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Abstract

HarmonicBalance.jl is a publicly available Julia package designed to simplify and solve sys-
tems of periodic time-dependent nonlinear ordinary differential equations. Time dependence
of the system parameters is treated with the harmonic balance method, which approximates
the system’s behaviour as a set of harmonic terms with slowly-varying amplitudes. Under this
approximation, the set of all possible steady-state responses follows from the solution of a
polynomial system. In HarmonicBalance.jl, we combine harmonic balance with contemporary
implementations of symbolic algebra and the homotopy continuation method to numerically
determine all steady-state solutions and their associated fluctuation dynamics. For the ex-
ploration of involved steady-state topologies, we provide a simple graphical user interface,
allowing for arbitrary solution observables and phase diagrams. HarmonicBalance.jl is a free
software available at https://github.com/NonlinearOscillations/HarmonicBalance.jl.

1 Introduction

Nonlinear ordinary differential equations (ODE) describe the time evolution of physical systems, in
which distinct parts of the system interfere, cooperate or compete nonlinearly. Such ODEs host
unique phenomena, including bifurcations, synchronisation, and chaos [1–3]. These manifest in
a plethora of fields, such as fluid dynamics [4], mechanics and robotics [5], structural engineer-
ing [6], electronics [7], optics [8], predator-prey dynamics [9], chemical oscillations [10], and
biological processes [11]. In particular, explicitly time-dependent or non-autonomous nonlinear
ODEs describe driven-dissipative systems, which commonly exhibit harmonic time dependence of
system parameters and/or external drives [12], see Fig. 1a.

Despite the ubiquitous presence of nonlinear dynamical systems in science and engineering
[Fig. 1b], their behaviour is not analytically tractable in most cases. Hence, one often resorts to
using numerical ODE solvers. These usually focus on initial value problems, where the system’s
state is advanced from a set of initial conditions. Linear systems, given sufficient time to freely
evolve, usually relax to a unique stationary or steady state, i.e., a state where the system no longer
evolves in time. In a harmonically driven system, the steady states will typically display time
dynamics which are also harmonic, requiring a corresponding definition of a dynamical stationarity
condition.

Nonlinear systems challenge this approach since they can feature multiple steady-state solutions.
The knowledge of all such solutions is of key importance for analysing the system’s behaviour, re-
vealing experimentally observable phenomena such as hysteresis, spontaneous symmetry-breaking,
or noise-induced switching dynamics [13–15]. However, when using a dynamical solver (or a
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Figure 1: Example systems treatable by HarmonicBalance.jl. (a) A generic driven dissipative
system: coupled nonlinear oscillators (circles) with amplitudes x i(t), time-varying natural fre-
quencies Ωi(t), and coupling amplitudes Ji j(t) (here i, j = 1,2, · · · , N). System-environment
interactions, parameterised by γi(t), lead to fluctuations and dissipation. Harmonic drives with
amplitudes Fi(t) excite and modify the system’s response. (b) Examples of nonlinear devices
found in physics and engineering: (top) light fields interacting with nonlinear media, (bottom,
left) driven nonlinear electric RLC circuits, and (bottom right) optomechanical resonators. (c)
Basic functionality of HarmonicBalance.jl: A nonlinear (polynomial) ODE system with harmonic
time-dependence is defined along with a set of expected response frequencies for each resonator,
ωi j (red input boxes). The package finds all dynamical steady states, identifies the most likely
response given a parametric sweep, and supports numerical time-evolution within the harmonic
ansatz (introduced in 2.1).

time-resolved experiment), only a single steady state is found per run, depending on the initial
conditions [16,17]. Therefore, a complete exploration of the solution landscape would require
infinite sampling of the continuous space of initial conditions.

An alternative approach to finding steady-state solutions in harmonic systems is transforming
the system into a frame rotating with the applied drives [18, 19]. In such a frame, the drives
and corresponding steady states appear stationary, reducing the problem to finding the roots of
a time-independent system of nonlinear equations [20, 21]. While this approach is standard in
few-variable problems, the proliferation of roots in multivariate nonlinear systems constitutes a
challenge in itself [22–24]. Indeed, the most straightforward root-finding algorithms (e.g., the
Newton-Raphson method) only find a single solution in the vicinity of an initial guess, making the
exploration of all steady states infeasible.

Fortunately, many of the aforementioned nonlinear examples [cf. Fig. 1b] feature ODE systems
with polynomial dependence on the dynamical variables and their derivatives. For these, seeking
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all steady states in a given rotating frame generates coupled polynomial (algebraic) equations,
which are numerically solvable using the homotopy continuation method [25–27]. This method
utilises the continuous deformation of an exactly solvable problem into the problem of interest,
thus finding all the roots of coupled polynomials in one go. To our knowledge, however, no
homotopy-continuation-based toolbox for the analysis of steady states of harmonically-driven
systems has been developed so far.

Here, we introduce HarmonicBalance.jl: an open-source suite that can find steady-state so-
lutions to non-autonomous differential equations with harmonic time-dependencies. We unify a
variety of existing methods for the analysis of time-dependent nonlinear ODEs into an integrated
framework and take advantage of open-source Julia libraries to achieve ease of use, flexibility, and
high performance [Fig. 1c]. Our package is readily applicable to a range of active fields where
nonlinear harmonically-driven systems appear, such as modal analysis in structural dynamics [6,28],
electric circuits [7,29,30], nonlinear optics [8,31–37], optomechanics [17,38–40], micro- and
nanomechanics [41–50], oscillator networks [51–56], Ising machines [57–62], and many-body
light-matter systems [63–69].

2 Harmonically-driven nonlinear systems: basic principles

HarmonicBalance.jl focuses on harmonically-driven nonlinear systems, i.e., dynamical systems
governed by equations of motion where all explicitly time-dependent terms are harmonic. In the
exposition here, we will assume a general nonlinear system of N second-order ODEs1 with real
variables x i(t), with index i = 1, 2, · · · , N and time t as the independent variable,

ẍ(t) + F(x(t), t) = 0 . (1)

The vector x(t) = (x1(t), ..., xN (t))T fully describes the state of the system. Physically, x(t)
encompasses the amplitudes of either point-like or collective oscillators (e.g., mechanical resonators,
voltage oscillations in RLC circuits, an oscillating electrical dipole moment, or standing modes of
an optical cavity). We assume F(x(t), t) can be decomposed into a sum of L periodic terms2:,

F(x, t) = f0(x) +
L
∑

l=1

fl(x) cos(ωl t +φl) , (2)

with vector fields fl(x). The field f0 describes static properties of the system while fl 6=0 account
for explicit time-dependence, typically induced by one or more sources of periodic driving and/or
parameter modulation with frequencies {ωl} and phases {φl}. In Table 1, we list several examples
of terms commonly constituting Eq. (2).

Note that in a linear system, F(x, t) can be written as F(x, t) =M(t)x+ b(t), where the matrix
M(t) contains spring constants and linear couplings, while b(t) is a vector of external forces.
Diagonalising M(t) then yields the so-called normal modes of the system. While the notion of
normal modes does not directly apply in a nonlinear system, they usually constitute a convenient
basis choice for a perturbative treatment.

1Second-order ODEs based on the harmonic oscillator represent the vast majority of expected use cases. However,
the methods described in this work are applicable to arbitrary ODE orders [12].

2We omit the time-dependence of x(t) where this is clear from the context.
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term in Fi(x, t) physical mechanism frequency conversion
x i natural response (spring constant) -
x j mode coupling -
ẋ i damping/gain -
ẋ j dissipative coupling -

cos(ωd t) external drive (frequency ωd) -
x2

i Pockels coefficient ωi → 2ωi
x3

i Kerr (Duffing) coefficient ωi → 3ωi
x2

i ẋ i nonlinear damping ωi → 3ωi

x i cos
�

ωp t
�

parametric drive (frequency ωp) ωi →ωi ±ωp
x j x i nonlinear mode interactions ωi →ωi ±ω j

Table 1: Examples of terms occurring in Eq. (2) and their origins. The rightmost column shows
the frequency conversion taking place, assuming two variables x i , x j , oscillating at frequencies ωi ,
ω j (for example, ωi → 2ωi means, that oscillating at frequency ωi leads to additional oscillations
at frequency 2ωi).

2.1 The harmonic expansion

For sufficiently long times (i.e., after any transient responses have disappeared), the solutions
of Eq. (1) are expected to appear as a sum over harmonics. Let us illustrate this point using the
example of driven harmonic oscillators. In this simple case, Eqs. (1) and (2) take the form

ẍ(t) +Mx(t) = g cos(ωd t) , (3)

where we assumed a constant vector g and drive frequency ωd . The standard method to solve for
the steady states is to Fourier-transform both sides of Eq. (3); the resulting equations give an exact
solution for x(t) in terms of its Fourier coefficients,

x̃(ω) = (M−ω21)−1g [δ(ω+ωd) +δ(ω−ωd)]/2 , (4)

where x̃(ω) =
∫ +∞
−∞ x(t)eiωt d t and δ(z − z0) is the Dirac delta function of z centred at z0. This

procedure is effective because in the Fourier domain, the l.h.s. of Eq. (3) becomes diagonal (i.e.,
it involves a single frequency) while the applied drive reduces to a Dirac delta function centred
at ω=ωd . We can thus select a single frequency out of the continuous space of all frequencies
for which the solution is nonvanishing. Furthermore, due to the linear superposition principle,
responses to arbitrary driving terms can be constructed out of the solution in Eq. (4).

The same task becomes intractable if nonlinear terms are introduced. Nonlinearities facilitate
frequency conversion by coupling different harmonics of the system, rendering F(x, t) non-diagonal
in Fourier space. As an example, let us consider a single driven Duffing oscillator [70], whose
equation of motion reads

ẍ(t) +ω2
0 x(t) +αx3(t) = F cos(ωd t) . (5)

where ω0 is the natural frequency, α is the nonlinear coefficient, F is the drive amplitude, and x is
now a scalar. The nonlinear (Duffing) term in Fourier space reads

α

∫

x3(t)e−iωt d t = α

∫ +∞

−∞
x̃(ω′) x̃(ω′′) x̃(ω′′′)δ(ω′′′ +ω′′ +ω′ −ω) dω′ dω′′ dω′′′ , (6)
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coupling all combinations of four harmonics that sum to zero. This results in frequency-conversion
processes known as four-wave mixing, which here convert, to lowest order, the driven oscillation at
frequency ωd to frequency 3ωd ; four-wave mixing appears as off-diagonal terms in Fourier space.
The frequency conversion subsequently propagates through the entire spectrum, generating an
infinite number of Fourier components. A nonlinearity thus precludes a closed-form solution of
the problem in Fourier space; this is a common trait of nonlinear physical systems; see Table 1 for
examples of frequency-converting effects.

A serviceable approach to numerically approximate the harmonics of a driven nonlinear system
involves truncating the spectrum x̃(ω) to a finite set of frequencies [71]. The idea of truncation in
Fourier space is at the core of several widely-used methods, such as harmonic balance [72,73],
the rotating-wave approximation [74], the van der Pol transformation [3] in combination with
Krylov-Bogoliubov averaging [75], Magnus expansion [76,77], secular perturbation theory [70],
and also appears in the contemporary concept of Floquet engineering [78,79]. We implement the
approach of harmonic balance using a generalised ansatz [80,81]

x i(t) =
M
∑

j=1

ui, j(T ) cos
�

ωi, j t
�

+ vi, j(T ) sin
�

ωi, j t
�

, (7)

where the sum runs over the finite set of desired frequencies {ωi, j} describing the coordinate x i.
Here, T represents a "coarse-grained" timescale that is much slower than the oscillations in the
system (T � 2π/min{ω j}). Equation (7) represents an attempt to capture the dynamics of the
system using a discrete set of real functions {ui, j(T), vi, j(T)}, which in our package we dub the
harmonic variables, while the fast oscillations are accounted for by the sine/cosine terms. Note
that this ansatz would be exact if the set of frequencies {ωi, j} covered all real numbers. Generally,
it is not straightforward to identify the relevant frequencies {ωi, j}. A good starting point is the
frequencies of any external drives, combined with the frequency conversions presented in Table 1.
Alternatively, one can pick the highest-weight discrete Fourier components in a time trace obtained
numerically or from experimental data.

Plugging the ansatz Eq. (7) into the ODE (1), we obtain equations governing pairs of harmonic
variables (ui, j , vi, j) by convolving both sides with cos

�

ωi, j t
�

and sin
�

ωi, j t
�

, respectively (see
Appendix A). The harmonic variables themselves are treated as constants during this step. We thus
obtain two equations for each ωi, j . To reflect the slowly-changing nature of the harmonic variables,
we drop all of their time derivatives of order two or higher, e.g., üi, j , v̈i, j → 0. The resulting set of
equations has no explicit time dependence; we call these the harmonic equations,

du(T )
dT

= F̄(u) , (8)

where u(T) = (u1,1(T), v1,1(T), ..., uN ,M (T), vN ,M (T))T contains the harmonic variables and F̄(u)
the corresponding Fourier components resulting from inserting the truncated ansatz Eq. (7) into
Eq. (2). Note that Eq. (8) still describes a slow time dependence of {ui, j(T), vi, j(T)}, or in other
words, Eq. (8) captures an intrinsic frequency bandwidth ∆ω�ωi, j of the response around the
expansion frequencies {ωi, j} in a similar spirit as the Krylov-Bogoliubov averaging [13,75] and
the rotating-wave-approximation [74]. Note that our scheme scales up very fast - each harmonic
ωi, j of a variable x i is converted into two harmonic variables. Hence, for a system of N interacting
components, each expanded in M harmonics, Eq. (8) consists of 2N M harmonic equations.
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2.2 Solving the harmonic equations for steady-state solutions

There are, in principle, two ways to extract the long-time behaviour of the system from Eq. (8).
First, one can make use of an initial-value ODE solver to numerically propagate a state in T , starting
at u(T = T0). Given sufficient time, the system will typically converge towards a steady state u0.
Secondly, we can look for steady states by explicitly requiring the l.h.s. of Eq. (8) to vanish, leaving
us with the task of solving the nonlinear algebraic equations system

F̄(u0) = 0 . (9)

The second approach is advantageous since, in principle, all steady states of the system can be
found, irrespective of whether or how they can be reached by time evolution. In general, however,
obtaining the roots of coupled nonlinear algebraic equations is highly non-trivial: for n coupled
polynomial equations of order p, Bézout’s theorem [82] provides an upper bound pn for the number
of distinct complex solutions. For example, in the Duffing oscillator shown in Eq. (5), we have
one variable x - given an ansatz Eq. (7) with a single harmonic. This generates 2 polynomial
harmonic equations of order 3, leading to a maximum of 32 = 9 solutions. Generally, for N coupled
Duffing oscillators each expanded in M harmonics, we have 2N M harmonic equations of order 3,
leading to an upper bound of 32N M solutions. The exponential scaling rapidly makes charting the
complete steady-state solution landscape a formidable challenge. Accordingly, many applications
of harmonic balance deal with few-variable systems and rely on the perturbative treatment of
nonlinearities.

In our package, we solve the algebraic Eq. (9) using the homotopy continuation method [83,84]
as implemented by the open-source package HomotopyContinuation.jl [26]. To find the roots of a
polynomial, this method, in its simplest form, starts from another analytically-solvable polynomial
of the same order, which saturates the Bézout bound. For instance, to find the roots of a single,
p-th order polynomial P(z) of the variable z, one can start from the polynomial U(z) = zp − 1 with
roots e2πik/p (k = 1, ..., p). Employing this so-called total-degree homotopy, the polynomial U(z) is
"slowly" deformed 3 into the polynomial P(z), correcting the known roots (i.e., tracking the roots)
after each step. At the end of the homotopy continuation, the obtained set of roots is guaranteed
to be complete, as it has been tracked from the full set of p complex roots of U(z).

A generalisation of the total degree homotopy approach enables the solution of Eq. (9), by
instead tracking the roots of the uncoupled system U(u0) = {u

d1
1 − 1, vd2

1 − 1, ud3
2 − 1, vd4

2 − 1, · · · },
with dr equal to the degree of the polynomial F̄r(u0), to those of F̄(u0) (here r = 1,2, · · · , 2N M
is an index labelling all harmonic balance equations). Such an approach leads to a number of
solution paths to track that scales exponentially with N M . This constitutes a challenge in usual
exploratory research scenarios that seek to find the behaviour of the solutions as parameters vary.
Crucially, in physical problems (and in contrast with single polynomials), F̄(u0) often displays a
vastly smaller number of roots than the Bézout bound (see Examples). This implies that many
solution paths from U(u0) = 0 are usually irrelevant (singular4) since they do not lead to roots
of F̄(u0). In HarmonicBalance.jl, we harness a common strategy to reduce the computational
overhead in multi-parameter root finding [25]. This strategy consists of the two-step algorithm
described in Appendix B and exemplified in Fig. 2.

3Namely, via the homotopy H(U(z), P(z),λ) = λU(z) + (1−λ)P(z), with deformation parameter λ. In the current
context, the homotopy is a mapping such that H(U(z), P(z),λ= 1) = U(z) and H(U(z), P(z),λ= 0) = P(z).

4A solution u0 is denoted singular if the Jacobian matrix for F̄(u) at u = u0 has full rank. These solutions are
associated with the intersection, reversal or divergences of solution paths, and their early detection is crucial in efficient
path tracking.
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Figure 2: Homotopy continuation in a Duffing resonator [cf. Eq. (5)] Path tracking from the
complex roots of the system {u3

0 − 1 = 0, v3
0 − 1 = 0} (red dots) to the roots of the harmonic

balance equations [cf. Eq. (9), Appendix A] (green dots), denoted u0 = (u0, v0), using homotopy
continuation. In the algorithm to track multiple parameter steady states, we carry out a two-step
process encompassing a warm-up tracking (deformation parameter λw ∈ (0,1)), where singular
paths (not-shown) are filtered-out, followed by a subsequent tracking to the harmonic balance
equations, (deformation parameter λp ∈ (0, 1)) [see Appendix B for further details]. The roots u0
traverse the complex plane until paths intersect with the planes Im(u0) = 0 and Im(v0) = 0 (light
gray), at the 3 real roots of F(u0). For this figure α= 1, ωd = 1.03, ω0 = 1, F = 0.01, θ = 0, and
γ= 0.01.

Finally, note that although the obtained solutions are complex, only real roots of Eq.(9) are
physically meaningful5. For a more detailed description of the method and its implementation, see
the documentation of HomotopyContinuation.jl and references therein [25,26].

2.3 Stability analysis and linear response

Let us assume that we found a real solution u0 of Eq. (8). When the system is in this state, it
responds to small perturbations either by returning to u0 over some characteristic timescale (stable
state) or by evolving away from u0 (unstable state). To analyze the stability of u0, we linearize
Eq. (8) around u0 for a small perturbation δu= u− u0 to obtain

d
dT
[δu(T )] = J(u= u0)δu(T ) , (10)

where J(u0) =∇uF̄|u=u0
is the Jacobian matrix of the system evaluated at u= u0

6.

5Complex roots with small imaginary parts suggest that small perturbations in the problem might introduce a new
real root, see Ref. [25].

6In this notation, ∇uF̄ = (∇T
u F̄1,∇T

u F̄2, · · · ,∇T
u F̄2N M )T, where ∇T

u F̄r is the transpose (row vector) of the gradient of
the r-th component over the coordinates u.
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Figure 3: The basic workflow of HarmonicBalance.jl.

The solution to Eq. (10) can be expanded in terms of the complex eigenvalues λr and eigen-
vectors vr of J(u0), namely

δu(T ) =
2N M
∑

r=1

(vr ·δu(T = T0)) vr eλr T . (11)

The dynamical behaviour near the steady states is thus governed by eλr T : if Re(λr)< 0 for all r,
the system returns to u0 under a small arbitrary perturbation and the state is classified as stable.
Conversely, if Re(λr)> 0 for any r, the system is unstable - perturbations such as noise or a small
applied drive will force it to evolve away from u0.

The linear response of a stable, steady state to an additional oscillatory force, caused by weak
probes or noise, is often observed in experiments [85]. It can be calculated by adding a small
driving term δf cos(Ωd T ) to the harmonic Eq. (8). To account for the time dependence of the
perturbation, linearisation around u0 should retain the previously-dropped higher-order time
derivatives. While implemented in the package, we leave a thorough discussion of this topic to
future work.

3 Structure of HarmonicBalance.jl

The bulk of HarmonicBalance.jl is written in Julia, a language combining the accessibility of
interpreted languages such as Python with the performance of compiled languages such as C and
Fortran. Our package is designed with simplicity of use and scalability in mind. We give a short
overview of the package structure and basic workflow below; it is also displayed in Fig. 3.

1. ODE systems serve as primary input and are inserted in symbolic form via Symbolics.jl.
Non-autonomous harmonic systems are accompanied by a user-defined set of frequencies
to build the ansatz [cf., Eq.(7) and Fig. 1c]. From this, a set of harmonic (autonomous)
equations is obtained symbolically.

2. Harmonic equations are interfaced with a root-finding algorithm (HomotopyContinuation.jl)
and numerical ODE solvers (DifferentialEquations.jl).

3. Steady-state solutions are further analysed, e.g., for stability and other criteria. A flexible
toolbox for the calculation of observable quantities is included, with a user-defined mapping
of steady-state solutions and the calculation of linear response spectra.

8
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4. Steady-state solutions for one- and two-dimensional parameter sets are readily visualised.
Interactive plotting routines help exploratory analysis of the rich topology of the solutions
(e.g., bifurcations) for multi-dimensional parameter sets. An ODE solver may be used to
obtain the slow-time (T) dynamics and verify the steady-state results.

In the following, we detail the working principles of HarmonicBalance.jl. For detailed online
documentation on the latest release, we refer the reader to [86].

3.1 Defining a system, extracting harmonic equations.

Conceptually, specifying a system requires two ingredients: its ODE of motion, such as Eq. (1),
and the set of oscillating frequencies forming the harmonic ansatz in Eq. (7). Once defined, the
equation of motion is stored in the dedicated object DifferentialEquation. For this primary
input and subsequent symbolic manipulations, we employ the Julia package Symbolics.jl [87],
whose emphasis on high performance is essential in dealing with complex problems, such as that
shown in Section 5.3.

After constructing the harmonic ansatz Eq. (7) and introducing the slow time T , the harmonic
equations governing the harmonic variables u are found. We assume slow or no evolution in T and
therefore drop any second and higher-order derivatives with respect to T as well as products of du

dT .
The equations are then Fourier-transformed, returning the harmonic Eq. (8) (for a concrete example,
see Appendix A and Section 5.1). These equations are stored in the object HarmonicEquation,
which in itself stores instances of HarmonicVariable, each specifying one pair {ui, j , vi, j}.

3.2 Obtaining and characterising steady states

To find and analyse the steady states of a HarmonicEquation, we need the corresponding (algebraic)
steady-state equations and the Jacobian matrix; these are symbolically stored in the object Problem.

As the next step, numerical parameter values are specified. This is the required input for our
primary solving method, get_steady_states, which allows the user to specify which parameters
are constant and which are varied. One may vary any number of parameters, i.e., solution sets
of any dimension are supported. We then employ a homotopy to retrieve steady states for each
parameter set value. The native multi-threading support of HomotopyContinuation.jl can dispatch
path tracking over multiple cores. Note that complex roots are being followed throughout the
procedure - real solutions are only filtered out a posteriori.

Once steady states are found, HarmonicBalance.jl automatically classifies each state by whether
it is real (complex roots bear no physical meaning) and by its stability. The final output is a Result
object.

3.3 Visualisation

Functionality for static plotting of steady-state and time-dependent solutions is provided using the
Matplotlib library [88]. At the core of our plotting routines is the function transform_solutions,
which evaluates a symbolic expression by substituting each of the solutions from a Result object.
This enables 1D and 2D plots of each solution and functions derived from them. Functionality for
selection of transformed solutions (e.g. those with the maximal amplitudes) is available through
the method map_multi_solutions7. We implemented classification functionality to help navigate
potentially involved solution landscapes to show/hide/label solutions satisfying a given condition.

7In general, this function provides support for many-to-one functions of multiple transformed solutions.
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Rather than the solutions themselves, a phase diagram is often desired, which shows how the
qualitative behaviour of the system changes in parameter space. We provide the functionality
to distinguish parameter space regions by the number of (stable/all) solutions. We include an
additional test that is able to detect qualitative differences between points in parameter space
where the number of stable/unstable solutions is invariant (e.g. transcritical bifurcations)8.

Finally, we highlight the function interactive_phase_diagram_2D; this produces an interactive
window where the solution landscape can be explored along a given dimension by simply clicking
on different parts of a two-dimensional diagram.

3.4 Time-dependent simulations

The behaviour of a system can be found using a numerical ODE solver and an initial condition
u(T = T0). This approach is beneficial for analysing systems whose parameters are being adiabati-
cally varied in time, i.e. slower than characteristic system reaction times - a common experimental
approach to explore the solution landscape, detecting bifurcations and hysteresis. Other potential
uses of time-dependent simulations are verifying steady-state results, their stability and fluctuation
spectra, and identifying their basins of attraction.

A time-dependent simulation may use either a DifferentialEquation or a HarmonicEquation.
The former represents the system in the time domain and uses no approximations. However, the
numerical propagation of oscillatory dynamics can be extremely inefficient. Specifically, time grids
need to resolve fractions of the period of the fastest oscillation to keep numerical precision. A
HarmonicEquation is significantly faster to solve since it describes the system using the slow time
T , where the oscillatory steady states appear time-independent. This approach, however, can only
capture the chosen set of harmonics and nearby frequencies through the slowly varying amplitudes
u. To include additional frequencies, the harmonic ansatz must be expanded.

4 Comparison with other harmonic balance implementations

Steady-state problems in nonlinear periodic ODEs appear in diverse areas of science and technology.
Several free and commercial packages exist to solve them. Examples of open-source software
include Xyce - a high-performance parallel electronic simulator that can perform harmonic balance
analysis [89]. The harmonic balance method is also natively supported for general nonlinear
multiphysics finite element simulations in the open-source C++ FEM library Sparselizard [90]. An
example of a commercial software package is Cadence AWR Microwave Office, which focuses on
the analysis of electrical circuits in the frequency domain (i.e. calculation of voltage and current for
a given set of elements), and includes features that are not yet implemented in HarmonicBalance.jl
(e.g., noise analysis). Generally, these packages are use-case specialised, making their application
in other settings challenging.

Likely the closest existing tool to our Julia package is NLvib [72]. However, it focuses on
predefined problems primarily relevant to mechanical engineering and requires a MATLAB license
to use, which is unaffordable for many research groups and educational institutes. Crucially, in
all of the above packages, the harmonic balance equations are solved by either i) time evolution
from a given set of initial conditions or ii) single-root finding methods such as Newton’s. These

8In short, this function first labels each point in parameter space with a bit string indicating the stability of each
solution there (e.g. [is_stable(sol_1),is_stable(sol_2),· · · ]=[011· · ·]). Next, each bit string is assigned to a
unique integer identifier.
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approaches only return one steady state at a time, and even when combined with the continuation
of a known solution, disconnected solution branches remain hidden. Our distinction from existing
work lies in three main points:

• The use of homotopy continuation allows us to find all possible solutions of the harmonic
balance equations, where solutions for multiple parameters can be obtained reliably and
efficiently.

• Arbitrary equations of motion can be entered and processed. This is crucial for use by the
academic community, where an ab-initio approach to physical problems is often preferred
over specialised GUI-based tools.

• The code and its dependencies are entirely open-source. This enables a natural synergy with
Julia’s existing rich ecosystem for scientific computing.

5 Examples of HarmonicBalance.jl usage

In this Section, we present several example problems. Instructions to install HarmonicBal-
ance.jl and further detailed examples can be found at https://github.com/NonlinearOscillations/
HarmonicBalance.jl and in the links therein.

5.1 Duffing oscillator

The simplest use case for HarmonicBalance.jl is a driven Duffing resonator governed by Eq. (5).
For a driving frequency ωd in the vicinity of the natural resonance frequency ω0, the dominant
behaviour can be captured by a single harmonic, the excitation frequency ωd . The basic lines of
code follow below: definition of the system, implementation of the harmonic ansatz

x(t) = u1(T ) cos(ωd t) + v2(T ) sin(ωd t) , (12)

and derivation of corresponding harmonic equations proceed as
using HarmonicBalance
@variables α, ωd, ω0, F, t, γ, x(t) # declare constant variables and

a function x(t)
diff_eq = DifferentialEquation(d(d(x, t),t) + ω0^2 * x + γ*d(x,t) +

α*x^3 ~ F*cos(ωd*t), x)
add_harmonic !(diff_eq , x, ωd) # specify the ansatz x = u(T) cos(ωdt)

+ v(T) sin(ωdt)
# implement ansatz to get harmonic equations
harmonic_eq = get_harmonic_equations(diff_eq)

harmonic_eq is a HarmonicEquation object, corresponding to Eq. (A.4) in Appendix A. The output
of this code is

A set of 2 harmonic equations
Variables: u1(T), v1(T)
Parameters: α, ω, γ, ω0, F

Harmonic ansatz:
x(t) = u1*cos(ωd*t) + v1*sin(ωd*t)

Harmonic equations:

11
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Figure 4: Steady-state solutions for a single-frequency-driven Duffing resonator. (top) Har-
monic amplitudes as a function of (a) the driving frequency ratio ωd/ω0 (F/ω0 = 0.0025) and
(b) driving amplitude ratio F/ω0 (positive detuning, ωd = 1.01ω0). Multiple values of α ∈ (−1, 1)
are color-encoded. (c) Real parts of complex eigenvalues of Jacobian matrix for solutions in (b).
Unstable solutions show positive values for at least one of the eigenvalues. (d) Two-dimensional
phase diagram depicting the number of steady-state solutions in the {F/ω0,ωd/ω0} plane for
α= 1. Panels at the top (bottom) row correspond to calculation including a single (two) relevant
harmonic(s) and plot Xωd

(X3ωd
). For all panels, γ/ω0 = 0.01.

(ω0^2)*u1(T) + γ*Differential(T)(u1(T)) + (3//4)*α*(u1(T)^3) + (2//1)*ω*Differential
(T)(v1(T)) + γ*ω*v1(T) + (3//4)*α*(v1(T)^2)*u1(T) - F - (ω^2)*u1(T) ~ 0

γ*Differential(T)(v1(T)) + (ω0^2)*v1(T) + (3//4)*α*(v1(T)^3) + (3//4)*α*(u1(T)^2)*v1
(T) - (2//1)*ω*Differential(T)(u1(T)) - (ω^2)*v1(T) - γ*ω*u1(T) ~ 0

To calculate the solutions for multiple values of ωd , we introduce the tuples
fixed = (α => 1., ω0 => 1.0, F => 0.0025 , γ=> 0.01) # fixed

parameters
swept = ωd => LinRange (0.97, 1.03, 100) # range of parameter values

and simply call
solutions = get_steady_states(harmonic_eq , swept , fixed)

The steady-state amplitude corresponding to the harmonic ωd is given by Xωd
=
q

u2
1 + v1; this

can be inspected via
plot_1D_solutions(solutions , x="ωd", y="sqrt(u1^2 + v1^2)")

which produces curves similar to Figs. 4a,b (top row). In such curves, markers are employed to
denote the stability of solutions, determined from the Jacobian matrix eigenvalues, which are
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evaluated at each point [Fig. 4c]. Real and imaginary parts of Jacobian eigenvalues are displayed
via a call to

plot_1D_jacobian_eigenvalues(soln_1d , x="ωd");

Moreover, simultaneous parametric sweeps over many parameter dimensions can be produced by
adding ranges to swept, e.g., to get a 2D dataset,

swept = (F =>LinRange (0.0001 ,0.0041 ,150) , ωd=>LinRange (0.97,
1.03 ,150))

A 2D phase diagram depicting the total number of solutions, irrespective of stability [Fig. 4d], can
then be produced by

plot_2D_phase_diagram(solutions ,stable=false ,observable="nsols")

The cubic nonlinearity leads to multiple frequency upconversion processes (Section 2.1). In
particular, we focus on the conversion of a resonantly excited oscillation at ωd ≈ ω0 to an off-
resonant oscillation at 3ωd

9. The analysis of this mechanism is helpful to study convergence studies
of the ansatz. To corroborate it, we implement the ansatz

x(t) = u1(T ) cos(ωd t) + v1(T ) sin(ωd t) + u2(T ) cos(3ωd t) + v2(T ) sin(3ωd t) , (13)

including harmonics at ωd and 3ωd :
add_harmonic !(diff_eq , x, ωd)
add_harmonic !(diff_eq , x, 3*ωd)
harmonic_eq = get_harmonic_equations(diff_eq)

The resulting HarmonicEquation object is printed out
A set of 4 harmonic equations
Variables: u1(T), v1(T), u2(T), v2(T)
Parameters: ω, ω0, α, γ, F

Harmonic ansatz:
x(t) = u1*cos(ωt) + v1*sin(ωt) + u2*cos(3ωt) + v2*sin(3ωt)

Harmonic equations:

γ*Differential(T)(u1(T)) + (ω0^2)*u1(T) + (3//4)*α*(u1(T)^3) + γ*ω*v1(T) + (2//1)*ω*
Differential(T)(v1(T)) + (3//4)*α*(v1(T)^2)*u1(T) + (3//2)*α*(u2(T)^2)*u1(T) +
(3//2)*α*(v2(T)^2)*u1(T) + (3//4)*α*(u1(T)^2)*u2(T) + (3//2)*α*u1(T)*v1(T)*v2(T)
- F - (ω^2)*u1(T) - (3//4)*α*(v1(T)^2)*u2(T) ~ 0

γ*Differential(T)(v1(T)) + (ω0^2)*v1(T) + (3//4)*α*(v1(T)^3) + (3//4)*α*(u1(T)^2)*v1
(T) + (3//4)*α*(u1(T)^2)*v2(T) + (3//2)*α*(u2(T)^2)*v1(T) + (3//2)*α*(v2(T)^2)*
v1(T) - (2//1)*ω*Differential(T)(u1(T)) - (ω^2)*v1(T) - γ*ω*u1(T) - (3//4)*α*(v1
(T)^2)*v2(T) - (3//2)*α*u1(T)*u2(T)*v1(T) ~ 0

γ*Differential(T)(u2(T)) + (ω0^2)*u2(T) + (1//4)*α*(u1(T)^3) + (3//4)*α*(u2(T)^3) +
(6//1)*ω*Differential(T)(v2(T)) + (3//4)*α*(v2(T)^2)*u2(T) + (3//1)*γ*ω*v2(T) +
(3//2)*α*(u1(T)^2)*u2(T) + (3//2)*α*(v1(T)^2)*u2(T) - (9//1) *(ω^2)*u2(T) -
(3//4)*α*(v1(T)^2)*u1(T) ~ 0

(ω0^2)*v2(T) + γ*Differential(T)(v2(T)) + (3//4)*α*(v2(T)^3) + (3//4)*α*(u1(T)^2)*v1
(T) + (3//2)*α*(u1(T)^2)*v2(T) + (3//4)*α*(u2(T)^2)*v2(T) + (3//2)*α*(v1(T)^2)*
v2(T) - (1//4)*α*(v1(T)^3) - (6//1)*ω*Differential(T)(u2(T)) - (9//1) *(ω^2)*v2(T
) - (3//1)*γ*ω*u2(T) ~ 0

Steady states can now be retrieved again from

9The Duffing nonlinearity can also enact the conversion of a response excited below resonance at ωd ≈ω0/3, to a
resonant oscillation at 3ωd ≈ω0.
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solutions = get_steady_states(harmonic_eq , swept , fixed)

In Fig. 4 bottom, the nonlinearity, yields a finite amplitude X3ωd
=
q

u2
2 + v2

2 > 0 for the third
harmonic 3ωd = ω0. Comparison of phase diagrams for the two ansatzes in Fig. 4d does not
reveal new regions in terms of the number of solutions. As described in Appendix A, this insight
justifies a perturbative treatment of the upconverted response.

5.2 Navigating involved solution landscapes: Coupled Duffing resonators

The power of the homotopy continuation method lies in its ability to capture all possible solutions
as parameters are varied. In contrast, experiments in nonlinear systems often implement parameter
variations by adiabatic parameter sweeps, which can only access a subset of steady states. This is
because such protocol reaches only one steady state at a time.

The knowledge of all possible solutions can be beneficial to interpret experiments of coupled
nonlinear oscillators. As the number of oscillators increases, so does the dimensionality of the
problem and the number of potential steady states (Section 2.2) with corresponding intricate
solution topology. As an example of how increasingly complex problems are suitable for treatment
by HarmonicBalance.jl, we consider in this section the harmonic equations for two coupled Duffing
resonators (natural frequencies ωx and ωy , coupling k), governed by

ẍ(t) +ω2
x x(t) + γ ẋ(t) +αx(t)3 − k y(t) = F cos(ωd t), (14)

ÿ(t) +ω2
y y(t) + γ ẏ(t) +αy(t)3 − kx(t) = F cos(ωd t). (15)

In addition to obtaining steady states for multiple parameters using homotopy continuation, we
solve the time dynamics to simulate an experimentally standard parametric sweep via an interface
with DifferentialEquations.jl. This can be attained via the following lines of code

@variables ω_x, ω_y, t, ω, F, γ, α, k, x(t), y(t);

free_eq = [ d(d(x, t),t) + ω_x^2 * x +γ*d(x,t) + α*x^3 - k*y,
d(d(y,t),t) + ω_y^2*y + γ*d(y,t) + α*y^3 - k*x]

forces = [F*cos(ω*t), F*cos(ω*t)]

diff_eq = DifferentialEquation(free_eq - forces , [x, y])

add_harmonic !(diff_eq , x, ω) # x will oscillate at ω
add_harmonic !(diff_eq , y, ω) # y will oscillate at ω
harmonic_eq = get_harmonic_equations(diff_eq)

Execution of the above block also prints a detailed summary of the simplified system
A set of 4 harmonic equations
Variables: u1(T), v1(T), u2(T), v2(T)
Parameters: α, ω, ω_x, γ, k, F, ω_y

Harmonic ansatz:
x(t) = u1*cos(ωt) + v1*sin(ωt)
y(t) = u2*cos(ωt) + v2*sin(ωt)

Harmonic equations:

(ω_x^2)*u1(T) + γ*Differential(T)(u1(T)) + (3//4)*α*(u1(T)^3) + (2//1)*ω*
Differential(T)(v1(T)) + γ*ω*v1(T) + (3//4)*α*(v1(T)^2)*u1(T) - F - k*u2(T) - (ω
^2)*u1(T) ~ 0
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γ*Differential(T)(v1(T)) + (ω_x^2)*v1(T) + (3//4)*α*(v1(T)^3) + (3//4)*α*(u1(T)^2)*
v1(T) - (ω^2)*v1(T) - k*v2(T) - (2//1)*ω*Differential(T)(u1(T)) - γ*ω*u1(T) ~ 0

γ*Differential(T)(u2(T)) + (ω_y^2)*u2(T) + (3//4)*α*(u2(T)^3) + (2//1)*ω*
Differential(T)(v2(T)) + γ*ω*v2(T) + (3//4)*α*(v2(T)^2)*u2(T) - F - k*u1(T) - (ω
^2)*u2(T) ~ 0

(ω_y^2)*v2(T) + γ*Differential(T)(v2(T)) + (3//4)*α*(v2(T)^3) + (3//4)*α*(u2(T)^2)*
v2(T) - k*v1(T) - (ω^2)*v2(T) - (2//1)*ω*Differential(T)(u2(T)) - γ*ω*u2(T) ~ 0

Multi-parameter steady states can be obtained,
fixed_parameters = (ω_x=> 1., ω_y=> 1.05, γ=> 2E-3, F=> 1E-2, α=> 1E

-1, k=> 5E-2])
sweep = (ω => LinRange (0.85 ,1.25 ,150))
solutions = get_steady_states(problem , sweep , fixed)

This yields a Result object,
Solution branches: 11

of which real: 7
of which stable: 4

We visualise the amplitudes of stable steady-state solutions via
plot_1D_solutions(soln , x="ω", y="sqrt(u1^2 + v1^2)", plot_only =["

physical", "stable"],filename="coupled_duffing_sols");

Here we saved results to a .jld2 file by filling the filename keyword argument. Data can be
subsequently recovered via use of the load function.

We are now in a position to check the accessibility of the steady states by performing a backward,
time-dependent sweep of the frequency, initiating at a given particular condition:

# select a solution and evolve from it
s1 = get_single_solution(soln , branch=5, index =75);

sweep = HarmonicBalance.TimeEvolution.ParameterSweep(ω =>
(1.2, 0.9), (0, 1E5)) #HarmonicBalance.TimeEvolution.
ParameterSweep(ω => (s1[ω], 0.95), (0, 1E5))

function t_solve(s) """retrieve long -time evolved results
from the slow -flow equation"""
problem = HarmonicBalance.TimeEvolution.ODEProblem(

averagedEOM , steady_solution=s, timespan =(0,1E5),
sweep=sweep)

time_soln = HarmonicBalance.TimeEvolution.solve(problem ,
saveat =10);

end
time_soln_1 = t_solve(s1);

A forward sweep can also be performed by setting
sweep = HarmonicBalance.TimeEvolution.ParameterSweep(ω =>

(0.9 ,1.2), (0, 1E5))
time_soln_2 = t_solve(s1);

Large-time amplitudes from backwards/forward time sweeps can be retrieved from
X1 = sqrt.( getindex .( time_soln_1.u,1).^2 .+ getindex .( time_soln_1.u

,2) .^2)
X2 = sqrt.( getindex .( time_soln_2.u,1).^2 .+ getindex .( time_soln_2.u

,2) .^2)

Results from these sweeps are presented along with the steady states in Fig. 5.
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Figure 5: Time-dependent driving frequency sweep (gray) and stable steady-state landscape
(colored) in two linearly coupled, driven Duffing resonators. Steady-state solution amplitudes
X1 =

q

u2
1 + v2

1 for a system initiated away from any steady state, rapidly collapsing into one of the
available solutions. Adiabatic variation of the driving frequency follows a subset of stable, steady
states. The arrows indicate the direction of the sweep; jumps occur at points where a solution
branch ceases to be stable. The observed behaviour is hysteretic, i.e., it depends on the sweep
direction. The parameters chosen are ωx = 1,ωy = 1.05, γ = 2 · 10−3, F = 10−2, α = 10−1,
J = 5 · 10−2. The sweeping time is τ = 105 � γ−1, much slower than any relaxation time to
minimise non-adiabatic effects.

5.3 Increasing computational complexity: Performance scaling

Here, we shortly illustrate the performance of HarmonicBalance.jl for varying system sizes. We
consider a chain of linearly coupled Duffing oscillators, each with nonlinear damping (amplitude η,
other parameters defined above Eq. (6)),

ẍ i(t) +ω
2
0 x i(t) +αx i(t)

3 +ηx i(t)
2 ẋ i(t)− k

∑

j=i±1

x j(t) = F cos(ωt) , i = 1,2, ..., N . (16)

The displacement of each oscillator, x i , is expanded using the harmonic oscillating at ω, giving the
harmonic ansatz

x i(t) = ui(T ) cos(ωt) + vi(T ) sin(ωt). (17)

As explained in Section 2, each oscillator adds 2 harmonic equations of order 3. Therefore, a chain
of length N and M = 1 leads to a set of 2N equations. The corresponding Bézout bound on the
number of solutions, and hence the number of paths which must be tracked by the homotopy
continuation algorithm, is 32N .

In Table. 2, we show the computational times necessary for symbolic manipulation and ho-
motopy solving as well as the number of complex and real solutions found. We highlight solving
a chain of N = 5 resonators still takes a few minutes on a single CPU. Notably, the number of
unique solutions is significantly smaller than the Bézout bound in all cases, with the number of real
solutions being smaller still. The bottleneck is, therefore, the initial tracking of the homotopy from
32N paths to the relatively few non-singular ones. Subsequent steps such as solving for multiple
parameter sets (i.e. tracking parameter homotopy paths) and determining stability (Jacobian
evaluation and diagonalisation) only involve non-singular paths and thus are relatively inexpensive.

Two remarks regarding performance are in order. First, the process of path tracking is naturally
well-suited for parallelisation, and HomotopyContinuation.jl does include the necessary functional-
ity. Second, systems such as the Duffing chain possess spatial symmetries (in this case, inversion
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N 1 2 3 4 5
tsymbolic [s] 0.16 0.38 0.71 1.11 1.54

tsolve [s] 0.52 1.47 17.3 173 1801
Bézout bound 9 81 729 6561 59049

complex solutions 3 11 59 545 3577
real solutions 3 11 32 103 310

Table 2: Finding the steady states of Eq. (16) for varying chain length N . The rows describe
(i) Computational time required to obtain the harmonic equations and the symbolic Jacobian
tsymbolic. (ii) Time to solve the harmonic equations for 50 parameter sets tsolve. (iii) The Bézout
bound. (iv) Number of complex solutions found. (v) Number of real solutions found. The
parameters used are ω0 = 1,α= 1, k = 0.1,η= 0.1, F = 0.01. A single core of an Intel i7-8550U
CPU was used.

symmetry) and internal/gauge symmetries (e.g. discrete time translation, ui 7→ −vi , vi 7→ ui)
which cause some solutions to be degenerate. Making use of this property can further reduce the
computational time needed.

6 Conclusion

In this work, we have introduced a Julia package to treat the steady-state behaviour of generic
nonlinear, polynomial, dynamical systems with harmonic time dependence. Combining symbolic
and numerical calculations with simple graphical capabilities, our package is developed with
simplicity of use in mind while enabling the study of complex nonlinear systems.

Its modular design paves the way for future methodological extensions, including detection
of Hopf bifurcations [91], limit cycles and chaos [92], higher-order Krylov-Bogoliubov averaging
method [93], as well as interfaces with existing dedicated libraries to treat nonlinear spatially-
extended or quantum systems [94,95]. Its usage can assist a breadth of fields, where nonlinear
harmonically-driven systems appear, such as modal analysis in structural dynamics [6,28], electric
circuits [7,29,30], nonlinear optics [8,31–37], optomechanics [17,38–40], micro- and nanome-
chanics [41–50], oscillator networks [51–56], Ising machines [57–62], and many-body light-matter
systems [63–69].

We hope that the free availability of a user-friendly, high-performance code for harmonic
nonlinear dynamics calculations will help advance multiple disciplines by allowing researchers to
perform computations currently considered out of reach due to their complexity. In addition, we
hope its implementation, sitting on Julia’s rich ecosystem for high-performance scientific computing,
will help nurture a multidisciplinary open-source community.
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A Harmonic equations for a Duffing resonator

Here, we derive the harmonic equations for a single Duffing resonator, governed by the equation

ẍ(t) +ω2
0 x(t) +αx3(t) = F cos(ωd t + θ ) , (A.1)

where we considered driving with a finite phase offset θ for generality. As explained in Section 2,
for a periodic driving at frequency ωd and a weak nonlinearity α, we expect the response at
frequency ωd to be dominant, followed by a response at 3ωd due to frequency conversion.

Expanding in ωd only

We first describe the established [3,70,75] approach to finding the steady states of Eq. (A.1), where
frequency conversion is only added perturbatively. The starting point is a harmonic ansatz for x of
the form Eq. (7), containing a single frequency ωd ,

x(t) = u(T ) cos(ωd t) + v(T ) sin(ωd t) , (A.2)

with the harmonic variables u and v. The slow time T is, for now, equivalent to t. Substituting this
ansatz into Eq. (A.1) results in

�

ü+ 2ωd v̇ + u
�

ω2
0 −ω

2
d

�

+
3α
�

u3 + uv2
�

4
+ F cosθ

�

cos(ωd t)

+

�

v̈ − 2ωd u̇+ v
�

ω2
0 −ω

2
d

�

+
3α
�

v3 + u2v
�

4
− F sinθ

�

sin(ωd t)

+
α
�

u3 − 3uv2
�

4
cos(3ωd t) +

α
�

3u2v − v3
�

4
sin(3ωd t) = 0. (A.3)

We see that x3 in Eq. (A.1) generates terms that oscillate at 3ωd , describing the process of
frequency upconversion. We now Fourier-transform both sides of Eq. (A.3) with respect to ωd to
obtain the harmonic equations. This process is equivalent to extracting the respective coefficients
of cos(ωd t) and sin(ωd t). Here the distinction between t and T becomes important: since the
evolution of u(T) and v(T) is assumed to be slow, they are treated as constant for the purpose
of Fourier transformation. Since we are interested in steady states, we drop the higher-order
derivatives and rearrange the resulting equation to the form of Eq. (8) of the main text

d
dT

�

u
v

�

=
1

8ωd

�

4v
�

ω2
0 −ω

2
d

�

+ 3α
�

v3 + u2v
�

− 4F sinθ
4u
�

ω2
d −ω

2
0

�

− 3α
�

u3 + uv2
�

− 4F cosθ

�

. (A.4)

Note that our assumption that u(T ) and v(T ) are slowly changing, i.e. composed of small frequency
terms also sets constraints in Fourier space: we neglect all the frequencies which are not close to
ωd . In the extreme case of constant u and v, the described frequency range reduces to the discrete
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frequency ωd . Steady states can now be found by setting the l.h.s. to zero, i.e., assuming u(T ) and
v(T ) constant and neglecting any transient behaviour. This step is referred to in the literature as
"balancing the harmonics" [72]. This results in a set of 2 nonlinear polynomial equations of order
3, for which the maximum number of solutions set by Bézout theorem is 32 = 9. Depending on
the parameters, the number of real solutions is known to be between 1 and 3, see the solution
diagrams Section 5.

The steady states describe a response that may be recast as x0(t) = X0 cos(ωd t +φ), where
X0 =

p
u2 + v2 and φ = −atan(v/u). Frequency conversion from ωd to 3ωd can be found by

setting x(t)≡ x0(t)+δx(t) with |δx(t)| � |x0(t)| and expanding Eq. (A.1) to first-order in δx(t).
The resulting equation

δ ẍ(t) +

�

ω2
0 +

3αX 2
0

4

�

δx(t) = −
αX 3

0

4
cos(3ωd t + 3φ) , (A.5)

describes a simple harmonic oscillator, which is exactly soluble. Correspondingly, a response of
δx(t) at frequency 3ωd is observed. Since this response is obtained perturbatively for each steady
state of Eq. (A.4), no previously-unknown solutions are generated in the process.

Expanding in ωd and 3ωd

An approach in the spirit of harmonic balance is to use both harmonics ωd and 3ωd on the same
footing, i.e., to insert the ansatz

x(t) = u1(T ) cos(ωd t) + v1(T ) sin(ωd t) + u2(T ) cos(3ωd t) + v2(T ) sin(3ωd t) , (A.6)

with u1, u2, v1, v2 being the harmonic variables. As before we substitute the ansatz into Eq. (A.1),
drop second derivatives with respect to T and Fourier-transform both sides. Now, the respective
coefficients correspond to cos(ωd t), sin(ωd t), cos(3ωd t) and sin(3ωd t). Rearranging, we obtain

du1

dT
=

1
2ωd

�

�

ω0
2 −ω2

d

�

v1 +
3α
4

�

v3
1 + u2

1v1 + u2
1v2 − v2

1 v2 + 2u2
2v1 + 2v2

2 v1 − 2u1u2v1

�

+ F sinθ
�

,

dv1

dT
=

1
2ωd

�

�

ωd
2 −ω2

0

�

u1 −
3α
4

�

u3
1 + u2

1u2 + v2
1 u1 − v2

1 u2 + 2u2
2u1 + 2v2

2 u1 + 2u1v1v2

�

− F cosθ
�

,

du2

dT
=

1
6ωd

h

�

ω2
0 − 9ω2

d

�

v2 +
α

4

�

−v3
1 + 3v3

2 + 3u2
1v1 + 6u2

1v2 + 3u2
2v2 + 6v2

1 v2

�

i

,

dv2

dT
=

1
6ωd

h

�

9ω2
d −ω

2
0

�

u2 −
α

4

�

u3
1 + 3u3

2 + 6u2
1u2 − 3v2

1 u1 + 3v2
2 u2 + 6v2

1 u2

�

i

.

(A.7)

In contrast to Eqs. (A.4), we now have 4 equations of order 3, allowing up to 34 = 81 solutions
(the number of unique real ones is again generally far smaller, as seen in Section 5). The larger
number of solutions is explained by higher harmonics which cannot be captured perturbatively by
the single-frequency ansatz. In particular, those where the 3ωd component is significant. Such
solutions appear, e.g., for ωd ≈ω0/3 where the generated 3ωd harmonic is close to the natural
resonance frequency.
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B Solving steady states for multiple parameter values

Evaluating Eq. (8) at each parameter set determines a distinct numerical system of polynomial
equations, whose roots can be found using homotopy continuation; this generally requires tracking
the maximum number of roots given by Bézout’s theorem, which may be very time-consuming.
Having solved for one parameter set, the entire tracking procedure is not necessary for others -
one only needs to track paths leading to non-singular solutions. In particular, we carry out

1. A "warm-up", i.e. path tracking from the roots of, e.g., U(u0) = {u
d1
1 −1, vd1

1 −1, ud2
2 −1, vd2

2 −1, · · · }
(dr , r = (1, 2, · · · , N M) denotes the degree of the polynomial F̄r(u0)) towards the roots of a
"generic" system, namely F̄(u0) evaluated with random complex (unphysical) parameters10.
All singular paths are filtered out during this procedure.

2. The number of complex roots of the generic system is an upper bound for the number of
roots of F̄(u0) = 0 for arbitrary parameters [25]. In a final step, we apply a parameter
homotopy (a mapping between the collection of systems F̄(u0) = 0 obtained by only varying
the parameters) towards a physical real parameter value. This may involve tracking a
massively reduced number of paths, hence being much faster than step 1.

3. Repeat step 2 for each parameter value.

Despite the computational overhead of the problem’s "complexification", complex solution
paths allow for a stable path tracking algorithm, preventing singularities that will otherwise show
up in a real-space parameter homotopy (see Ref. [25] for details).
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