has to be determined. In some simple189

cases the square root of a determinant can be rewritten as a Pfaffian [81]. However, this is190

difficult for general cases, especially for products of several Gaussian operators. In practical191

calculations the sign can be determined as follows. For Z(A) =
√

det[1+ eA], we consider192

Z(λA), which should be an analytic function of λ. This determines the correct way of193

taking the sign of the square root: the sign has to be taken so that Z(λA) is everywhere194

analytic and at λ = 0 one has Z(0) = 2N . (2) Some matrices used in these formulas should195

satisfy certain symmetry requirements, namely, A + τxA
T τx = 0 for A = H,M(t),K0,1,2,196

while A+ τxA
T τx = 1 for A = B0,B20 and B02.197

Now consider the dynamical correlations of nonlocal single-particle operators, which198

takes the type-II form of Eq.(20). Even for quadratic Lindbladian these correlations199

are difficult to compute. Here we use the characteristic function approach to solve this200

problem. The correlation can be rewritten as201

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

= Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
iπN̂eLt

[

eiπN̂ Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

= Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
iπN̂Ω ⋆ Ut ⋆Θ

[

eiπN̂ Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

.

Then we can do the three mappings Ω,Ut and Θ one by one, and make the trace to obtain202

the final result:203

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

=

√

det[R20] det[S20]
√

det[B0]
eK1 [S20]

−1Q(t)B0[R20]
−1eK2 . (22)
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By exchanging K2 and K0, we have another form204

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K0)(ĉ
†, ĉ)Γ̂2(K2)

]

}

=

√

det[R02] det[S02]
√

det[B0]
eK1 [S02]

−1Q(t)[R02]
−1(1 −B0). (23)

We would not give the technical details here since the procedure is lengthy but straight-205

forward. We just give three remarks.206

(i) If K1 = K2 = 0, then R20 = S20 = 1, and the correlations would reduce to that of207

local operators:208

Tr

{(

ĉ
ĉ†

)

eLf t
[

(ĉ†, ĉ)Γ̂2(K0)
]

}

= Q(t)

√

det [1+ eK0 ]

1+ eK0
.

(ii)If t = 0, then Q = 1,M = 0 and B20 = (1 +W20)
−1, and the result would reduce209

to the static correlations:210

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

=

√

det [1+ eK1eK2eK0 ]

1+ eK1eK2eK0
eK1eK2 , (24)

(iii) If we consider the correlations in the steady state given by Eq.(12), we should note211

that the corresponding density matrix is212

ρs =

√

det

(

1

2
1+M∞

)

Γ̂2(K0), (25)

where K0 is determined by
(

1
21+M∞

) (

1+ eK0
)

= 1, and the corresponding B0 =213

1
21+M∞.214

3 Kitaev chain with boundary dissipation215

In this section we take the Kitaev chain with boundary dissipation as an example to216

illustrate the general techniques developed above.217

3.1 The Model and the spectrum218

The Hamiltonian is219

ĤK =

N−1
∑

l=1

[

(Jĉ†l ĉl+1 +∆ĉlĉl+1) + h.c.
]

− µ

N
∑

l=1

ĉ†l ĉl, (26)

which can be rewritten as a bilinear form of Eq.(4). We consider single-particle gain and220

loss dissipators,221

L̂j+ =
√
γj+ ĉ†j , L̂j− =

√
γj− ĉj , (27)

The simplest nontrivial dissipations act only on the first and last site, i.e., γ1± = γN± = γ±222

and all other dissipators vanish. With this setting the model is essentially equivalent to223

the boundary-driven XY spin chain [47–50]. Therefore we can immediately infer that there224

is an NQPT [47] in the ∆-µ space at the critical lines ±µc/J = ±2[1− (∆/J)2]. Namely,225

there is the so called long-range magnetic correlation (LRMC) phase for |µ| < µc and the226

non-LRMC phase for |µ| > µc.227
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Figure 1: The real and imaginary part of the eigenvalues λα of H − iX+. Since the real
part is symmetric about the origin, only the positive half has been shown. The parameters
are chosen as: ∆/J = 0.5, γ−/J = 0.5, γ+/J = 0.2 and N = 64. The dashed lines in the
left plot denote the critical chemical potential ±µc/J = ±2[1− (∆/J)2] = ±1.5. Between
the two dashed lines there is a region where the energy levels have high degeneracy. In
the right plot the lowest black line corresponds to the edge modes with zero real energy.

As seen from the solution of the quadratic Lindbladian, the dynamics is completely228

determined by three matrices: H and X±. In fact, the matrix H − iX+ determines the229

dissipative dynamics and the Liouvillian spectrum. In Fig.1 we plot the real and imaginary230

parts of the eigenvalues λα, α = 1, 2, . . . , 2N of the matrix H − iX+. Two features can231

be observed: (i) There are two degenerate modes with Reλ = 0 when |µ/J | ≤ 2. The232

corresponding left and right eigenvectors are localized at the edges, similar to the Majorana233

zero modes in the closed system. However, in the steady state phase diagram there is no234

corresponding topological phase transition at µ/J = ±2. This is because these edge modes235

do not contribute to the steady state as a result of the particle-hole symmetry of the edge236

modes and the matrix X−. Furthermore, the imaginary part of the eigenvalues of the edge237

modes is negative and has large absolute value. This means that the edge modes decay238

very rapidly in the dissipative dynamics.239

(ii) In the left plot of Fig.1 we also observe that there is a region where the energy levels240

have many crossings. This abrupt change of level degeneracy is a characteristic signature of241

the so-called ESQPT [73]. In fact the level structure is similar to (but different from) that242

of the nonlinear Kerr oscillator where the ESQPT has been investigated systematically in243

a recent paper [74]. In the thermodynamic limit N → ∞ the bulk spectrum is insensitive244

to the boundary dissipation and is given by the spectrum of H,245

Reλ = ±2J

√

(

cos q − µ

2J

)2
+

∆2

J2
sin2 q (28)

with q ∈ (−π, π] (see, e.g., [75,76]). The structure of this dispersion relation qualitatively246

changes as the chemical potential crosses the critical values, ±µc/J = ±2[1 − (∆/J)2].247

These critical values determine phase boundaries of both the ESQPT and the NQPT.248

This coincidence suggests us a close relationship between ESQPT and NQPT: in the weak249

dissipation limit (γ± → 0) a NQPT would correspond to an ESQPT, but not the ground-250

state quantum phase transition. This relationship is an interesting issue that deserves251

further investigations.252
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3.2 The Green’s function253

Now we compute the dynamics of nonlocal excitations, namely, the Green’s functions of254

the hard-core anyons. In one dimension it’s well-known that the hard-core anyons satisfy255

the exchange statistics256

f̂lf̂
†
m + e−iφ sgn(l−m)f̂ †

mf̂l = δlm, f̂lf̂m + eiφ sgn(l−m)f̂mf̂l = 0, (29)

where257

sgn(x) =







1 if x > 0,
0 if x = 0,
−1 if x < 0,

They can be transformed to spinless fermions multiplied by a string operator,258

f̂ †
l ≡ ĉ†l e

iφ
∑

m≤l n̂l , f̂l ≡ e−iφ
∑

m≤l n̂l ĉl. (30)

Our motivation of studying such excitations is twofold. First, if the fermionic Hamiltonian259

is obtained from a hard-core anyon or hard-core boson (Tonks-Girardeau gas or XY spin260

chain) model, correlations of such nonlocal operators would have physical importance in261

the original system. Second, even in this fermion model, string order parameters may be262

useful to characterize topological properties [58–61].263

Here we express the Green’s functions explicitly. For that purpose we define the264

following matrices:265

R
j0
± ≡ B0 + e±iφτzDj (1−B0), R

0j
± ≡ B0 + (1−B0)e

±iφτzDj ,

B
j0
± ≡ 1

2
1+

1

2
Q(t)

1− e±iφτzDjeK0

1+ e±iφτzDjeK0
Q̄(t) +M(t),

B
0j
± ≡ 1

2
1+

1

2
Q(t)

1− eK0e±iφτzDj

1+ eK0e±iφτzDj
Q̄(t) +M(t),

S
j0l
ab ≡ Bj0

a + (1−Bj0
a )ebiφτzDl , S

0jl
ab ≡ B0j

a + (1−B0j
a )ebiφτzDl ,

where a, b = ±, B0 =
1
21+M∞, τzDj means τz ⊗Dj , and Dj is a diagonal N ×N matrix266

with diagonal elements (Dj)mm = 1 if m ≤ j and 0 otherwise.267

First, the greater Green’s function for t > 0 reads268

iG>
lj(t) = 〈f̂l(t)f̂ †

j 〉 = Tr
{

e−iφQ̂l ĉle
Lf t

[

ĉ†je
iφQ̂jρs

]}

= eiφ(j−l)/2
√

detB0Tr
{

ĉlΓ̂2(−iφτzDl)e
Lf t

[

Γ̂2(iφτzDj)ĉ
†
jΓ̂2(K0)

]}

.

Using Eq.(22) and setting K1 = −iφτzDl, K2 = iφτzDj, we obtain269

iG>
lj(t) = eiφ(j−l)/2

√

detRj0
+ det Sj0l+−

{

[

S
j0l
+−

]−1
QB0

[

R
j0
+

]−1
}

lj

. (31)

Similarly we can obtain270

iG>
lj(−t) = eiφ(j−l)/2

√

detR0l
− detS0lj−+

{

[

S
0lj
−+

]−1
Q
[

R0l
−

]−1
(1−B0)

}

N+j,N+l

. (32)

We can prove that they satisfy the relation, iG>
jl(−t) =

[

iG>
lj(t)

]∗

.271
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Figure 2: The real (top panel) and imaginary (bottom panel) part of the greater Green’s
function G>

lj(t) in a chain with N = 65 sites for three different statistical angles φ = 0, π/2
and π. The site j is fixed at the center of the chain, j = 33, and µ/J = 2.0,∆/J =
0.1, γ−/J = 0.1, γ+/J = 0.05.

Second, the lesser Green’s function iG<
lj(t) = 〈f̂ †

j f̂l(t)〉 for t > 0 can be obtained in a272

similar manner:273

iG<
lj(t) = eiφ(j−l)/2

√

detR0j
+ detS0jl+−

{

[

S
0jl
+−

]−1
Q
[

R
0j
+

]−1
(1−B0)

}

lj

, (33)

iG<
lj(−t) = eiφ(j−l)/2

√

detRl0
− det Sl0j−+

{

[

S
l0j
−+

]−1
QB0

[

Rl0
−

]−1
}

N+j,N+l

. (34)

When t = 0, the lesser Green’s function would reduce to the steady-state one-particle274

density matrix, which is studied in Appendix.C.275

In Fig.2 we plot the real and imaginary part the greater Green’s function G>
lj(t) in276

a chain with N = 65 sites for three different statistical angles φ = 0, π/2 and π. The277

site j is fixed at the center of the chain and the figure displays the propagation of the278

excitation in space-time. For φ = 0, i.e., spinless fermions, the propagation shows a clear279

symmetric light cone. However, for 0 < φ < π, the light-cone becomes asymmetric, as280

shown in Fig.2(b) and Fig.2(e) for φ = π/2. This asymmetric propagation is induced by281

the statistical angle. To show this, we label the Green’s function G>
lj(t) with the angle φ.282

Then we have283

G>
lj(t;φ) = G>

l′j′(t;−φ), (35)

where l′(j′) is the site that l is mapped to under reflection about the center of the chain.284

So the light-cones in Fig.2 should be symmetric only for φ = 0, π.285

We also observe that the greater Green’s function decay rapidly for large statistical286

angles. This behavior could be seen clearly in Fig.3, where the local Green’s function287

G>
jj(t) at the center of the chain is plotted as a function of time for φ = 0, π/5, π/2 and π.288

The relaxation rate increases with the statistical angle φ. Physically, the hard-core anyons289

have strong interactions due to the hard-core constraint, leading to scattering processes290

and finite relaxation rate. The boundary dissipation also lead to relaxation of excitations,291

however, it’s weak for the system parameters chosen in Fig.2 and Fig.3.292
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Figure 3: The real and imaginary part of the local greater Green’s function G>
jj(t) at the

center j = 33 in a chain with N = 65 sites for φ = 0, π/5, π/2 and π. The other parameters
are the same as that in Fig.2.

3.3 Full counting statistics of charge number293

The charge number fluctuations in a subsystem is an important quantity in quantum294

many-body systems. It has been demonstrated that fluctuations and the full counting295

statistics (FCS) of charge or other conserved quantities (such as the block magnetization296

in certain spin chains) may contain information about the full entanglement scaling of a297

system split into two parts [77–80]. Here we consider the FCS of the charge distribution298

of a subsystem A in the chain. For this purpose, we define the number operator Q̂A as299

Q̂A =
∑

j∈A ĉ†j ĉj , and a diagonal N ×N matrix DA with diagonal elements300

(DA)ll =

{

1 if j ∈ A,
0 otherwise.

Then eλQ̂A = Γ̂1(λDA) = Γ̂2(λτzDA)e
λTr(DA)/2, which can be taken as a special Gaussian301

operator. Suppose that the initial state is a Gaussian state with the density matrix302

ρ(0) =
e−βĤ0

Tre−βĤ0

, Ĥ0 =
1

2
(ĉ†, ĉ)H0

(

ĉ
ĉ†

)

.

Then the counting statistic function at time t is303

χ(λ, t) =
∑

n

Pn(t)e
λn =

1

Tr[e−βĤ0 ]
Tr

{

eλQ̂A eLt[e−βĤ0 ]
}

, (36)

which could be taken as a special case of Eq.(21), and hence the result can be obtained304

immediately,305

χ(λ, t) = eλTr(DA)/2
√

det [B(t) + eλτzDA(1 −B(t))], (37)

where B(t) = 1
21+Q(t)

(

B0 − 1
21

)

Q̄(t) +M(t), and B0 = [1+ e−βH0 ]−1. This expression306

generalizes the result obtained by Klich [81] to dissipative systems. As t → ∞, the state307

would approaches to the steady state with the density matrix ρs =
√

det
(

1
21+M∞

)

Γ̂2(K0),308
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Figure 4: The dynamical evolution of the FCS Pn(t) of the charge number in half of the
chain from an initial vacuum state. The parameters are: ∆/J = 0.5, γ−/J = 0.1, γ+/J =
0.05 and N = 128.

and the counting statistic function approaches to its steady value309

χs(λ) = eλTr(DA)/2

√

det

[(

1

2
1+M∞

)

+ eλτzDA

(

1

2
1−M∞

)]

. (38)

From this expression of the counting statistic function we can derive the probability dis-310

tribution Pn of the charge number Q̂A.311

In Fig.4 we plot the dynamical evolution of the FCS of the charge number in half of312

the chain with N = 128 sites. The initial state is chosen as the vacuum state, ρ0 = |0〉〈0|,313

and hence at t = 0 we have P0 = 1, Pn 6=0 = 0. As the system evolves, the distribution314

Pn(t) changes with time. For µ = 0.5J < µc, the distribution Pn(t) oscillates rapidly,315

while for µ = 2.0J > µc, the distribution almost does not oscillate and monotonically316

approaches to its steady-state value. This could be taken as a dynamical signature of317

the NQPT occurring at µ = µc. For the parameters chosen in Fig.4, the relaxation time318

is very long and hence we plot the steady-state value in Fig.5. The left plot shows the319

distribution Pn as a function of µ while the right plot shows the distribution for three320

representative chemical potentials, µ = 0, µ = 1.5J and µ = 3.0J . We see that there are321

obvious singularities at µ = ±µc and µ = 0, where NQPT occurs. So we conclude that322

both the dynamical evolution and the steady-state value of the FCS of the charge number323

could reveal the NQPT.324

3.4 Loschmidt Echo and Dynamical Quantum Phase Transitions325

One particularly interesting phenomenon in real-time dynamics of quantum many-body326

systems are DQPTs in the sense that an observable changes nonsmoothly at a critical327

time after a quench [82, 83]. Since in many experiments the physical systems are subject328

to dissipation, it is important to consider the fate of DQPTs in nonunitary dynamics. It329

has been shown that for simple Fermionic models the DQPTs may persist in the presence330

of dissipation [84–88]. Here we consider the possibility of DQPTs in the boundary-driven331

Kitatev chain. To characterize the quench dynamics we need a generalization of the332

Loschmidt echo L(t) for mixed states. Following a recent Letter [88] we use the definition333

L(t) = Tr[ρ(0)ρ(t)], and the rate function r(t) = −(1/N) lnL(t). As initial state we334

13



SciPost Physics Submission

charge number n

0.00

0.04

0.08

0.12

  

 

 

/J=0.0

0.00

0.04

0.08

0.12
/J=1.5

  

 

 

0 10 20 30 40 50 60
0.00

0.04

0.08

0.12
/J=3.0

  

 

Pn

0 10 20 30 40 50 60
-3

-2

-1

0

1

2

3

charge number n

/J

0.0

0.040

0.080

0.11

Figure 5: The steady-state FCS Pn of the charge number in half of the chain. The
parameters are the same as that in Fig.4. The left plot shows singularities at µ = 0 and
µ = ±µc = ±1.5J .

choose the vacuum state, which corresponds to the fully polarized ferromagnetic state in335

the context of the XY spin chain. This state can be taken as a Gaussian state with the336

density matrix ρ = e−βĤ0/Tr[e−βĤ0 ], where Ĥ0 = −µ
∑

l ĉ
†
l ĉl and βµ → −∞. Then the337

Loschmidt echo L(t) takes the form of Eq.(21) and can be simplified as338

L(t) =
√

det [B0B+ (1−B0)(1 −B)], (39)

and the rate function339

r(t) = − 1

2N
Tr ln [B0B+ (1−B0)(1−B)] , (40)

where B = 1
21+Q(t)

(

B0 − 1
21

)

Q̄(t) +M(t) and B0 =
[

1+ e−βH0
]−1

.340

In Fig.6 we show this rate function for several different dissipation rates and system341

sizes. We see that for the chosen parameters DQPTs occur, i.e., the rate function develops342

cusps at critical times. In the left plot we fix the dissipation rates γ1± = γN± = γ±. and343

increase the system size N . We see that the cusps are smoothed for small system sizes,344

but becomes sharper and sharper as the size increases. In the right plot we fix the system345

size N = 100 and increase the dissipation rates. It’s obvious that the dissipations lead346

to a damping of the peaks but the cusps still persist. Even more interestingly, for the347

chosen parameters, a new cusp emerges near Jt = 5, where the unitary dynamics shows348

a plateau. The persistence of DQPTs and the emergence of new cusps in dissipative349

dynamics is generic and does not require fine turning of parameters. This can be easily350

verified numerically by using our theoretical approach.351

4 Conclusion and discussion352

In summary, we have developed a general theoretical approach to solve open fermion sys-353

tems and apply it to systems with quadratic Lindbladian. We focus on the dynamical354

correlations of nonlocal operators and give exact explicit formulas based on our character-355

istic function approach. We then take the boundary-driven Kitaev chain as an example to356

illustrate the general ideas and formulas. We compute the Green’s functions of hard-core357
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pation rates are chosen to be γ1± = γN± = γ±. The left plot shows the rate function for
fixed dissipation and different system sizes N . The right plot shows the rate function for
fixed N = 100 and increasing dissipation rates.

anyons with statistical angle φ, and find that the propagation of the nonlocal excitations358

displays an asymmetric light-cone for 0 < φ < π, and the relaxation rate increases with359

φ. In addition, two other types of nonlocal operator correlations such as the FCS of the360

charge number and the Loschmidt echo in quench dynamics are also analyzed and explicit361

formulas are obtained. The FCS shows clear signature of the steady-state NQPT, while362

the Loschmidt echo rate function exhibits cusps at some critical times in the quench from363

the vacuum state, demonstrating DQPTs in this dissipative system.364

The characteristic function approach is a new and general theoretical method to treat365

open fermion systems. We would apply and extend this method to solve some other366

physical problems. For example, in the presence of dephasing, the Liouvillian is no longer367

quadratic and has no simple solutions like the quadratic Lindbladian. However, we find368

that the dynamical correlation functions can be obtained by making Taylor expansions of369

the characteristic function. Another important application is the full counting statistics in370

dissipative transport. Introduction of a counting field brings nonlocal operators naturally,371

which can be treated by using the techniques given in this paper. Results in these directions372

would be presented in future works.373
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A Some useful formulas379

In this appendix we give some concepts and formulas that are useful in deriving the results380

in the main text.381

(1) The parity operator P̂F in K can be defined by the transformation P̂F (ĉ, ĉ
†)P̂F =382
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(−ĉ,−ĉ†). Obviously, one representation of the parity operator is P̂F = eiπN̂ . Similarly,383

the parity operator Pg in G can be defined as Pgf(ξ̄, ξ) = f(−ξ̄,−ξ), and one representation384

of Pg is385

Pg = exp

[

iπ
∑

k

(ξk∂k + ξ̄k∂̄k)

]

. (41)

(2) The displacement operator D̂(ξ) ≡ eĉ
†ξ−ξ̄ĉ has the properties:386

TrD̂(ξ) = 2N , Tr
[

eiπN̂ D̂(ξ)
]

=
N
∏

k=1

ξk ξ̄k, (42)

and the integration is387
∫

dξ̄dξ D̂(ξ) =
1

2N
eiπN̂ . (43)

(3) A mixed operator involves both fermion operators and Grassmann variables, i.e.,388

it’s an element of the direct product space K⊗G. Since fermion creation/annihilation389

operators anticommute with Grassmann variables, we should be careful in computing390

traces of such operators. We can use the following rules: (i) If f(η̄, η) has even parity, i.e.,391

f(η̄, η) = f(−η̄,−η), then Tr[Âf(η̄, η)] = Tr[Â]f(η̄, η); (ii) If f(η̄, η) has odd parity, i.e.,392

f(η̄, η) = −f(−η̄,−η), then Tr[Âf(η̄, η)] = Tr[ÂeiπN̂ ]f(η̄, η).393

(4) The Θ mapping of basic Gaussian operators:394

Tr
[

Γ̂2(K)D̂(ξ)
]

=
√

det(1+ eK) exp

[

−1

2
(ξ̄, ξ)

1

1+ eK

(

ξ
ξ̄

)]

, (44)

Tr
[

(ĉ†, ĉ)Γ̂2(K)eiπN̂ D̂(ξ)
]

= −
{

(ξ̄, ξ)
1

1+ eK

}

Tr
[

Γ̂2(K)D̂(ξ)
]

. (45)

(5) The Ω mapping of basic Gaussian functions:395

Ω

{

exp

[

−1

2
(ξ̄, ξ)B

(

ξ
ξ̄

)]}

=
√
detB Γ̂2(K), (46)

Ω

{

(ξ̄, ξ) exp

[

−1

2
(ξ̄, ξ)B

(

ξ
ξ̄

)]}

= −(ĉ†, ĉ)

√
detB

B
Γ̂2(K)eiπN̂ , (47)

where B(1 + eK) = 1 satisfies the relation B + τxB
T τx = 1, while the matrix K satisfies396

K+ τxK
T τx = 0.397

B The sign problem of the Green’s function398

The conventional dissipation superoperator D with Lindblad operator L̂, L̂† reads399

D[◦] = 2L̂ ◦ L̂† −
{

L̂†L̂, ◦
}

. (48)

However, if both the operator ◦ and the Lindblad operator L̂(†) are fermionic operators,400

i.e., they have odd Fermion number parity, then the dissipation superoperator should differ401

from the above one by having a minus sign in front of the 2L̂ ◦ L̂† term, leading to a new402

superoperator [89]:403

Df [◦] = −2L̂ ◦ L̂† −
{

L̂†L̂, ◦
}

. (49)
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We should note that these two superoperators are intimately connected: If P̂F L̂P̂F = −L̂,404

then405

P̂FDf [P̂F ◦] = D[◦], P̂F e
Df t[P̂F ◦] = eDt[◦]. (50)

Similarly,406

Df [◦ P̂F ]P̂F = D[◦], eDf t[◦ P̂F ]P̂F = eDt[◦]. (51)

The proof is straightforward:407

(1)408

P̂FDf [P̂F ◦] = −2P̂F LP̂F ◦ L† − P̂F

{

L†L, P̂F ◦
}

= 2L ◦ L† −
{

L†L, ◦
}

= D[◦].

(2) Define Ã(t) = P̂F e
Df t[P̂F A], and A(t) = eDt[A], then409

∂

∂t
Ã(t) = P̂FDf

{

eDf t[P̂F A]
}

= P̂FDf

{

P̂F P̂F eDf t[P̂F A]
}

= D[Ã(t)],

with the initial condition Ã(t = 0) = A. On the other hand, A(t) satisfies the equation410

∂

∂t
A(t) = D[A(t)],

with the initial condition A(t = 0) = A. So we see that Ã(t) and A(t) satisfy the same411

equation of motion and the same initial condition, and hence Ã(t) = A(t), i.e.,412

P̂F e
Df t[P̂F ◦] = eDt[◦].

Similarly we can prove the other equations.413

C Steady State and Static Correlations414

Suppose that the non-Hermitian matrix X+ + iH has the spectral decomposition415

X+ + iH =
2N
∑

k=1

λk|ϕR
k 〉〈ϕL

k |,

where {λk} are the eigenvalues and {|ϕR(L)
k 〉} the right (left) eigenvectors of X+ + iH,416

satisfying the biorthonormal condition 〈ϕL
k |ϕR

q 〉 = δk,q. We can prove that Reλk ≥ 0 for417

all k. For the boundary-driven Kitaev chain with a finite size N , we can numerically verify418

that Reλk > 0 for all k. Then the steady state characteristic function is given by Eq.(12)419

with420

M∞ =
∑

m,n

〈ϕL
m|X−|ϕL

n〉
λm + λ∗

n

|ϕR
m〉〈ϕR

n |. (52)

Here we focus on the momentum distribution of anyons defined as [90]421

n(k) ≡ 1

N

N
∑

j,l=1

eik(j−l)〈f̂ †
j f̂l〉.

Such correlation functions of nonlocal operators can be computed by takeing the t = 0422

limit of the lesser Green’s function. In Fig.7 we plot this distribution for two statistical423

parameters φ = 0 and φ = π. We see that the behavior of n(k) is qualitatively the same for424

different statistical parameters. When |µ| < |µc|, the k-distribution shows two maximums425

at k 6= 0, π, otherwise it shows only one maximum at k = 0 or π. So the NQPT occurring426

at µc can be clearly characterized by the k-distribution function.427
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Figure 7: The k-distribution n(k) in the steady state with the statistical parameter φ = 0
(left) and φ = π (right). The other parameters ∆, γ± and N are the same as in Fig.1. The
critical chemical potential is µc/J = ±1.5.
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[65] O. I. Pâţu, V. E. Korepin and D. V. Averin, One-dimensional impenetrable anyons

in thermal equilibrium: II. determinant representation for the dynamic correlation

functions, J. Phys. A 41(25), 255205 (2008), doi:10.1088/1751-8113/41/25/255205.

[66] E. Lieb, T. Schultz and D. Mattis, Two soluble models of an

antiferromagnetic chain, Ann. Phys. (NY) 16(3), 407 (1961),
doi:https://doi.org/10.1016/0003-4916(61)90115-4.

[67] L. S. Levitov, H. Lee and G. B. Lesovik, Electron counting statistics and coherent

states of electric current, J. Math. Phys. 37(10), 4845 (1996), doi:10.1063/1.531672.

[68] C. W. Groth, B. Michaelis and C. W. J. Beenakker, Counting statistics of co-

herent population trapping in quantum dots, Phys. Rev. B 74, 125315 (2006),
doi:10.1103/PhysRevB.74.125315.

[69] H. Carmichael, Statistical Methods in Quantum Optics, Springer (1999).

[70] W. P. Schleich, Quantum Optics in Phase Space, Wiley (2001).

[71] S. Diehl, E. Rico, M. A. Baranov and P. Zoller, Topology by dissipation in atomic

quantum wires, Nat. Phys. 7, 971 (2011), doi:10.1038/nphys2106.

[72] A. Carmele, M. Heyl, C. Kraus and M. Dalmonte, Stretched exponential decay of

majorana edge modes in many-body localized kitaev chains under dissipation, Phys.
Rev. B 92, 195107 (2015), doi:10.1103/PhysRevB.92.195107.

[73] M. A. Caprio, P. Cejnar and F. Iachello, Excited state quantum phase

transitions in many-body systems, Ann. Phys. (NY) 323(5), 1106 (2008),
doi:https://doi.org/10.1016/j.aop.2007.06.011.

22

http://dx.doi.org/10.1103/PhysRevLett.124.040401
http://dx.doi.org/10.1103/RevModPhys.51.659
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1088/1751-8113/41/7/075001
http://dx.doi.org/10.1103/PhysRevB.97.085131
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1704004
http://dx.doi.org/10.1088/1751-8113/41/14/145006
http://dx.doi.org/10.1088/1751-8113/41/25/255205
http://dx.doi.org/https://doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1063/1.531672
http://dx.doi.org/10.1103/PhysRevB.74.125315
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1103/PhysRevB.92.195107
http://dx.doi.org/https://doi.org/10.1016/j.aop.2007.06.011


SciPost Physics Submission

[74] Q.-W. Wang and S. Wu, Excited-state quantum phase transitions in kerr nonlinear

oscillators, Phys. Rev. A 102, 063531 (2020), doi:10.1103/PhysRevA.102.063531.

[75] E. Barouch and B. M. McCoy, Statistical mechanics of the xy model. ii. spin-

correlation functions, Phys. Rev. A 3, 786 (1971), doi:10.1103/PhysRevA.3.786.
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