
SciPost Physics Submission
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Abstract

We discuss masses, radii, and tidal deformabilities of neutron stars constructed from the
holographic Witten-Sakai-Sugimoto model. Using the same model for crust and core of the
star, we combine our theoretical results with the latest astrophysical data, thus deriving more
stringent constraints than given by the data alone. For instance, our calculation predicts –
independent of the model parameters – an upper limit for the maximal mass of the star
of about 2.46 solar masses and a lower limit of the (dimensionless) tidal deformability of a
1.4-solar-mass star of about 277.

1 Introduction

The gauge-gravity duality [1,2] is a powerful non-perturbative tool to understand strongly coupled
gauge theories. Based on the holographic principle, it is employed to obtain otherwise inacces-
sible strong-coupling results from classical gravity calculations in higher dimensions. Here we
use a certain realization of the gauge-gravity duality, the Witten-Sakai-Sugimoto model [2–4], to
describe cold and dense matter at baryon and isospin densities relevant for neutron stars.

Neutron stars present a unique laboratory for matter at large, but not asymptotically large,
densities, where first-principle calculations within Quantum Chromodynamics (QCD) are too dif-
ficult within currently available techniques (for recent progress on the lattice see for instance
Refs. [5–7]). The interior of neutron stars is therefore often studied with the help of phenomeno-
logical models, effective field theories, or extrapolations of perturbative results, and the resulting
thermodynamic and transport properties can be linked to astrophysical observables [8,9]. In recent
years, an increasing amount of astrophysical data has become available, for instance through the
detection of gravitational waves from neutron star mergers [10, 11] and through the NICER mis-
sion [12–15]. We shall combine the inferred estimates for mass, radius, and tidal deformability of
neutron stars with our holographic calculation.

The Witten-Sakai-Sugimoto model is the holographic top-down approach – based on type-IIA
string theory – that is closest to real-world QCD. It accounts for chiral and deconfinement phase
transitions, and several candidate phases at high densities can be realized, including a holographic
version of quarkyonic matter [16], which, however, tends to appear at densities larger than ex-
pected in the cores of neutron stars. Here we restrict ourselves to nuclear matter with two flavors,
N f = 2, i.e., hybrid stars with a quark matter core or a quarkyonic core will not be discussed. We
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employ the holographic results for the core of the star and, within a simple approximation, for
the crust as well, such that the crust-core transition is determined dynamically. In this regard, our
study goes beyond previous holographic approaches to neutron stars [17–20] and beyond many
field-theoretical studies, where the crust is often obtained from a separate approach and assump-
tions about the crust-core transition have to be added by hand. Different holographic approaches
have recently been reviewed and compared in Ref. [21].

Secs. 2 and 3.1 of these proceedings provide a review of the results of Ref. [22]. However, we
significantly enhance these results by combining them more systematically with the astrophysical
data, thus extracting novel predictions for mass, radius, and tidal deformability of the star in Sec.
3.2.

2 Holographic approach

2.1 Model and approximations

We work within the background geometry of the Witten-Sakai-Sugimoto model that corresponds
to the confined phase. The background is given by Nc D4-branes, where Nc corresponds to the
number of colors in the dual gauge theory. The N f D8- and D8-branes, added to describe left- and
right-handed fermions [3, 4], are assumed to be maximally separated asymptotically in a compact
extra dimension with radius M−1

KK, such that their embedding in the bulk follows geodesics. In this
version of the model, there are only two parameters: the ’t Hooft coupling λ and the Kaluza-Klein
mass MKK, and we shall discuss our results in this parameter space systematically (setting Nc = 3,
N f = 2). We approximate the Dirac-Born-Infeld part of the gauge field action on the flavor branes
by the Yang-Mills action. The Chern-Simons part of the action is crucial to implement nonzero
baryon number, and we shall introduce baryonic matter within the "homogeneous ansatz" [23,24].
In this ansatz, the spatial components of the non-abelian part of the gauge field are assumed to
depend only on the holographic (radial) coordinate, not on the spatial ones. In contrast to an
instantonic approach [25, 26], this approximation is expected to be justified at sufficiently large
baryon densities. All our results are valid at zero temperature. For the details of the theoreti-
cal setup see Ref. [27], where it was shown how to include an isospin chemical potential in the
presence of baryonic matter. This is crucial for the description of realistic neutron star matter. In
Ref. [27], pion condensation was also included and its competition and coexistence with nuclear
matter in the phase diagram was investigated. Here we ignore pion condensation for simplicity.
We also neglect the current quark masses (since we only discuss non-strange matter, this is a very
good approximation in our context), whose effect on the phase structure in the present model was
studied in Refs. [16, 28]. The holographic nuclear matter thus constructed shares several proper-
ties with real-world nuclear matter, such as a first-order baryon onset of isospin-symmetric nuclear
matter. A caveat of the approximation arises due to the semi-classical large-Nc treatment of the
baryons. In this treatment, the isospin spectrum is continuous, and neutron and proton states are
not explicitly present. While we can still identify the two isospin components with the neutron and
the proton, the continuous spectrum is responsible for a symmetry energy at saturation density that
is an order of magnitude larger than in the real world. We shall see momentarily that this results
in a very large proton fraction of our neutron star matter.

2.2 Holographic crust

We combine our holographic nuclear matter with a lepton gas made of electrons and muons. Re-
quiring equilibrium with respect to the electroweak interaction and local charge neutrality defines
the spatially homogeneous matter in the neutron star core. We also allow for a mixed phase of
nuclear matter (plus leptons) and a lepton gas. For the construction of this mixed phase – which
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Figure 1: Left panel: Free energy densities relative to the mixed phase without Coulomb
and surface effects as a function of the neutron chemical potential. The surface tension
is set to Σ = 1 MeV/fm2. Right panel: Corresponding proton fraction as a function of
the spatially averaged baryon density, normalized by the saturation density of nuclear
matter. The star indicates the density and proton fraction in the center of the most mas-
sive star. For both panels, λ = 10, MKK = 949 MeV, resulting in a saturation density
n0 ' 0.21 fm−3, somewhat larger than in QCD.

forms the crust of the neutron star – we require global charge neutrality and assume the interfaces
between the two phases to be sharp surfaces. This assumption requires us to introduce the sur-
face tension of nuclear matter Σ as an additional external parameter. We assume Σ to be constant
throughout the crust and will mostly use Σ = 1 MeV/fm2, which is a realistic value for symmetric
nuclear matter at saturation density (roughly the density of our nuclear matter clusters in the crust,
up to the crust-core transition). Moreover, we employ the Wigner-Seitz approximation and restrict
ourselves to the spherical geometry, i.e., we only consider spherical bubbles of nuclear matter
(with dynamically determined size and composition) immersed in a lepton gas, as expected for
the outer crust of the star. We do not construct a mixed phase of nuclear matter with pure neutron
matter, as expected for the inner crust. After these simplifications, the holographic equations of
motion together with the neutrality and beta-equilibrium conditions yield the preferred phase for
any neutron chemical potential µn fully dynamically.

We show the results for a certain parameter set in Fig. 1. The left panel compares the free
energy densities of the vacuum, homogeneous nuclear matter, and the mixed phase including
Coulomb and surface effects to the free energy density of the mixed phase without Coulomb and
surface effects. We read off the transitions between the vacuum and the mixed phase (this will
correspond to the surface of the star) and the transition from the mixed phase to homogeneous
nuclear matter (crust-core transition). The right panel shows the corresponding proton fraction
xp = np/nB, where np and nB are proton and baryon number densities, respectively. We see that
our nuclear matter evolves from almost symmetric nuclear matter to more asymmetric matter as
we approach the crust-core transition. Then, in the core of the star, the proton fraction rises until at
ultra-high densities it decreases again. We also see that the values for xp are close to 0.5 through-
out. This indicates that there is a large energy cost associated with creating isospin-asymmetric
matter, which can be attributed to the large-Nc approximation of our approach. Improving the
approach to overcome this unrealistic feature is an important step for future work.
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Figure 2: Left panel: Black curves show the effect of the crust, from no crust at all (left)
through crust with Coulomb and surface effects (middle, surface tension as labeled, in
units of MeV/fm2) to crust without energy cost (right). For comparison, also the curves
for symmetric nuclear matter and pure neutron matter are shown (blue and red, both
without crust). In this panel, λ = 10, MKK = 949. Right panel: Mass-radius curves
including the crust with Σ = 1 MeV/fm2 for different model parameters λ and MKK
(in MeV), as labeled. All curves end at the maximal mass, beyond which the stars are
unstable with respect to radial oscillations.

3 Holographic neutron stars

3.1 Mass-radius curves

The holographic calculation laid out in the previous section provides us with all thermodynamic
quantities. We can thus straightforwardly compute the equation of state, i.e., the pressure as a
function of energy density, including the first-order phase transition at the crust-core boundary,
and the corresponding speed of sound. Equation of state and speed of sound are then used as input
for the Tolman-Oppenheimer-Volkoff equations (supplemented by an equation for the perturbation
of the metric due to tidal deformations), which are solved numerically to extract gravitational mass
M, radius R, and tidal deformability Λ for a given central pressure of the star. Varying the central
pressure yields mass-radius relations as presented in Fig. 2. The left panel of this figure shows the
effect of the crust and different surface tensions: ignoring the crust leads to very small radii, a crust
without Coulomb and surface effects yields very large radii (then the crust is unrealistically large),
while Coulomb and surface effects render the effect of the crust more moderate, resulting in radii
between the two extremes. The maximal mass is almost unaffected by these changes. The left
panel also shows the comparison with pure neutron matter and isospin-symmetric nuclear matter.
For the right panel, we have fixed the surface tension and have varied the model parameters λ and
MKK. This panel suggests that realistic "holographic stars" can be obtained. In particular, masses
above 2.1 M�, where M� is the solar mass, are reached, which is a necessary requirement on
account of the observation of the heaviest known neutron star [29]. We shall confront our results
with the other known constraints in the next subsection and see that indeed all known astrophysical
constraints can be satisfied (in contrast to the simple pointlike approximation of baryons within
the same holographic model [22, 30]).

3.2 Combining holographic results with astrophysical constraints

Besides the existence of a 2.1-solar-mass star, we also consider the constraints for the tidal de-
formability, 70 < Λ1.4 < 580 [10], and radius, 11.5 km < R1.4 < 14.3 km (putting together
Refs. [12, 13]), of a (roughly) 1.4-solar-mass star as well as the radius, 11.4 km < R2.1 < 16.3 km
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Figure 3: Tidal deformability Λ and radius R for a 1.4-solar-mass star (blue solid) and
a 2.1-solar-mass star (red solid) as a function of the maximal mass Mmax. Here we
have fixed the ’t Hooft coupling λ = 10 and the surface tension Σ = 1 MeV/fm2, and
different values of Mmax are obtained by varying the second model parameter MKK. The
horizontal dashed lines indicate the astrophysical constraints for Λ1.4, R1.4, and R2.1.
Beyond the shaded region at least one of the constraints is violated. As a consequence,
for this particular value of the ’t Hooft coupling, we obtain 2.11 M� . Mmax . 2.40 M�
and new bounds for Λ1.4, R1.4, Λ2.1, R2.1, for instance 288 . Λ1.4 . 580.

(putting together Refs. [14, 15]), of a (roughly) 2.1-solar-mass star. We demonstrate in Fig. 3 how
these constraints can be combined with our holographic results to derive more stringent conditions
for mass, radius, and tidal deformability. To obtain this figure, we have fixed the ’t Hooft coupling
λ and calculated the properties of 1.4-solar-mass and 2.1-solar-mass stars and the maximal mass
Mmax for different values of MKK. This results in the red and blue solid curves (the curves for
the 2.1 M� star obviously end where the maximal mass drops below that value). Since the micro-
scopic calculation of homogeneous nuclear matter becomes independent of MKK in the absence of
any additional energy scale, we have ignored the muon contribution and set the electron mass to
zero here and for the following results. (The surface tension does introduce another energy scale
and thus a dependence on MKK, but its effect is computed without much numerical effort once the
main holographic calculation for a given λ is done.) We now compare the solid curves with the
astrophysical constraints, indicated by the horizontal dashed lines. It turns out that the strongest
constraint for the upper limit of Mmax is the upper limit of Λ1.4 while the strongest constraint for
the lower limit of Mmax is the lower limit of R2.1. This gives the two vertical lines, which define
the shaded region. This region, in turn, gives new upper limits for R1.4, R2.1, and new lower limits
for R1.4, Λ1.4 (as well as upper and lower limits for Λ2.1, for which no constraints are known).

fit to λ MKK Figs. 4, 5
fπ, mρ 16.63 949 MeV  
σ, mρ 12.55 949 MeV _

n0, µ0 7.09 1000 MeV �

Table 1: Fits of the model parameters to vacuum properties (pion decay constant and
rho meson mass [3, 4], first row, QCD string tension and rho meson mass [31], second
row), and to nuclear saturation properties (saturation density n0 = 0.153 fm−3 and onset
chemical potential µ0 = 922.7 MeV of symmetric nuclear matter, third row, this work).

The shaded region also yields an "astrophysically allowed" range for the second model param-
eter MKK because each Mmax in Fig. 3 is generated by choosing a value for MKK. Repeating this
calculation for many values of λ we can thus determine a window in the MKK-λ plane that satisfies
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Figure 4: Left panel: Allowed range according to the astrophysical constraints in the
λ-MKK plane (doubly logarithmic), obtained by applying the construction of Fig. 3 for
each λ. The three symbols mark the parameter pairs from the QCD fits of table 1, and
we use them to define a "QCD window" (red). Right panel: Constraints for the maximal
mass of the neutron star as a function of the ’t Hooft coupling λ. The light gray band
gives the constraint from astrophysical data. The dark gray band and the red band arise
from applying the constraints of the left panel.
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Figure 5: Saturation density of symmetric nuclear matter (left) and corresponding onset
chemical potential (right) as functions of λ for the astrophysically allowed parameter
band, see left panel of Fig. 4, and for the three fits of table 1. The dashed horizontal lines
indicate the real-world values.

all astrophysical constraints. For most of the λ range we consider, the situation is qualitatively the
same as in Fig. 3. For very small λ, however, the scenario slightly differs: Instead of the lower
bound for R2.1, the existence of the 2.1-solar-mass star becomes the strongest constraint for the
lower bound of Mmax; and instead of the upper bound for Λ1.4, the upper bound for R1.4 becomes
the strongest constraint for the upper bound of Mmax. The resulting window is the gray shaded area
in the left panel of Fig. 4. For comparison, we have indicated three particular parameter choices
obtained from fits to QCD vacuum properties (circle and diamond) and to saturation properties
of symmetric nuclear matter (square), as explained in table 1. We see that these three points do
not coincide and none of them lies in the astrophysically allowed band. Having in mind that the
points and the band are constructed to fit properties of vastly different systems, it is perhaps not
surprising that the Witten-Sakai-Sugimoto model, at least in the simple version employed here,
cannot account for all of them simultaneously. To get some further idea of the extent by which the
properties of nuclear matter are violated, we have plotted the saturation density n0 and the onset
chemical potential µ0 for the astrophysically allowed band and the three separate fits in Fig. 5. If
we are more modest and do not require to fit "everything" with a single parameter set but at least
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Figure 6: Same as right panel of Fig. 4, but for radius and deformability of 1.4-solar-
mass and 2.1-solar-mass stars.

keep the QCD properties approximately correct, it is useful to define a "QCD window", given by
the fits to the vacuum and nuclear matter: MKK ' (949 − 1000) MeV and λ ' 7 − 17. We have
indicated this window as a red rectangle in the left panel of Fig. 4.

In the right panel of this figure and in Fig. 6 we collect the constraints for all λ obtained
from the construction of Fig. 3. Constraints from astrophysical data alone are shown by a light
gray band (obviously independent of the microscopic model parameter λ). The panel for the
deformability Λ2.1 does not have such a band because there is no data available from a neutron star
merger with a star of that mass. The dark gray bands are the more stringent constraints obtained
by combining the data with the results of the model. They allow us to read off predictions of the
model that are completely general, i.e., with no assumptions about the model parameters λ and
MKK (for a fixed value of the surface tension in the crust). We have collected these predictions in
table 2. For the "parameter-independent" bounds we have used the upper or lower limits of the
bands visible in the plots. In all cases, perhaps with the exception of Λ2.1, the shapes of the bands
suggest that these are the general bounds even beyond the shown λ regime. Our predictions can
further be refined by focusing on the QCD window, which is shown in each panel as a red band
(cut off at the boundaries of the light gray band). The steepness of the red bands indicate that the
observables are very sensitive to variations in λ. The refined constraints are then obtained from the
intersections of the red bands with the dark gray bands (more precisely the upper or lower corner
of the intersection, depending on whether we obtain an upper or lower limit). These values are also
collected in table 2. For instance, we find as a general prediction of the model that neutron stars
cannot be heavier than 2.46 solar masses, while if we are interested to approximately reproduce
vacuum and nuclear matter properties at the same time, this upper limit can be lowered to 2.40
solar masses. Similarly, for any parameter values the tidal deformability of a 1.4-solar-mass star
cannot be lower than 277, the QCD window further narrows this down to a lower limit of about
286.
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parameter independent QCD window
lower bound upper bound lower bound upper bound

Mmax [M�] (2.1) 2.46 2.11 2.40
R1.4 [km] 11.9 (14.3) 12.4 14.1
R2.1 [km] (11.4) 13.7 (11.4) 13.7
Λ1.4 277 (580) 286 (580)
Λ2.1 9.13 49.3 10.1 43.7

Table 2: Constraints obtained by combining the holographic results with astrophysical
data for maximal mass as well as radius and tidal deformability for 1.4-solar-mass and
2.1-solar-mass stars. Parameter-independent bounds are valid for any model parameters
λ, MKK, while the QCD window defined by table 1 and Fig. 4 gives tighter bounds.
Parentheses indicate that our model does not further restrict the astrophysical data used
here.

4 Conclusion

We have employed a holographic description of zero-temperature, high-density nuclear matter
and used this single, top-down formalism to construct neutron stars. In particular, since our holo-
graphic nuclear matter is allowed to become isospin asymmetric, we were able to account for
electroweak equilibrium and electric charge neutrality, and we have constructed a mixed phase
of nuclear matter and a lepton gas to include the crust of the star fully dynamically. We have
demonstrated that the model can reproduce realistic neutron stars, and we have combined our mi-
croscopic results with the latest astrophysical data to derive constraints for mass, radius, and tidal
deformability of the star.

Improvements of the holographic model are necessary for more reliable predictions, most
notably a refined approximation regarding the isospin spectrum is highly desired. More straight-
forward improvements of the present calculation would be the construction of an inner crust as
a mixed phase of pure neutron matter and nearly symmetric nuclear matter, taking into account
different geometrical structures in the crust and the crust-core transition region, and computing the
surface tension dynamically within the model. Other extensions are the inclusion of strangeness
(and a nonzero strange quark mass), pion condensation, nonzero temperature effects, a magnetic
field, and the phase transition to a chirally restored phase. Most of these ingredients have been
developed already within the given model and have to be combined and possibly improved for
neutron star applications. It would also be interesting to use the model to compute transport prop-
erties, as recently done in the context of dense matter within different holographic setups [32, 33].
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