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Realising high fidelity entangled states in controlled quantum many-body systems is challenging5

due to experimental uncertainty in a large number of physical quantities. We develop a robust
optimal control method for achieving this goal in interacting multi-qubit systems despite signifi-
cant uncertainty in multiple parameters. We demonstrate its effectiveness in the generation of the
Greenberger-Horne-Zeilinger state on a star graph of capacitively coupled transmons, and discuss
its crucial role for achieving the Heisenberg limit of precision in quantum sensing.10

I. INTRODUCTION

Recent advances in quantum technology have enabled
the building of multi-qubit quantum devices across many
platforms such as cold atoms, trapped ion and supercon-
ducting qubits. Among its goal is the creation of multi-15

qubit entangled states, such as the Schrodinger’s cat, for
understanding macroscopic quantum physics [1, 2] and
for applications in quantum sensing [3–5]. The most re-
cent remarkable results are the realisations of a 20 qubit
Greenberger-Horne-Zeilinger (GHZ) state in an array of20

Rydberg atoms [1] and superconducting qubits [2], but
the fidelity in these experiments is lower than 60% due
to the complexity of controlling the many-body dynam-
ics. In a large device it is impossible to precisely charac-
terise the physical parameters of every qubits, resulting25

in some uncertainty with regards to the model of the sys-
tem. These parameters also change from one experiment
to the next due to diffusive processes in the materials
and loss of calibration in the external electronic equip-
ment. This uncertainty leads to a significant drop in the30

fidelity of the state preparation process, an effect that
becomes rapidly worse with an increasing number of the
uncertain parameters. Therefore, it is important to have
a theoretical method for preparing entangled states with
high fidelity and robustness against experimental uncer-35

tainty in multi-qubit systems.
In this paper we develop a robust optimal control algo-

rithm for interacting multiqubit systems. It can be used
to find optimal pulses for creating entangled sates with
high fidelity despite uncertainty in multiple parameters40

in the Hamiltonian. As a concrete example, we study
the generation of the GHZ state on a system of trans-
mons connected by simple capacitive couplers. All the
coupling strengths between the transmons may vary in-
dependently in an uncertain interval up to 5% around the45

mean. The effect of the excitation to the higher levels of
the transmons, also known as the population leakage, is
considered. When this GHZ state is used for quantum
sensing, we show how parameter uncertainty is detrimen-
tal to the precision of the measurement result, and how50

robust optimal control leads to a big improvement and is
crucial for achieving the Heisenberg bound. In particu-
lar, for a cluster of 8 transmons with 5% uncertainty in
all the coupling strengths, the precision increases by up

to a factor of 5 after robust optimal control is applied.55

Computing the fidelity of a quantum evolution of
many-body systems is computationally expensive due to
the exponential growth of the size of the wave-function
with the number of particles/qubits. Optimising the fi-
delity introduces another layer of complexity as it re-60

quires the fidelity to be calculated for many iterations.
Adding robustness against uncertainty in the Hamilto-
nian’s parameter is even more challenging because one
needs to optimise for a number of Hamiltonian config-
urations that is exponential in the number of uncertain65

parameters. We use a combination of techniques to make
many-body robust optimal control as efficient as possi-
ble: 1) the Krylov-subspace method [6] for computing the
unitary exponential of a sparse Hamiltonian, 2) the ob-
servation that the worst-case fidelity lies at the extreme70

points of the convex region of the uncertain parameters,
thus one needs only compute the fidelity at these points,
and 3) for qubit clusters with high symmetry many ex-
treme points give the same fidelity, reducing significantly
the number of distinct fidelities one must compute. For75

the generation of the GHZ state we consider a star graph
of coupled transmons. The simple geometry of a star
graph helps keeping the number of control channels at a
minimum, and its high symmetry reduces the number of
the distinct fidelities from exponential to only linear in80

the number of uncertain parameters, resulting in a huge
speed up of the optimisation.

II. ROBUST OPTIMAL CONTROL OF
INTERACTING QUBITS

We consider an interacting system of N qubits, or qu-
dits, where the bare Hamiltonian of the j-th qubit is Qj ,
the coupling operators between the qubits are Vjk and
the coupling strength Jjk. A set of qubits, denoted by
L, are controlled with two-quadrature driving fields, Ωxj
and Ωyj , through the field-qubit coupling operators, Sxj
and Syj . The system’s Hamiltonian in a frame rotating
with the frequencies of the drives is then

H(t) =
N∑
j=1

Qj +
N∑

j,k=1
JjkVjk +

∑
j∈L

(
Ωxj (t)Sxj + Ωyj (t)Syj

)
.

(1)
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For the ideal case where all the qubits are two-level sys-85

tems coupled with each other through the flip-flop in-
teraction and coupled with the drive through the dipole
interaction, Qj = −∆jσ

z
j /2 where ∆j is the j-th qubit’s

detuning, Vjk = σ+
j σ
−
k + h.c., and Sx,yj = σx,yj . Here

σx,y,z are the Pauli matrices and σ± = σx ± σy. ∆j can90

be chosen to be zero for the undriven qubits. For super-
conducting transmons the multi-level structure has to be
considered and one has to use the multi-level generalisa-
tion of the above operators (see more details below).

The coupling terms Vjk are typically much smaller
than the energy separation of the qubits. Thus, the
ground state of the system when not driven is |ψg〉 =
⊗Nj=1 |0〉j where |0〉j is the ground state of Qj . Now one
can design a pulse with duration T for realising a tar-
get multi-qubit entangled state, |ψtg〉. In reality the final
state at the end of the pulse, |ψ〉 ≡ U(T ) |ψg〉 with U(T )
the unitary evolution operator, is not exactly |ψtg〉 and
the fidelity of the process, defined as the overlap

F = | 〈ψtg|U(T ) |ψg〉 |2, (2)

is less than one. The goal of quantum optimal control is95

to find the pulse shape of Ωx,yj (t) that maximises F .
The Hamiltonian, H(t), depends on many physical pa-

rameters such as the transition frequencies of the qubits,
the coupling strengths between the qubits, and the mag-
nitude of the field-qubit couplings. All of these parame-100

ters have experimental uncertainty due to limited calibra-
tion precision and slow drift due to diffusion processes in
the material. When there are a large number of uncertain
parameters the final state varies sharply in the uncertain
region and so does the fidelity. Robust optimal control105

is a technique for finding optimal shapes such that the
fidelity is high regardless of the actual values of the phys-
ical parameters in the uncertain region. The final state
is thus robust against the variation in these parameters.
In this paper we assume that the only uncertain parame-110

ters are the qubit-qubit coupling strengths, Jjk, as these
are typically the hardest to measure and calibrate in most
physical realisations of qubits. The formulation described
below can be easily applied to an arbitrary set of uncer-
tain parameters.115

We divide the drive’s duration T intom equal intervals
with t0 = 0 and tm = T , and we assume a piecewise
control pattern where the driving amplitudes Ωx,yj (t) are
constant in each interval. Denote by c the control vector
of all the 2mNL control variables in the set {Ωµjn : µ =
x, y; j ∈ L; 1 ≤ n ≤ m} where NL is the number of
qubits in the driven subset, and denote by v the set of
all the uncertain physical parameters in the Hamiltonian,
which in our case includes Jjk : 1 ≤ j, k ≤ N . Each
Jjk is allowed to vary independently in the interval [J̄ −
∆J/2, J̄ + ∆J/2], and thus the vector v takes values in
a hypercube whose volume is |∆J |nv where nv is the
number of uncertain parameters. Obviously the unitary
evolution and hence the fidelity in Eq. (2) is a multi-
variable function of c and v, and robust optimal control

can be defined as a max-min optimisation problem where
we find the control that maximises the minimum fidelity
over v, referred to as the worst-case fidelity:

Find Fmax = max
c
F(c), F(c) = min

v∈V
F (c,v), (3)

where V is the hypercube containing all the possible val-
ues of v.
In numerical computation one chooses a set of sam-

pling points vi in V, and find the minimum fidelity in
this set. The number of sampling points is exponential120

in the number of the uncertain parameters: If one chooses
ns equal spacing points in the uncertain interval for each
parameter, then the total number of sampling points in
V is nnv

s . For our specific problem we find that when the
uncertainties are all smaller than 5% the fidelity function125

F (c,v) can be made to be concave in v, i.e., its maximum
over v is in the interior, and its minimum always lies at
one of the extreme points of V, i.e., one of the corners of
the hypercube (we describe how to do this numerically
in Sec. II B). Therefore, we can redefine the minimum130

fidelity over V as

F(c) ≡ min
vi∈X

F (c,vi), (4)

where X is the set of the extreme points of V. There
are 2nv extreme points in the hypercube, which is still
exponential but this is in general the smallest number135

of fidelities one must compute in robust optimal control.
If there is symmetry in the system and the target state,
many extreme points give the same fidelity. For the ex-
ample of the highly symmetric GHZ state on a star graph
described below the number of distinct fidelities is only140

linear in nv.

A. Calculating the fidelity and its gradient

Since piecewise pulses are used, the Hamiltonian is con-
stant in each time step from tn−1 to tn and the unitary
evolution is Un = e−iHn∆t, where ∆t = T/m and Hn is145

the Hamiltonian during the n−th time step. For a multi-
qubit system the size of the Hamiltonian matrix increases
exponentially with the number of qubits and computing
the matrix exponentiation is very costly in both mem-
ory and time. However, one needs only the product of150

the unitary matrix and a state vector, |ψn〉 = Un |ψn−1〉,
and one can use the efficient Krylov subspace algorithm
to compute it directly (without computing the matrix ex-
ponential). This method is capable of handling very large
sparse matrices [6], and in our test it works for systems155

with up to around 20 qubits.
For an efficient calculation of the fidelity and its gradi-

ents we compute and store all the forward and backward
propagating states [7], defined by

|ψfn〉 = UnUn−1 . . . U1 |ψ0〉 ,
〈ψbn+1| = 〈ψtg|UMUM−1 . . . Un+1,
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using the recursive relations |ψfn〉 = Un |ψfn−1〉 and
〈ψbn+1| = 〈ψbn+2|Un+1. This costs 2m Krylov multipli-
cations and is the most expensive part of the calculation.
The fidelity is then simply F (c,v) = | 〈ψtg|ψfm〉 |2.160

For calculating the gradients used in the optimisation
algorithms we note that

Hn = H0 +
∑
µ=x,y

∑
j∈L

ΩµjnS
µ
j , (5)

where H0 =
∑N
j=1Qj +

∑N
j,k=1 JjkVjk is independent of

the control variables. One can show that the derivatives
of Un ≡ e−iHn∆t with respect to the control variables,
Ωµjn, are [7]

∂Un
∂Ωµjn

=
{
−i∆tSµjn + ∆t2

2
[
Hn, S

µ
j

]}
Un +O(∆t3),

(6)

where
[
Hn, S

µ
j

]
is a commutator. It follows that the

derivatives of 〈ψtg|ψfm〉 ≡ 〈ψbn+1|Un|ψ
f
n−1〉 are

∂ 〈ψbn+1|Un|ψ
f
n−1〉

∂Ωµjn
= 〈ψbn+1|

∂Un
∂Ωµjn

|ψfn−1〉

≈ 〈ψbn+1|
{
−i∆tSµj + ∆t2

2
[
Hn, S

µ
j

]}
|ψfn〉 , (7)

which is obtained by matrix-vector multiplications as
〈ψbn+1| and |ψfn〉 are already computed and stored pre-
viously. From this it is straightforward to calculate the
gradients of the fidelity in Eq. (2).

B. Optimisation165

We first optimise the fidelity using gradient ascent at
the central point of the hypercube V to a value very close
to one, 1 − 10−7 in our calculation, so that the fidelity
is a concave function with a maximum at the centre and
minimum at one of the extreme points of V. We then170

maximise the worst-case fidelity, F(c), defined in Eq. 4.
The first approach is based on the sequential convex pro-
gramming [8]. We start with a random sample of different
initial guesses for the control vector c. Next, we choose a
random positive value vector, u0, for the upper limit of175

change in the control vector c (trust region). Then a step
|δc| < u0 is found to maximise mini∇cF (c,vi).δc where
vi is an extreme point of V, i.e., maximise the minimum
fist order increment. This ensures that all the fidelities
at the extreme points are increased. The above problem180

can be solved by sequential convex programming (SCP)
[8, 9]. We used the YALMIP toolbox and SPDT3 pack-
age in Matlab for this purpose. If a step can be found
such that mini∇cF (c,vi).δc is positive then we increase
the trust region u0 by 1.15, otherwise we decrease it by 2.185

We choose these factors as they give the fastest conver-
gence in our numerical tests. The procedure is repeated

until either the maximum iteration is reached or the trust
region drops below a small tolerance.
The second approach is to simply maximise the average

fidelity,

F̄(c) =
nX∑
i=1

F (c,vi)/nX , (8)

using a quasi-Newton method. Here nX is the number190

of extreme points. Obviously this does not guarantee
that the worst-case fidelity is increased, as it is possi-
ble for the average to go up while the smallest does not.
However, we find in our calculation that the worst-case
fidelity is always improved substantially when we max-195

imise the average fidelity. We optimise F̄(c) using the
interior-point method implemented in Matlab’s fmincon
function, where the Hessian is computed from the exact
gradients using the BFGS approximation. In our numeri-
cal tests the first algorithm is more sensitive on the initial200

guesses of the control variables. For the multiqubit sys-
tems the computation is very expensive and hence it is
not practical to run the optimisation with too many ini-
tial guesses. We find that for the same running time the
second algorithm gives higher fidelities.205

At the end of the optimisation we verify the concav-
ity of F (cfinal,v) by calculating the fidelity at randomly
generated points in the hypercube V to confirm that
the worst-case fidelity indeed lies at one of the extreme
points.210

III. GHZ STATE OF CAPACITIVELY COUPLED
TRANSMONS

We now demonstrate the effectiveness of robust opti-
mal control for creating the GHZ state,

|GHZ〉 = 1√
2

(
|0〉⊗N + |1〉⊗N

)
, (9)

with high and robust fidelity on a network of interacting
qubits. One has the freedom in choosing the geometry of
the network. We consider a star graph of identical qubits215

coupled by the flip-flop interaction where only the central
qubit is driven, as shown in Fig. 1. This geometry helps
minimise the number of control channels. Each Jjk takes
value in the interval [J<, J>] ≡ [J̄ − ∆J/2, J̄ + ∆J/2]
where J̄ is the mean. At the extreme points of the hy-220

percube Jjk is equal to either the lower limit, J<, or the
upper limit, J>. From the symmetry of the GHZ state
and the star graph one sees that interchanging any two
coupling strengths in the graph does not change the fi-
delity. Therefore, two extreme points of the hypercube225

give distinct fidelities only if they have a different num-
ber of J>. The extreme points vi can hence be divided
into distinct groups with 0, 1, . . . , nJ values of J>, where
nJ ≡ N−1 is the number of couplings in the graph and is
also the length of the vectors vi. All extreme points in the230
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FIG. 1. Controled systems of interacting qubits. A star
graph with undriven qubits on the boundary coupled to a
driven qubit in the center. The qubits on the boundary are
coupled with the central qubit by the flip-flop interaction (see
text).

same group give the same fidelity. Therefore, the num-
ber of distinct extreme points is only nJ + 1 ≡ N , which
is linear in the number of uncertain parameters instead
of exponential, a drastic reduction in computational cost.
Specifically, this utilisation of symmetry reduces the com-235

putation time by a huge factor of 2nJ/(nJ + 1) which is
around 100 for nJ = 10 and 50000 for nJ = 20, for ex-
ample.

Assuming that the central qubit is driven on resonance
and each qubit is a two-level system (TLS), the Hamilto-
nian of the star graph in the rotating wave approximation
(RWA) is

HTLS(t) =
∑
j∈B

Jj
(
σ+
j σ
−
d + σ−j σ

+
d

)
+ Ωxd(t)σxd + Ωyd(t)σyd ,

(10)

where B is the set of the undriven qubits on the bound-
ary and d indicates the driven qubit at the centre. A
good physical realisation of this model is a system of
transmons coupled with fixed capacitive coupling [10].
However, the transmon is a multi-level system, and the
third level can be populated during the application of the
pulses [9, 11]. Thus, it is important to include the higher
levels in the model for an accurate calculation of the time
evolution. The three-level Hamiltonian for a star graph
of transmons in the RWA is

Htm(t) =
∑
j

Qj +
∑
j∈B

Jj
(
S+
j S
−
c + S−j S

+
c

)
+ Ωxc (t)Sxc + Ωyc (t)Syc , (11)

where

Qj =
2∑
k=0

(
ω

(k)
j − kω

(01)
j

)
|k〉j 〈k|j (12)240

FIG. 2. Optimal fidelity. The worst-case fidelity versus un-
certainty levels for a system of 10 two-level qubits (left panel)
and 8 multilevel transmons (right panel). Results obtained
with robust optimal control are marked by solid diamonds,
and non-robust optimal control by solid circles.

is the bare three-level Hamiltonian with ωkj the energy
of the eigenstate |k〉j of the j−th transmon and ω(10)

j =
ω

(1)
j −ω

(0)
j . If one chooses ω(0)

j = 0 then Qj = δj |2〉j 〈2|j
where δj = ω

(2)
j −2ω(1)

j is the anharmonicity determining
how well separated the 1-2 transition is from the 0-1 qubit
transition [11, 12]. The coupling operators are

S+
j = 1

n
(10)
j

2∑
k=0

n
(k+1,k)
j |k + 1〉j 〈k|j ,

S−j = 1
n

(01)
j

2∑
k=0

n
(k,k+1)
j |k〉j 〈k + 1|j ,

Sx,yj = S+
j ± S

−
j . (13)

The physical parameters of the transmons in our calcula-
tion is shown in Table I. The matrix elements n(k,k+1) ≡
〈k|n|k + 1〉 of the charge operator n can be calculated
from the ratio of the Josephson energy over the charging
energy, EJ/EC , and the gate charge, ng [12].245

Parameters Symbols Values
Qubit transition frequency ω(10)/2π 5 GHz

Anharmonicity δ/2π 300 MHz
Mean coupling strength J̄ 30 MHz

Pulse duration T 400 ns
Transmon energy ratio EJ/EC 50
Transmon gate charge ng 0.25

TABLE I. Physical parameters of the transmons and the val-
ues used in our calculation.

In Fig. 2 we show the worst-case fidelities obtained
with robust optimal control at various levels of uncer-
tainty for the star graph of 10 two-level qubits and that250

of 8 transmons (the two-level qubit is obtained from the
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FIG. 3. Pulse shapes. Left panel: Optimal pulse shapes
for achieving the fidelity for creating the 8-transmon GHZ
state at 5% uncertainty in Fig 2. Right panel: Leakage to the
third levels of the transmons during the dynamics, which is
the main reason limiting the fidelity.

transmon by simply neglecting the third and higher lev-
els). In this calculation the pulse duration is divided into
100 time bins each with a duration of 4ns. The optimi-
sation requires around 2000 iterations and takes a few255

hours on a 8-core CPU. For comparison we also show the
corresponding fidelities obtained with non-robust opti-
mal control: In this case the optimal pulse is found for
the ideal scenario where the uncertainties are neglected,
i.e., Jj = J̄ for all j, then this same pulse is used for260

calculating the minimum fidelity in the uncertain region
at various uncertainty levels.

For both two-level qubits and transmons the non-
robust fidelity drops sharply even for small uncertainty,
which is due to the combined effect of many uncertain265

parameters in the quantum dynamics. At ∆J/J̄ = 5%
the robust optimal control improves the fidelity by three
nines for two-level qubits and one nine for transmons.
It is harder to boost the fidelity for transmons due to
the excitation to the third level (population leakage). As270

a result the driving cannot be too strong, a constraint
that reduces the ability of the optimiser for correcting
the quantum dynamics under uncertainty.

The optimal pulse shape for the case of transmons at
5% uncertainty is shown in Fig. 3. Although the pulses275

appear to be rapidly varying, their Fourier transforms
have a bandwidth (FWHM) of only 100 MHz. This band-
width and the 4ns time bin are both within the capability
of modern microwave generators such as the Operator X
[13]. It might also be possible to obtain smoother pulses280

if ones implement filtering in the optimisation algorithm
[14]. The right panel shows the leakage to the third level,
defined as the total population of the third level of all
transmons in the star graph, P (2) =

∑N
j=1 P

(2)
j where

P
(2)
j is the population of |2〉j . The remaining leakage285

at the end of the pulse is the main reason for the rela-

tively low fidelity of tranmons compared with two-level
systems.

IV. PRECISION ENHANCEMENT FOR
QUANTUM SENSING290

Multi-qubit entangled states are key to quantum sens-
ing, allowing the measurement precision to be improved
above the shot noise limit. As an example, suppose N
two-level qubits in a GHZ state are subjected to an exter-
nal magnetic field which induces a phase shift in the up-
per level, |1〉 → eiθ |1〉, then the GHZ state is transformed
to
(
|0〉⊗N + eiNθ |1〉⊗N

)
/
√

2. One can now measure the
phase shift by measuring the operator M = σ⊗Nx , which
produces the following expectation value and variance

〈M〉 = cos(Nθ),
∆M2 = 〈M2〉 − 〈M〉2 = 1− cos2(Nθ). (14)

Thus, θ can be estimated from 〈M〉. More importantly,
the variance in θ, given by the error propagation formula,
is

∆θ2 = ∆M2
/(∂ 〈M〉

∂θ

)2
= 1
N2 , (15)

which scales as 1/N2. This scaling is called the Heisen-
berg limit and is proved to be the best precision that
can be achieved in principle [4]. It is a huge improve-
ment over the shot-noise limit, 1/N , typical in classical
sensing.295

A high precision realisation of the entangled state
is thus crucial for achieving the 1/N2 Heisenberg
bound. If, for instance, the state is a product state[
(|0〉+ |1〉) /

√
2
]⊗N which transforms under the external300

field to
[(
|0〉+ eiθ |1〉

)
/
√

2
]⊗N , one can verify easily that

〈M〉 = (cos θ)N ,∆M2 = 1 − (cos θ)2N and ∆θ2 ∼ 1/N
for small θ, which is no better than the classical shot-
noise limit. We expect that the precision of quantum
sensing decreases significantly if the fidelity of the entan-305

gled state generation process is low. Therefore, robust
optimal control is very useful for ensuring the advantage
of quantum sensing when there are significant parameter
uncertainties in the multi-qubit probe. To demonstrate
this point for the star graph of transmons, we consider310

the situation where an external field induces a phase
shift θ in the |1〉 state of every transmons, transform-
ing the system’s quantum state to |θ〉 = U⊗N |ψ〉 , where
U ≡ eiθ |1〉 〈1|+

∑
k 6=1 |k〉 〈k| is the diagonal unitary ma-

trix that produces the phase shift, and |ψ〉 is the state315

obtained at the end of the optimisation in Fig. 2. We
take the state for 8 transmons at 5% uncertainty where
the fidelity of the GHZ-state-preparation process is 92%
for the robust case and only 77% for the non-robust case.
The result for the expectation value, 〈M〉, and the phase320

shift variance, ∆θ2, is shown in Fig. 4. While robust
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FIG. 4. Applications for quantum sensing. Left panel:
Expectation values of the phase-shift measurement when the
GHZ state of N ≡ 8 transmons is obtained with robust (solid
line) and non-robust (dahsed line) optimal control . The line
for robust optimal control is much closer to the ideal cos(Nθ)
behaviour. Right panel: Variance of the measured phase shift
achieved with robust (solid line) and non-robust (dashed line)
optimal control. Robust optimal control helps reduce the er-
ror greatly and keep it very close to the ideal 1/N2 Heisenberg
bound.

optimal control leads to an expectation value close to
the ideal cos (Nθ) behaviour, non-robust optimal con-
trol gives more visible discrepancy due to the significant
deviation of the actual state and the GHZ state. The325

precision (variance) obtained with robust optimal con-
trol reproduces closely the Heisenberg limit, 1/N2, for
small θ. Non-robust optimal control, on the other hand,
results in a much larger error, more than five times larger
for small θ. This shows that quantum sensing can benefit330

greatly from utilising robust optimal control for generat-
ing the multi-qubit entangled states. This is particularly
important when the number of qubits is increased for
achieving a higher precision, resulting in a larger number
of uncertain parameters.335

In practical situations the pulse duration is limited
by the coherence time, T2, of the qubits. It is known
that the collective decoherence rate of the GHZ state
is enhanced by a factor of N where N is the number
of qubits [15], giving rise to a lifetime of T ′2 = T2/N .340

The upper limit in the fidelity can be approximated by
F ≤ 1 − T/T ′2 ≡ 1 − NT/T2. Therefore, to realise the
GHZ state with a fidelity F the pulse duration needs

to be shorter than T2(1 − F )/N . The typical coherence
time of transmons is around 100 µs. For the star graph345

of 8 transmons in our calculation F = 0.92 and hence
the upper limit for the pulse duration is 1 µs which is
well above the 400 ns used in our calculation. Thus, the
effect of decoherence is negligible. We also note here that
the precision enhancement from using entangled states350

exists only in ultra-fast sensing situations where the
sensing time must be much smaller than the coherence
time T2 of a single qubit [15].

V. CONCLUSIONS355

To conclude, we develop an algorithm for the robust
optimal control of an interacting quantum many-body
systems of 10 qubits and 9 uncertain parameters. We
demonstrate that a GHZ state of 10 two-level qubits (8
multi-level transmons) can be realised with over 99.9%360

(90%) fidelity despite 5% uncertainty in all qubit-qubit
interaction strengths. In both cases robust optimal con-
trol improves the fidelity of the state preparation process
by more than one nine compared with non-robust optimal
control. When this GHZ state is used for quantum sens-365

ing, we show that robust optimal control greatly improves
the measurement precision and is crucial for achieving the
Heisenberg bound. The exact Krylov-subspace method
for computing the unitary evolution in our optimisation
can be scaled up to 20 qubits. Extending to larger sys-370

tems requires approximate methods for simulating the
quantum dynamics such as tensor networks [16, 17] or
neural networks from machine learning [18]. We demon-
strate how the exponential complexity in the number
of uncertain parameters can be avoided by utilising the375

symmetry of the target state and the multi-qubit sys-
tem. For the case of a GHZ state on a star graph this
complexity is only linear.
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