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Abstract

We discuss some higher-loop studies of renormalization-group flows and fixed points in

various quantum field theories.
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1 Introduction

A fundamental question in quantum field theory (QFT) concerns how the running coupling of

a theory changes as a function of the reference Euclidean energy/momentum scale µ where it

is measured. The variation of this coupling with µ is described by the renormalization group

(RG) beta function of the theory. Here we will discuss some results that we have obtained

in this area. Much of this work was with T. A. Ryttov. We will focus mainly on vectorial

asymptotically free nonabelian gauge theories in d = 4 dimensions, but also discuss some
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other asymptotically free theories, namely the 2D finite-N Gross-Neveu model and 6D φ3

theories, as well as some infrared-free theories, including U(1) gauge theory, O(N) φ4 theory,

and chiral gauge theories..

2 Asymptotically Free Nonabelian Gauge Theories

Let us consider an asymptotically free (AF) vectorial nonabelian gauge theory (in d = 4 di-

mensions) with gauge group G and N f massless fermions ψ j , j = 1, ..., N f , transforming ac-

cording to a representation R of G. We denote the running gauge coupling as g(µ) and define

α(µ) ≡ g(µ)2/(4π) and a(µ) ≡ g(µ)2/(16π2). The dependence of α(µ) on µ is described by

the RG beta function, β = dα(µ)/d t, where d t = d lnµ. This has the series expansion

β = −2α

∞
∑

ℓ=1

bℓ aℓ , (1)

where bℓ is the ℓ-loop coefficient. For a general operator O, we denote the full scaling di-

mension as DO and its free-field value as DO, f ree. The anomalous dimension of this operator,

denoted γO, is defined via DO = DO, f ree−γO. The coefficients b1 and b2 are independent of the

scheme used for regularization and renormalization and are b1 = (1/3)[11CA−4T f N f ] [1,2]

and b2 = (1/3)[34C2
A − 4(5CA + 3C f )N f T f ] [3, 4], where C2(R) is the quadratic Casimir in-

variant, and T (R) is the trace invariant, for the representation R, and we use the notation

C2(ad j)≡ CA, T (R) ≡ T f , and C2(R)≡ C f . The AF condition means that b1 > 0, i.e., N f < Nu,

where Nu = 11CA/(4T f ). Since α(µ) is small at large µ, one can self-consistently calculate β

as a power series in α(µ). As µ decreases from large values in the ultraviolet (UV) to small

values in the infrared (IR), α(µ) increases.

A situation of special interest occurs if β has a zero at a nonzero (physical) value α = αIR.

In the asymptotically free regime, this happens if the condition Nu > N f > 17C2
A
/[2(5CA+3C f )T f ]

holds, so that b2 < 0. At the two-loop (2ℓ) level, the zero in β occurs at αIR,2ℓ = −4πb1/b2.

If N f is close enough to Nu that this IR zero of β occurs at small enough coupling so that the

gauge interaction does not produce any spontaneous chiral symmetry breaking (SχSB), then

it is an exact IR fixed point (IRFP) of the RG. The theory at this IRFP exhibits scale invariance

and is inferred to exhibit conformal invariance, whence the term “conformal window” for this

regime. In this IR limit, the theory is in a chirally symmetric, deconfined, nonabelian Coulomb

phase (NACP). If, on the other hand, as µ decreases and α(µ) increases toward αIR, there

is a scale µ = Λ at which α(µ) exceeds a critical value, αcr , for the formation of a fermion

condensate 〈ψ̄ψ〉 with associated SχSB, then the fermions gain dynamical masses of order Λ.

These fermions are then integrated out of the low-energy effective field theory operative for

µ < Λ. In this case, αIR is only an approximate IRFP. We define N f ,cr to be the critical value of

N f such that as N f decreases below N f ,cr , there is SχSB. If N f is only slightly less than Nu, so

that αIR is small, then the theory at the IRFP is weakly coupled and is amenable to perturbative

analysis [5]. A case of interest for studies of physics beyond the Standard Model (BSM) is N f

slightly less than N f ,cr . In this case, there is slow-running, quasi-conformal behavior of α(µ)

over an extended interval of µ. The dynamical breaking of the approximate scale (dilatation)

symmetry then leads to a light pseudo-Nambu-Goldstone boson, the dilaton. In a BSM ap-

plication, with the Higgs boson being at least partially a dilaton, this might help to solve the

fine-tuning problem of why the Higgs mass is protected against large radiative corrections.

It is of interest to investigate the properties of IRFPs in these vectorial AF gauge theories.

Among these properies are the anomalous dimensions of (gauge-invariant) operators, such

as ψ̄ψ =
∑N f

i=1
ψ̄iψi, denoted γψ̄ψ,IR. In general, one can express the anomalous dimension
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γψ̄/ψ as the series expansion

γψ̄ψ =

∞
∑

ℓ=1

cℓ aℓ , (2)

where cℓ is the ℓ-loop coefficient. Evaluating this with α set equal to the IRFP value, calculated

to a given n-loop (nℓ) order then yields γψ̄ψ,IR to this order, denoted as γψ̄ψ,IR,nℓ. Another

operator of interest is Tr(FλρFλρ), where F b
λρ

is the field-strength tensor (with b a group

index). The anomalous dimension γF2,IR of this operator at the IRFP satisfies γF2 = −β ′IR,

where β ′ = dβ/dα.

As N f decreases through the conformal regime, αIR increases, motivating higher-loop cal-

culations of anomalous dimensions. We have carried out this program of calculating the UV

to IR renormalization-group evolution and anomalous dimensions at an IRFP to higher-loop

order in a series of papers, many with T. A. Ryttov, including [6]- [23]. Our first calculations

were at the 4-loop level [6], and subsequently, we have extended these to the 5-loop level,

with inputs (in the MS scheme) up to the 5-loop level from [24,25]. (At the 4-loop level, see

also [26]). Our calculations to higher-loop order enable us to describe the IR properties of the

theory throughout a larger portion of the conformal window than would be possible with the

lowest-order (two-loop) results. As N f decreases below N f ,cr , the properties of the IR theory

change qualitatively, and the perturbative calculations do not apply. A unitarity upper bound

in the conformal regime is γψ̄ψ,IR < 2 (reviewed in [27]), and studies of Schwinger-Dyson

equations [28] suggest that the onset of SχSB occurs if γψ̄ψ,IR > 1. Thus, for a given G and

R, our higher-loop calculations of γψ̄ψ,IR yield estimates for N f ,cr; in turn, this information is

relevant for the above-mentioned BSM theories.

There is an intensive ongoing program of research in the lattice gauge theory community to

study this physics. Much work has been done for G = SU(3) with R equal to the fundamental

representation. For this theory, Nu = 16.5 (where a formal continuation from physical integer

N f to real N f is understood). There is not yet a consensus among lattice groups concerning the

value of N f ,cr (i.e., the lower end of the conformal window as a function of N f ) for this theory.

As an example, we consider the case N f = 12. Several lattice groups [29–34] have found that

this theory is IR-conformal, while Ref. [35] has argued that it is chirally broken and hence

not IR-conformal. For our 5-loop analysis, we have made use of Padé resummation methods

in addition to direct analysis of series expansions. As above, we denote our n-loop value of

γψ̄ψ,IR as γψ̄ψ,IR,nℓ. We calculate γψ̄ψ,IR,2ℓ = 0.773, γψ̄ψ,IR,3ℓ = 0.312, γψ̄ψ,IR,4ℓ = 0.253,

and γψ̄ψ,IR,5ℓ = 0.255. These results show reasonable convergence at the 4-loop and 5-loop

levels, and our values of γψ̄ψ,IR,4ℓ and γψ̄ψ,IR,5ℓ are in very good agreement with the values

γψ̄ψ,IR = 0.23(6) [33] (in accord with [31,32]) and γψ̄ψ,IR = 0.235(46) [34] measured in lat-

tice simulations. Our values are also in agreement with the range of effective values reported

in [35]. For β ′IR in this N f = 12 theory, as calculated via power series in the IR coupling, we

find β ′
IR,2ℓ

= 0.360, β ′
IR,3ℓ

= 0.295, and β ′
IR,4ℓ

= 0.282. Again, these values show good conver-

gence, and the 4-loop value is in very good agreement with the value β ′IR = 0.26(2) obtained

from lattice measurements [32]. In our papers we have discussed corresponding comparisons

with lattice results for other gauge groups G, fermion representations R, and flavor numbers

N f . We have also studied theories with fermions in multiple different representations [23].

Since the bℓ for ℓ ≥ 3 and the cℓ for ℓ ≥ 2 depend on the scheme used for regularization

and renormalization, it is important to assess the effects of this scheme dependence. We have

done this in [10–14]. This scheme dependence is a generic feature of higher-order perturbative

calculations, e.g., in QCD. A scheme transformation can be expressed as a mapping between

α and α′, or equivalently, a and a′, which we write as a = a′ f (a′), where f (a′) is the scheme
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transformation function. We can write f (a′) as a series expansion

f (a′) = 1+

smax
∑

s=1

ks(a
′)s , (3)

where smax may be finite or infinite. In the new scheme, the beta function is βα′ = −2α′
∑∞
ℓ=1 b′

ℓ
(a′)ℓ.

We have calculated the b′
ℓ

in terms of the bℓ and ks. In addition to the results b′
1
= b1 and

b′
2
= b2, we find

b′
3
= b3 + k1 b2 + (k

2
1
− k2)b1 , (4)

b′4 = b4 + 2k1 b3 + k2
1 b2 + (−2k3

1 + 4k1k2 − 2k3)b1 , (5)

and so forth for higher ℓ. We have specified a set of conditions that a physically acceptable

scheme transformation must satisfy and have shown that although these can easily be satisfied

in the vicinity of zero coupling, they are not automatic, and can be quite restrictive, at a

nonzero coupling, as is relevant for an IRFP in an UV-free (AF) theory, or a UVFP in an IR-free

theory. As part of this work, we have constructed scheme transformations that can map to

a scheme with vanishing coefficients at loop level ℓ ≥ 3 in the vicinity of the origin, but we

have also shown that it is more difficult to try to do this at a zero of β away from the origin.

We have applied these results to assess the degree of scheme dependence in our higher-loop

calculations of anomalous dimensions at IRFPs in AF gauge theories and have shown that this

dependence is small. This is similar to the experience in QCD, where calculations performed

to higher order exhibited reduced scheme dependence (e.g. [36] and references therein).

The anomalous dimensions of gauge-invariant operators at the IRFP are physical and hence

cannot depend on the scheme used for regularization and renormalization. However, this

property is not maintained by finite-order perturbative series expansions beyond the lowest

orders. It is therefore useful to calculate these anomalous dimensions in a scheme-independent

(SI) manner [5, 37, 38]. To do this, one utilizes the fact that αIR → 0 as N f → Nu. Hence,

one can reexpress the anomalous dimensions as series expansions in the manifestly scheme-

independent variable ∆ f = Nu − N f , rather than as power series in the IR coupling:

γψ̄ψ,IR =

∞
∑

j=1

κ j∆
j

f
(6)

and

β ′
IR
=

∞
∑

j=1

d j∆
j

f
, (7)

where d1 = 0. In general, the calculation of the coefficient κ j in Eq. (6) requires, as inputs,

the values of the bℓ for 1≤ ℓ ≤ j+1 and the cℓ for 1≤ ℓ≤ j. The calculation of the coefficient

d j in Eq. (7) requires, as inputs, the values of the bℓ for 1≤ ℓ≤ j. We denote the truncation of

these series to maximal power j = p as γψ̄ψ,IR,∆
p

f
and β ′

IR,∆
p

f

, respectively. With Ryttov we have

calculated (i) the κ j up to j = 4, and thus the series expansion for γψ̄ψ,IR to O(∆4
f
), and (ii)

the d j up to j = 5 and hence β ′IR to O(∆5
f
) for general G and R. We have studied a number of

specific theories in detail, including the gauge groups SU(Nc) with R equal to the fundamental,

adjoint, and rank-2 symmetric and antisymmetric tensor representations, and similarly for

SO(Nc) and Sp(Nc) for various Nc. For the illustrative theory discussed above, namely SU(3)

with N f = 12 fermions in the fundamental representation, our calculations of γψ̄ψ,IR via Eq.

(6) yield slightly larger values than our calculations via Eq. (2), and our computations of

β ′
IR

yield slightly smaller values than those that we obtained via series expansions in the IR

coupling.
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An interesting feature of our scheme-independent results is that κ1 and κ2 are manifestly

positive, and this positivity also holds for κ3 and κ4 for a general G and all of the represen-

tations R that we have studied. This leads to two monotonicity properties in the conformal

regime: (i) for a fixed p with 1 ≤ p ≤ 4, the anomalous dimension γψ̄ψ,IR,∆
p

f
is a monoton-

ically increasing function of ∆ f , i.e., increases monotonically with decreasing N f ; (ii) for a

fixed N f , γψ̄ψ,IR,∆
p

f
is a monotonically increasing function of p in the range 1 ≤ p ≤ 4. From

our analyis of a N = 1 supersymmetric SU(Nc) gauge theory with N f conjugate pairs of chiral

superfields [19], we have found that this positivity property of the κ j is true for all j

3 RG Studies of Other Theories

We have also performed higher-loop studies of RG flows and possible zeros of beta functions for

other theories, including (i) the 2D finite-N Gross-Neveu model [39], (ii) variousφ3 theories in

6D [40,41], (iii) 4D U(1) gauge theory [42], (iv) 4D nonabelian gauge theories with N f > Nu

[42], and (v) 4D O(N) λ| ~φ|4 theory [43–45]. The theories (i) and (ii) are UV-free (i.e., AF),

while the theories (iii)-(v) are IR-free. In these studies, we combined direct analyses of higher-

loop beta functions with Padé approximants and scheme transformations to derive results.

3.1 Finite-N Gross-Neveu Model

The Gross-Neveu (GN) model [46] is a 2D QFT with an N -component massless fermion, ψ j ,

j = 1, ..., N and a four-fermion interaction. This model has been of interest because it exhibits

some properties similar to QCD, namely asymptotic freedom and formation of massive bound

states of fermions. The model was solved exactly in the N →∞ limit in [46]. In this limit,

the beta function has no IR zero. This leaves open the question of whether the beta function

has an IR zero for finite N . We investigated this in [39], using the beta function up to the

4-loop level from [47]. We found that, where the perturbative calculation of the beta function

is reliable, it does not exhibit robust evidence for an IR zero.

3.2 6D φ3 Theories

φ3 theories in d = 6 dimensions are asymptotically free, and it is of interest to investigate

whether they exhibit IRFPs. We have done this in [40] with Gracey and Ryttov, using beta

functions calculated up to the 4-loop order. As before, without loss of generality, we take the

matter field to be massless, since a φ field with nonzero mass mφ would be integrated out of

the low-energy effective theory for momentum scales µ < mφ and hence is not relevant for the

IR limit µ→ 0. We have studied φ3 theories with a real 1-component φ field and also with an

N -component field φi transforming according to the fundamental representation of a global

SU(N) symmetry, with a self-interaction∝ di jkφ
iφ jφk + h.c.. For both of these theories, we

find evidence against an IRFP. An interesting study of φ3 theory in a 6D spacetime with two

compact dimensions by Kisselev and Petrov is [48]. In [41], we show that if a beta function

is not identically zero but has a vanishing one-loop term, then it is not, in general, possible to

use scheme transformations to eliminate ℓ-loop terms with ℓ ≥ 3 in the beta function, even in

the vicinity of the origin in coupling constant space.

3.3 Studies of IR-free Theories, Including 4D U(1) and O(N) λ| ~φ|4

If the β function of a theory is positive near zero coupling, then this theory is IR-free; as the

reference scale µ decreases, the coupling decreases toward 0. As µ increases from the IR, the
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coupling increases, and a basic question is whether the beta function has a UV zero (in the

perturbatively calculable range), which would be a UV fixed point (UVFP) of the RG.

An explicit example of a UVFP in an IR-free theory occurs in the O(N) nonlinear σ model

in d = 2 + ε dimensions. From a solution of this model in the N →∞ limit, one finds, for

small ε [49,50],

β(ξ) = εξ
�

1−
ξ

ξc

�

, (8)

where ξ is the effective coupling and ξc = 2πε. Hence, assuming that ξ is small for small µ,

it follows that limµ→∞ ξ(µ) = ξc , so the theory has a UVFP at ξc.

Let us consider a 4D U(1) gauge theory with N f fermions with a charge q. This theory is IR-

free, and the 1-loop and 2-loop coefficients in β have the same sign, so there is no UV zero in β

at the maximal scheme-independent order. In [42] we investigated a possible UVFP at higher-

loop order. One part of our work in [42] was an analysis of the beta function using the 5-loop

coefficient [51, 52]. Another part made use of exact closed-form results for N f →∞ [53].

In [42] we also performed a corresponding investigation of possible UVFP for a nonabelian

gauge theory with N f > Nu. In both the U(1) and nonabelian case, we found evidence against

a UVFP. Of course, in neither case does this imply that the theory has a Landau pole, because

the running gauge coupling gets too large for perturbative calculations to be reliable before

one actually reaches this would-be pole.

In [43–45] we investigated the RG behavior of 4D O(N) λ| ~φ|4 theory to six-loop order,

using b5 from [54] and b6 from [55] (in the MS scheme). Again, for values of the interaction

coupling where the perturbative (and Padé resummation) methods were applicable, we did

not find robust evidence for a UVFP.

4 Asymptotically Free Chiral Gauge Theories

The analysis of asymptotically free chiral gauge theories is also of considerable interest. The

(massless) fermion content is chosen so as to avoid any gauge anomalies, mixed gauge-gravitational

anomalies, and global anomaly. As the theory flows from the UV to the IR and the coupling

grows, several possible types of behavior can occur, including (i) an exact IRFP in a confor-

mal phase; (ii) bilinear fermion condensate formation with dynamical breaking of gauge and

global symmetries; or (iii) confinement with formation of massless composite fermions. These

theories have been of interest for BSM physics (e.g, [56]). Our works in this area include [57]-

[62], which contain references to the extensive literature.

5 Conclusion

Studies of RG flows and possible RG fixed points in quantum field theories continue to be

of great interest, both from the point of view of formal theory and for applications to BSM

physics. Here we have briefly discussed some of our results on higher-loop perturbative cal-

culations with inputs up to the five-loop level for anomalous dimensions at IR fixed points in

asymptotically free nonabelian gauge theories and comparisons of these results with lattice

measurements. We have also discussed our results on RG flows and investigation of possible

RG fixed points for several other UV-free theories and for several IR-free theories. There are

many opportunities for further work in this area.
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