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Abstract

The extraordinary success of the Standard Model asks for a more

rigorous control beyond the perturbative approach, which is a�ected by

mathematical problems (interaction picture and canonical quantization,

non-covergence of the perturbative series, triviality results for φ4 model

and related models, etc.). We shall brie�y discuss some non-perturbative

results concerning the crucial role and realization of symmetry breakings

in the Standard Model.

1 BEH mechanism

A crucial structural ingredient of the standard model is the BEH (brie�y Higgs)
mechanism, which has been discussed and used at the perturbative level with
an expansion based on a mean �eld ansatz. Since mean �eld expansions are
known to give incorrect results for the critical temperature and the energy
spectrum in spin models, one would like to control the mechanism with a
rigorous non-perturbative approach. This will also free the conclusions from
the weak points of the perturbative expansion, which is known to lead to
a non convergent series and relies on the interaction picture and canonical
quantization, both mathematically excluded for non-trivial interactions.1

*Invited contribution to the XXXIII International Workshop on High Energy Physics
"Hard Problems of Hadron Physics: Non-Perturbative QCD and Related Quests" Nov.
8-12, 2021, Logunov Institute of High Energy Physics, Russia

1For a discussion of the mathematical problems of the perturbative expansion see F.
Strocchi, An Introduction to Non-Perturbative Foundations of Quantum Field Theory, Ox-
ford University Press 2013, 2016, hereafter referred to as F. Strocchi [2016].

1



2

As it is well known, but sometime overlooked in the textbook discussions of
the Higgs mechanism, in order to avoid the exclusion of a symmetry breaking
order parameter by Elitzur theorem, the �rst crucial step it to introduce a
gauge �xing; then, the discussion of the way the mechanism avoids the occur-
rence of massless Goldstone bosons becomes gauge �xing dependent. Further-
more, in view of a non-pertubative approach, a mean �eld term, which breaks
the global gauge group, should not appear in the gauge �xing, because it would
require an a priori non-perturbative control of its selfconsistency. One then
considers gauge �xings invariant under the global gauge group.2

From a rigorous point if view, one faces the problem of proving that the
spontaneous breaking of the global gauge group does not imply the existence
of massless Goldstone bosons. This shall be dealt with in the BRST gauge
and, in the abelian case, in the Coulomb gauge.

i) Absence of Goldstone particles in the Higgs mechanism

We choose to discuss the problem in the BRST gauge. The advantage is
that the corresponding �eld algebra F is local, so that one may control the
generation of the in�nitesimal transformations, under the global gauge group,
by conserved local currrents, Jaµ , as in the proof of the Goldstone Theorem,
thanks to the non-renormalization theorem for the commutators of local con-
served currents with local �elds:

< δaF >= lim
R→∞

< [Qa
R, F ] >, ∀F ∈ F , (1.1)

where Qa
R denotes the suitably regularized charge localized in the sphere of

radius R

Qa
R = Ja0 (fRα) =

∫
d4x Ja0 (x)fR(x)α(x0), (1.2)

fR(x) = f(|x|/R), f(x) = 1, for |x| ≤ R, f(x) = 0, for |x| > R(1 + ε),
suppα ⊆ [−ε, ε], α̃(0) =

∫
dx0 α(x0) = 1, f, α ∈ C∞.

Theorem 1.1 (Higgs mechanism) In the BRST quantization of a Yang-Mills
theory, the spontaneous breaking of a one-parameter subgroup of the global
gauge group G by the vacuum expectation of F ∈ F , < δaF > 6= 0, implies
the existence of a δ(k2) singularity in the Fourier transform of < F Jaµ(x) >,
(massless Goldstone modes in the a-channel), where Jaµ(x) is the conserved
current which generates the in�nitesimal transformations of the local �elds
under such a one-parameter subgroup; however, such modes cannot describe
physical particles.

2The motivations for such strategic choices, which exclude the pathological unitary gauge
as well as the so-called ξ gauges, are discussed in F. Strocchi [2016].
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The basic ingredient for the proof is the validity of the Local Gauss Law, on
the physical states, which in the BRST gauge reads

Jaµ = ∂νF a
µν + {QB, (Dµc̄)

a }, (1.3)

whereQB denotes the BRST charge and c̄ one of the ghost �elds.3 The physical
state vectors Ψ are selected by the BRST subsidiary condition

QB Ψ = 0, ⇒ < Ψ, (Jaµ − ∂νF a
µν) Ψ >= 0. (1.4)

One may prove that this excludes a contribution to such a massless mode by a
physical state, as intermediate state in the two-point function < F Jaµ(x) >.4.

The unphysical nature of the massless modes in local renormalizable gauges
has been argued within a perturbative expansion.5 The above non perturba-
tive result improves the perturbative analysis, since it does not rely on a semi-
classical mean �eld ansatz nor on the summability of the perturbative series;
moreover the order parameter is not restricted to be a pointlike �eld.

ii) A theorem on the abelian Higgs mechanism

In the abelian case one may prove a sharper result,6 which, in particular,
includes a rigorous link between the disappearance of the Goldstone boson
and the vector boson becoming massive (beyond the popular anthropomorphic
picture in unphysical gauges).

This is obtained in the Coulomb gauge; the advantage is that the corre-
sponding �eld algebra FC does not contain unphysical �elds and all the states
of its Hilbert space representation have a physical meaning. On the other
hand, the validity of the Local Gauss Law implies that FC is non local; as
a consequence, one looses the control of the local generation of the in�nites-
imal transformations δU(1) of the �elds under the global U(1) gauge group
βλ, λ ∈ R:

δU(1)F ≡ dβλ(F )

dλ
|λ=0, F ∈ FC . (1.5)

3For details see S. Weinberg, The Quantum Theory of Fields, Vol. II,, Cambridge Uni-
versity Press 1996, Sect. 15.7; F. Strocchi [2016], Chapter 7, Section 4.

4G.De Palma and F. Strocchi, Ann. Phys. 336, 112 (2013); F. Strocchi, Symmetry

Breaking, Springer, third edition 2021, Appendix E
5See the very comprehensive review: G. Gurlanik, C.R. Hagen and T.W. Kibble, Broken

symmetries and the Goldstone theorem, in Advances in particle Physics, Vol. 2, R.L. Good
and R.E. Marshak eds., Interscience 1968.

6G. Morchio and F. Strocchi, Jour. Phys. A: Math. Phys. 40, 3173 (2007); F. Stroc-
chi [2016], Chapter 7, Section 6.2; Symmetry Breaking in the Standard Model. A non-

perturbative outlook, Scuola Normale Superiore, 2019, Section 2.8.
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Since the charged �elds F , characterized by δU(1)F 6= 0, are non-local, the non-
renormalization theorem for the commutators of conserved currents does not
apply, and in fact, contrary what is usually taken for granted, one may prove
that the commutatators of the space integral of the current charge density
j0(x, x0) are not independent of the time x0

lim
R→∞

[ j0(fR, x0), ϕ
C(y) ] = −e

∫
dm2 ρ(m2) cos(m(x0 − y0))ϕC(y), (1.6)

where ϕC is the Coulomb charged �eld and ρ(m2) is the spectral measure
which de�nes the two point function of the vector boson �eld Fµν

< Fµν(x)Fλσ(y) >= idµνλσ

∫
dm2ρ(m2) ∆+(x− y;m2), (1.7)

dµνλσ = gνσ∂µ∂λ + gµλ∂ν∂σ − gνλ∂µ∂σ − gµσ∂ν∂λ.

In order to �nd a relation between the current charge density j0(fR, x0)
and the electric charge, at least in the unbroken case, an improved smearing is
needed7 which amounts to introducing QδR ≡ j0(fRαδR), αδR ≡ α(x0/δR)/δR,
0 < δ < 1 (α as in eq. (1.2)). Then, the so obtained charge has time indepen-
dent commutators and annihilates the vacuum

δcF ≡ i lim
δ→0, R→∞

[QδR, F ], lim
R→∞

QδRΨ0 = 0. (1.8)

The next question is the relation between the derivation δc, induced by the
current charge density and the derivation δU(1). Such a relation turns out to
play a crucial role for the following general theorem on the Higgs phenomenon.

Theorem 1.2 (Higgs phenomenon)
A. The current and the U(1) derivations coincide, δc = δU(1), if and only if
the two point spectral function of the vector �eld Fµν contains a δ(m

2), namely
if the corresponding vector boson is massless; in this case, the global U(1)
is unbroken and the matrix elements of its generator Q are given by

< Ψ, QΦ >= lim
δ→0,R→∞

< Ψ, QδR Φ >, (1.9)

(for all the Coulomb states Ψ, Φ). Thus, thanks to the improved smearing, one
recovers the expected relation between the charge density and the U(1)
charge, although in an alerted form.

7M. Requardt, Commun. Math. Phys. 50, 259 (1976); G. Morchio and F. Strocchi,
Jour. Math. Phys. 44, 5569 (2003).
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B. The global U(1) gauge group is broken, i.e. < δU(1) F >6= 0, F ∈ FC,
only if δU(1) 6= δc and in this case,
i) the vector boson is massive;
ii) the Goldstone spectrum, de�ned by the Fourier transform of the two point
function < j0(x)F >, is governed by the spectral function of the vector �eld,
and therefore cannot contain any δ(k2) (i.e. there are no associated Gold-

stone bosons);
iii) the Gauss charge, de�ned by the suitably smeared �ux of F0 i at space
in�nity, vanishes on the Coulomb states (screening of the Gauss charge):

lim
δ→0, R→∞

< Ψ, QδR Φ >= 0. (1.10)

2 Gauge group topology solves the U(1) problem

and yields the θ vacuum structure

A corner stone for the control of QCD structure is the discovery of the role
of topology, yielding the θ vacuum structure and a solution of the U(1) prob-
lem. The standard treatment is based on the assumption that the euclidean
functional integral is governed by the instanton solutions (semiclassical ap-
proximation), which are classi�ed by their topological winding number n. The
functional integral is thus evaluated by �rst integrating over the class of eu-
clidean (continuous) con�gurations with given winding number n and then by
summing over n, with a weighting factor ei θ n, where θ is a free parameter, the
so-called θ angle.

Such a procedure is not free of mathematical problems, since, already in
the free �eld case, the set of continuous euclidean con�gurations has zero
functional measure. Hence, in contrast with the quantum mechanical case,
the WKB (semiclasssical) approximation is problematic in QFT.

Furthermore, such an approach does not clearly settle the debated ques-
tion of whether the axial U(1)A transformations may be still de�ned for the
observable �elds, so that U(1)A is spontaneously broken in QCD.

A rigorous solution of such problems may be obtained following a sugges-
tion by Roman Jackiw.8 The idea is to directly exploit the non-trivial topology
of the gauge group, rather than its re�exes on the classi�cation of the instan-
ton solutions; in this way one does not make any reference to the problematic
semiclassical instanton approximation.

8G. Morchio and F. Strocchi, Ann. Phys. 324, 2236 (2009); F. Strocchi, Symmetry

Breaking, third edition, Springer 2021, and references therein.
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ii) Solution of the U(1) problem
This is conveniently obtained in the temporal gauge, which is local and

positive; the only delicate (but mathematically crucial) point is that, as a
consequence of the required invariance of the vacuum under the Local Gauss
Law operator, the represented �eld algebra F is generated by the gauge invari-
ant �elds and by the formal exponentials of the gauge dependent �elds (with
algebraic relations corresponding to those of their formal exponentials).

The �rst step is the de�nition of time independent U(1)A transformations
βλ, λ ∈ R of F and, in particular, of its observable subalgebra Fobs

βλ(F ) = lim
R→∞

V 5
R(λ)F V 5

R(−λ), ∀F ∈ F , (2.1)

where the one-parameter unitary operators V 5
R(λ) are (formally) the exponen-

tials eiλ J
5
0 (fRα), with J5

µ the conserved (gauge dependent) current

J5
µ = j5µ − (16π2)−1εµνρσTr [F νρAσ − (2/3)AνAρAσ] ≡ j5µ +K5

µ, (2.2)

( j5µ is the gauge invariant anomalous current); by locality, the limit is reached
for �nite R.

The gauge dependence of the unitary operators V 5
R(λ) does not invalidate

the above de�nition, since they are merely instrumental for the de�nition of
the chiral transformations βλ on the observable �elds, a result which is clearly
independent of the gauge �xing and of the corresponding (gauge dependent)
�eld algebra in which Fobs is embedded. It looks short sighted9 to blame on the
fact that J5

µ or the (better behaved) exponentials V 5
R(λ) are gauge dependent

not observable operators; such a point of view would in fact deny the very
existence of the non-abelian gauge symmetries of the standard model, being
generated by gauge dependent currents.

Given the existence of the U(1)A transformations of the observable �elds,
a gauge independent fact, no matter how its actual existence is proved, the
real issue is the mechanism for evading the Goldstone theorem, for which the
non-abelianess of the gauge group should play a decisive role.

The next step is the interplay between axial transformations and gauge
transformations. To this purpose we analyse the properties of the local gauge
group G, left unbroken by the gauge �xing, with elements αU parametrized
by time independent C∞ unitary functions U(x), taking value in the global
group G and di�ering from the identity only on a compact set, KU ⊂ R3.
Thanks to their space localization the U obviously extend to the one-point
compacti�cation of R3, Ṙ3, which is isomorphic to the three sphere S3, and

9G. t' Hooft, How instantons solve the U(1) problem, Physics Reports, 142, 357 (1986).
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de�ne continuous mappings of S3 onto the global gauge group G: U(x) :
Ṙ3 ∼ S3 → G. Such mappings U fall into disjoint homotopy classes labeled
by the (topological invariant) winding number n(U)

n(U) = (24π2)−1
∫
d3x εijk Tr [Ui(x)Uj(x)Uk(x)] ≡

∫
d3xnU(x), (2.3)

Ui(x) ≡ U(x)−1∂i U(x); Un shall denote a function with winding number n.
The one-parameter groups of unitary gauge functions

U(λg) = eiλ g(x), λ ∈ R, g(x) = ga(x)T a, ga ∈ D(R3),

(T a the representative matrices of the generators of G) continuously con-
nected to the identity, de�ne a subgroup G0 ⊂ G, which is generated by
the unitary operators V (U(λg)) ∈ F , formally the exponentials of the Gauss
operator Ga ≡ (D · E)a − ja0 , j

a
µ = iψ̄ γµt

aψ, V (U(λg)) ∼ eiλG(g), G(g) ≡∑
aG

a(ga), ga ∈ D(R3), since formally δgaF = i [Ga(ga), F ], (the operators
V (U(λg)) need not to be represented by weakly continuous unitary opera-
tors). G0 is called the Gauss subgroup of G and its elements have zero winding
number. In the following, for simplicity, we shall often adopt the short-hand
notation U(g), or Ug.

In the Hilbert space H de�ned by the correlation functions of a vacuum
state ω0, the physical state vectors Ψ are selected by the subsidiary condition

V (U(λg))Ψ = Ψ, ∀ U(λg) ∈ G0, Ψ ∈ H′ ⊂ H. (2.4)

By exploiting the localization property of the gauge functions and the locality
of F , one shows that the state ω0 is invariant under the full group G, namely
ω0(αU(F )) = ω0(F ), ∀F ∈ F , so that G is implemented by unitary operators
V (U) in H and

V (Un)V 5
R(λ)V (Un)−1 = eiλ 2n V 5

R(λ). (2.5)

Proposition 2.1 The spontaneous breaking of the U(1)A symmetry βλ in
QCD, by < δ5A > 6= 0, with δ5A the in�nitesimal U(1)A transformation of A
and A an observable (hermitian) �eld, evades the Goldstone theorem because
δ5A cannot be related to the two point function of A and a (local conserved)
current, as required for the proof of the Goldstone .

The point is that, as a consequence of the non-trivial topology of G and of the
above equations, one has

< V 5
R(λ)A >=< αUn(V 5

R(λ)A) >= ei2nλ < V 5
R(λ)A > .
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This proves that < V 5
R(λ)A > is a singular function of λ and its derivative

with respect to λ does not exists; then, even if the axial U(1)A transformations
are given by the action of the local unitary operators V 5

R(λ), their in�nitesimal
form cannot be given by commutators with a local conserved current, here J5

µ,
a crucial assumption for the proof of the Goldstone theorem.

ii) Gauge topological group and θ vacuum structure

The topology of the gauge group G is described by the quotient of G by its
normal subgroup G0. T ≡ G/G0, is an abelian group with elements Tn which
are classi�ed by the (topological) winding number n, and commute with the
gauge transformations.

Theorem 2.2 In the Hilbert space representation of the temporal gauge �eld
algebra F , by a (Gauss invariant) vacuum state ω0, the topological group T
is represented by gauge invariant operators Tn, which belong to the center of
the algebra of observables A and reduce to unitary operators on the space H′
of physical states, with spectrum ei 2n θ, θ ∈ [0, π). Thus, the representations of
the observable algebra in the physical space are labelled by the angle θ.

Under U(1)A transformations βλ, one has

βλ(Tn) = ei 2nλ Tn, (2.6)

so that in each representation of A with trivial center, U(1)A is always broken.
If the Gauss invariant vacuum state ω0 de�nes an irreducible representation

of the �eld algebra F , then it selects a de�nite value of θ

Tn Ψ0 = ei 2n θ Ψ0. (2.7)

Thus, the θ angle arises in an intrinsic way as a label of the spectrum of
the center of the algebra of observables, uniquely selected in each irreducible
(vacuum) representation of the �eld algebra, rather than as a free parameter in
the semiclassical instanton approximation of the euclidean functional integral.


