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Abstract

The generation of unit-weight events for complex scattering processes presents
a severe challenge to modern Monte Carlo event generators. Even when us-
ing sophisticated phase-space sampling techniques adapted to the underlying
transition matrix elements, the efficiency for generating unit-weight events
from weighted samples can become a limiting factor in practical applications.
Here we present a novel two-staged unweighting procedure that makes use
of a neural-network surrogate for the full event weight. The algorithm can
significantly accelerate the unweighting process, while it still guarantees un-
biased sampling from the correct target distribution. We apply, validate and
benchmark the new approach in high-multiplicity LHC production processes,
including Z/W+4 jets and tt̄+3 jets, where we find speed-up factors up to ten.
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1 Introduction

Multi-purpose Monte Carlo event generators such as HERWIG [1, 2], PYTHIA [3, 4] or
SHERPA [5, 6], are indispensable tools for the analysis and interpretation of high-energy
particle-collision experiments, e.g. at the Large Hadron Collider (LHC). They encapsulate
our present-day understanding of the fundamental laws of nature, and provide means to
simulate individual scattering events in a fully exclusive manner. With such virtual colli-
sions we can quantify expected event yields and predict detailed final-state properties for
in principle arbitrary scattering processes.

The central and often the computationally most expensive element of event simula-
tions is a hard-scattering process – addressing the highest momentum-transfer interactions
– that gets described by transition matrix elements evaluated in fixed-order perturbation
theory. Given the enormous collision energies and impressive luminosities achieved at
the LHC, paired with the excellent performance of the experiments, the need to provide
evaluations of higher multiplicity hard-scattering processes is steadily growing. In view
of the upcoming HL-LHC this becomes an even more pressing problem, requiring much
faster event generation in order to match the expected event yields with the projected
computing resources [7, 8]. The underlying matrix-elements are calculated by dedicated
matrix-element generators. Widely used tree-level tools such as ALPGEN [9], AMEGIC [10],
COMIX [11], MADGRAPH [12] and WHIZARD [13] automatically construct tree-level am-
plitudes, but also provide efficient means to generate momentum configurations for the
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initial- and final-state particles taking part in the hard scattering. Furthermore, there exist
dedicated tools for the construction and evaluation of one-loop amplitudes in QCD and the
electroweak coupling, e.g. MADLOOP [14,15], MCFM [16,17], NJET [18], OPENLOOPS [19,20],
POWHEGBOX [21], and RECOLA [22, 23]. These tools can be used to compile fixed-order
partonic cross-section computations and to probabilistically generate parton-level events.
When incorporated into or interfaced to a multi-purpose event generator they provide the
momentum-space partonic scattering events that get dressed by QCD parton showers, if
applicable supplemented by an underlying event simulation, and finally transitioned to
fully exclusive hadron-level final states by invoking a hadronisation model [24].

An efficient sampling of the final-state phase space is particularly crucial for complex
scattering processes, where a single evaluation of the matrix element can take O(1s) [25].
Especially for experimental applications, i.e. the actual generation of pseudo data, includ-
ing a simulation of the detector response, see e.g. refs. [26–28], unit-weight event samples
are required, that are conventionally obtained from weighted events via rejection sampling.
The resulting unit-weight events are unbiased random samples of fully uncorrelated probes
of the target distribution given by the squared transition matrix element. They appear
with frequencies that we would expect in a corresponding experiment. Although informa-
tion about the target is lost in the unweighting step, the expensive detector simulation or
other post processing of many events with minuscule weight gets avoided.

In modern matrix-element generators importance-sampling techniques are used, that
account and possibly adapt [29] to the modal structures of the target, thereby employing
knowledge about the propagator and spin structures of a given process [30]. These methods
aim to reduce the inherent variance of the weight distribution of weighted event samples,
and in turn also improve the unweighting efficiencies.

There have recently been a number of different strands of research to make optimal use
of event-weight information, and, largely driven by algorithmic opportunities provided by
novel machine-learning (ML) techniques, to optimise phase-space sampling and also event
unweighting. On-the-fly reweighting methods are meanwhile routinely used to account
for systematic uncertainties [31–33], or alternative physics models [34, 35]. The use of
MCMC techniques for exploring high-dimensional phase spaces has been studied in [36].
In [37] the application of analysis-specific optimal sampling distributions was proposed,
similar to methods of biasing event generation, e.g. to oversample tails of physical distri-
butions [38]. A number of approaches to accelerate event generation based on (generative
adversarial) neural networks have been presented [39–47]1. An alternative and particularly
attractive class of algorithms is based on normalizing flows [49–51], i.e. trainable bijec-
tors parametrised by neural networks, see for instance [52–55], that can represent highly
expressive importance-sampling maps [56, 57]. Corresponding implementations and first
applications of normalizing flows to Monte Carlo event generation in high-energy physics
have been presented in [58–61]. Ref. [62] discussed the usage of GANs, trained on weighted
Monte Carlo samples to produce unit-weight events. However, in order to guarantee the
reproduction of the true target distribution, an additional post-processing step is needed.
Possible solutions to this problem based on reweighting have been presented in [63, 64].
The application of Bayesian networks for event generation including the quantification of
uncertainties has been presented in [65,66].

We here propose an alternative approach to accelerate the unweighting procedure us-
ing ML methods. During the initial integration phase of a standard importance sampler
we train a deep neural network to predict the event weight for given phase-space points.
For complex processes, this surrogate is much cheaper to evaluate than the actual event

1A critical review on the application of Generative Adversarial Networks (GANs) in the context of event
generation has been presented in [48].
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weight. We therefore employ it in an initial rejection sampling. Only when the surrogate
event weight gets accepted, we invoke a second unweighting step, where we account for
the difference between the surrogate and the actual event weight. While a two-step un-
weighting procedure has been applied before [9], our combination with a neural-network
surrogate gives it a new purpose. Given the neural network approximates the weight
distribution reasonably well, we can significantly reduce the number of evaluations of the
computationally expensive target function. Our approach easily generalises to non-positive
targets and is thus suitable also for unweighted-event generation beyond the leading order
in perturbation theory. We have implemented, validated and benchmarked the method in
the SHERPA event-generator framework and here present results for tree-level Z/W+4 jets
and tt̄+3 jets production at the LHC.

The paper is organised as follows, in Sec. 2 we briefly review the basics of Monte Carlo
event generation and event unweighting in the canonical approach. We then introduce our
novel unweighting procedure, exemplified for a simple toy example. In Sec. 3 we discuss the
neural-network setup and the used training procedure to obtain a predictor for the weight
of scattering events. In Sec. 4 we describe our implementation of the new method in the
SHERPA framework and present exemplary results for high-multiplicity LHC production
processes. We conclude and give an outlook in Sec. 5.

2 Phase-space sampling and event unweighting

For sake of simplicity, we begin by considering the generic integral

I =

∫

Ω
f(u′) du′ , (1)

with f a positive-definite target distribution f : Ω ⊂ Rd → [0,∞) defined over the unit
hypercube Ω = [0, 1]d. The Monte Carlo estimate of the integral is given by

I ≈ EN =
1

N

N∑

i=1

f(ui) = 〈f〉 , (2)

where we assumed N uniformly distributed random variables ui ∈ Ω. The random points
ui are interpreted as individual events and wi ≡ f(ui) is called the corresponding event
weight2; the integral is thus estimated by the average of the event weights 〈w〉N . The
standard deviation of the integral estimate is given by

σN (f) =

√
VN (f)

N
=

√
〈f2〉 − 〈f〉2

N
, (3)

with VN the corresponding variance. Variance-reduction techniques aim for a minimisation
of VN , e.g. by a remapping of the input random variables u to a non-uniform distribution
v : Ω→ Ω, called importance sampling [67]. For the desired integral this results in

I =

∫

Ω

f(u′)

g(u′)
g(u′) du′ =

∫

Ω

f(u′)

g(u′)

∣∣∣∣
u′=u′(v′)

dv′ with g(u) =

∣∣∣∣
∂v(u)

∂u

∣∣∣∣ . (4)

With suitably chosen probability density g(u), the variance of the integrand can be sig-
nificantly reduced. A prominent example widely used in particle physics is VEGAS [68].
Given the multimodal nature of high-energy scattering matrix elements, state-of-the-art

2In the following we drop the index i as we are always referring to the generation of a single event.
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generators employ adaptive multi-channel importance samplers [10, 11, 69, 70]. Thereby
the probability density g(u) is decomposed into a sum of Nc channels, i.e.

g(u) =

Nc∑

j=1

αjgj(u) , with

Nc∑

j=1

αj = 1 and 0 ≤ αj ≤ 1 , (5)

yielding

I =

∫

Ω

f(u′)

g(u′)

Nc∑

j=1

αjgj(u
′) du′ =

Nc∑

j=1

αj

∫

Ω

f(u′)

g(u′)

∣∣∣∣
u′=u′(v′j)

dv′j . (6)

The channel weights αj can thereby be adjusted dynamically such that the variance of the
integral gets minimised [29].

To sample unit-weight events from the target function f(u), typically a rejection sam-
pling algorithm [71] is employed that utilises the maximal event weight in the integra-
tion volume, wmax. A sample of N trials weighted events is thus converted into a set of
N ≤ N trials unweighted events, where N corresponds to the number of accepted events.
The related unweighting efficiency for large N is given by

ε :=
N

N trials
=
〈w〉Ntrials

wmax
. (7)

Its inverse determines the average number of target-function evaluations needed before an
event is accepted with unit-weight.

An exact determination of wmax is often neither possible – given finite statistics –
nor desirable in a numerical calculation that might exhibit a few points with spuriously
large weights, as this would yield a prohibitively small unweighting efficiency. Instead,
to avoid being dominated by such rare outliers, there are various possibilities to define
a reduced maximum such that some “overweight” events with w > wmax are allowed
and will be assigned a correction weight w̃ = w/wmax, effectively leading to partially
unweighted events3. Ref. [59] proposed a bootstrap method where the maximum is given
by the median of n determinations from independent event batches. A more conventional
approach would be the exclusion (from the maximum definition) of large-weight events
with a certain quantile of the cross section4. In what follows we will make use of both
techniques. The classical unweighting algorithm with overweight treatment for generating
a single event is sketched in Alg. 1.

Algorithm 1: The classic rejection-sampling unweighting algorithm.

while true do
generate phase-space point u;
calculate exact event weight w;
generate uniform random number R ∈ [0, 1);
if w > R · wmax then

return u and w̃ = max(1, w/wmax)
end

end

3While the event weight w is typically a dimensionful quantity, in unweighted events the weights w̃
are considered dimensionless. To obtain the correct normalisation of a differential cross section, e.g. in a
histogram, they need to be normalised to the generated inclusive cross section as reported by the event
generator, w̃i → w̃i · σgen∑

j w̃j
.

4This is also the default in SHERPA for the standard rejection-sampling method.
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The application of variance-reduction methods will typically also lead to an improved
unweighting efficiency ε. In fact, an optimal sampler would directly produce event weights
w = const, resulting in an unweighting efficiency of 100%. However, in realistic use cases
this is never achieved. For high-multiplicity scattering processes unweighting efficiencies
are instead often well below 1% [25,59]. To systematically improve ε one needs to reduce
wmax. The FOAM [72, 73] algorithm attempts to achieve this and aims for an optimised
unweighting efficiency by gaining control over the maximal event weight.

2.1 A novel unweighting procedure

We here propose an alternative method aiming for a reduction of the computational re-
sources needed to produce unweighted events that follow the desired target distribution.
This can be achieved through a light-weight surrogate for the full event-weight calculation
that enters a two-staged rejection-sampling algorithm. Given such a local surrogate s for
the true event weight w, that can for example be obtained from a well-trained neural-
network predictor, cf. Sec. 3, we can use this surrogate in an initial rejection sampling
against the maximal event weight wmax. However, to ultimately sample from the correct
distribution, we need to account for the mismatch between the estimated and the actual
event weight. This is accomplished with a correction factor x = w/s. This factor could
be applied as an additional weight to accepted events, or a second rejection sampling step
can be added to unweight this against the (predetermined) maximum, xmax, see below.
The resulting unweighting algorithm for generating a single unit-weight event is sketched
in Alg. 2 and explained in more detail in the following.

Algorithm 2: Two-stage rejection-sampling unweighting algorithm using an
event-wise weight estimate.

while true do
generate phase-space point u;
calculate approximate event weight s;
generate uniform random number R1 ∈ [0, 1);
# first unweighting step
if s > R1 · wmax then

calculate exact event weight w;
determine ratio x = w/s;
generate uniform random number R2 ∈ [0, 1);
# second unweighting step
if x > R2 · xmax then

return u and w̃ = max(1, s/wmax) ·max(1, x/xmax)
end

end

end

For a fast surrogate perfectly reproducing the exact weights, i.e. x = 1, the potential
for saving resources is maximal, even though the unweighting efficiency obtained with the
standard approach is not altered. This is the case, because for all trial configurations
failing the first step only the surrogate gets evaluated, while the full weight is computed
for accepted events only. However, in practice this is not realistic and the x will vary
around unity. Note, we do not require the approximation s to overestimate w, and thus
will also face values x > 1.

The appearance of non-unit relative weights x makes a second unweighting step conve-

6



SciPost Physics Submission

nient. To this end, we need to predetermine the maximum xmax, against which to perform
the additional rejection-sampling. Again, to avoid being dominated by rare outliers, we
reduce xmax in a controlled way by either excluding a certain quantile of the largest weights
or using the median from several independent xmax determinations. We correct for the
mismatch with the overweight x/xmax when x > xmax. The final weight for an accepted
event u is then given by

w̃ = max

(
1,

s

wmax

)
·max

(
1,

x

xmax

)
. (8)

As consequence of this residual weight, one might need to generate more events using
the surrogate approach to achieve the same statistical accuracy as in standard unweighting.
To account for this, we use the Kish effective sample size Neff [74] in the following,

Neff :=

(∑
i w̃
)2

∑
i w̃

2
= αN , (9)

where the sums run over all N events passing the second unweighting and we introduced
the proportionality factor α ≤ 1. The statistical accuracy of the sample is given by
1/
√
Neff. Only when using the true maximal weight xmax, the effective sample size equals

N , corresponding to α = 1.
We can now introduce the effective gain factor feff of the described two-staged un-

weighting procedure:

feff :=
Tstandard

Tsurrogate

=
Neff · 〈tfull〉εfull

N ·
(

〈tsurr〉
ε1st,surrε2nd,surr

+ 〈tfull〉
ε2nd,surr

)

= α · 1
〈tsurr〉
〈tfull〉 ·

εfull
ε1st,surrε2nd,surr

+ εfull
ε2nd,surr

. (10)

It accounts for all timing, efficiency, and statistical differences in the proposed event gen-
eration with Alg. 2 compared to standard (partially) unweighted event generation with
Alg. 1. Here 〈tfull〉 and 〈tsurr〉 denote the average evaluation times of the full weight and
the surrogate, respectively. The quoted unweighting efficiencies are given by

εfull :=
N

N trials
full

, ε1st,surr :=
N trials

2nd,surr

N trials
1st,surr

and ε2nd,surr :=
N

N trials
2nd,surr

, (11)

where the N trials
step denote the number of trials used in the respective unweighting step.

We point out that phase-space cuts are applied before unweighting and therefore events
rejected due to cuts do not count towards the number of trials here.

Significant speed gains can be expected if the standard unweighting efficiency εfull is
rather low and the surrogate approximates the true weights well, i.e. ε1st,surr ≈ εfull and
ε2nd,surr ≈ 1, while still being significantly faster, i.e. 〈tsurr〉 � 〈tfull〉.

Note, the gain factor feff has to be understood as an upper bound of a potential
CPU time saving in an overall budget, as it does not apply to other stages of the event
generation like parton showering and, more importantly, also not to post-processing steps
like a detector simulation.
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2.2 Generalisation to non-positive event weights

The above described unweighting method can easily be extended to the case of non-positive
event weights. These naturally appear in higher-order perturbative calculations based on
local subtraction methods such as Catani–Seymour [75] or Frixione–Kunszt–Signer [76]
subtraction for next-to-leading-order (NLO) QCD calculations. In approaches matching
and merging NLO matrix elements with QCD parton showers negative-weight events can
resolve potential double counting of hard real-emission contributions and shower emissions
off Born-like configurations, see for instance [77, 78]. However, the appearance of such
negative weights reduces the statistical significance of a fixed-size event sample as possibly
large cancellations take place. In corresponding unweighted samples events contribute
with weights ±1. The generalisation of the standard unweighting algorithm allowing for
negative weights is given in Alg. 3. We thereby make use of a single maximal weight
wmax = |w|max > 0 in the rejection sampling, that is determined by the largest weight
modulus observed in an initial exploration run5.

Algorithm 3: Standard rejection-sampling unweighting algorithm allowing for
negative-weight events.

while true do
generate phase-space point u;
calculate exact event weight w;
generate uniform random number R ∈ [0, 1);
if |w| > R · wmax then

return u and w̃ = sgn(w) ·max(1, |w|/wmax)
end

end

This can be extended to our two-staged unweighting approach, using a surrogate for
the full event weight that can now also become negative, cf. Alg. 4. We still employ a
single maximal weight modulus in the first rejection step, where correspondingly we have
to use the modulus of the surrogate, i.e. |s|. Similarly, for the second rejection sampling we
use the modulus of the estimate for the maximal ratio between the full and the surrogate
weights. Note that the sign of the ratio w/s is not unique, as the surrogate s might
sometimes get the sign of the true weight wrong. Accordingly, we have to use x = |w/s|
also in the (partial) overweighting. The absolute weight value of an accepted event is still
given by Eq. (8), however, its sign is determined by sgn(w̃) = sgn(w).

To illustrate and validate the proposed algorithm we consider a simple 1d example by
sampling from the target distribution

f(u) = u2 − 0.25 , for u ∈ [0, 1] . (12)

As surrogate we here just use a piecewise constant function over u ∈ [0, 1] given by

s(u) = −0.25χ[0,0.2)(u)−0.15χ[0.2,0.4)(u)+0.05χ[0.4,0.6)(u)+0.25χ[0.6,0.8)(u)+0.75χ[0.8,1](u) ,
(13)

where

χM (u) =

{
1 : u ∈M
0 : u /∈M

. (14)

This encloses the cases that the surrogate over- or underestimates the target, as well as
predicting its sign wrongly. In the left panel of Fig. 1 we compile the target distribution,

5As before, we consider the reduction of the maximum, compensated for by partial over-weighting.
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Algorithm 4: Two-stage rejection-sampling algorithm, allowing for negative val-
ued (surrogate) weights. We hereby assume wmax > 0 and xmax > 0 given by the
respective maximal modulus determined in a pre-run.

while true do
generate phase-space point u;
calculate approximate event weight s;
generate uniform random number R1 ∈ [0, 1);
# first unweighting step with wmax > 0
if |s| > R1 · wmax then

calculate exact event weight w;
determine ratio x = |w/s|;
generate uniform random number R2 ∈ [0, 1);
# second unweighting step with xmax > 0
if x > R2 · xmax then

return u and w̃ = sgn(w) ·max(1, |s|/wmax) ·max(1, x/xmax)
end

end

end

the surrogate and their ratio. Furthermore, we mark the maximum used in the second
unweighting step, i.e. xmax = 1.5. This is chosen such that there are regions where
|f(u)/s(u)| > xmax, triggering the appearance of events with weight |w| > 1. In the right
panel of Fig. 1 we present the distributions obtained from 500k events generated with
the standard unweighting algorithm and the two-staged approach. Comparing to the true
target distribution we see, that both methods produce the desired density. To further
confirm the proper treatment for those events where x > xmax, we provide a close-up
view of the region around u = 0.6. In the standard approach the unweighting efficiency
is εfull = 0.33, requiring N trials

full ≈ 1.5M calls of the target function to generate 500k unit-
weight events. In contrast, with the given surrogate and the choice of xmax we obtain
ε1st,surr = 0.39 and ε2nd,surr = 0.58, corresponding to N trials

surr ≈ 2.2M. However, for the
given event sample we only had to evaluate the target N trials

full ≈ 875k times.
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Figure 1: One-dimensional toy example for applying the standard unweighting algo-
rithm and the two-staged surrogate method to a non-positive target function. The left
panel shows the target (red) and the employed surrogate (blue), given by Eq. (13), as well
as their ratio (green dashed). Indicated is the (capped) maximal ratio xmax used in the
second unweighting step. The right panel contains the comparison of the distributions
of generated events with the true target.
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3 Machine learning event weights

The calculation of transition matrix elements for complicated scattering processes, in
particular when considering higher-order corrections, becomes computationally very ex-
pensive. In applications that require a large number of repeated evaluations this poses a
severe bottleneck. The generation of unweighted events considered here is only one such
example, others include the fitting of parton density functions (PDFs), or scans over large
parameter spaces in searches for New Physics, i.e. corresponding limit-setting procedures.

For the fast evaluation of fixed-order differential cross sections needed in the determina-
tion of PDFs interpolation grids such as APPLGRID [79], FASTNLO [80], and PINEAPPL [81]
are widely used, and there exist tools for their largely automated construction [82,83]. To
facilitate and accelerate analyses searching for New Physics, there have recently been ef-
forts to use deep-learning techniques for the regression of cross-section integrals [84–86].
Very recently also the approximation of scattering matrix elements rather than integrated
cross sections through neural networks has been addressed by several groups [87–90].
These approaches suggest that high-quality surrogates for full scattering matrix elements
are feasible, offering potential for significant speed-ups in the event-generation process
when applied within the unweighting framework described above.

3.1 Neural-network based matrix-element emulation

For a first application of the surrogate-based unweighting, we introduce a custom ML
model, which learns and predicts the complete weight of partonic scattering events. This
combines the squared matrix element and the phase-space weight, the latter including
Jacobian factors JΦn from variable mappings of the Lorentz invariant phase-space element
Φn used by the underlying integrator. For a given 2 → n parton-level process our surro-
gate s(pa, pb, p1, . . . , pn) thus approximates the following part of the fully differential cross
section:

dσab→n|pa,pb,{pi} = fa(xa, µF ) fb(xb, µF )
∣∣Mab→n

∣∣2 |JΦn |︸ ︷︷ ︸
≈s

dxa dxb dΦn|pa,pb,{pi} . (15)

Here fa/b denotes the PDF for the incoming parton a/b with momentum fraction xa/b,
evaluated at factorisation scale µF . Note, the PDF contribution could also be factored
out of the surrogate and evaluated exactly on an event-wise basis but we here decided
to include it. The external particle momenta satisfy four-momentum conservation and
on-shell conditions:

pa + pb =
n∑

i=1

pi , p2
a/b = 0 , and p2

i = m2
i (∀ i = 1, . . . , n) . (16)

Accordingly, the dimensionality of the physical phase space is d = 3n− 4 + 2.
When comparing Eq. (15) to the first identity in the multi-channel integral given by

Eq. (6), we identify the phase-space element dxa dxbdΦn in momentum space with the
differential du′ multiplied by the multi-channel density

∑
j αjgj(u

′). The Jacobian factor
|JΦn | corresponds to 1/g(u′). Our NN thus has to approximate the ratio f(u′)/g(u′), that
is obviously dependent on the total importance sampling density g, but not on the very
channel used to produce the phase-space point, see also Ref. [69].

Alternatively to Eq. (15) one could approximate the squared matrix element only, i.e.

s′ ≈
∣∣Mab→n

∣∣2, and fully calculate the Jacobian factors for each phase-space point. Due
to its factorised nature, this approach would in fact be easier to implement. However,
it suffers from the significant costs of evaluating the phase-space weight for multi-leg
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processes, which can sometimes even rival the evaluation cost of the matrix element.
Furthermore, the combination of Jacobian factors and matrix elements often yields a
smoother function over phase space. We thus only consider the approach of replacing the
combined matrix-element and phase-space weight with a fast surrogate here.

Various test cases for surrogate models were considered in the course of this work,
including (boosted) decision trees, random forests and neural networks. While being
faster6, random forests and (boosted) decision trees yield a poorer prediction accuracy,
rendering them inadequate for an application in the surrogate-based unweighting [91].
Thus, only neural networks are discussed further in the following.

Given the specific role of the surrogate in the proposed unweighting procedure, we
seek for light-weight network architectures, flexible enough to approximate the weight of
high-multiplicity scattering events well, and fast to evaluate. To this end we employ rather
simple multi-layer feedforward fully connected neural networks (NN).

As input-layer variables we use the three-momentum components of the initial- and
final-state particles7, i.e. 3n+2 inputs. In general, any set of variables that has an injective
mapping to the phase-space point could be used, even with different dimensionality if
adding or removing variables.

One might alternatively consider a particular set of input variables, namely the random
numbers vi from the phase-space sampling, which have been mapped into momenta as
described by Eqs. (4) and (6). While this is straightforward for simple sampling methods,
it becomes more tricky for multi-channel samplers. Here, the mapping between random
numbers and phase-space point is not unique, but depends on the randomly chosen channel
j = 1 . . . Nc. To remedy this situation, one could either train a separate NN for each
phase-space channel j, or one could add the channel number j (or the random number
determining it) as another input variable. We postpone a study of these possibilities to
future works.

The single output variable of our NN corresponds to the real-valued event weight. The
network is further defined by the number of hidden layers and the set of nodes per layer
as detailed in Table 1. As output activation function for the network nodes we use the
Rectified Linear Unit (ReLU) [92]. We use HE weight initialisation [93] and train the NN
with the ADAM optimiser [94].

The practical implementation of NN training in the SHERPA framework and the inter-
face for (general) surrogate models for application in event unweighting will be detailed
in Sec. 4. In the remainder of this section, however, details on the hyperparameters of
our NN and the training procedure are given. The NN performance is first studied for the
example process gg → e−e+ggdd̄. We used this channel as a test bed for investigations
on the NN performance in terms of timing and the quality of the event-weight predic-
tions as a function of the hyperparameters. Being primarily interested in a conceptual
proof-of-concept and an initial estimation of the method’s potential to save resources in
event unweighting, we do not attempt to systematically optimise the NN setup. Further-
more, while in principle different scattering processes might get better approximated by a
different NN architecture, we will employ the hyperparameter set found in the following
example also in our other applications presented in Sec. 4.

6The prediction speed of the machine-learning models depends on their architecture. One can construct
simple neural networks which are able to predict faster than a very deep decision tree. However, the
accuracy and ability to generalise may decrease with simpler topologies.

7Note, we here assume the initial-state momenta of partonic scattering events to be collinear with the
incoming beams, i.e. along the ±z-axis, such that their x and y components vanish.
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NN Hyperparameter Value

Hidden Layers 4

Nodes per Layer 128

Activation Function ReLU

Loss Function MSE

Optimiser ADAM

Learning Rate 10−3

Batch Size 1000

Table 1: Summary of hyperparameters specifying the employed feedforward NN archi-
tecture and the means of training.

3.2 An example: gg → e−e+ggdd̄

We consider the partonic channel gg → e−e+ggdd̄ at the leading order, i.e. O(α2α4
s), that

represents a tree-level contribution to Z+4 jets production at the LHC. Correspondingly,
the input-parameter space for the NN here is 20-dimensional. The fiducial phase space
used in the training and for the predictions is constrained by requiring a dilepton invariant
mass me−e+ > 66 GeV and four anti-kt jets [95] with radius parameter R = 0.4 and
pT,j > 20 GeV. We consider a proton–proton centre-of-mass energy of

√
s = 13 TeV, and

use the NNPDF-3.0 NNLO PDF set [96]. As matrix-element and phase-space generator
we employ AMEGIC [10] in the framework of SHERPA-2.2.

Our NN has four hidden layers with 128 nodes each. The training dataset consists of 1M
events generated with SHERPA after the optimisation phase of the AMEGIC integrator. We
split the dataset such that 80% of the events are used for training and 20% for validation.
In order to normalise the input features, we scale the momenta to the range [−1, 1] using
min-max normalisation with the min-max values given by ±√s/2. As the values of the
weights can span several orders of magnitude, we take the logarithm of the weights in
order to avoid numerical problems. The NN model is fitted to the data by minimising
the mean squared error (MSE) loss using the ADAM optimiser with a learning rate of
10−3. We use a batch size of 1000 and train in epochs containing all training points in
random order. Early stopping is used to end the training when the validation loss does
not decrease for 30 epochs and save the model with the lowest validation loss. Like for the
training we also use the MSE loss for validation. Fig. 2 shows the convergence behaviour
of our model. One can see that the loss decreases fairly smoothly and that the variations
between different initialisations of the model are small.

To test the quality of our trained NN surrogate s for the true event weights w we present
in Fig. 3a the resulting distribution of x = w/s for 1M phase-space points generated with
SHERPA. The x-distribution is centred around x = 1, rather symmetric, and falls off quite
steeply. This confirms that the chosen NN is indeed suitable for a prediction of the event
weight. Still we observe that the tails of the distribution stretch beyond | log10(x)| > 4,
meaning the NN sometimes severely over- or underestimates the true weight. In particular
the largest x-values will affect the performance of the unweighting algorithm proposed in
Sec. 2.1, as they determine the maximum xmax against which to perform the second
rejection sampling. Fig. 3b shows that the largest and smallest values of x correspond to
small values of w. As opposed to this, the NN approximation is much better for higher
values of w as can be recognized by the smaller spread of the x-values. This behaviour can
be expected given the MSE loss function used for the training of the NN. While Fig. 3b
shows that the largest relative deviations can be found for small values of w, the absolute
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Figure 2: Training (blue) and validation (orange) MSE loss of the best performing NN
during training. The dashed line illustrates the stopping point due to early stopping.
The coloured bands show the variations from ten independently trained initialisations
of the same model.

deviations in that region are actually small. The MSE loss function penalizes absolute
deviations at larger w-values more than at smaller w-values which leads to larger relative
deviations for small values of w.

As described already in the context of the first unweighting step in Alg. 1, we can use
maximum-reduction techniques also for xmax in the second rejection sampling. These will
reduce the sensitivity to the tail of the weight distribution and in particular rare outliers
by using a reduced maximum, again at the price of a partial overweighting of events. In
our performance study in Sec. 4 we will employ two reduction techniques. The first being
the quantile reduction method, where we define xp.m.

max such that the remaining overweights
contribute at most 1h to the total cross section σ. We consider an event sample of
N = 1M events with weights {wi}. For reference, in the standard unweighting method
we can determine wp.m.

max by sorting the sequence of weights {wi} such that wi ≤ wi+1 and
requiring that

wp.m.
max := min


wj

∣∣∣∣∣∣

N∑

i=j+1

wi < 0.001 ·
N∑

i=1

wi


 . (17)

The equivalent procedure for our two-stage unweighting method is to calculate the values
of s and x for all events and to sort the sequence {xi} such that xi ≤ xi+1 and to use the
same order for the {si}. The reduced maximum is then defined as

xp.m.
max := min


xj

∣∣∣∣∣∣

N∑

i=j+1

xisi < 0.001 ·
N∑

i=1

xisi


 . (18)

As a somewhat more aggressive alternative we introduce the median reduction method.
Here we consider N trials

1st,surr = 1M trial points for which we perform the first unweighting
n = 50 times with different random seeds. For the accepted events in each iteration we
determine xmax. From the final set of maxima we then determine the median xmed

max, i.e.

xmed
max := med

({
ximax

})
. (19)
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Figure 3: Distribution of weights using 1M test points generated with SHERPA for
the process gg → e−e+ggdd̄ in proton–proton collisions at

√
s = 13 TeV. (a) One-

dimensional histogram of the ratio x = w
s . The two vertical lines indicate the values

of the reduced weight maxima xp.m.
max (dashed) and xmed

max (dotted). (b) Two-dimensional
histogram showing the relationship between the ratio x = w

s and the true event weight w.

For our example process the resulting values of xp.m.
max and xmed

max are illustrated by the
vertical dashed and dotted line in Fig. 3a, respectively. In this specific example we obtain
xp.m.

max ≈ 73 and xmed
max ≈ 27, which corresponds to a reduction of xp.m.

max by about two orders
of magnitude with respect to the naive maximum, and an additional factor of three when
using the median approach.

We close this section with a comment on the timings for the evaluation of the matrix
element and the NN surrogate for a single phase-space point. On average the evaluation
of the full event weight for the gg → e−e+ggdd̄ process from AMEGIC takes about 85 ms8.
In contrast, for the NN model this just takes 0.13 ms, which translates into a speed-up of

〈tfull〉
〈tsurr〉

≈ 650 . (20)

8The quoted times correspond to the evaluation on a single core of an Intel® Xeon® Processor E5-2680
v3 @ 2.50GHz.
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4 Surrogate-based unweighting: Implementation, Valida-
tion and Results

The event-weight estimator from Sec. 3.1 is optimally suited to be used as light-weight
surrogate in the two-stage unweighting method presented in Sec. 2.1. In the following,
we will briefly describe the implementation of the algorithm in the SHERPA generator
framework. As a first application we will again consider the gg → e−e+ggdd̄ process.
We will then benchmark the method in a variety of partonic channels contributing to
W+4 jets and tt̄+3 jets production at the LHC and validate the obtained results.

4.1 Implementation in the SHERPA framework

The SHERPA framework embeds modules to automatically construct the transition matrix
elements and suitable multi-channel integrators for in-principle arbitrary tree-level pro-
cesses. To this end it has two matrix-element generators built-in, AMEGIC and COMIX.
Our current implementation of the novel unweighting algorithm employs the AMEGIC gen-
erator.

In an initial optimisation phase the integrator is adapted to the specific process and
fiducial phase space using the channel-weight optimisation described in [29]. During the
integration phase the value of wmax is determined based on the quantile approach. We use
the SHERPA default of letting overweighted events have a relative contribution of 1h to the
inclusive cross section. The optimised generator is then used to produce a sample of 2M
weighted events. We use the first 1M events as training (80%) and validation (20%) data
for our NN model.9 For the NN implementation and training we use KERAS [97] with the
TENSORFLOW [98] backend. The model parameters leading to the lowest validation loss
are written out as an HDF5 [99] file. While KERAS is based on Python, SHERPA is written
in C++. To use the KERAS model in SHERPA without having to rely on an interface we
use the header-only library frugally-deep [100] which runs the model in prediction mode
on a single CPU core.

The second 1M events are used to determine the xmax for the second unweighting using
the per mille quantile or median approach. For the latter we consider n = 50 independent
iterations over the data set. This procedure is repeated for ten independently trained NN
models and we finally choose the one achieving the lowest xmax on the test dataset to be
used in the following. The NN and the value of xmax then serve as inputs to SHERPA for
subsequent event-generation runs. We use different events for the determination of xmax

than for the training of the NN. If one were to use the same data set, xmax would likely
be underestimated. With data not seen by the model during training, however, we get a
much more reliable estimate.

For the performance analysis we log several quantities during the event generation.
To determine the efficiencies, we count the numbers of trials for the first and second
unweighting steps. Also, we measure the time it takes on average to evaluate the surrogate
by taking the sum of user and system time spent in the respective parts of the code.

4.2 An example: gg → e−e+ggdd̄

Before proceeding with the application of our novel unweighting approach to W+4 jets
and tt̄+3 jets production at the LHC, we examine its technical and physics performance

9In a production implementation in the future, one could also perform the training on the same events
that are generated during the integration phase after the integrator optimisation.
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in more detail for the example process of gg → e−e+ggdd̄. This is the channel initially
used to optimise the NN performance in terms of timing and accuracy, cf. Sec. 3.2.

Performance analysis

The evaluation of the NN surrogate for a single phase-space point was found to be about
650-times faster than the full weight calculation with AMEGIC. In Fig. 3a we have presented
the obtained distribution of x = w/s, where we also indicated the reduced maxima for the
per mille quantile and the median approach, i.e. xp.m.

max ≈ 73 and xmed
max ≈ 27, respectively.

Using the trained NN and each of these maxima, we generate from scratch 100k events with
our surrogate unweighting algorithm. In Tab. 2 we summarise the obtained efficiency of
the default single-stage unweighting, εfull, the efficiencies of the first and second rejection-
sampling step in the surrogate unweighting, as well as the α-parameter that determines
the effective sample size, cf. Eq. (9), for the two maximum-reduction methods10. Lastly,
we give the resulting gain factors feff, cf. Eq. (10).

process: gg → e−e+ggdd̄

εfull ε1st,surr xp.m.
max εp.m.

2nd,surr αp.m. fp.m.
eff xmed

max εmed
2nd,surr αmed fmed

eff

8.8e−3 6.4e−3 72.9 1.9e−2 0.9982 1.73 26.6 5.1e−2 0.9962 4.69

Table 2: Sampling measures for the gg → e−e+ggdd̄ partonic channel in pp collisions
at
√
s = 13 TeV. All efficiencies, the sample-size parameters and effective gain factors

are determined in the generation of 100k unweighted events.

Using the default unweighting algorithm, AMEGIC achieves an unweighting efficiency
of about 0.9%. This in fact is quite remarkable, given that we consider a six-particle final
state. When using the NN surrogate we obtain a similar performance, ε1st,surr ≈ 0.64%,
and given the fast evaluation time for the surrogate this slightly lower efficiency barely
affects the overall performance. More relevant is the second unweighting, for which we find
efficiencies of εp.m.

2nd,surr = 1.9 % and εmed
2nd,surr = 5.1 %. Accordingly, when using the median-

reduction technique, we need to evaluate the full weight roughly a factor 2.7 less often
than for the quantile approach. For the considered process this almost directly transfers
to the effective gain factors that yield fp.m.

eff = 1.73 and fmed
eff = 4.69. These gains are

a consequence of the speed of the surrogate evaluation, and its excellent approximation
of the true weights, i.e. the very steep fall-off of the x = w/s distribution. In fact, the
effective sample size reduces only to 99.8 % and 99.6 % of a unit-weight sample, which will
be negligible in practical applications.

The obtained α values close to unity reflect the fact that only few events retain non-
unit weights w̃ in the end, cf. Eq. (8). This is confirmed by Fig. 4 where we present the
final event-weight distribution for the sample of 100k events generated using the more
aggressively reduced maximum xmed

max in the second unweighting step. Indeed, only a small
fraction of events exhibits weights w̃ > 1. Furthermore, the overweights rarely exceed
w̃ = 3 and the maximum we observe within this sample is w̃ ≈ 9.

Physics validation

To prove that our algorithm indeed produces the correct target distribution we now move
to the validation of differential cross sections. Figure 5 collects various physical observables
comparing the predictions of SHERPA with and without the novel unweighting approach.

10Note, the wmax used in the first unweighting is always reduced using the per mille quantile approach
to keep the full and the surrogate approach comparable.
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Figure 4: Final event weights w̃ of 100k gg → e−e+ggdd̄ events in proton–proton
collisions at

√
s = 13 TeV generated using surrogate unweighting with xmed

max.

For both methods we produced samples of 1M events at the parton level. Parton shower
and hadronisation effects are disabled in these and the following simulations to increase
the resolution and sensitivity to potential differences between the two approaches. These
were analysed with the Rivet3 toolkit [101] using the MC ZINC and MC ZJETS analyses.
In panel (a) we show the dilepton invariant mass, (b) the dilepton rapidity distribution,
(c) the pT of the jet with highest transverse momentum, and (d) the azimuthal distance
between the two leading jets. For each plot we provide two sub-panels. In the first we
depict the ratio of the predictions obtained from the surrogate approach and nominal
SHERPA, where the errorbars indicate the bin-wise statistical uncertainty. The second
panel displays directly the statistical compatibility of the two predictions measured in
terms of standard deviations.

For all four observables we find full statistical agreement, which proves that the sur-
rogate approach produces the correct target function. This also applies to the tail of the
distributions. No significant increase in the statistical errors is observed for the surrogate-
based prediction, which verifies the negligible reduction of αmed = 0.9962. Furthermore,
there is no visible imprint of statistical fluctuations from the events that exceed the max-
imum in the second unweighting.

For the considered example process we can conclude that when using the surrogate
unweighting approach we can generate samples of almost identical statistical accuracy
that reproduce the exact physical distribution. Depending on the method used to reduce
the maximum in the second unweighting step we find effective gain factors up to 4.7.
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Figure 5: Comparison of different differential distributions generated using SHERPA

with (red) and without (black) an NN weight surrogate for the process gg → e−e+ggdd̄
in proton–proton collisions at

√
s = 13 TeV.
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4.3 Results for LHC production processes

In this section we present results for processes contributing to W+4 jets and tt̄+3 jets
production at the LHC, providing further insight into the potential and limitations of the
surrogate-unweighting method. Both final states receive contributions from a large number
of partonic channels, from which we pick representatives here. Given the high final-state
multiplicity, the large number of contributing Feynman diagrams, and the complexity
in QCD colour space, these matrix elements are highly non-trivial functions over phase
space and rather expensive to evaluate, such that we can expect gains from employing the
surrogate method.

In the following we employ the same network architecture and training measures as
described in Sec. 3.1 and used in the Z+4 jets example and apply them in each partonic
channel separately. We do not attempt to specifically adjust and optimise the hyperparam-
eters, though this could potentially further improve performance. As before, all setups are
studied with SHERPA-2.2 for pp collisions at

√
s = 13 TeV, using the NNPDF-3.0 NNLO

PDF set and AMEGIC as matrix-element and phase-space generator.
Besides quantifying timing improvements, we scrutinise the physics description by

validating observable distributions against the standard unweighting approach. It is worth
mentioning that all presented timing improvements can likewise be translated into energy
savings as no notable additional computing resources are needed for the new approach.

4.3.1 W+4 jets

We consider three partonic channels with varying numbers of external gluons that con-
tribute to W+4 jets in proton–proton collisions. These are listed along with their re-
spective tree-level production cross section in Tab. 3. While the dimensionality of the
input-parameter space for the NN surrogate is identical to the Z+4 jets example, we now
consider the charged-current weak interaction and different combinations of initial- and
final-state partons.

process cross section [pb]

dg → e−ν̄egggu 24.5(2)

dd→ e−ν̄eggdu 4.62(3)

ud→ e−ν̄eduud̄ 0.0572(3)

Table 3: Selection of partonic channels contributing to W+4 jets production at the
LHC and their corresponding leading-order production cross sections.

The quoted cross sections correspond to a fiducial phase space requiring four anti-
kt jets with R = 0.4 and pT,j > 20 GeV, and me−ν̄e > 1 GeV. Due to the high total
production rate, W+4 jets final states constitute an important background to top-quark
pair-production and many searches for new physics phenomena. From Tab. 3 we can
infer that the cross sections of different partonic channels vary significantly. In particular
processes with more external gluons dominate over quarks. An additional driver are
the initial-state flavour PDFs. The larger the contribution of a partonic channel to the
total W+4 jets cross section the more events it will contribute to an inclusive sample.
Accordingly, it is desirable to speed up event generation in particular for the dominant
production channels.

19



SciPost Physics Submission

Performance analysis

In Tab. 4 we compile the performance measures for unweighted event generation separately
for the three considered W+4 jets partonic channels. They are determined from samples
of 100k events generated with the standard and the NN surrogate approach.

dg → e−ν̄egggu dd→ e−ν̄eggdu ud→ e−ν̄eduud̄

εfull 1.4e−3 3.1e−4 3.6e−4

ε1st,surr 7.1e−4 1.1e−4 1.3e−4

〈tfull〉/〈tsurr〉 667 162 25

xp.m.
max 234.03 544.96 1642.77

εp.m.
2nd,surr 8.5e−3 5.2e−3 1.8e−3

αp.m. 0.9953 0.9958 0.9953

fp.m.
eff 1.93 0.29 0.02

xmed
max 40.28 30.53 38.53

εmed
2nd,surr 5.3e−2 8.5e−2 7.3e−2

αmed 0.9285 0.8204 0.4323

fmed
eff 10.36 3.91 0.25

Table 4: Performance measures for partonic channels contributing to W+4 jets pro-
duction at the LHC.

Notably, for all three processes the standard unweighting efficiency is lower than for the
Z+4 jets channel. For the process with four external gluons the evaluation of the surrogate
model is again more than 600 times faster than the full weight calculation. However, for
the other two cases we achieve speed-up factors of 162 and 25 only. These lower gains
originate from shorter evaluation times for the full weights of 20 ms for dd→ e−ν̄eggdu and
3 ms for ud → e−ν̄eduud̄, while the NN surrogate takes about 0.12 ms for each channel.
While the maxima xmed

max are all of a similar size as in the Z+4 jets case, the values for xp.m.
max

are significantly higher, ranging up to 1650 for ud → e−ν̄eduud̄. This suggests that the
NN provides an inferior approximation of the weights for the processes and fiducial phase
space considered here. To illustrate this we show in Fig. 6a the distribution of x = w/s for
1M events for the process dd→ e−ν̄eggdu. When comparing to Fig. 3a we indeed observe
a broader distribution that exhibits more pronounced tails. The two vertical lines indicate
the values of xp.m.

max (dashed) and xmed
max (dotted). By comparing the relationship between

x and w shown in Fig. 6b to the one shown in Fig 3b, we see that the spread of x-values
is much broader overall. However, otherwise it shows a similar behaviour with the more
extreme values of x corresponding to small values of w.

The efficiencies of the initial unweighting step are also consistently lower than for
the neutral gauge-boson channel. In particular for the process without external gluons,
where 〈tfull〉/〈tsurr〉 is ’only’ 25, the factor of three between εfull and ε1st,surr might not be
negligible. As expected given the larger values of xp.m.

max the corresponding efficiencies for the
second unweighting step are all below 1 %, i.e. as low as 2h for ud→ e−ν̄eduud̄. However,
for the median-reduced maximum the situation improves significantly, with εmed

2nd,surr in the
range of 5−8 %. This efficiency improvement comes at the expense of the statistical power
of the sample. While in the quantile approach the resulting αp.m. factors are very close to
unity, i.e. the effective sample size is larger than 99.5% of a true unit-weight sample, we
observe more significant fractions of overweights with the median approach. This is true
in particular for dd→ e−ν̄eggdu (Neff ≈ 82%N) and ud→ e−ν̄eduud̄ (Neff ≈ 43%N).
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Figure 6: Distribution of weights using 1M test points generated with SHERPA for
the process dd → e−ν̄eggdu in proton–proton collisions at

√
s = 13 TeV. (a) One-

dimensional histogram of the ratio x = w
s . The two vertical lines indicate the values

of the reduced weight maxima xp.m.
max (dashed) and xmed

max (dotted). (b) Two-dimensional
histogram showing the relationship between the ratio x = w

s and the true event weight w.

These performance measures are condensed into the resulting effective gain factor feff

according to Eq. (10). For the dominant dg → e−ν̄egggu channel we find quite significant
gains, even exceeding a factor of ten for the median approach. For the other channels
the situation is different. For the all-fermion process surrogate unweighting needs more
resources than the standard approach. This can be traced back to the relatively fast
evaluation of the full weight, due to the simpler form of the matrix element, and the
inferior performance of the NN in approximating the true event weights. However, in the
global W+4 jets context, this channel contributes little to the total production rate and
thus relatively few events need to be generated for such a channel. For the intermediate
process, dd→ e−ν̄eggdu, we find fmed

eff ≈ 4. This speed-gain, however, also goes along with
a more sizeable fraction of overweights, yielding αmed ≈ 0.82. We will therefore compare
differential distributions for physical observable for this channel in the median approach
next.

Physics validation

In Fig. 7 we present a comparison of physical distributions for the channel dd→ e−ν̄eggdu
generated with and without the NN surrogate, employing xmed

max in the second unweighting.
We show results for (a) the transverse momentum of the charged boson, (b) the kt 4-jet
resolution d34, (c) the scalar sum of the four jet transverse momenta, HT , and (d) the
invariant mass of the two leading pT jets within the Rivet analyses MC WINC, MC WJETS,
and MC WKTSPLITTINGS.

For all four differential distributions we observe full statistical compatibility between
the two samples of 1M events each. This further underlines that our surrogate-unweighting
approach produces the exact target distribution. The considered observables all deeply
probe the high-pT tails of phase space. In fact, the pWT and d34 distributions extend over
five orders of magnitude in cross section. While for the given sample size of N = 1M we
observe significant statistical fluctuations in the tails, these are fully consistent between
standard and NN-surrogate generated samples. Even given αmed ≈ 0.82, corresponding
to an effective sample size of Neff = 820k, neither spikes or bumps are manifest in the
nominal distributions, nor a significant increase in the statistical uncertainties for partic-
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ular observable bins. And with a resulting gain factor of feff ≈ 4, the surrogate method
outperforms standard unweighting drastically. However, to some extent and as noted
earlier, this statement depends on the post-processing procedures for the events. If the
overall generation time of parton-level predictions is small compared to e.g. a full detector
simulation, the standard unweighting might be preferable, at least for sub-channels with
medium or low feff.

4.3.2 tt̄+3 jets

Finally, we present results for processes belonging to the tt̄+3 jets group. This probes the
generalisation beyond the production of a single electroweak gauge boson in association
with jets to a pure QCD process with massive particles. Even though the final state
contains one particle less this process still poses a severe challenge. As top quarks carry
colour charge there is a significant proliferation of Feynman diagrams when considering
their jet-associated production. Despite these differences we employ the same neural-
network architecture as before, adjusting the input-space dimensionality for the NN to
17, again utilising the three-momenta as input variables. We require three anti-kt jets
with R = 0.4 and pT,j > 20 GeV and do not impose phase-space cuts for the external
top quarks. The latter are treated as on-shell in the matrix-element calculation, p2

t =
p2
t̄ = m2

t with mt = 173.4 GeV, and only decayed a posteriori to allow a more realistic
definition of observables in the following physics validation. In Tab. 5 we list the four
considered partonic channels and their respective leading-order cross section in proton–
proton collisions at

√
s = 13 TeV.

process cross section [pb]

gg → tt̄ggg 108.4(2)

ug → tt̄ggu 26.00(4)

uu→ tt̄guu 3.733(8)

uū→ tt̄gdd̄ 0.01840(6)

Table 5: Selection of partonic channels contributing to tt̄+3 jets production at the
LHC and their corresponding leading-order production cross sections.

Clearly, under LHC conditions the all-gluon process has the largest production rate. In
the second channel, i.e. ug → tt̄ggu we instead consider an initial-state up-quark. Given
that the QCD interaction does not change flavour, this parton species also appears in the
final state. The third channel contains two up-quarks in the initial- and final state, corre-
sponding to t-channel dominance in the top-quark production. The last considered process
is uū→ tt̄gdd̄, here top-quarks can be produced through s-channel gluons. Note, its pro-
duction rate and correspondingly its contribution to an inclusive sample of unweighted
events is significantly suppressed.

Performance analysis

In Table 6 we collect the performance measures for the surrogate-unweighting approach
applied to the four top-quark productions channels. The reference unweighting efficiencies
εfull for standard unweighting with AMEGIC are typically higher than the ones found for
W+4 jets before.

When comparing the evaluation times for the full event weights and the NN surrogate,
quite significant speed-ups are found for gg → tt̄ggg and ug → tt̄ggu. As before, a single
evaluation of the surrogate weight takes about 0.12 ms. However, the weight calculation
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Figure 7: Comparison of different differential distributions generated using SHERPA

with (red) and without (black) an NN weight surrogate for the process dd→ e−ν̄eggdu
in proton–proton collisions at

√
s = 13 TeV.
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gg → tt̄ggg ug → tt̄ggu uu→ tt̄guu uū→ tt̄gdd̄

εfull 1.1e−2 7.3e−3 6.8e−3 6.6e−4

ε1st,surr 8.7e−3 5.8e−3 4.7e−3 3.6e−4

〈tfull〉/〈tsurr〉 39312 2417 199 64

xp.m.
max 52.03 32.52 69.76 326.19

εp.m.
2nd,surr 2.4e−2 3.8e−2 2.1e−2 5.6e−3

αp.m. 0.9989 0.9984 0.9994 0.9981

fp.m.
eff 2.21 4.89 1.47 0.19

xmed
max 30.40 19.14 27.78 25.34

εmed
2nd,surr 4.3e−2 6.4e−2 5.1e−2 7.1e−2

αmed 0.9983 0.9966 0.9943 0.9321

fmed
eff 3.90 8.26 3.91 2.22

Table 6: Performance measures for partonic channels contributing to tt̄+3 jets produc-
tion at the LHC.

for the all-gluon channel takes around 5 s, for ug → tt̄ggu it is still around 0.3 s. Although
we observe this high ratio of weight evaluation times, the effective gain factor feff is much
smaller in the end and of the same order of magnitude than for the other processes. This
can be mostly attributed to the relatively high unweighting efficiencies we start from. With
a value of εfull = 1.1e−2 the process gg → tt̄ggg has the highest unweighting efficiency
of the examples considered here. According to Eq. 10, this clearly limits the possible
gains. The reason for the high values of εfull is that this kind of multi-gluon channel is
well-optimised in the integrator used by SHERPA.

The results obtained for xp.m. and xmed are less spread out than for the W+4 jets
processes. For ug → tt̄ggu the NN performs best, with xp.m.

max ≈ 33 and xmed
max ≈ 19. Only

for uū → tt̄gdd̄ do we find an inferior performance with xp.m.
max > 300. The values for the

efficiency of the first unweighting step are comparable to what we found for the Z+4 jets
channel, only for uū → tt̄gdd̄ it is significantly lower. Similar findings hold for εp.m.

2nd,surr,

which is lowest for uū→ tt̄gdd̄. All effective sample size parameters are found to be larger
than 0.99, with the exception of the uū process when using the median reduction method,
where αmed ≈ 0.93.

However, when using xmed
max in the rejection sampling the effective gain factors are all

higher than two, being largest for ug → tt̄ggu with fmed
eff ≈ 8. For the two computationally

most expensive channels, that also feature the largest production rates, we obtain gains
larger than two even with the per mille maximum reduction.

Physics validation

We close again by comparing predictions for physical observables, obtained with and with-
out using the weight surrogate for the partonic channel uu → tt̄guu. Note, the on-shell
top-quarks produced in the hard scattering get decayed with SHERPA’s decay handler [6]
prior to the final-state analysis. We here consider the semi-leptonic decay channel, i.e.
tt̄→ lνlqq̄

′bb̄ and employ the Rivet analysis MC TTBAR.
In Fig. 8 we present exemplary results for (a) the invariant mass of hadronic W -boson

candidates, (b) the HT distribution of all final-state jets, (c) the invariant mass of the
hadronic top-quark candidates, and (d) the transverse momentum of the harder of the
two final-state b-quark jets.
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As before, we find full statistical agreement between the two samples for all considered
observables. The rather fine binning of the invariant-mass distributions leads to larger
statistical fluctuations for the given sample size of N = 1M. However, as we will illustrate
in Sec. 4.3.3 the deviations are in agreement with perfect statistical compatibility, i.e.
both samples follow the same target distribution. Given αmed = 0.9966 we do not expect
and in fact do not observe any visible effects from a reduced statistical accuracy of the
sample produced with the surrogate approach.

4.3.3 Summary of physics validation for LHC processes

In addition to the selected observables for the three processes shown in the previous
sections, we have performed a statistical compatibility analysis between the full and the
surrogate setups based on 190 observables with almost 16,000 bins in total. The predictions
are normalised in each observable for this analysis, to avoid a sensitivity to differences in
the integrated cross section of each run, which would otherwise have to be accounted for
as a correlation between different bins. As can be seen in Fig. 9, the deviations follow a
normal distribution N (µ, σ2) with µ = 0 and σ = 1, thereby validating our approach as
faithful and unbiased.
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Figure 8: Comparison of different differential distributions generated using SHERPA

with (red) and without (black) an NN weight surrogate for the process uu→ tt̄guu with
subsequent leptonic top-quark decays in proton–proton collisions at

√
s = 13 TeV.
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5 Conclusions

Virtual particle collisions as simulated by Monte Carlo event generators play a central
role in high-energy physics. Representing our best-knowledge theoretical expectations,
they are used in the design and development of particle detectors for collider experiments,
the planning and preparation of measurements, and, foremost, in the actual analysis and
interpretation of real experimental data. To match actual measurements, particle-level
virtual events need to be supplemented by a detailed simulation of the detector response.
Given the calculational complexity and resource consumption of the detector emulation,
ideally particle-level events with unit weight should be provided. However, the growing
need in high-statistics simulations for a wide range of complex, high-multiplicity par-
tonic scattering processes, including higher-order perturbative corrections, makes event
unweighting a severe and very relevant computational challenge.

We have presented a novel two-staged unweighting algorithm that has the potential to
significantly accelerate event unweighting. In an initial rejection-sampling step we employ
a light-weight neural-network surrogate for the computationally expensive exact integrand,
i.e. the matrix-element and phase-space weight. The mismatch of the surrogate and the
true event weight is then corrected for in a second unweighting step. To protect against
rare outliers in the true weight distribution as well as in the point-wise ratio of the true and
the surrogate weight, we systematically reduce the respective numerically found maxima
using a quantile or median approach, resulting in a partial overweighting of events. The
relevant performance measures for the algorithm are the quality of the approximation, as
well as the evaluation time per phase-space point, which can be combined into an effective
per-event gain factor feff with respect to conventional rejection sampling. This measure
accounts for the reduced statistical power of the sample due to overweighting. It is used
throughout this work to give a rigorous assessment of the effective improvement to be
expected in various example processes. While the proposed unweighting algorithm has
been developed in the context of collision-event simulations, it is in fact more general and
can be used in other applications as well.

In Sec. 3 we have discussed the setup and training procedure used to approximate
event weights with deep feedforward neural networks. As an initial test bed we have
used a representative partonic channel contributing to tree-level Z+4 jets production at
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the LHC. We found that our neural network is well capable of estimating the true event
weights, thereby being more than 600 times faster.

In Sec. 4 we presented the practical implementation of the novel two-staged unweight-
ing algorithm in the SHERPA event-generator framework. To further validate, benchmark
and gauge the potential of the method, we applied it to high-multiplicity partonic channels
contributing to W+4 jets and tt̄+3 jets at the LHC. For the dominant partonic channels
with sizeable cross sections and expensive matrix elements we found gain factors from using
surrogate unweighting ranging from two up to ten. By comparing differential distributions
of physical observables we were able to show, that the proposed method indeed reproduces
the correct target distribution. We were furthermore able to show, that the partial over-
weighting of events, due to employing reduced maxima in the rejection sampling, barely
affects the statistical accuracy and leaves no visible effect in physical distributions.

The unweighting algorithm presented here can also be applied in event generation be-
yond the leading order, where in parts of the phase space the event weights can become
negative. While the proposed algorithm can take negative-valued weights into account,
our SHERPA implementation is currently limited to tree-level matrix elements, where only
positive weights appear. We leave the generalisation to NLO event generation and corre-
sponding performance studies for future work. It will furthermore be interesting to apply
our algorithm with alternative and potentially more powerful surrogate methods on the
market, and evaluate their performance using the measures introduced in this work.
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[5] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert
and J. Winter, Event generation with SHERPA 1.1, JHEP 02, 007 (2009),
doi:10.1088/1126-6708/2009/02/007, 0811.4622.

[6] E. Bothmann et al., Event Generation with Sherpa 2.2, SciPost Phys. 7(3), 034
(2019), doi:10.21468/SciPostPhys.7.3.034, 1905.09127.

[7] P. Azzi et al., Report from Working Group 1: Standard Model Physics at the HL-LHC
and HE-LHC, CERN Yellow Rep. Monogr. 7, 1 (2019), doi:10.23731/CYRM-2019-
007.1, 1902.04070.

[8] P. Calafiura, J. Catmore, D. Costanzo and A. Di Girolamo, ATLAS HL-LHC
Computing Conceptual Design Report, Tech. rep., CERN, Geneva, URL http:

//cds.cern.ch/record/2729668, CERN-LHCC-2020-015, LHCC-G-178 (2020).

[9] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, ALPGEN,
a generator for hard multiparton processes in hadronic collisions, JHEP 07, 001
(2003), doi:10.1088/1126-6708/2003/07/001, hep-ph/0206293.

[10] F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in
C++, JHEP 02, 044 (2002), doi:10.1088/1126-6708/2002/02/044, hep-ph/0109036.
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Attachment: Reply Letter to Referee Report

We would like to thank the referee for the detailed second report and for re-iterating details on
several points to clarify misunderstandings in our reading of them. This is very much
appreciated!

We have carefully revisited the points raised and compile our responses below, thereby
following the ordering of the referee. We have accordingly adjusted, extended and clarified the
text in the paper, as detailed below.

1. We thank the referee for spotting this mistake of ours. It is correctly pointed out that our Eq.
(6) does not include the overweights from the first unweighting stage. While this does not affect
our algorithm it has obvious consequences for the employed performance measures. We have
corrected Eq. (6) to what the referee has given as Eq. (3) in his/her report. In fact, the former
version of Eq. (6) was actually a typo. In our implementation of the performance measures
computation we had used the proper form including all overweights in the determination of the α
factors already. Accordingly, none of the quoted results needed to be corrected.

2. The reference to the Alpgen paper is helpful and we thank the referee for pointing us to it. We
think it has some similarities with our method which we were not aware of. Accordingly, we
added this reference to our revised paper. However, our overweight treatment has been
developed independently and our Eq. (5) is the approach we consider appropriate for the case
at hands. The fact that there is no indication of mishandling of the overweights in our examples
(see toy example Fig. 1, deviations plot Fig. 9) convinces us of the correctness of our equation.
It is, however, not equivalent to the equation(s) suggested by the referee. We have also found
no counterpart for the referee’s equation in the given reference.

However, to study this further, we applied both equations to a simple toy example. The results
can be seen in the attached plot. We find that the suggested formula does not reproduce the
target function, implying that it handles some of the overweights wrongly. These can be
attributed to the case where x<x_max and s>w_max. Our treatment correctly accounts for all
overweights. Possibly there could be a typo in the equation suggested by the referee. In any
case, we see no reason to change our expression given that it produces correct results.



3. To more clearly illustrate the interplay/dependence of our method with the used sampling
technique for generating events, we have extended the discussion in Sec. 2 now also briefly
introducing importance sampling and the multi-channel method, see new Eqs. (4)-(6). This is
then picked up in the discussion of our actual deliverable, i.e. fully differential cross section
integrals, in Sec. 3. We have significantly extended the discussion of Eq. (15) and elaborate on
possible alternative treatments for a multi-channel sampler.

The case we present in our paper indeed uses a single NN with the external particles’
three-momenta as input variables, that are generated by a (multi-channel) probability density
specific to Amegic and the considered process. Our network thus effectively learns the ratio f/g
(with g the total mapping function, i.e. the sum of all channels).

However, as we are not using random numbers as the input variables, that have channel
specific mappings to momenta, we do not need to keep track of the individual channels for
example through channel specific NN surrogates or via the random number used to select the
channel as further input variable.



5. Clearly, as we point out in our toy example already, the surrogate can be from whatever
source, including a VEGAS grid or any other importance sampling density. This is also touched
upon in the intro to Sec. 3. However, we here concentrate and explore the potential of NNs that
we believe have particular promising capabilities.

7. We have added a sentence and an equation to the relevant footnote to stress the fact that
non-expert users have to rely on the *generated* cross section as calculated by the MC
program, which should contain the correct normalisation for the given set of events that have
been generated. We prefer to not single out the overweight case with further equations for
sigma_gen, since this would have to include not only overweight events faithfully but also
correctly include N_trials from the unweighting and from potential rejections in ME+PS merging,
(negative) weights from the NLO+PS matching procedure, phase space biasing weights, and
other advanced features of modern MC programs.

9. We have made the thesis available on CDS and included an explicit reference, Ref. [91].

Again we would like to thank the referee for insisting, which has helped us to make the
manuscript significantly clearer! We hope that the paper in its present form qualifies for
publication in SciPost Physics.
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