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Abstract1

The dynamical correlations of nonlocal operators in general quadratic open2

fermion systems is still a challenging problem. Here we tackle this problem3

by developing a new formulation of open fermion many-body systems, namely,4

the characteristic function approach. Illustrating the technique, we analyze a5

finite Kitaev chain with boundary dissipation and consider anyon-type nonlocal6

excitations. We give explicit formula for the Green’s functions, demonstrating7

an asymmetric light cone induced by the anyon statistical parameter and an8

increasing relaxation rate with this parameter. We also analyze some other9

types of nonlocal operator correlations such as the full counting statistics of10

the charge number and the Loschmidt echo in a quench from the vacuum11

state. The former shows clear signature of a nonequilibrium quantum phase12

transition, while the later exhibits cusps at some critical times and hence13

demonstrates dynamical quantum phase transitions.14
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1 Introduction35

The interaction of a quantum system with its environment [1–3] can lead to various dissi-36

pation behaviors and the emergence of new collective phenomena, such as nonequilibrium37

phases and phase transitions driven by dissipation [4–12], universality and dynamic scaling38

behaviors at quantum transitions [13–19]. Understanding and controlling the behavior of39

quantum dissipative systems is also fundamental to the development of quantum-enhanced40

cutting-edge technologies such as quantum computing [20], quantum metrology [21], quan-41

tum state preparation or quantum reservoir engineering [22–31]. Although significant ex-42

perimental advancements have been made in this context [32–35], dissipative quantum43

many-body problems are still quite challenging in theory. Within the so-called Markovian44

approximation, the open systems’ Liouvillian dynamics is described by the Lindblad mas-45

ter equation [36,37] for the time-dependent density matrix. A standard way of analyzing46

the master equation is by means of perturbation methods [38–42]. In addition, some exact47

solutions of the nonequilibrium steady states and the full spectrum of the Liouvillian have48

been obtained in some specific representative cases [43–53].49

One specific instance that has attracted many interests is the open fermionic sys-50

tems with quadratic Lindbladian [54–64], which can be solved exactly. However, even51

for such simple solvable systems, the dynamics of nonlocal operators is still challenging52

and desires efficient computation methods. Here we use nonlocal operators to refer to53

those operators containing a string operator of the form Ôj = exp[iφ
∑

l≤j ĉ
†
l ĉl] (or more54

generally, an exponential function of bilinear fermion operators). Such operators appear55

in many important physical problems. For example, string order parameters have been56

used to characterize topological properties of quantum systems [65–68]. They also emerge57

in the studies of the Tonks-Girardeau gas [69, 70], the impenetrable anyons [71, 72], the58

XY Heisenberg chain [73], and the full counting statistics of quantum transport [74, 75].59

The dynamical correlation functions of nonlocal operators in dissipative systems have not60

been investigated systematically, even in quadratic open systems. It represents a highly61

nontrivial theoretical problem.62

Motivated by such challenges, here we put forward a new theoretical approach to open63

fermion systems by applying the idea of mappings between the Liouville-Fock space K and64

a Grassmann algebra G, which can map operators to analytic functions of Grassmann vari-65

ables and vice versa. The quantum master equation is transformed to a partial differential66

equation of the characteristic function of the density matrix, and all physical observables67

can be expressed in terms of this function. We name this new approach as characteristic68

function approach since the K-G mappings and the characteristic function are essential69

concepts. This method could be seen as a fermion analogue of the phase-space method70

widely used in quantum optics [76,77].71

Our method, which can be useful for generic open fermion systems, is then applied72
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to general quadratic fermion systems with linear Lindblad operators. We give exact so-73

lutions of the master equation, the steady state, the single-particle Green’s function, the74

dynamical response function, and most importantly, the dynamical correlations of nonlo-75

cal operators. These general results are then applied to the Kitaev chain with boundary76

dissipation [57,78,79]. We obtain the spectrum of the matrix that determines the dissipa-77

tive dynamics of the system, finding an excited state quantum phase transition (ESQPT)78

and its relationship with the nonequilibrium quantum phase transition (NQPT). We al-79

so compute the Green’s functions of nonlocal excitations, namely, the hard-core anyons80

with statistical parameter φ, and find that the propagation of the excitations displays an81

asymmetric light-cone for φ 6= 0, π, and the relaxation rate increases with the statisti-82

cal parameter. In addition, other types of nonlocal operator correlations such as the full83

counting statistics (FCS) of the charge number in a subsystem and the Loschmidt echo in84

quench dynamics can also be analyzed easily in our new approach and explicit formulas85

can be obtained. The FCS shows clear signature of the NQPT mentioned above, while86

the Loschmidt echo rate function exhibits cusps at some critical times in the quench from87

the vacuum state, giving evidence of dynamical quantum phase transitions (DQPT) in88

this dissipative system. These analyses demonstrate the feasibility and powerfulness of89

the characteristic function approach.90

This paper is organized as follows. In Sec.2, we present the general formalism of the91

characteristic function approach and use it to give the exact solutions of various physical92

properties of the open fermion systems with quadratic Lindbladian, with emphasis on the93

dynamical correlations of nonlocal operators. In Sec.3 we analyze the boundary-driven94

Kitaev chain as an example, focusing on the Green’s function of the hard-core anyons, the95

full counting statistics of the charge number in a subsystem, and the Loschmidt echo rate96

in a quench dynamics from the vacuum state. We conclude in Sec.4 with a summary of97

our main results and some discussions.98

2 The characteristic function approach99

2.1 Basic Formalism100

We first develop a new general approach to solve quantum master equations of fermion101

systems. The basic idea is quite simple: the Liouville-Fock space K generated by fermion102

creation and annihilation operators {ĉ†1, ĉ1, . . . , ĉ
†
N , ĉN} and the Grassmann algebra G gen-103

erated by Grassmann variables {ξ̄1, ξ1, . . . , ξ̄N , ξN} have the same dimension 22N and hence104

we can construct one-to-one mappings between these two spaces. In analogy to the phase-105

space functions and characteristic functions widely used in quantum optics [76], we define106

the mapping Θ from K to G as the characteristic function of the operators in K:107

Θ : Â ∈ K → AC(ξ̄, ξ) ≡ Tr[D̂(ξ)Â], (1)

where D̂(ξ) ≡ eĉ
†ξ−ξ̄ĉ is the fermion analogue of the boson displacement operator. Here108

we use the notations ĉ† ≡ (ĉ†1, ĉ
†
2, . . . , ĉ

†
N ), ξ̄ ≡ (ξ̄1, ξ̄2, . . . , ξ̄N ), and ĉ ≡ (ĉ1, ĉ2, . . . , ĉN )T ,109

ξ ≡ (ξ1, ξ2, . . . , ξN )T . Inversely, we have110

Ω : AC(ξ̄, ξ) ∈ G → Â =

∫

dξ̄dξ AC(ξ̄, ξ)

[

eiπN̂ + 1

2
D̂†(ξ) +

eiπN̂ − 1

2
D̂(ξ)

]

, (2)

where N̂ =
∑

i ĉ
†
i ĉi is the total fermion number operator. It’s straightforward to prove111

that Θ and Ω are reciprocal linear mappings. To do this, it’s enough to show that for any112
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analytic function f(η̄, η) ∈ G, we have f = Θ[Ω(f)].113

Θ[Ω(f)] =

∫

dᾱdα f(ᾱ, α)Tr
[

eiπN̂ D̂†(α)D̂(η)
]

=

∫

dᾱdα f(ᾱ, α)Tr
[

eiπN̂ D̂(η − α)
]

D(α|η/2)

=

∫

dᾱdα f(ᾱ, α)
∏

k

[(αk − ηk)(ᾱk − η̄k)]D(α|η/2)

= f(η̄, η),

where D(ξ|η) ≡ eξ̄η−η̄ξ is the Grassmann analogy of the usual Fourier transformation114

kernel for complex variables. We should note that the parity of the operators in K and115

the functions in G has significance in making these mappings. See Appendix.A for some116

details and useful formulas.117

These two mappings Θ and Ω between K and G form the foundation of the charac-118

teristic approach. Obviously these mappings have nothing to do with the special form of119

the Hamiltonian and the dissipators. They are general and only depend on the degree of120

freedom. For example, for a system with N degree of freedom, we have121

Θ(ĉ†i ) = −ξ̄i
∏

k 6=i

ξkξ̄k, Θ(ĉi) = ξi
∏

k 6=i

ξkξ̄k, Θ(ĉ†i ĉi) = 2N−1eξ̄iξi/2.

Some more useful mappings are given in Appendix.A. We stress that although in the122

following sections we would discuss a special model which can be solved exactly, this123

does not mean that the characteristic function approach is only applicable to such special124

models.125

Using these mappings we can transform problems in the Liouville-Fock space, for exam-126

ple, the quantum master equation, to problems in the Grassmann algebra, and transform127

back if necessary. The advantage is that for functions in the Grassmann algebra we have128

rich analytic and algebraic tools [80]. For example, the trace in the Fock space can be129

transformed to an integration over the Grassmann variables, while the average of one-body130

or two-body observables with respect to any density matrix ρ can be transformed to par-131

tial derivatives of the corresponding characteristic function [see Eq.(13) for an example].132

Furthermore, due to the similarity between our method and the phase-space approach133

in quantum optics [76, 77], we can also borrow concepts and techniques used for bosons.134

For example, we can define phase-space distribution functions such as the Husimi-Kano135

Q-function or Glauber-Sudarshan P -function for fermions. More systematic developments136

of the formalism long this line deserve further investigations. See Appendix.A for a simple137

example for the Q-function.138

Now consider an open system of N sites with spinless fermions, whose dynamics is139

described by the Gorini-Kossakorsky-Sudarshan-Lindblad (GKSL) equation [36, 37] with140

Liouvillian L (we set h̄ = 1)141

∂tρ = L(ρ) = −i[Ĥ, ρ] +
∑

µ

(

2L̂µρL̂
†
µ − {L̂†

µL̂µ, ρ}
)

(3)

where L̂µ are the so-called Lindblad or jump operators. Although the characteristic func-142

tion approach is a quite general theory for treating open fermion systems, here, for sim-143

plicity and as a starting point, we focus on general quadratic Hamiltonians144

Ĥ =
1

2
(ĉ†, ĉ)H

(

ĉ
ĉ†

)

, (4)
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and linear Lindbaldian operators145

L̂µ = L†
µ

(

ĉ
ĉ†

)

, L̂†
µ = (ĉ†, ĉ)Lµ, (5)

where (ĉ†, ĉ) = (ĉ†1, ĉ
†
2, . . . , ĉ

†
N , ĉ1, . . . , ĉN ), Lµ(L

†
µ) are 2N -dimensional column (row) vec-146

tors, while H is a 2N × 2N matrix satisfying the symmetry requirement147

H+ τxH
T τx = 0, (6)

where τx,y,z denote the Pauli matrices in the particle-hole subspace. Although such a148

quadratic Lindbaldian can be solved exactly by various methods [55–63], the computation149

of dynamical correlations of nonlocal operators is still a challenging problem. In the150

characteristic function approach we transform the quantum master equation of the density151

matrix into an equation for its characteristic function F (ξ̄, ξ) ≡ Tr[D̂(ξ)ρ],152

∂tF + (ξ̄, ξ) [iH +X+]

(

∂̄
∂

)

F = −1

2
(ξ̄, ξ)X−

(

ξ
ξ̄

)

F, (7)

where153

X± =
∑

µ

[

LµL
†
µ ± τx(LµL

†
µ)

∗τx

]

, (8)

and (∂̄, ∂) = (∂/∂ξ̄1, . . . , ∂/∂ξ̄N , ∂/∂ξ1, . . . , ∂/∂ξN ). See Appendix.B for the details of the154

derivation. We comment that for a general Liouvillian the equation for F (ξ̄, ξ) would155

include higher derivatives with respect to ξ̄, ξ and hence can seldom be solved exactly.156

Fortunately, for the quadratic Hamiltonian [Eq.(4)] and linear dissipators [Eq.(5)] the157

equation (7) is a first order partial differential equation which an be solved exactly by158

standard technique. The solution with an arbitrary initial condition F (ξ̄, ξ; t = 0) =159

F0(ξ̄, ξ) is160

F = F0

[

(ξ̄, ξ)Q(t)
]

exp

[

−1

2
(ξ̄, ξ)M(t)

(

ξ
ξ̄

)]

, (9)

where the arguments of F (ξ̄, ξ; t) have not been written explicitly for brevity, and161

Q(t) = e−(X++iH)t, Q̄(t) = e−(X+−iH)t, M(t) =

∫ t

0
dt′ Q(t′) X− Q̄(t′). (10)

The solution of Eq.(9) is a linear mapping from F0(ξ̄, ξ) to F (ξ̄, ξ; t), which will be denoted162

as F (ξ̄, ξ; t) = Ut[F0(ξ̄, ξ)]. Obviously, F (ξ̄, ξ; t) = Θ[ρ(t)] = Θ[eLt(ρ0)] = Ut[Θ(ρ0)], or163

more generally,164

Θ ⋆ eLt = Ut ⋆Θ, (11)

where ⋆ denotes the composition of two linear mappings. We comment that the structure165

of the solution Eq.(9) is very similar to its bosonic counterpart (see, for example, the work166

by T. Heinosaari et al. [81]).167

Furthermore, we argue that the 22N eigenvalues of the Liouvillian L can be constructed168

from the eigenvalues λk of X++ iH as −∑

k νkλk, where νk ∈ {0, 1}. This is quite similar169

to the expression of the Liouvillian spectrum in terms of the so-called “rapidities” in the170

third quantization method [54]. To show this, let’s suppose that {λk} are the eigenvalues171

and {|ϕR(L)
k 〉} the right (left) eigenvectors of X+ + iH. Then172

Q(t) =

2N
∑

k=1

e−λkt|ϕR
k 〉〈ϕL

k |, Q̄(t) = τx[Q(t)]T τx =

2N
∑

k=1

e−λkt τx|ϕL∗
k 〉〈ϕR∗

k |τx.
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From Eq.(9) we know that the characteristic function can be expanded as173

F (t) =
∑

{νk}

F{νk}e
−t

∑
k νkλk .

This is because the time dependence of F (t) is completely encoded in Q(t) and Q̄(t), which174

can be expanded in terms of their corresponding eigenvectors. Therefore, by mapping from175

G to K, the density matrix can also be expanded as176

ρ(t) =
∑

{νk}

ρ{νk}e
−t

∑
k νkλk ,

from which we can deduce the spectrum of the Liouvillian L. As a result, the Liouvillian177

gap is given by the minimum value of Re(λk).178

Now let’s compare the characteristic function approach with other methods, especially179

with the “third quantization method” [54–57]. (i) One straightforward way to compute180

the dynamical correlations is to use the equations of motion method, which depends on181

commutations between the observables and the Hamiltonian/dissipators. For one-body or182

two-body observables, such commutations can give a set of closed equations that can be183

easily solved. However, this is impractical for nonlocal operators since the commutations184

would induce more and more complicated operators and the resulting set of equations is185

very large. (ii) The third quantization method defines 4N linear maps over the Liouville-186

Fock space K which satisfy canonical anticommutation relations. The key quantity is a187

4N × 4N matrix whose eigenvalues are paired as βj ,−βj , j = 1, 2, . . . , 2N , with Reβj ≥ 0.188

In contrast, the key matrix in the characteristic function approach is X+ + iH, which189

has dimension 2N × 2N . (iii) In third quantization method, the steady state is implicitly190

defined as the right vacuum of the Liouvillian, while in our method the steady state can191

be given explicitly [see Eqs.(12) and (59)]. (iv) For higher-order observables, the third192

quantization method relies on the Wick’s theorem, which is impractical for computing193

correlations of nonlocal operators. In contrast our method presents a practical way. (v)194

Of course, the characteristic function approach has its own disadvantages. For example,195

the Ω and Θ mappings may be difficult to do for some complicated operators and functions.196

In addition, the anticommutation nature of the Grassmann variables asks for meticulous197

care in calculations. A researcher who is not familiar with the Grassmann algebra may198

make mistakes unknowingly.199

2.2 Physical observables200

Now let’s discuss some physical properties of the open fermion system based on the solution201

given by Eq.(9). We remark that the results in this subsection could also be obtained202

by other methods [54–63], however, here we briefly present these results to show the203

completeness of our new method.204

(i) The steady state can be obtained by taking the limit t → ∞. If all the eigenvalues205

λα of (X++ iH) have positive real parts, i.e., Reλα > 0, then Q(t) → 0 while M(t) → M∞206

as t → ∞, and the characteristic function approaches to207

F∞ = exp

[

−1

2
(ξ̄, ξ)M∞

(

ξ
ξ̄

)]

. (12)

This is a Gaussian state determined solely by the Hamiltonian and the dissipators, inde-208

pendent of the initial state. On the contrary, if some eigenvalues λα have zero real parts,209

Q(t) may not approach to zero and the system would have no unique steady state.210
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(ii) The covariance (or equal-time correlation) matrix can be expressed in terms of the211

characteristic function:212

C ≡
〈(

ĉ
ĉ†

)

(ĉ†, ĉ)

〉

=
1

2
1+

(

∂̄
∂

)

(∂, ∂̄)F (ξ̄, ξ)

∣

∣

∣

∣

0

(13)

where f(ξ̄, ξ)|0 means taking ξ = ξ̄ = 0 at last. From the equation for F (ξ̄, ξ) we can213

deduce the equation of motion for this covariance matrix:214

∂tC = [C, iH]− {C,X+}+ (X+ +X−) ,

where {·, ·} denotes anticommutation relation. For the steady state described by Eq.(12),215

we have216

C∞ =
1

2

(

1+M∞ − τxM
T
∞τx

)

=
1

2
1+M∞. (14)

(iii) The nonequilibrium Green’s functions, which describe the excitations in the steady217

state, can also be expressed in terms of the characteristic function. For example, the218

retarded Green function can be obtained through219

GR(t) ≡ −iθ(t)

〈{(

ĉ(t)
ĉ†(t)

)

, (ĉ†, ĉ)

}〉

s

= −iθ(t)

(

∂̄
∂

)

Ut

[(

ξ̄, ξ
)

Fs(ξ̄, ξ)
]

∣

∣

∣

∣

0

, (15)

where Fs is the characteristic function of the steady state ρs. For the Gaussian state given220

by Eq.(12) the retarded Green function simply reads GR(t) = −iθ(t)Q(t).221

(iv) Furthermore, the dynamical response function or the density-density correlation222

function can be defined as223

Dij(t) ≡ −iθ(t)〈[n̂i(t), n̂j ]〉, (16)

where n̂j = ĉ†j ĉj . Using the same technique as that for the Green’s functions we can obtain224

its expression in the steady state given by Eq.(12):225

Dij(t) = −iθ(t)
{

[QM∞]ij [Q̄]ji − [Q]ij [M∞Q̄]ji

−[QM∞]i+N,j[Q̄]j,i+N + [Q]i+N,j[M∞Q̄]j,i+N

}

, (17)

where the time dependence of Q(t) and Q̄(t) have not been written explicitly for brevity.226

In the same manner all dynamical correlation functions of local operators can be obtained227

by taking derivatives of the characteristic function, just as in Eq.(15).228

2.3 Dynamical correlations of nonlocal operators229

Now we turn to our main problem: the dynamical correlations of nonlocal operators. We230

would call the exponential of a general bilinear form of fermion creation and annihilation231

operators as Gaussian operators, and denote them as232

Γ̂2(K) ≡ exp

[

1

2
(ĉ†, ĉ)K

(

ĉ
ĉ†

)]

, (18)

where K is a 2N × 2N matrix satisfying K+ τxK
T τx = 0. String operators can be treated233

as a special kind of Gaussian operators. We comment that the requirement of K is not234

necessary but it would make the following formulas more concise. First, since ĉ†i ĉj and ĉj ĉ
†
i235

are not independent, the matrix K can be written in many different forms up to an overall236

multiplier of the Gaussian operator. The above requirement may remove this ambiguity237

by taking one special choice. Second, this special choice is very convenient in making the238

computations in the characteristic function approach. For example, in the Θ mappings239

7
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given by Eqs.(48) and (49) we require the matrix K to satisfy the above requirement,240

otherwise the equation would be lengthy.241

According to the quantum regression formula [76], two-time correlations of Ô1(t), t ≥ 0,242

and Ô2(0) with respect to a density matrix ρ(0) are given by243

〈Ô1(t)Ô2(0)〉 = Tr
{

Ô1(0)e
Lt

[

Ô2(0)ρ(0)
]}

,

〈Ô2(0)Ô1(t)〉 = Tr
{

Ô1(0)e
Lt

[

ρ(0)Ô2(0)
]}

.

Considering Gaussian states and Gaussian operators, the above correlations would have244

the same form up to a c-number factor,245

Type-I: Tr
{

Γ̂2(K1)e
Lt

[

Γ̂2(K2)Γ̂2(K0)
]}

. (19)

In addition, we are also interested in single-particle correlations such as the Green’s func-246

tions. Here we consider more generally the dynamical correlations of nonlocal single-247

particle operators, i.e., the single-particle creation/annhilation operators multiplied by a248

string or Gaussian operator. However, in fermionic systems we should note that the stan-249

dard version of the quantum regression formula [76], which assumes Ô1,2 to be bosonic,250

does not apply due to the fact that the single-particle operators contain an odd number251

of fermionic operators. For a proof from the first principle please refer to the work by F.252

Schwarz et al. [82]. The appropriate Liouvillian reads253

Lf (◦) = −i[Ĥ, ◦] +
∑

µ

(

−2L̂µ ◦ L̂†
µ − {L̂†

µL̂µ, ◦}
)

.

The relation between L and Lf is discussed in Appendix.C. Then the dynamical cor-254

relations of nonlocal single-particle operators in a Gaussian state take the general form255

256

Type-II: Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

, (20)

where the trace is take over the Fock space and hence the result is a 2N × 2N matrix.257

We will give explicit formulas for these correlation functions. Before that, it’s conve-258

nient to define the following matrices: B0 ≡
[

1+ eK0
]−1

, W20 ≡ eK2eK0 , W02 ≡ eK0eK2 ,259

B20 ≡
1

2
1+

1

2
Q(t)

1−W20

1+W20
Q̄(t) +M(t),

B02 ≡
1

2
1+

1

2
Q(t)

1−W02

1+W02
Q̄(t) +M(t),

and R20 ≡ B0 + eK2(1 − B0), R02 ≡ B0 + (1 − B0)e
K2 , S20 ≡ B20 + (1 − B20)e

K1 ,260

S02 ≡ B02 + (1−B02)e
K1 .261

Using the three linear mappings Ω,Θ and Ut, we have262

Tr
{

Γ̂2(K1)e
Lt

[

Γ̂2(K2)Γ̂2(K0)
]}

= Tr
{

Γ̂2(K1)Ω ⋆ Ut ⋆Θ
[

Γ̂2(K2)Γ̂2(K0)
]}

.

8
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Now we compute the three mappings one by one:263

(i). Θ
[

Γ̂2(K2)Γ̂2(K0)
]

=
√

det(1+W20) exp

[

−1

2
(ξ̄, ξ)

1

1 +W20

(

ξ
ξ̄

)]

,

(ii). Ut ⋆Θ
[

Γ̂2(K2)Γ̂2(K0)
]

=
√

det(1+W20) exp

[

−1

2
(ξ̄, ξ)

(

Q(t)
1

1+W20
Q̄(t) +M(t)

)(

ξ
ξ̄

)]

=
√

det(1+W2) exp

[

−1

2
(ξ̄, ξ)B20

(

ξ
ξ̄

)]

,

(iii). Ω ⋆ Ut ⋆Θ
[

Γ̂2(K2)Γ̂2(K0)
]

=
√

det(1+W20)
√

detB20 Γ̂2(KB20
),

where KB20
is defined through B20(1+ eKB20 ) = 1. Note that in (ii) we have changed the264

matrix in the exponential to B20 to satisfy the requirement B20 + τxB
T
20τx = 1. Finally,265

taking the trace gives the result:266

Tr
{

Γ̂2(K1)e
Lt

[

Γ̂2(K2)Γ̂2(K0)
]}

=
√

det(1+W20) det S20. (21)

When t = 0, Q = 1,M = 0, and B20 = [1 + W20]
−1, then we can obtain the static267

correlation function Tr
{

Γ̂2(K1)Γ̂2(K2)Γ̂2(K0)
}

=
√

det [1+ eK1eK2eK0 ].268

Two remarks should be added here. (1) An issue of the determinant formulas is that269

the sign of the square root of the determinant has to be determined. In some simple270

cases the square root of a determinant can be rewritten as a Pfaffian [83]. However, this is271

difficult for general cases, especially for products of several Gaussian operators. In practical272

calculations the sign can be determined as follows. For Z(A) =
√

det[1+ eA], we consider273

Z(λA), which should be an analytic function of λ. This determines the correct way of274

taking the sign of the square root: the sign has to be taken so that Z(λA) is everywhere275

analytic and at λ = 0 one has Z(0) = 2N . (2) Some matrices used in these formulas should276

satisfy certain symmetry requirements, namely, A + τxA
T τx = 0 for A = H,M(t),K0,1,2,277

while A+ τxA
T τx = 1 for A = B0,B20 and B02.278

Now consider the dynamical correlations of nonlocal single-particle operators, which279

takes the type-II form of Eq.(20). Even for quadratic Lindbladian these correlations280

are difficult to compute. Here we use the characteristic function approach to solve this281

problem. The correlation can be rewritten as282

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

= Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
iπN̂eLt

[

eiπN̂ Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

= Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
iπN̂Ω ⋆ Ut ⋆Θ

[

eiπN̂ Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

.

Then we can do the three mappings Ω,Ut and Θ one by one, and make the trace to obtain283

the final result:284

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

}

=

√

det[R20] det[S20]
√

det[B0]
eK1 [S20]

−1Q(t)B0[R20]
−1eK2 . (22)
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By exchanging K2 and K0, we have another form285

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)e
Lf t

[

Γ̂2(K0)(ĉ
†, ĉ)Γ̂2(K2)

]

}

=

√

det[R02] det[S02]
√

det[B0]
eK1 [S02]

−1Q(t)[R02]
−1(1 −B0). (23)

We would not give the technical details here since the procedure is lengthy but straight-286

forward. We just give three remarks.287

(i) If K1 = K2 = 0, then R20 = S20 = 1, and the correlations would reduce to that of288

local operators:289

Tr

{(

ĉ
ĉ†

)

eLf t
[

(ĉ†, ĉ)Γ̂2(K0)
]

}

= Q(t)

√

det [1+ eK0 ]

1+ eK0
.

(ii)If t = 0, then Q = 1,M = 0 and B20 = (1 +W20)
−1, and the result would reduce290

to the static correlations:291

Tr

{(

ĉ
ĉ†

)

Γ̂2(K1)Γ̂2(K2)(ĉ
†, ĉ)Γ̂2(K0)

]

=

√

det [1+ eK1eK2eK0 ]

1+ eK1eK2eK0
eK1eK2 , (24)

(iii) If we consider the correlations in the steady state given by Eq.(12), we should note292

that the corresponding density matrix is293

ρs =

√

det

(

1

2
1+M∞

)

Γ̂2(K0), (25)

where K0 is determined by
(

1
21+M∞

) (

1+ eK0
)

= 1, and the corresponding B0 =294

1
21+M∞.295

3 Kitaev chain with boundary dissipation296

In this section we take the Kitaev chain [84] with boundary dissipation as an example to297

illustrate the general techniques developed above.298

3.1 The Model and the spectrum299

The Hamiltonian is300

ĤK =

N−1
∑

l=1

[

(Jĉ†l ĉl+1 +∆ĉlĉl+1) + h.c.
]

− µ

N
∑

l=1

ĉ†l ĉl, (26)

which can be rewritten as a bilinear form of Eq.(4). We consider single-particle gain and301

loss dissipators,302

L̂j+ =
√
γj+ ĉ†j , L̂j− =

√
γj− ĉj , (27)

For simplicity of this illustrating example we take dissipations which act only on the first303

and last sites, i.e., γ1± = γN± = γ± and all other dissipators vanish. With this setting the304

model is essentially equivalent to the boundary-driven XY spin chain [54–57,85]. Therefore305

we can immediately infer that there is an NQPT [54] in the ∆-µ space at the critical lines306

±µc/J = ±2[1− (∆/J)2]. Namely, there is the so called long-range magnetic correlation307

(LRMC) phase for |µ| < µc and the non-LRMC phase for |µ| > µc. We remark that308
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Figure 1: The imaginary and real part of the eigenvalues λα of X+ + iH. Since the
imaginary part is symmetric about the origin, only the positive half has been shown. The
parameters are chosen as: ∆/J = 0.5, γ−/J = 0.5, γ+/J = 0.2 and N = 64. The dashed
lines in the left plot denote the critical chemical potential ±µc/J = ±2[1−(∆/J)2] = ±1.5.
Between the two dashed lines there is a region where the energy levels have may crossings.
In the right plot the highest line between µ/J = ±2 corresponds to the edge modes with
Im(λ/J) = 0.

the symmetric dissipative driving on the two ends of the chain is not necessary here. We309

choose this special setting just for simplicity and to show that the nonlocal excitations can310

exhibit asymmetric spatial propagation even for symmetric Hamiltonian and dissipations311

[see Fig.2 in the following]. If the driving is not symmetric, the NQPT still exists and312

most of the following results hold qualitatively, except for the result about the spatial313

symmetry of the local Green’s function [as shown in Fig.2]. Notably, it has been found314

that boundary dephasing on a single boundary could enhance the correlation time of the315

local degree of freedom at the opposite boundary [86]. Similar effect can also exist for316

linear dissipators at a single edge. However, we would restrict ourselves to the symmetric317

boundary driving in the following to illustrate the general technique developed above.318

As seen from the solution of the quadratic Lindbladian, the dynamics is completely319

determined by three matrices: H and X±. In fact, the matrix X+ + iH determines the320

dissipative dynamics and the Liouvillian spectrum. In Fig.1 we plot the imaginary and321

real parts of the eigenvalues λα, α = 1, 2, . . . , 2N of the matrix X+ + iH. The Liouvillian322

gap can be derived from the smallest value of Re(λ), which approaches to zero and hence323

signaling an NQPT at µ/J = ±1.5. Furthermore, two other features can be observed: (i)324

There are two degenerate modes with Im(λ) = 0 when |µ/J | ≤ 2. The corresponding left325

and right eigenvectors are localized at the edges, similar to the Majorana zero modes in326

the closed system. However, in the steady state phase diagram there is no corresponding327

topological phase transition at µ/J = ±2. This is because these edge modes do not328

contribute to the steady state as a result of the particle-hole symmetry of the edge modes329

and the matrix X−. Furthermore, the real part of the eigenvalues of the edge modes has330

relatively large positive value, so that the edge modes decay very rapidly in the dissipative331

dynamics.332

(ii) In the left plot of Fig.1 we also observe that there is a region where the energy levels333

have many crossings. This abrupt change of level degeneracy is a characteristic signature of334

the so-called ESQPT [87]. In fact the level structure is similar to (but different from) that335

of the nonlinear Kerr oscillator where the ESQPT has been investigated systematically in336

a recent paper [88]. In the thermodynamic limit N → ∞ the bulk spectrum is insensitive337
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to the boundary dissipation and is given by the spectrum of H,338

Im(λ) = ±2J

√

(

cos q − µ

2J

)2
+

∆2

J2
sin2 q (28)

with q ∈ (−π, π] (see, e.g., [89,90]). The structure of this dispersion relation qualitatively339

changes as the chemical potential crosses the critical values, ±µc/J = ±2[1 − (∆/J)2].340

These critical values determine phase boundaries of both the ESQPT and the NQPT.341

This coincidence suggests us a close relationship between ESQPT and NQPT: in the342

weak dissipation limit (γ± → 0) an NQPT would correspond to an ESQPT, but not343

the ground-state quantum phase transition. This relationship is an interesting issue that344

deserves further investigations [91].345

3.2 The Green’s function346

Now we compute the dynamics of nonlocal excitations, namely, the Green’s functions of347

the hard-core anyons. In one dimension it’s well-known that the hard-core anyons satisfy348

the exchange statistics349

f̂lf̂
†
m + e−iφ sgn(l−m)f̂ †

mf̂l = δlm, f̂lf̂m + eiφ sgn(l−m)f̂mf̂l = 0, (29)

where350

sgn(x) =







1 if x > 0,
0 if x = 0,
−1 if x < 0,

They can be transformed to spinless fermions multiplied by a string operator,351

f̂ †
l ≡ ĉ†l e

iφ
∑

m≤l n̂m , f̂l ≡ e−iφ
∑

m≤l n̂m ĉl. (30)

Our motivation of studying such excitations is twofold. First, in this fermion model, string352

order parameters may be useful to characterize topological properties [65–68]. A natural353

generalization of these order parameters are string operators with arbitrary parameter354

φ ∈ [0, π]. Second, if the fermionic Hamiltonian is obtained from a hard-core anyon or hard-355

core boson (Tonks-Girardeau gas or XY spin chain) model, correlations of such nonlocal356

operators would have physical significance in the original system. For example, the spectral357

functions of anyonic excitations can be computed from the dynamical correlations, which358

has already been done in a recent work [92] by the same author for a one-dimensional359

model without dissipation. Generalizations to dissipative systems can be readily obtained360

by using the formalisms developed in this section and would be studied systematically in361

future works.362

Here we express the Green’s functions explicitly. For that purpose we define the363

following matrices:364

R
j0
± ≡ B0 + e±iφτzDj (1−B0), R

0j
± ≡ B0 + (1−B0)e

±iφτzDj ,

B
j0
± ≡ 1

2
1+

1

2
Q(t)

1− e±iφτzDjeK0

1+ e±iφτzDjeK0
Q̄(t) +M(t),

B
0j
± ≡ 1

2
1+

1

2
Q(t)

1− eK0e±iφτzDj

1+ eK0e±iφτzDj
Q̄(t) +M(t),

S
j0l
ab ≡ Bj0

a + (1−Bj0
a )ebiφτzDl , S

0jl
ab ≡ B0j

a + (1−B0j
a )ebiφτzDl ,

where a, b = ±, B0 =
1
21+M∞, τzDj means τz ⊗Dj , and Dj is a diagonal N ×N matrix365

with diagonal elements (Dj)mm = 1 if m ≤ j and 0 otherwise.366
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First, the greater Green’s function for t > 0 reads367

iG>
lj(t) = 〈f̂l(t)f̂ †

j 〉 = Tr
{

e−iφQ̂l ĉle
Lf t

[

ĉ†je
iφQ̂jρs

]}

= eiφ(j−l)/2
√

detB0Tr
{

ĉlΓ̂2(−iφτzDl)e
Lf t

[

Γ̂2(iφτzDj)ĉ
†
jΓ̂2(K0)

]}

,

where the average 〈·〉 is taken in the steady state. Using Eq.(22) and setting K1 =368

−iφτzDl, K2 = iφτzDj , we obtain369

iG>
lj(t) = eiφ(j−l)/2

√

detRj0
+ det Sj0l+−

{

[

S
j0l
+−

]−1
QB0

[

R
j0
+

]−1
}

lj

. (31)

Similarly we can obtain370

iG>
lj(−t) = eiφ(j−l)/2

√

detR0l
− detS0lj−+

{

[

S
0lj
−+

]−1
Q
[

R0l
−

]−1
(1−B0)

}

N+j,N+l

. (32)

We can prove that they satisfy the relation, iG>
jl(−t) =

[

iG>
lj(t)

]∗
.371

Second, the lesser Green’s function iG<
lj(t) = 〈f̂ †

j f̂l(t)〉 for t > 0 can be obtained in a372

similar manner:373

iG<
lj(t) = eiφ(j−l)/2

√

detR0j
+ detS0jl+−

{

[

S
0jl
+−

]−1
Q
[

R
0j
+

]−1
(1−B0)

}

lj

, (33)

iG<
lj(−t) = eiφ(j−l)/2

√

detRl0
− det Sl0j−+

{

[

S
l0j
−+

]−1
QB0

[

Rl0
−

]−1
}

N+j,N+l

. (34)

When t = 0, the lesser Green’s function would reduce to the steady-state one-particle374

density matrix, which is studied in Appendix.D. When t 6= 0, these Green’s functions tell375

us the dynamical propagation of a single-particle excitation in space-time. After Fourier376

transformation, they can also give us the spectral functions, which are very important377

quantities in both theoretical and experimental studies.378

In Fig.2 we plot the real and imaginary part the greater Green’s function G>
lj(t) in a379

chain with N = 65 sites for three different statistical parameters φ = 0, π/2 and π. The380

site j is fixed at the center of the chain and the figure displays the propagation of the381

excitation in space-time. Spatial symmetry and temporal damping behaviors can be seen382

clearly. For φ = 0, i.e., spinless fermions, the propagation shows a clear symmetric light383

cone. However, for 0 < φ < π, the light-cone becomes asymmetric, as shown in Fig.2(b)384

and Fig.2(e) for φ = π/2. This asymmetric propagation is induced by the statistical385

parameter, since the Hamiltonian and the dissipators are symmetric under the spatial386

reflection about the chain center. To show this, we label the Green’s function G>
lj(t) with387

the parameter φ. Then we have388

G>
lj(t;φ) = G>

l′j′(t;−φ), (35)

where l′(j′) is the site that l(j) is mapped to under reflection about the center of the389

chain. So the light-cones in Fig.2 should be symmetric only for φ = 0, π. We stress that390

this symmetry holds only for symmetric Hamiltonian and dissipators as set in this paper.391

Asymmetric dissipations may also induce asymmetric light-cones even for φ = 0 and π, as392

observed elsewhere [57].393

We also observe that the greater Green’s function decay rapidly for large statistical394

parameters. This behavior could be seen clearly in Fig.3, where the local Green’s function395

G>
jj(t) at the center of the chain is plotted as a function of time for φ = 0, π/5, π/2 and396
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Figure 2: The real (top panel) and imaginary (bottom panel) part of the greater Green’s
function G>

lj(t) in a chain with N = 65 sites for three different statistical parameters
φ = 0, π/2 and π. The site j is fixed at the center of the chain, j = 33, and µ/J =
2.0,∆/J = 0.1, γ−/J = 0.1, γ+/J = 0.05.

π. We see that in all cases G>
jj(t) oscillates and decays. The oscillation is a feature of397

the coherent Hamiltonian dynamics while the decay has two sources: (i) the boundary398

dissipations and (ii) the interactions between hard-core anyons. The dissipations can399

induce a finite (but small) real part of the eigenvalues of X++ iH [as shown in Fig.1], and400

hence all the corresponding modes decay with time. In addition, there exist strong effective401

interactions between the nonlocal excitations which would lead to scattering processes and402

finite relaxation rates. For the special case of φ = 0, no interaction exists between the403

spinless fermions and hence the local Green’s function decays slowly. However, as φ404

increases, the effective interaction grows, the relaxation rate becomes larger and larger,405

and hence G>
jj(t) decays more and more rapidly.406

3.3 Full counting statistics of charge number407

The charge number fluctuations in a subsystem is an important quantity in quantum408

many-body systems. It has been demonstrated that fluctuations and the full counting409

statistics (FCS) of charge or other conserved quantities (such as the block magnetization410

in certain spin chains) may contain information about the full entanglement scaling of a411

system split into two parts [93–96]. Here we consider the FCS of the charge distribution412

of a subsystem A in the chain. For this purpose, we define the number operator Q̂A as413

Q̂A =
∑

j∈A ĉ†j ĉj , and a diagonal N ×N matrix DA with diagonal elements414

(DA)jj =

{

1 if j ∈ A,
0 otherwise.

Then eλQ̂A = Γ̂1(λDA) = Γ̂2(λτzDA)e
λTr(DA)/2, which can be taken as a special Gaussian415

operator. Suppose that the initial state is a Gaussian state with the density matrix416

ρ(0) =
e−βĤ0

Tre−βĤ0

, Ĥ0 =
1

2
(ĉ†, ĉ)H0

(

ĉ
ĉ†

)

.
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Figure 3: The real and imaginary part of the local greater Green’s function G>
jj(t) at the

center j = 33 in a chain with N = 65 sites for φ = 0, π/5, π/2 and π. The other parameters
are the same as that in Fig.2.

In general the charge number in subsystem A has no fixed value at time t; instead, it has a417

probability distribution. We would denote Pn(t) as the probability that there are exactly418

n charge in A at time t. Then the counting statistic function at time t is419

χ(λ, t) =
∑

n

Pn(t)e
λn =

1

Tr[e−βĤ0 ]
Tr

{

eλQ̂A eLt[e−βĤ0 ]
}

, (36)

which could be taken as a special case of Eq.(21), and hence the result can be obtained420

immediately,421

χ(λ, t) = eλTr(DA)/2
√

det [B(t) + eλτzDA(1 −B(t))], (37)

where B(t) = 1
21+Q(t)

(

B0 − 1
21

)

Q̄(t) +M(t), and B0 = [1+ e−βH0 ]−1. This expression422

generalizes the result obtained by Klich [83] to dissipative systems. As t → ∞, the state423

would approaches to the steady state with the density matrix ρs =
√

det
(

1
21+M∞

)

Γ̂2(K0),424

and the counting statistic function approaches to its steady value425

χs(λ) = eλTr(DA)/2

√

det

[(

1

2
1+M∞

)

+ eλτzDA

(

1

2
1−M∞

)]

. (38)

From this expression of the counting statistic function we can derive the probability dis-426

tribution Pn of the charge number Q̂A.427

In Fig.4 we plot the dynamical evolution of the FCS of the charge number in half of428

the chain with N = 128 sites. The initial state is chosen as the vacuum state, ρ0 = |0〉〈0|,429

and hence at t = 0 we have P0 = 1, Pn 6=0 = 0. As the system evolves, the distribution430

Pn(t) changes with time. For µ = 0.5J < µc, the distribution Pn(t) oscillates rapidly,431

while for µ = 2.0J > µc, the distribution almost does not oscillate and monotonically432

approaches to its steady-state value. This could be taken as a dynamical signature of433

the NQPT occurring at µ = µc. For the parameters chosen in Fig.4, the relaxation time434

is very long and hence we plot the steady-state value in Fig.5. The left plot shows the435

distribution Pn as a function of µ while the right plot shows the distribution for three436

representative chemical potentials, µ = 0, µ = 1.5J and µ = 3.0J . We see that there are437
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Figure 4: The dynamical evolution of the FCS Pn(t) of the charge number in half of the
chain from an initial vacuum state. The parameters are: ∆/J = 0.5, γ−/J = 0.1, γ+/J =
0.05 and N = 128.

obvious singularities at µ = ±µc and µ = 0, where NQPT occurs. So we conclude that438

both the dynamical evolution and the steady-state value of the FCS of the charge number439

could reveal the NQPT.440

3.4 Loschmidt Echo and Dynamical Quantum Phase Transitions441

One particularly interesting phenomenon in real-time dynamics of quantum many-body442

systems are DQPTs in the sense that an observable changes nonsmoothly at a critical443

time after a quench [97, 98]. Since in many experiments the physical systems are subject444

to dissipation, it is important to consider the fate of DQPTs in nonunitary dynamics. It445

has been shown that for simple Fermionic models the DQPTs may persist in the presence446

of dissipation [99–103]. Here we consider the possibility of DQPTs in the boundary-447

driven Kitatev chain. To characterize the quench dynamics we need a generalization of448

the Loschmidt echo L(t) for mixed states. Following a recent Letter [103] we use the449

definition L(t) = Tr[ρ(0)ρ(t)], and the rate function r(t) = −(1/N) lnL(t). As initial450

state we choose the vacuum state, which corresponds to the fully polarized ferromagnetic451

state in the context of the XY spin chain. This state can be taken as a Gaussian state452

with the density matrix ρ = e−βĤ0/Tr[e−βĤ0 ], where Ĥ0 = −µ
∑

l ĉ
†
l ĉl and βµ → −∞.453

Then the Loschmidt echo L(t) takes the form of Eq.(21) and can be simplified as454

L(t) =
√

det [B0B+ (1−B0)(1 −B)], (39)

and the rate function455

r(t) = − 1

2N
Tr ln [B0B+ (1−B0)(1−B)] , (40)

where B = 1
21+Q(t)

(

B0 − 1
21

)

Q̄(t) +M(t) and B0 =
[

1+ e−βH0
]−1

.456

In Fig.6 we show this rate function for several different dissipation rates and system457

sizes. We see that for the chosen parameters DQPTs occur, i.e., the rate function develops458

cusps at critical times. In the left plot we fix the dissipation rates γ1± = γN± = γ±. and459

increase the system size N . We see that the cusps are smoothed for small system sizes,460

but becomes sharper and sharper as the size increases. In the right plot we fix the system461
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Figure 5: The steady-state FCS Pn of the charge number in half of the chain. The
parameters are the same as that in Fig.4. The left plot shows singularities at µ = 0 and
µ = ±µc = ±1.5J .

size N = 100 and increase the dissipation rates. It’s obvious that the dissipations lead462

to a damping of the peaks but the cusps still persist. Even more interestingly, for the463

chosen parameters, a new cusp emerges near Jt = 5, where the unitary dynamics shows464

a plateau. The persistence of DQPTs and the emergence of new cusps in dissipative465

dynamics is generic and does not require fine turning of parameters. This can be easily466

verified numerically by using our theoretical approach.467

4 Conclusion and discussion468

In summary, we have developed a general theoretical approach to solve open fermion sys-469

tems and apply it to systems with quadratic Lindbladian. We focus on the dynamical470

correlations of nonlocal operators and give exact explicit formulas based on our character-471

istic function approach. We then take the boundary-driven Kitaev chain as an example to472

illustrate the general ideas and formulas. We compute the Green’s functions of hard-core473

anyons with statistical parameter φ, and find that the propagation of the nonlocal excita-474

tions displays an asymmetric light-cone for 0 < φ < π, and the relaxation rate increases475

with φ. In addition, two other types of nonlocal operator correlations such as the FCS476

of the charge number and the Loschmidt echo in quench dynamics are also analyzed and477

explicit formulas are obtained. The FCS shows clear signature of the steady-state NQPT,478

while the Loschmidt echo rate function exhibits cusps at some critical times in the quench479

from the vacuum state, demonstrating DQPTs in this dissipative system.480

The characteristic function approach is a new and general theoretical method to treat481

open fermion systems. We would apply and extend this method to solve some other482

physical problems. For example, in the presence of dephasing, the Liouvillian is no longer483

quadratic and has no simple solutions like the quadratic Lindbladian. However, we find484

that the dynamical correlation functions can be obtained by making Taylor expansions of485

the characteristic function. Another important application is the full counting statistics in486

dissipative transport. Introduction of a counting field brings nonlocal operators naturally,487

which can be treated by using the techniques given in this paper. Results in these directions488

would be presented in future works.489
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Figure 6: Loschmidt rate function r(t) of the boundary-driven Kitaev chain. The dissi-
pation rates are chosen to be γ1± = γN± = γ±. The left plot shows the rate function for
fixed dissipation and different system sizes N . The right plot shows the rate function for
fixed N = 100 and increasing dissipation rates.
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A Some useful formulas495

In this appendix we give some concepts and formulas that are useful in deriving and496

understanding the results in the main text.497

(1) The parity operator P̂F in K can be defined by the transformation P̂F (ĉ, ĉ
†)P̂F =498

(−ĉ,−ĉ†). Obviously, one representation of the parity operator is P̂F = eiπN̂ . Similarly,499

the parity operator Pg in G can be defined as Pgf(ξ̄, ξ) = f(−ξ̄,−ξ), and one representation500

of Pg is501

Pg = exp

[

iπ
∑

k

(ξk∂k + ξ̄k∂̄k)

]

. (41)

(2) The displacement operator D̂(ξ) ≡ eĉ
†ξ−ξ̄ĉ has the properties:502

TrD̂(ξ) = 2N , Tr
[

eiπN̂ D̂(ξ)
]

=
N
∏

k=1

ξk ξ̄k, (42)

and the integration is503
∫

dξ̄dξ D̂(ξ) =
1

2N
eiπN̂ , (43)

where
∫

dξ̄dξ ≡
∫

dξ̄1dξ1dξ̄2dξ2 · · · dξ̄NdξN .504

(3) A mixed operator involves both fermion operators and Grassmann variables, i.e.,505

it’s an element of the direct product space K⊗G. Since fermion creation/annihilation506

operators anticommute with Grassmann variables, we should be careful in computing507
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traces of such operators. We can use the following rules: (i) If f(η̄, η) has even parity, i.e.,508

f(η̄, η) = f(−η̄,−η), then Tr[Âf(η̄, η)] = Tr[Â]f(η̄, η); (ii) If f(η̄, η) has odd parity, i.e.,509

f(η̄, η) = −f(−η̄,−η), then Tr[Âf(η̄, η)] = Tr[ÂeiπN̂ ]f(η̄, η).510

(4) Here we give two basic Gaussian integrations for Grassmann variables. Denote α =511

(α1, α2, · · · , α2N )T as a set of independent Grassmann variables and Q a skew-symmetric512

matrix, then [80]513
∫

dα2ndα2n−1 · · · dα1 e
1

2
αTQα = Pf(Q), (44)

where Pf(Q) denotes the Pfaffian of Q. Now suppose that A is a 2N ×2N matrix with the514

property A+ τxA
T τx = 0, and (η̄, η) = (η̄1, η̄2, · · · , η̄N , η1, η2, · · · , ηn) is a 2N -dimensional515

vector, then we can deduce the following integration from the above basic formula,516

∫

dη̄dη exp

[

−1

2
(η̄, η)A

(

η
η̄

)

+ (ξ̄, ξ)

(

η
η̄

)]

= exp

[

1

2
Tr log(Aτz)

]

exp

[

−1

2
(ξ̄, ξ)A−1

(

ξ
ξ̄

)]

, (45)

where
∫

dη̄dη ≡
∫

dη̄1dη1dη̄2dη2 · · · dη̄NdηN . Note that one should make clear the order517

of the variables in making the integrations of Grassmann variables. Note also that the518

requirement A+ τxA
T τx = 0 follows from the skew-symmetry property Q+QT = 0.519

(5) We can also do “integration by parts” for functions of Grassmann variables. How-520

ever, one should be careful about the anticommutation nature of Grassmann variables.521

Since ∂i[f(ξ)g(ξ)] = [∂if(ξ)]g(ξ) + f(−ξ)∂ig(ξ), we have522

∫

dξi [∂if(ξ)]g(ξ) = −
∫

dξi f(−ξ)∂ig(ξ). (46)

(6) By defining the “Fourier kernal” D(ξ|η) ≡ eξ̄η−η̄ξ, we also have Fourier transfor-523

mations in Grassmann algebra:524

F (ξ̄, ξ) =

∫

dη̄dη D(ξ|η)f(η̄, η), f(η̄, η) =

∫

dξ̄dξ D(η|ξ)F (ξ̄, ξ). (47)

(7) The Θ mapping of basic Gaussian operators:525

Tr
[

Γ̂2(K)D̂(ξ)
]

=
√

det(1+ eK) exp

[

−1

2
(ξ̄, ξ)

1

1+ eK

(

ξ
ξ̄

)]

, (48)

Tr
[

(ĉ†, ĉ)Γ̂2(K)eiπN̂ D̂(ξ)
]

= −
{

(ξ̄, ξ)
1

1+ eK

}

Tr
[

Γ̂2(K)D̂(ξ)
]

, (49)

where K+ τxK
T τx = 0 is required.526

(8) The Ω mapping of basic Gaussian functions:527

Ω

{

exp

[

−1

2
(ξ̄, ξ)B

(

ξ
ξ̄

)]}

=
√
detB Γ̂2(K), (50)

Ω

{

(ξ̄, ξ) exp

[

−1

2
(ξ̄, ξ)B

(

ξ
ξ̄

)]}

= −(ĉ†, ĉ)

√
detB

B
Γ̂2(K)eiπN̂ , (51)

where B(1 + eK) = 1 satisfies the relation B + τxB
T τx = 1, while the matrix K satisfies528

K+ τxK
T τx = 0.529

(9) As stated in the main text, we can make analogy with concepts in quantum optics530

and define some phase-space functions such as theQ-function or P -function. Investigations531
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along this line deserve further systematic studies. Here we just give some preliminary532

results about the Q-function. For any operator Â, its Q-function can be defined as533

AQ(ξ̄, ξ) ≡
〈ξ|Â|ξ〉
〈ξ|ξ〉 , (52)

where |ξ〉 is the fermionic coherent state. The Q-function is related with the characteristic534

function AC by a proper Fourier transformation. However, we stress again that one535

should be careful about the anticommutation nature of Grassmann variables. Here we536

should distinguish the different parities of the functions/operators defined above in this537

Appendix. For even-parity functions,538

AQ(ξ̄,−ξ) = e2ξ̄ξ
∫

dη̄dη e−η̄η/2AC(η̄, η)D(η|ξ), (53)

while for odd-parity functions,539

AQ(ξ̄, ξ) =

∫

dη̄dη e−η̄η/2AC(η̄, η)D(η|ξ). (54)

We will not give proof for these transformations here since (i) the proof is a little lengthy540

and (ii) the Q-function is not used in this paper. We just point out a future development541

direction of the characteristic function approach.542

B Equation of Motion for the Characteristic Function543

Here we sketch the derivation of the equation of motion for the characteristic function544

F (ξ̄, ξ) given by Eq.(7). We note that545

(ĉ†, ĉ)A

(

ξ
ξ̄

)

= −(ξ, ξ̄)AT

(

ĉ†

ĉ

)

= −(ξ̄, ξ)τxA
T τx

(

ĉ
ĉ†

)

.

Then the displacement operator D̂(ξ) ≡ eĉ
†ξ−ξ̄ĉ has the following properties:546

[D̂(ξ), Ĥ ] =
[

D̂(ξ)ĤD̂†(ξ)− Ĥ
]

D̂(ξ)

=

[

1

2
(ĉ† − ξ̄, ĉ− ξ)H

(

ĉ− ξ
ĉ† − ξ̄

)

− 1

2
(ĉ†, ĉ)H

(

ĉ
ĉ†

)]

D̂(ξ)

=

[

−1

2
(ĉ†, ĉ)H

(

ξ
ξ̄

)

− 1

2
(ξ̄, ξ)H

(

ĉ
ĉ†

)

+
1

2
(ξ̄, ξ)H

(

ξ
ξ̄

)]

D̂(ξ)

=

[

−1

2
(ξ̄, ξ)

(

H− τxH
T τx

)

(

ĉ
ĉ†

)

+
1

2
(ξ̄, ξ)H

(

ξ
ξ̄

)]

D̂(ξ)

=

[

−(ξ̄, ξ)H

(

ĉ
ĉ†

)

+
1

2
(ξ̄, ξ)H

(

ξ
ξ̄

)]

D̂(ξ)

=

[

−(ξ̄, ξ)H

(

ξ/2− ∂̄
ξ̄/2− ∂

)

+
1

2
(ξ̄, ξ)H

(

ξ
ξ̄

)]

D̂(ξ)

= (ξ̄, ξ)H

(

∂̄
∂

)

D̂(ξ),
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and547

2L̂†
µD̂(ξ)L̂µ − L̂†

µL̂µD̂(ξ)− D̂(ξ)L̂†
µL̂µ

=
[

2L̂†
µD̂(ξ)L̂µD̂

†(ξ)− L̂†
µL̂µ − D̂(ξ)L̂†

µL̂µD̂
†(ξ)

]

D̂(ξ)

=

[

(ξ̄, ξ)LµL
†
µ

(

ĉ
ĉ†

)

− (ĉ†, ĉ)LµL
†
µ

(

ξ
ξ̄

)

− (ξ̄, ξ)LµL
†
µ

(

ξ
ξ̄

)]

D̂(ξ)

=

[

(ξ̄, ξ)X+

(

ĉ
ĉ†

)

− (ξ̄, ξ)LµL
†
µ

(

ξ
ξ̄

)]

D̂(ξ)

=

[

(ξ̄, ξ)X+

(

ξ/2− ∂̄
ξ̄/2− ∂

)

− (ξ̄, ξ)LµL
†
µ

(

ξ
ξ̄

)]

D̂(ξ)

=

[

−(ξ̄, ξ)X+

(

∂̄
∂

)

− 1

2
(ξ̄, ξ)X−

(

ξ
ξ̄

)]

D̂(ξ),

where X± is defined by Eq.(8). The equation of motion for F (ξ̄, ξ) reads548

∂tF = Tr
[

L(ρ)D̂(ξ)
]

= Tr
{

ρLad[D̂(ξ)]
}

,

where Lad is the adjoint superoperator of L,549

Lad[D̂(ξ)] = −i[D̂(ξ), Ĥ ] +
∑

µ

[

2L̂†
µD̂(ξ)L̂µ − L̂†

µL̂µD̂(ξ)− D̂(ξ)L̂†
µL̂µ

]

Inserting the expressions for [D̂(ξ), Ĥ ] and [2L̂†
µD̂(ξ)L̂µ− L̂†

µL̂µD̂(ξ)−D̂(ξ)L̂†
µL̂µ] into this550

equation of motion leads to the final result, Eq.(7). In fact, the operator D̂(ξ) satisfies551

the same differential equation and hence its dynamical evolution can be written as552

D̂(ξ̄, ξ; t) = D̂
[

(ξ̄, ξ)Q(t)
]

exp

[

−1

2
(ξ̄, ξ)M(t)

(

ξ
ξ̄

)]

.

Similar results have been obtained for bosonic operators [81].553

C The sign problem of the Green’s function554

The conventional dissipation superoperator D with Lindblad operator L̂, L̂† reads555

D[◦] = 2L̂ ◦ L̂† −
{

L̂†L̂, ◦
}

. (55)

However, if both the operator ◦ and the Lindblad operator L̂(†) are fermionic operators,556

i.e., they have odd Fermion number parity, then the dissipation superoperator should differ557

from the above one by having a minus sign in front of the 2L̂ ◦ L̂† term, leading to a new558

superoperator [82]:559

Df [◦] = −2L̂ ◦ L̂† −
{

L̂†L̂, ◦
}

. (56)

This difference is due to the anticommutation nature of fermionic operators and has been560

proved from first principle [82]. However, we should note that these two superoperators561

are intimately connected: If P̂F L̂P̂F = −L̂, then562

P̂FDf [P̂F ◦] = D[◦], P̂F e
Df t[P̂F ◦] = eDt[◦]. (57)

21



SciPost Physics Submission

Similarly,563

Df [◦ P̂F ]P̂F = D[◦], eDf t[◦ P̂F ]P̂F = eDt[◦]. (58)

The proof is straightforward:564

(1)565

P̂FDf [P̂F ◦] = −2P̂F LP̂F ◦ L† − P̂F

{

L†L, P̂F ◦
}

= 2L ◦ L† −
{

L†L, ◦
}

= D[◦].

(2) Define Ã(t) = P̂F e
Df t[P̂F A], and A(t) = eDt[A], then566

∂

∂t
Ã(t) = P̂FDf

{

eDf t[P̂F A]
}

= P̂FDf

{

P̂F P̂F eDf t[P̂F A]
}

= D[Ã(t)],

with the initial condition Ã(t = 0) = A. On the other hand, A(t) satisfies the equation567

∂

∂t
A(t) = D[A(t)],

with the initial condition A(t = 0) = A. So we see that Ã(t) and A(t) satisfy the same568

equation of motion and the same initial condition, and hence Ã(t) = A(t), i.e.,569

P̂F e
Df t[P̂F ◦] = eDt[◦].

Similarly we can prove the other equations.570

D Steady State and Static Correlations571

The dynamical correlation functions would reduce to static ones just by taking the evolu-572

tion time t = 0. Therefore our formalism is also useful for computing static correlations of573

local or nonlocal excitations. This special limiting case is nontrivial since the correlation574

functions may be used to detect the NQPT. In addition, they can also be used to test575

the numerical computation codes for the more complicated dynamical correlations. Here576

we study the static correlation functions in the steady state. We first give the explicit577

expression of the steady state characteristic function, and then study the the momentum578

distribution of anyons, which shows clear signatures of the NQPT.579

Suppose that the non-Hermitian matrix X+ + iH has the spectral decomposition580

X+ + iH =

2N
∑

k=1

λk|ϕR
k 〉〈ϕL

k |,

where {λk} are the eigenvalues and {|ϕR(L)
k 〉} the right (left) eigenvectors of X+ + iH,581

satisfying the biorthonormal condition 〈ϕL
k |ϕR

q 〉 = δk,q. We can prove that Reλk ≥ 0 for582

all k. For the boundary-driven Kitaev chain with a finite size N , we can numerically verify583

that Reλk > 0 for all k. Then the steady state characteristic function is given by Eq.(12)584

with585

M∞ =
∑

m,n

〈ϕL
m|X−|ϕL

n〉
λm + λ∗

n

|ϕR
m〉〈ϕR

n |. (59)

Here we focus on the momentum distribution of anyons defined as [104]586

n(k) ≡ 1

N

N
∑

j,l=1

eik(j−l)〈f̂ †
j f̂l〉.

22



SciPost Physics Submission

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

k/

 
/J

0.2

0.3

0.4

0.5

0.6

0.7

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

k/

 

 

 
/J

Figure 7: The k-distribution n(k) in the steady state with the statistical parameter φ = 0
(left) and φ = π (right). The other parameters ∆, γ± and N are the same as in Fig.1. The
critical chemical potential is µc/J = ±1.5.

Such correlation functions of nonlocal operators can be computed by takeing the t = 0587

limit of the lesser Green’s function. In Fig.7 we plot this distribution for two statistical588

parameters φ = 0 and φ = π. We see that the behavior of n(k) is qualitatively the same for589

different statistical parameters. When |µ| < |µc|, the k-distribution shows two maximums590

at k 6= 0, π, otherwise it shows only one maximum at k = 0 or π. So the NQPT occurring591

at µc can be clearly characterized by the k-distribution function.592
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