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Abstract

The null energy condition (NEC), an important assumption of the Penrose
singularity theorem, is violated by quantum fields. The natural generalization
of the NEC in quantum field theory, the renormalized null energy averaged
over a finite null segment, is known to be unbounded from below. Here, we
propose an alternative, the double smeared null energy condition (DSNEC),
stating that the null energy smeared over two null directions has a finite lower
bound. We rigorously derive DSNEC from general worldvolume bounds for
free quantum fields in Minkowski spacetime. Our method allows for future
systematic inclusion of curvature corrections. As a further application of the
techniques we develop, we prove additional lower bounds on the expectation
values of various operators such as conserved higher spin currents. DSNEC
provides a natural starting point for proving singularity theorems in semi-
classical gravity.
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1 Introduction

The Null Energy Condition (NEC) is obeyed by all sensible classical theories, but even the
most familiar quantum field theories can violate this condition. This violation suggests
the possible construction of exotic geometries such as traversable wormholes and bouncing
cosmologies in semi-classical gravity. Therefore it is interesting and relevant to investigate
(i) the extent of NEC violation that is possible in quantum field theory and (ii) what this
implies for physically realizable geometries in semi-classical gravity.

In this paper, we report progress on the first of these fronts. In particular we prove
bounds on ‘smeared’ null energy: the null components of the stress tensor, averaged over
a spacetime region. Our main result can be stated roughly as follows. Define the operator
T smear−− by averaging over a distance δ+ in the x+ direction and δ− in the x− direction. We
will sometimes refer to this operator the double (null) smeared null energy, or “DSNE”.
In dimensions higher than 2 this operator is smeared over only a subspace of the entire
spacetime.

In the simple context of free scalar quantum fields in Minkowski spacetime, we prove
that (schematically) 〈

T smear−−
〉
≥ − N2[γ]

(δ+)n/2−1(δ−)n/2+1
(1)

where n is the spacetime dimension and N2 is a dimensionless parameter depending on
the number of scalar fields and the details of how the operator is smeared. For massless
fields, N2 is simply proportional to the number of fields; however, for massive fields N2

depends on the smearing lengths through the dimensionless combination of the mass and
the smearing lengths, γ = δ+δ−m2. For small γ and smooth smearing functions, N2 is an
O(1) factor times the number of fields. However, in [1] it was shown that for large masses
and in a class of squeezed states N2 becomes exponentially small in γ. Here we show, for
general states in free theories, that N2 → 0 as γ → ∞. The precise form of our bound is
given in equation (50), and the connection to the schematic form above is demonstrated
in (52) and (53).

The universal, power-law dependence on the smearing lengths δ± follows from sym-
metry arguments, namely the transformation of T−− under boosts, as well as the overall
engineering dimension of the operator. The nontrivial result is that this operator is in-
deed bounded from below. This result was first suggested and coined the “Double Smeared
Energy Condition” or “DSNEC” in [1] but was not proven there.

Our result is closely related to the Smeared Null Energy Condition (SNEC) [2] which
constrains the null energy, averaged over a portion of a single null geodesic. The SNEC,
however, does not have a finite field theory limit as its lower bound diverges when the UV
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cutoff of the theory goes to zero. Here, we will see that smearing in the perpendicular null
direction (“fattening” the geodesic slightly) leads to an operator that is bounded below
in quantum field theory. Additionally, we show that the Averaged Null Energy Condition
(ANEC) can be derived from DNEC at the appropriate limit for δ− →∞.

Along the way we develop technology for constructing lower bounds on a wide class of
smeared operators, at least in the context of free scalars on Minkowski spacetime. As a
“test drive” of this technology we also prove smeared bounds on φ2 expectation values as
well as on expectation values of higher-spin currents, J−−...−. For the latter we arrive at
a lower bound morally similar to (1)〈

J smear−−...−
〉
≥ − Ns

(δ+)n/2−1(δ−)n/2−1+s
(2)

with dependence on the smearing lengths, δ±, fixed by engineering dimension and the
transformation of J−−...− under boosts. Here s ∈ 2N is the spin. This bound implies the
“higher-spin ANEC” [3], as we will show later in the paper.

In regards to the relevance of these bounds in semi-classical gravity it is necessary
for us to move away from Minkowski space. While we do not attempt to implement the
DSNEC in a full semi-classical setting, as a first step we will rephrase our bound in the
context of an absolute inequality that does not make use of a reference state (such as the
Minkowski vacuum). In particular we show that a general world-volume inequality proven
by Fewster and Smith [4] implies the DSNEC for massless fields in Minkowski space. This
world-volume inequality provides a blueprint for the future incorporation of curvature
effects.

All of the above bounds will make use of a fixed momentum space reference frame.
As a final result of this paper we will show how to use this ambiguity to our advantage
by varying the bound over choices of reference frame. To be specific about the scope of
this optimization, we vary over boosts acting on the domain of positive frequencies. The
result of this optimization is a lower bound with restored Lorentz covariance and with
unexpected, non-linear, dependence on the smearing functions, seen in equation (129).
We will show that in even dimensions we can cast this bound in a simple (though still
non-linear) form in position space (138).

A brief summary of the organization of this paper is as follows. Below we remark on
previous work in the realm of null energy bounds in quantum field theory and will also
fix our conventions. In section 2 we discuss renormalization schemes in quantum field
theory, including normal ordering (in the context of Minkowski space) and Hadamard
renormalization. In section 3 we discuss bounding smeared operators in Minkowski space;
in this section we will derive the precise form of the DSNEC (section 3.2), bounds on φ2

(section 3.3), and on higher-spin currents (section 3.4). Afterwards, in section 4, we will
recast the DSNEC in the context of an absolute quantum energy inequality. After a brief
introduction of the relevant technology (section 4.1) we will rederive the massless DSNEC
and discuss massive corrections to the bound (section 4.3). Following that, in section 5 we
perform the optimization over boosted domains and discuss the form of the lower bound
we find. Lastly, in the discussion, section 6, we will discuss our results in the context of
field theory and in semi-classical gravity and what open questions remain at this stage.

Relation to previous work.

Ford [5] was the first to introduce bounds on the averaged renormalized energy density
and flux of quantum fields now known as Quantum Energy Inequalities (QEIs). QEIs gen-
erally express restrictions in duration and magnitude of negative energies in the context
of quantum field theory.
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Since then, there has been much progress proving QEIs for a variety of fields on flat
and curved spacetimes (see [6] and [7] for recent reviews). Most of these results are for
averages over timelike curves. Here, we focus on progress on bounds over null geodesics.

• ANEC: The averaged null energy condition (ANEC) states that the integral of the
null energy (classical or quantum) over an entire null (achronal) geodesic is non-
negative ∫ ∞

−∞
dλ 〈T−−〉 ≥ 0 . (3)

The ANEC has been proven for flat [8] and curved spacetimes [9] for free fields
using QEIs and in Minkowski spacetime for interacting fields using general quantum
information bounds [10] and causality [3]. It also follows from the quantum null
energy condition (QNEC) [11], discussed below, using holography [12], and from the
monotonicity of relative entropy [13], just to mention a few results. In section 3.2 we
show that the ANEC follows from the DSNEC. There are no known counterexamples
to self-consistent achronal ANEC in the semi-classical regime.

• Null QEIs: The first null QEIs bounds were obtained in two spacetime dimensions,
starting with Flanagan [14] for free fields in flat and curved spacetimes. Fewster and
Hollands [15] proved a null QEI for classes of interacting conformal field theories
(CFTs), a result recently generalized to curved spacetimes [16].

In four spacetime dimensions the situation is very different. Fewster and Roman [17]
showed using an explicit counterexample that finite lower bounds of null QEIs do
not exist. In their work they used a sequence of vacuum–plus–two–particle states.
As the three-momenta of the excited modes become more and more parallel to the
spatial part of the null vector tangent to the geodesic, the bound diverges to negative
infinity.

To circumvent that problem, Freivogel and Krommydas [2] suggested the SNEC∫ +∞

−∞
dλg2(λ)〈T−−〉 ≥ −

4B

GN

∫ +∞

−∞
dλ
(
g′(λ)

)2
, (4)

where g(λ) is a differentiable ‘smearing function’ that controls the region where the
null energy is averaged, B is an unknown dimensionless constant and GN is the
Newton constant. When gravity is coupled to such theories, the renormalized GN
to 1-loop order is GN ∼ `n−2

UV /N where `UV is the UV cutoff of the theory and N
the number of fields. The presence of the UV cutoff ensures that the bound remains
finite in cases such as the Fewster-Roman counterexample. The SNEC has been
proven for free fields in Minkowski spacetime [1] but such a proof cannot easily be
generalized for interacting fields and spacetimes with curvature. Additionally the
bound diverges when the UV cutoff is taken to zero. We comment on the relationship
between DSNEC and SNEC in Appendix B.

• QNEC: The Quantum Null Energy Condition (QNEC) [18] is an extension of the
NEC to a local lower bound on the null stress tensor valid in generic quantum field
theories in Minkowski space-time [11,19,20]. The QNEC bounds a state’s null energy
at a point by the second variation of the entanglement entropy of the state reduced
on a portion of a null hypersurface with respect to infinitesimal null-deformations of
its entangling surface:

〈T−−〉 ≥
1

2πa
S′′ent (5)
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where a is the induced area element on the entangling surface at the given point.
In this sense, the QNEC is a state dependent bound of an entirely different charac-
ter than discussed in section 2 since the right-hand side cannot be written as the
expectation value of an operator.

• Singularity theorems: The Penrose singularity theorem [21] proves null geodesic
incompleteness using as an assumption the NEC thus it is inapplicable in semi-
classical gravity. Efforts to weaken the energy condition required in the theorem
started with the works of Tipler [22] and Borde [23]. Fewster and Galloway [24] and
more recently Fewster and Kontou [25] proved singularity theorems with conditions
inspired by QEIs. The first semiclassical singularity theorem for timelike geodesic in-
completeness was recently proven [26] and the required initial contraction estimated
for cosmological spacetimes. An analogous theorem for null geodesic incompleteness
was proven using SNEC as an assumption [16]. While we do not prove a singularity
theorem in this work, the derivation of DSNEC is partly inspired by the need to have
a semiclassical replacement of the NEC as an assumption to singularity theorems.

• QFC: A different approach is the Quantum Focusing Conjecture (QFC) [18] which
provides an elegant proposal for how to generalize singularity theorems to semi-
classical gravity by promoting the classical expansion to a quantum expansion. It
depends both on null variations of the geometric area element and the outer entan-
glement entropy. Thus it has a state-dependence of a similar character to the QNEC
and in fact the QNEC follows as a consequence of the QFC. This poses the following
issue with the QFC: the initial condition needed to prove a singularity theorem is
the non-positive quantum expansion on some surface. However, it is not clear that
the quantum expansion is an observable quantity (again, since the entanglement en-
tropy cannot be written as the expectation value of an operator). Our approach is
complementary to the QFC and appropriate for proving singularity theorems from
purely geometric aspects of the initial surface.

Conventions

Unless otherwise specified, we work in n spacetime dimensions, assume ~ = c = 1 and use
metric signature (+,−, . . . ,−). While we will make statements involving general metrics,
gµν , we will perform concrete calculations primarily in Minkowski space. When consider-
ing null subspaces we will denote, w.l.o.g., null coordinates1 x± = t ± x1 and transverse
coordinates, ~y = (x2, . . . , xn):

ds2 = dt2 −
n∑
i=1

(dxi)2 = dx+dx− −
n∑
a=2

(dya)2. (6)

Null derivatives will be denoted as ∂± := 1
2 (∂t ± ∂1). In momentum space this implies

the following notation k± := 1
2(k0 ± k1); the inner product with coordinates remains

unchanged, kµx
µ = k0 t+ kix

i = k+x
+ + k−x

− + kay
a.

For the Fourier transform we use the following convention

f̃(k) =

∫
Rn
dnxf(x)eikx =

∫
dtdx1 dn−2~y f(x)eikx . (7)

1Note importantly a discrepancy in integration measures dtdx1 = 1
2
dx+dx−. In the interest of com-

parison to previous results and to be clear on this front, we will always denote integrations with respect
to null-coordinates by d2x± := dx+dx−. Similarly integrations in momentum space will follow a similar
notation: d2k± := dk+dk− = 1

2
dk0dk1.
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Finally, for future reference, we define f√G, the square-root of a normalized Gaussian with
unit variance:

f√G(s) :=
1

(2π)1/4
e−s

2/4 . (8)

2 Renormalization in quantum field theory

We consider the massive minimally coupled classical scalar field φ with field equation

(�g +m2)φ = 0 , (9)

where m has dimensions of inverse length. The Lagrangian is

L[φ] =
1

2

(
(∇φ)2 −m2φ2

)
. (10)

Varying the action with respect to the metric gives the stress-energy tensor

Tµν = ∇µφ∇νφ−
1

2
gµνg

λρ∇λφ∇ρφ+
1

2
m2gµν . (11)

After quantization, our main object of interest is the two point function,

Wψ(x, x′) ≡ 〈φ(x)φ(x′)〉ψ, (12)

where ψ is a quantum state of interest. The class of states we consider in this paper are the
Hadamard states [27] whose two point-functions have well-known singularity structures.

We renormalize the stress-energy tensor following the prescription of Hollands and
Wald [28, 29]. In these works they present the axioms that express the desired proper-
ties of local time-ordered products of fields. Those properties include locality, continuity,
analyticity, symmetry of the factors and unitarity. The procedure described below de-
fines a renormalized stress-tensor that obeys these properties up to finite renormalization
freedoms.

First let’s define the point-split stress-energy operator

Tsplit
µν′ (x, x′) = ∇(x)

µ ⊗∇
(x′)
ν′ −

1

2
gµν′(x, x

′)gλρ
′
(x, x′)∇(x)

λ ⊗∇
(x′)
ρ′ +

1

2
m2gµν′(x, x

′)1⊗1 , (13)

where gµν′(x, x
′) = gµρ(x) gρν′(x, x

′) is the parallel propagator implementing parallel trans-
port of vectors along the unique geodesic connecting x and x′ (we assume the points are
close enough to be in a geodesic convex neighborhood). That is, if V is a tangent vector
on x′, then the vector at x after parallel transport along the geodesic is given by

V µ(x) = gµν′(x, x
′)V ν′(x′) . (14)

which defines gµν′ . Note that in the coincidence limit

lim
x→x′

gµν′(x, x
′) = gµν(x′) = δµν . (15)

Then we can define

〈T fin
µν 〉ψ(x) = lim

x′→x
gν
ν′(x, x′)Tsplit

µν′ ◦ (Wψ −H(k))(x, x
′) , (16)

where “◦” denotes the action of the differential operator Tsplit on the bi-distribution Wψ−
H(k). H(k) are terms up to order k of the Hadamard parametrix, a bi-distribution that
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encodes the singularity structure of the two-point function of Hadamard states, expressed
as an infinite series [30]. As an example to keep in mind, for the massless free scalar the
Hadamard parametrix coincides with the Minkowski vacuum two-point function. We are
being schematic now but we will discuss this parametrix in more detail in section 4 where
its details are more relevant.

If ω is Hadamard then any open globally hyperbolic subset of the manifold is also
considered as a spacetime. Then we have Wψ − H(k) ∈ C2 for k large enough in any
globally hyperbolic convex normal neighbourhood. We should note that every point x on
the manifold has such a neighbourhood called an ultra-regular domain [4].

Then Tsplit
µν′ ◦ (W −H(k))(x, x

′) is defined and continuous along coincident points. As
a bit of short-hand for the future, we will denote the coincident limit of a generic bi-
distribution, B(x, x′), as

[[B]] (x′) = lim
x→x′

B(x, x′). (17)

By 〈T ren
µν 〉 we denote the expectation value of the renormalized stress-energy tensor

following the axioms of [28, 29]. The difference of 〈T ren
µν 〉 between two Hadamard states ψ

and ψ0 is smooth at the coincident limit x→ x′

〈T ren
µν 〉ψ − 〈T ren

µν 〉ψ0 =
[[
gν
ν′ Tsplit

µν′ ◦ (Wψ −Wψ0)
]]
, (18)

where
〈T ren
µν 〉ψ(x) = 〈T fin

µν 〉ψ −Q(x)gµν(x) + Cµν(x) . (19)

The definition includes the remaining finite renormalization freedom which takes the form
of a state-independent conserved local curvature term Cµν that vanishes in Minkowski
space. Here Q is a term introduced by Wald [31] to preserve the conservation of the
stress-energy tensor.

In Minkowski space we have a distinguished state, the Minkowski vacuum, annihilated
by the generators of the Poincaré group. We will always denote this state by Ω. This
defines a canonical renormalization scheme via subtraction by the Minkowski vacuum, i.e.
normal ordering. We will denote it by : : as is customary

〈:Tµν :〉ψ :=
[[
gν
ν′ Tsplit

µν′ ◦ (Wψ −WΩ)
]]
. (20)

We will extend this definition to a general operator statement:

:O: ≡ O − 〈O〉Ω. (21)

The Hadamard series coincides with the singularity structure of the Minkowski vacuum
and so in Minkowski space

〈:Tµν :〉ψ = 〈T fin
µν 〉ψ (22)

as local operators. Additionally :T−−: coincides with T ren
−− in Minkowski space since terms

proportional to the metric are killed by contraction with null vectors (these operators do
not have to coincide however for the energy density). When it is clear by context that we
are working in Minkowski space (for example in the next section) we will drop the : :
from Tµν with it being clear the renormalization scheme being used.

Because of the subtraction of divergences, operators that are classically positive can
acquire negative quantum expectation values after renormalization. It is the goal of this
paper to diagnose the magnitude of this negative expectation value in the form of a lower
bound, or a quantum inequality. The most general form of a quantum inequality that
bounds O is

〈O(f)〉Ψ ≥ −〈Q(f)〉Ψ , (23)
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where f is a non-negative smearing function on spacetime. In general the operator Q(f)
could be an unbounded operator.

We call difference QEIs the ones where we bound the smooth difference between the
expectation values of two Hadamard states

〈O(f)〉Ψ − 〈O(f)〉Ψ0 ≥ −〈QΨ0(f)〉Ψ . (24)

In that case the bound can depend on both the reference state Ψ0 and the state of interest
Ψ. If instead we renormalize using the Hadamard parametrix the QEI is called absolute.
If the reference state is the massless Minkowski vacuum the two kinds coincide. If the
bound depends on Ψ then it is a state dependent bound. The bounds of interest in this
paper are state independent and take the form

〈O(f)〉Ψ − 〈O(f)〉Ψ0 ≥ −QΨ0(f) . (25)

3 Derivation of a general Minkowski bound

In this section we derive a quantum energy inequality for Minkowski spacetime over a
general domain. We want to bound smeared quantities of the form

AOO ≡
∫

Σp

dpx g(x)2〈: O(x)2 :〉ψ (26)

where Σp is a p-dimensional time-like subspace of R1,n−1. We will only consider time-
like subspaces in this paper as it is expected that if Σp is a space-like subspace then the
right hand side of any prospective bound will diverge leaving the bound trivial. We will
additionally assume from here on that Σp is flat and translationally invariant such that
fields admit a (partial) Fourier transform along Σp and denote the space of these momenta
as Σ̃p. Using this partial Fourier transform we can fictitiously “point-split” the operators:

AOO =

∫
Σ̃p

dpξ

(2π)p

∫
Σp

dpxdpx′ eiξ·(x−x
′)g(x)g(x′)

(
〈O(x)O(x′)〉ψ − 〈O(x)O(x′)〉Ω

)
. (27)

We emphasize that at this point both terms in (27) possess contact singularities: indeed
(27) is still exactly equal to (26) as the momentum integration simply induces a delta-
function. It is the difference of the two terms that is finite. Now we make the main
assumption

Assumption 1: The commutator of O with itself is a c-number:

[O(t, ~x),O(0,~0)] ∝ 1 (28)

where 1 is the identity operator on the Hilbert space.

This assumption is certainly satisfied when O is a free field or derivative there-of. More
generally Assumption 1 is very constraining and as explained in Appendix A, it is likely
that this assumption is only satisfied by generalized free fields, i.e. operators whose higher-
point functions can be evaluated via Wick contractions2. We pause to note that while for
most of this paper we will focus on free theories, the construction in this section and

2We thank Tarek Anous and Mert Besken for a discussion on this point
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the bound (36) are valid e.g. for interacting theories with some large N parameter that
suppresses non-Wick terms in O higher-point functions by powers of 1/N , in the N →∞
limit. As a word of caution, however, the bounds we are able to derive for generalized free
field theories apply to operators that are quadratic in the generalized free field itself or
derivatives of the generalized free field. This does not include the stress tensor unless the
field is exactly free.

Under Assumption 1 the difference appearing in the integrand of (27) is symmetric
under x ↔ x′ and we can then restrict the k integration to a half-space3, D ⊂ Σ̃p.
Importantly, the first term of (27) is a positive-definite regardless of the choice of domain
as it can be written as the inner product∫

D

dpξ

(2π)p
〈Og(ξ)ψ|Og(ξ)ψ〉 , |Og(ξ)ψ〉 :=

∫
dpxeiξxg(x)O(x)|ψ〉. (29)

Thus if we are interested in bounding AO from below, it suffices to focus on the second
term

AOO ≥ −QOO[D], QOO[D] ≡ 2

∫
D

dpξ

(2π)p

∫
Σp

dpxdpx′ g(x)g(x′)eiξ(x−x
′)〈O(x)O(x′)〉Ω .

(30)
It is worth clarifying the previous step, the role of D in (30), and why (30) is finite when
both terms in (27) were individually divergent: because of the structure of divergences of
Hadamard states any potential contact divergences are exactly cancelled in the difference
in (27). To this finite expression we restrict the momentum integration to D; both terms
in the integrand are now finite and we drop the obviously positive terms. As a result of
restriction of momentum integration to D, the ξ integral is now prohibited from repro-
ducing a delta function δp(x − x′); this changes the “fictitious point splitting” in (27) to
an effective point splitting, softening the contact divergences in (30) (we will soon see an
explicit example illustrating this) and allowing us to write non-trivial lower bounds. After
dropping the first, positive, term we are not allowed to reverse the logic and “re-extend”
D to a full momentum integration and potentially rediscover contact singularities: the in-
tegrand of (30) is no longer symmetric under x↔ x′ because the commutator of O(x) and
O(x′) is generically not zero. Within the regime of validity of our main assumption, (30)
is otherwise fairly general and valid for arbitrary dimensions, masses, etc. If one knows
the vacuum 2-point function in position space, one can pick a domain D and just integrate.

Let us illustrate this logic with a simple choice of domain that we call the canonical
domain; it is given by the half-space of positive frequencies in Σ̃p:

D0 := {ξ ∈ Σ̃p | ξ0 ≥ 0}, (31)

for which the bounds take the general form

QOO[D0] = 2

∫
Σp

dpxdpx′ g(x)g(x′)
iδp−1(~x− ~x′)
t− t′ + iε

〈O(x)O(x′)〉Ω . (32)

As we see, the contact divergence in the two-point function 〈O(x)O(x′)〉Ω is softened by
the kernel i(t− t′ + iε)−1 which effectively point-splits it.

When p ≥ 2, we also have a family of bounds obtained by boosting D0 in (w.l.o.g) the
(ξ0, ξ1) plane by a parameter η ∈ R:

Dη := {ξ ∈ Σ̃p | ξη := eηξ+ + e−ηξ− ≥ 0}. (33)

3That is, under the parity map P : ~k → −~k on Σ̃p, D is such that Σ̃p = D tP(D).
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It is clear that when p ≥ 2 that D0 is a special case of Dη with η = 0.

In general a choice of domain D breaks any subgroup, HΣ̃p
⊂ SO(1, n − 1), of Lorentz

invariance originally possessed by Σ̃p and so, unsurprisingly, (30) will depend on a fixed
reference frame. However since (30) applies, at least in principle, for any domain, D, we
are free to optimize over choices of D,

AOO ≥ −min
D
QOO[D] (34)

and we expect this minimization to restore covariance under HΣ̃p
4. In practice, however,

this is somewhat unwieldy minimization; in this paper we will content ourselves with vary-
ing over the much smaller family of boosted domains, Dη, as this provides a controlled
one-parameter minimization over η ∈ R. The minimization over Dη will likely not pro-
vide the tightest bound, but will restore covariance under boosts in the (k0, k1) plane. In
general this will not restore the full HΣ̃p

covariance (since this subgroup could consist of

boosts in multiple directions plus rotations in the internal space) for the two-dimensional
time-like domains we primarily consider in this paper, this boost minimization will restore
covariance.

Generally, the position space correlators are not simple objects to work with (e.g. in
massive theories). It will be convenient for us to express the above entirely in the Fourier
space, Σ̃p. Translational invariance of the vacuum implies

〈Õ(k)Õ(k′)〉Ω := (2π)pδp(k + k′)GOO(k′) (35)

for some GOO. We then obtain

QOO[D] = 2

∫
Σ̃p

dpk

(2π)p
|g̃(k)|2

∫
D

dpξ

(2π)p
GOO(k − ξ) (36)

Note the difference in integration regions between ξ and k. We have written this formula
in a convenient and general form; below we apply it to some specific situations.

3.1 Two-dimensional smeared null-energy

To begin let’s apply the bound (36) to the null-energy of a two-dimensional massive scalar
smeared over spacetime (i.e. we will take Σ2 = R1,1). Indeed, T−− can be written in the
form : OO :,

T−−(x+, x−) =: ∂−φ∂−φ : (x+, x−) (37)

and so identifying

G∂−φ∂−φ(k) =
1

8
k−Θ(k−) (2π)δ

(
k+ −

m2

4k−

)
(38)

we have

QT−− [D] = 2

∫
D

d2ξ±
(2π)2

∫ ∞
0

dζ−
(2π)

ζ− |g̃(k±)|2
∣∣∣
k−=ξ−+ζ−, k+=ξ++ m2

4ζ−

(39)

4The argument is the following: any Dmin found through a variational principle will be stationary
under infinitesimal changes of frame. This includes infinitesimal HΣ̃p

transformations.

10
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More specifically, we can investigate QT−− [Dη] for the boosted domains, (33):

QT−− [Dη] = 2

∫
d2k±
(2π)2

∫ ∞
0

dζ−
2π
|g̃(k±)|2 ζ−Θ

(
kη − e−ηζ− − eη

m2

4ζ−

)
(40)

where kη = eηk+ +e−ηk−. Doing the linear ζ− integral between the endpoints of Heaviside

domain, 1
2e
η
(
kη ±

√
k2
η −m2

)
, we find

QT−− [Dη] =
e2η

2π

∫
d2k±
(2π)2

|g̃(k±)|2 kη
√
k2
η −m2Θ(kη −m) (41)

leading to a bound5

∫
d2x± g(x±)2〈T−−(x±)〉(2d)

ψ ≥ −min
η∈R

e2η

π

∫
d2k±
(2π)2

|g̃(k±)|2 kη
√
k2
η −m2 Θ(kη −m)

(43)

3.2 Double smeared null energy in higher dimensions

We now look to apply (36) to the null-energy smeared in two null directions in dimensions
n ≥ 3 in what was coined the DSNE in [1]. Since we are interested smearing in x± the
relevant domain, Σ2, is the (x+, x−) plane defined by the level-set Σ2 = {(x+, x−; ya =
0)|a = 2, . . . , n−1}. The “partial Fourier transform” Σ̃p is then spanned by two momenta,
k±.

To be specific we will continue to work with a free massive scalar field. The relevant
momentum space correlator is

〈∂−φ(k+, k−, ~y = 0)∂−φ(k′+, k
′
−, ~y = 0)〉Ω = (2π)2δ2(k + k′)GT−−(k′) (44)

with

GT−−(k) =
Vn−3

2(2π)n−3
k2
−(4k+k− −m2)

n−4
2 Θ

(
4k+k− −m2

)
Θ(k−) (45)

where Vn−3 = (2π
n−2

2 )/Γ
(
n−2

2

)
is the volume of the angular Sn−3. The bound on the

stress tensor is, for general mass and dimension,∫
d2x±g(x±)2〈T−−(x±, ~y = 0)〉ψ ≥ −min

D
QT−− [D] (46)

where we will write

QT−− [D] =

∫
d2k±
(2π)2

|g̃(k±)|2hD(k±) (47)

so that the function hD(k) encodes the choice of reference frame:

hD(k) =
8Vn−3

(2π)n−3

∫
d2ξ±
(2π)2

Θ(ξ± ∈ D)ζ2
−
(
4ζ+ζ− −m2

)n−4
2 Θ

(
4ζ+ζ− −m2

)
Θ(ζ−)

∣∣∣∣
ζ±=k±−ξ±

.

(48)

5This bound differs from an apparent factor of 4 from that appearing in the appendix of [1] stemming
from a difference in normalization of the Fourier transform here (equation (7)) and in [1]:

g̃here(k) :=

∫
d2xeikxg(x) =

1

2

∫
d2x± eikxg(x) ≡ 1

2
g̃there(k). (42)

This factor of 4 follows all comparisons to results in [1].

11
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Processing hD a bit by changing integration variables from ξ± to ζ± we find for the boosted
domain, Dη,

hDη(k±) =
8Vn−3

(2π)n−3

∫
d2ζ±
(2π)2

ζ2
−(4ζ+ζ− −m2)

n−4
2 Θ(4ζ+ζ− −m2)Θ(ζ−)Θ(kη − ζη)

=
e2η

(4π)
n−1

2

1

Γ
(
n+1

2

) kη(k2
η −m2)

n−1
2 Θ(kη −m) (49)

where kη = eηk+ + e−ηk−. This provides a “first principles” derivation of the bound
suggested in [1] by investigating T++ expectation values in squeezed states:∫

Σ2

d2x±g(x±)2〈T−−(x±, ~y = 0)〉ψ ≥ −min
η∈R

c
(n)
T−−

e2η

∫
d2k±
(2π)2

|g̃(k±)|2 kη(k2
η −m2)

n−1
2 Θ(kη −m)

(50)

with

c
(n)
T−−

=
1

(4π)
n−1

2 Γ
(
n+1

2

) . (51)

To make the matching to [1] more explicit, let us call g(x+, x−) = 1√
δ+δ−
F(x+/δ+, x−/δ−),

where F(s+, s−) is a function of dimensionless variables dropping off quickly for |s±| � 1

and normalized to
∫
d2s±F(s+, s−)2 = 1. Calling eη̃ ≡

√
δ−

δ+ e
η and ρ± ≡ δ±k±, and

denoting ρη̃ = eη̃ρ+ + e−η̃ρ−, the universal power-law dependence on δ+ and δ− can be
scaled out of the integral:∫

Σ2

d2x±

δ+δ−
F(x+/δ+, x−/δ−)2〈T−−(x±, ~y = 0)〉ψ ≥ −

N2,n[γ]

(δ+)
n−2

2 (δ−)
n+2

2

(52)

where

N2,n := min
η̃∈R

c
(n)
T−−

e2η̃

∫
d2ρ±
(2π)2

|F̃(ρ+, ρ−)|2 ρη̃(ρ2
η̃ − γ2)

n−1
2 Θ(ρη̃ − γ) (53)

is now a dimensionless parameter depending on the (dimensionless) Fourier-transformed
smearing function, F̃(ρ±) :=

∫
d2s eiρ±s

±F(s±) and the dimensionless combination of
the mass and smearing lengths, γ2 := δ+δ−m2. This is precisely the form of the bound
proposed in the introduction, (1), and what was referred to as the DSNEC in [1]. Note that
in [1] η̃ was implicitly set to zero however we have left it as tuneable degree of freedom in
our bound above. This suggests, following the discussion at the beginning of this section,
a further optimization over η̃. We will do this in section 5.

Equation (53) shows that the prefactor N2,n → 0 as the mass becomes large compared
to the smearing lengths. To see this, note that as γ → ∞, the theta function restricts
the integral on the right side of (53) to very large ρη̃. (For this discussion, we can just
pick any value of the boost η̃.) Since the smearing function F̃(ρ±) must fall off at large
dimensionless momenta ρ, the integrand becomes small in the region of integration, so the
entire expression approaches zero as γ →∞.

ANEC

Having derived the DSNEC we now take a brief opportunity to show that it implies
the ANEC. We want to take the limit δ+ → 0 and δ− → ∞ while holding δ+δ− ≡ α2

fixed. To recover the ANEC limit we require that the smearing function satisfies

lim
x+→0

lim
x−→∞

1

δ+
F(x+/δ+, x−/δ−)2 = Aδ(x+ − β) , (54)

12
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where A and β are real numbers. An example of such a function that satisfies (54) is the
Gaussian, F(s+, s−) = f√G(s+)f√G(s−). Then Eq.(52) becomes∫ ∞

−∞
dx−〈T−−(x+ = β, x−, ~y = 0)〉ψ ≥ − lim

δ+→0

N2,n[γ]

Aαn
δ+ = 0 . (55)

We note that N2,n remains fixed in this limit.

3.3 The smeared φφ correlator

Though the main focus of this paper is on smeared null-energy, we comment on the
generality of (30) by applying to two additional situations in this section and in section
3.4. To start, we can posit a bound on the smeared correlator of the n-dimensional massive
scalar smeared over two null dimensions, Σ2:∫

d2x± g(x±)2 〈φ2(x+, x−, ~y = 0)〉ψ ≥ −min
D
Qφφ[D] . (56)

We start with the “partial Fourier transform” of the vacuum correlator

〈φ(k+, k−, ~y = 0)φ(k′+, k
′
−, ~y = 0)〉Ω = (2π)2δ2(k + k′)Gφφ(k′) (57)

with

Gφφ(k) =
Vn−3

2(2π)n−3
(4k+k− −m2)

n−4
2 Θ

(
4k+k− −m2

)
Θ(k+) . (58)

Writing

Qφφ[D] =

∫
d2k±
(2π)2

|g̃(k±)|2hD(k±) (59)

then by similar techniques to the previous section, for the boosted domains, Dη we find

hDη(k±) =
4

(4π)n/2
Θ(kη −m)kn−2

η

∫ 1

m2/k2
η

dw

(
w − m2

k2
η

)n−4
2

log

(
1 +
√

1− w
1−
√

1− w

)
, (60)

where we changed variables to w = 4ζ+ζ−/k
2
η. When the field is massless, the dependence

on kη is completely power-law and the integral can be evaluated when exactly for n ≥ 3
(when n = 2 the integral diverges leaving the bound trivial). The end result is∫

Σ2

d2x± g(x±)2〈φ2(x±, ~y = 0)〉ψ
∣∣∣
m2=0

≥ −min
η∈R

c
(n)
φφ

∫
d2k±
(2π)2

|g̃(k±)|2 kn−2
η Θ(kη) (61)

with

c
(n)
φφ =

4

(4π)
n−1

2

(
n− 4

n− 2

)
Γ
(
n−4

2

)
Γ
(
n−2

2

)
Γ
(
n−1

2

) . (62)

and kη = eηk+ +e−ηk−. To our knowledge, neither this bound (or its massive counterpart,
(60)) have appeared explicitly in the literature.

3.4 Smeared higher-spin currents

As a final example, we use (30) to derive a similar double-smeared bound on null higher-
spin currents. To be specific, we will focus on the massless scalar (again in n dimensions).
As is well-known, there are a tower of even-spin conserved currents with null-components
given by

J−−...− =: ∂
s/2
− φ∂

s/2
− φ : s even (63)

13
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up to total derivative. Given the above recipe, bounding J−−...− only amounts a modifi-
cation in the kernel G:

GJ−−...−(k) =
Vn−3

2(2π)n−3
ks− (4k+k−)

n−4
2 Θ(k+)Θ(k−). (64)

By similar mathematics as above, the associated hDη(k) can be evaluated as

hDη(k) =
4

(4π)n/2

∫
dq−du q

s−1
− u

n−4
2 Θ(ζ−)Θ(u)Θ

(
kη − e−η ζ− − eη

u

4ζ−

)
=

esη

2s−4(4π)n/2s

(
s−1∑
` odd

(
s

`

)
Γ
(
`+2

2

)
Γ
(
`+n

2

)) ks+n−2
η Θ(kη) (65)

leading to a bound of the following form∫
Σ2

d2x± g(x±)2 〈J−−...−(x±, ~y⊥ = 0)〉ψ ≥ −min
η∈R

c
(n)
s

∫
d2k±
(2π)2

|g̃(k)|2 esη ks+n−2
η Θ(kη)

(66)
with

c
(n)
s =

1

2s−4(4π)n/2 s

s−1∑
k odd

(
s

k

)
Γ
(
k+2

2

)
Γ
(
k+n

2

) . (67)

and again, kη = eηk+ + e−ηk−.

Higher Spin ANEC

We can put (66) in a similar form to that of the DSNEC by again defining the smearing
lengths explictly in our smearing function,

g(x+, x−) =
1√
δ+δ−

F(x+/δ+, x−/δ−) , (68)

for some dimensionless smooth function F(s+, s−) dropping off quickly for |s±| � 1.

Rescaling our boost parameter eη̃ :=
√

δ−

δ+ e
η and integration variable ρ± = δ±k± the

bound takes the schematic form∫
d2x±

δ+δ−
F(x+/δ+, x−/δ−)2〈J−−...−(x±, ~y⊥ = 0)〉ψ ≥ −

Ns,n

(δ+)
n−2

2 (δ−)
n−2

2
+s

(69)

where Ns,n is an O(1) dimensionless factor depending on the details of the smearing
function:

Ns,n = min
η̃∈R

c
(n)
s

∫
d2ρ±
(2π)2

esη̃|F̃(ρ±)|2ρs+n−2
η̃ Θ(ρη̃). (70)

Now once again we can let F(s+, s−) = f√G(s+)f√G(s−) factorize where f√G is the
square-root of the normalized Gaussian with unit variance, (8). We then multiply both
sides of the bound by δ− and take the limit δ+ → 0 while holding α ≡ δ+δ− fixed. In this
limit we recover the “higher spin ANEC” proposed by [3]∫

dx−〈J−−...−(x+ = 0, x−, ~y⊥ = 0)〉ψ ≥ − lim
δ+→0

√
2πNs,n

α
n−2

2
+s−1

(δ+)s−1 = 0 . (71)
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4 Worldvolume QNEI

Having explained the method for deriving the DSNEC (among other bounds) as difference
inequalities in Minkowski space, we will show in this section how this bound is implied by
an existing absolute QEI [4] averaged over a spacetime worldvolume. This QEI is valid
for general curved spacetimes, however here we focus on Minkowski space. First, we will
describe the QEI in question. Then, we use it to obtain a familiar timelike averaged bound
first derived by Fewster and Roman [17] in 4 dimensions as a pedagogical example. We
will then proceed to apply the QEI to the DSNE, confirming the bounds described in
Sec. 3.2.

4.1 A general quantum null energy inequality

We start by stating the general form of the QEI of Ref. [4]:∫
Σ
dvol(x)g2(x)

[[
D ⊗D(WΨ −H(k))

]]
≥

−2

∫
D

dnξ

(2π)n

[
|hκ|1/4gκ ⊗ |hκ|1/4gκϑ∗κ(D ⊗DH̃(k))

]∧
(−ξ, ξ) , (72)

where D is a partial differential operator of order at most one with smooth real-valued
coefficients. For convenience, we have introduced a notation [·]∧(ξ1, ξ2) for a bi-Fourier
transform in two arguments x and x′, i.e.

[B]∧(ξ1, ξ2) :=

∫
dnx dnx′ eiξ1x+ξ2x′B(x, x′) . (73)

The Hadamard bi-distribution H, expressed as an infinite series in even dimensions, is
given by [30]

H(x, x′) =
Γ
(
n−2

2

)
4πn/2

{
U(x, x′)

σ+(x, x′)n/2−1
+ V (x, x′) ln

[
σ+(x, x′)

`2

]
+W (x, x′)

}
, (74)

where ` is an arbitrary length scale, and for odd dimensions

H(x, x′) =
Γ
(
n−2

2

)
4πn/2

{
U(x, x′)

σ+(x, x′)n/2−1
+W (x, x′)

}
. (75)

The bi-distributions U(x, x′) and V (x, x′) are regular in the coincidence limit and can be
expressed as power-series in σ

U(x, x′) =

∞∑
`=0

U`(x, x
′)σ(x, x′)` , V (x, x′) =

∞∑
`=0

V`(x, x
′)σ(x, x′)` , (76)

with symmetric coefficients calculated uniquely by requiring that H obeys the field equa-
tion (9) at each order with the appropriate boundary conditions [30]. In contrast,

W (x, x′) =
∞∑
`=0

W`(x, x
′)σ(x, x′)` , (77)

are not uniquely specified as W0(x) is undetermined. This coefficient depends on the
state of the quantum field and once it is fixed the W`’s can also be determined using the
recursion relations derived from the field equation.
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We will specify the order of the Hadamard series using the following convention: by
Hk we denote the term of order σk 6 while by H(k) all the terms up to order k. In Ref. [4],
it was required that k = max{n + 3, 5} for the QEI of Eq. (72). However, in Ref. [32] it
was shown that only k = 2 are needed for a first order differential operator.

We define

H̃(x, x′) =
1

2
[H(x, x′) +H(x′, x) + iE(x, x′)] , (78)

where E(x, x′) is the antisymmetric part of the two-point function.
The function σ is the squared invariant length of the geodesic between x and x′,

negative for timelike separation. In flat space

σ(x, x′) = −ηµν(x− x′)µ(x− x′)ν , (79)

where ηµν is the Minkowski metric. By F (σ+), for some distribution F , we mean the
distributional limit

F (σ+) = lim
ε→0+

F (σε) , (80)

where
σε(x, x

′) = σ(x, x′) + 2iε(t(x)− t(x′)) + ε2 . (81)

Following Ref. [4] and [33] we define a small sampling domain. A small sampling
domain Σ is defined to be an open subset of (M, g) that (i) is contained in a globally
hyperbolic convex normal neighbourhood of M , (ii) may be covered by a single hyperbolic
coordinate chart {xµ}, which requires that ∂/∂x0 is future pointing and timelike and that
there exists a constant c > 0 such that

c|u0| ≥

√√√√ 3∑
j=0

u2
j (82)

holds for the components of every causal covector, u, at each point of Σ. That statement
means that the coordinate speed of light is bounded. Now we may express the hyperbolic
chart {xµ} by a map κ where Σ → Rn, κ(p) = (x0(p), x1(p), . . . , xn−1(p)). Any function
g on Σ determines a function gκ = g ◦ κ−1 on Σκ = κ(Σ). In particular, the inclusion
map ι : Σ → M induces a smooth map ικ : Σκ → M. We have ϑ : Σ × Σ → M×M
the map ϑ(x, x′) = (ι ⊗ ι)(x, x′). Here h = ι∗g is a Lorentzian metric on Σ and hκ is
the determinant of the matrix κ∗h. Then the bundle N+ of non-zero future pointing null
covectors on (M, g) pulls back under ικ so that

ι∗κN+ ⊂ Σκ ×D , (83)

where D ⊂ Rn is the set of all ua that satisfy Eq. (82). As in Minkowski space there is
some freedom in choosing D. One example of appropriate D is D0 which is the set of all
ua with u0 > 0 so it is a proper subset of the upper half space R+ × Rn−1.

To conclude the introduction of this general QEI we should note that it is not covariant
in full generality because it depends on the coordinates used and the choice of tetrad near
Σ. Ref. [4] following methods of [34] showed that covariance can be restored by picking
the right set of coordinates. In particular with a choice of Fermi normal coordinates the
bound was shown to be locally covariant.

6By convention terms of the form log σ are order zero.
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Now we state a specific example of the QEI of Eq. (72) where the differential operator
D = `µ∇µ, where `µ is a future pointing null vector, thus the quantity bounded is the null
energy. The bound has the form∫

M
dvolg2(x)〈T ren

µν `
µ`ν〉ψ ≥

−2

∫
D

dnξ

(2π)n

[
|hκ|1/4gκ ⊗ |hκ|1/4gκ

(
(`µ∇µ ⊗ `ν

′∇ν′H̃(2)

)
κ

]∧
(−ξ, ξ)

+

∫
M
dvolg(x)2Cµν`

µ`ν . (84)

From this inequality one can calculate the bound for general curved spacetimes in a per-
turbative way. By perturbative here we mean up to a certain order in the curvature
components and their derivatives.

A similar calculation was performed in [32] for the energy density in n = 4 dimensions
and it included the computation of the Hadamard coefficients in H̃(2). If additionally one
requires that the curvature components and their derivatives are finite (but not necessarily
small) the bound can be written as a sum of integrals of the smearing function with
constant coefficients. For example, one such additional term that appears in the energy
density bound is (schematically)∫

dtf(t)2〈T ren
00 〉ψ & . . .−Rmax

∫
f ′(t)2dt+ . . . , where |Rµν | ≤ Rmax (85)

in a Fermi-Walker coordinate system [32]. Then the derivation of DSNEC for curved
spacetimes can follow the procedure described in the following subsections for Minkowski
spacetime.

Massless fields

Let us first discuss the bound for massless fields in Minkowski space for which Eq. (84)
becomes∫

M
dvolg(x)2〈T ren

µν `
µ`ν〉ψ ≥ −2

∫
D

dnξ

(2π)n

[
(g`µ∇µ ⊗ g`ν

′∇ν′)H̃−n/2+1

]∧
(−ξ, ξ) , (86)

where only the most singular term of (74)-(75) is relevant:

H̃−n/2+1(x, x′) = H−n/2+1(x, x′) =
Γ
(
n−2

2

)
4πn/2

1

σ+(x, x′)n/2−1
. (87)

Since we are in Minkowski space the timelike curve can be parametrized by t. Then we
can define ∆t = t− t′ and ∆~x = ~x− ~x′

H−n/2+1(x, x′) =
(−1)n/2−1Γ

(
n−2

2

)
4πn/2((∆t− iε)2 − |∆~x|2)n/2−1

. (88)

To proceed we pick the direction (−) for the null vector `µ defined by x− = t − x while
x+ = t+ x. Then

`µ∂µ = ∂− =
1

2
(∂t − ∂x) , (89)

and

H−n/2+1(x, x′) =
(−1)n/2−1Γ

(
n−2

2

)
4πn/2(∆x−∆x+ − 2iε∆t−∆y2)n/2−1

, (90)
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where we remind the reader that y denotes the transverse spatial dimensions. Applying
the derivatives gives

(`µ∂µ)(`ν
′
∂ν′)H̃−n/2+1(x, x′) =

(−1)n/2Γ
(
n+2

2

)
(∆x+)2

4πn/2(∆x−∆x+ − 2iε∆t−∆y2)n/2+1
. (91)

So we have∫
M
dvolg(x)2〈T ren

−−〉ψ ≥

−
(−1)n/2Γ

(
n+2

2

)
2πn/2

∫
D

dnξ

(2π)n

[
g(x)g(x′)

(∆x+)2

(∆x−∆x+ − 2iε∆t−∆y2)n/2+1

]∧
(−ξ, ξ) .

(92)

Massive fields

For massive fields there are additional singular terms in the Hadamard parametrix that
are relevant for the renormalization of the stress tensor. The details of these terms are
dimension dependent and are fixed requiring the expansion (76) to satisfy the massive field
equation at each order. Likewise the number of terms relevant for renormalizing the stress
tensor is dimension dependent. In particular, following the standard Hadamard renormal-
ization prescription of subtracting only the singular terms (what one might regard as a
minimal subtraction scheme) only a finite number of coefficients U` and V` are relevant.
We emphasize that in Minkowski space this is, in principle, a different scheme than normal
ordering: since the Minkowski two-point function is typically a transcendental function
of the mass, subtraction by the vacuum expectation value is a subtraction in all orders
of m2. Since these two schemes differ only by terms vanishing in the coincident limit
they yield the same local operator, T ren

−−, however for the derivation of a lower bound we
will find different results. To see this, in section 4.3 we will construct the corresponding
lower bound implied by (84) for the 4d massive scalar and discuss it in comparison to the
Minkowski difference inequality (50).

4.2 Timelike smearing

As a brief check on the content of (92), let us reproduce the time-like null-energy bound
in 4d first derived in [17]; this will also provide a blue-print calculation for the double
smeared quantities to follow. To implement a worldline smearing we will take

g(t, ~x)2 = g0(t)2δ3(~x) . (93)

To take the “square-root” of the delta function, we will regard it is as the limit of a
sharply-peaked Gaussian, i.e.

g(t, ~x) = lim
σ→0

g0(t)
1

σ3/2(2π)3/4
e−

~x2

4σ2 , (94)

where its Fourier transform is given by

g̃(ω,~k) = lim
σ→0

g̃0(ω)σ3/2π3/429/4e−σ
2~k2

. (95)
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From Eq. (92) for n = 4, The bound on the time-like smeared null-energy then is∫
dtg0(t)2〈T ren

−−(t)〉ψ ≥

− lim
σ→0

σ329/2

π1/2

∫
D

d4ξ

(2π)4

∫
dω

(2π)

dω′

(2π)

∫
d3~k

(2π)3

d3~k′

(2π)3

∫
d4x d4x′e−σ

2~k2−σ2~k′2

eiωt+iω
′t′ei

~k~x+i~k′~x′e−iξ∆xg̃0(ω)g̃0(ω′)
(∆x+)2

(∆x−∆x+ − 2iε∆t−∆y2)3
. (96)

We will shift the x integral to s ≡ ∆x = x− x′. The x′ integral yields the delta functions
(2π)4δ(ω + ω′)δ3(~k + ~k′), which we then collapse and perform the Gaussian integration
over ~k:∫

dtg0(t)2〈T ren
−−(t)〉ψ ≥ − lim

σ→0

1

π2

∫
D

d4ξ

(2π)4

∫
dω

(2π)
|g̃0(ω)|2

×
∫
d4s eiωs0−iξse−

~s2

8σ2
(s+)2

(s−s+ − 2iεs0 − s2
y)

3
. (97)

We now make a specific choice of smooth sampling domain, namely D0 = {ξ0 ≥ 0}. The
integration over ~ξ then introduces (2π)3δ3(~s) which, upon collapsing, leaves the σ → 0
limit safe:∫

dtg0(t)2〈T ren
−−(t)〉ψ ≥ −

1

π2

∫ ∞
0

dξ0

2π

∫ ∞
−∞

dω

2π
|g̃0(ω)|2

∫
ds0

1

(s0 − iε)4
ei(ω−ξ0)s0 . (98)

Using the general result

lim
ε→0

∫ ∞
−∞

ds
eiωs

(s− iε)p
=

2πeipπ/2

Γ(p)
ωp−1 Θ(ω), p ∈ R (99)

and writing ζ = ω − ξ0 we have∫
dtg0(t)2〈T ren

−−(t)〉ψ ≥ −
1

3π

∫ ∞
0

dω

2π
|g̃0(ω)|2

∫ ω

0

dζ

2π
ζ3 = − 1

24π2

∫ ∞
0

dω

2π
|g̃0(ω)|2ω4 .

(100)

Using g̃′0(ω) = iωg̃0(ω) and Parseval’s theorem∫ ∞
0

dω

2π
|g̃0(ω)|2ω4 =

∫ ∞
0

dω

2π
|g̃′′0(ω)|2 =

1

2

∫ ∞
−∞

dω

2π
|g̃′′0(ω)|2 =

1

4

∫ ∞
−∞

dtg′′0(t)2 , (101)

we arrive at a nice representation in position space, matching the result of [4]∫
dtg0(t)2〈T ren

−−(t)〉ψ ≥ −
(`− · ∂t)2

12π2

∫ ∞
−∞

dtg′′0(t)2. (102)

where `− · ∂t = ηµν(∂−)µ(∂t)
ν = 1

2 .

4.3 Double null smearing

Now we want to apply the worldvolume QEI, (92), to the main object of interest, the
DSNE, in n spacetime dimensions. To do so we write the smearing function as

g(x+, x−, ~y)2 = g(x+, x−)2δn−2(~y) , (103)
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and so

g(x+, x−, ~y) = lim
σ→0

g(x+, x−)
1

σ(n−2)/2(2π)(n−2)/4
e−|~y|

2/4σ2
. (104)

Then the bound of (92) can be written as∫
d2x±g(x±)2〈T ren

−−〉ψ ≥ − lim
σ→0

Γ
(
n+2

2

)
23n/2σn−2

(−1)n/2π

∫
D

dnξ

(2π)n∫
d2k±d

2k′±
(2π)4

g̃(k+, k−)g̃(k′+, k
′
−)

∫
dn−2~kyd

n−2~k′y

(2π)2(n−2)
e−σ

2|~ky |2−σ2|~k′y |2∫
dnxdnx′eikx+ik′x′e−iξ(x−x

′) (∆x+)2

(∆x−∆x+ − 2iε∆t−∆y2)n/2+1
. (105)

A calculation following a wholly similar logic as section 4.2 (we refer the reader interested
in following the details to look there) leads to∫

d2x±g(x±)2〈T ren
−−〉ψ ≥ −

2Γ
(
n+2

2

)
(−1)n/2πn/2

∫
D

d2ξ±
(2π)2

∫
d2k±
(2π)2

|g̃(k+, k−)|2

×
∫
d2s±ei(k−ξ)±s

± 1

(s+ − iε)n/2−1(s− − iε)n/2+1
.(106)

Utilizing (99) we arrive at∫
d2x±g(x±)2〈T ren

−−〉ψ ≥ − 8

πn/2−2Γ
(
n−2

2

) ∫
D

d2ξ±
(2π)2

∫
d2k±
(2π)2

|g̃(k+, k−)|2

×(k+ − ξ+)n/2−2Θ(k+ − ξ+)(k− − ξ−)n/2Θ(k− − ξ−) .

(107)

Up to now we have been fairly agnostic about the domain, D, beyond that it satisfies
the criteria of a small sampling domain. The freedom to choose this domain is very
much analogous to the choice of domain we encountered in the difference inequalities in
section 3. In principle this freedom of a small sampling domain is a parameter that can
be optimized, however, much like in section 3 we restrict our focus to boosted domains of
the form Dη := {ξη = eηξ+ + e−ηξ− ≥ 0} and optimizing over η ∈ R.

Defining variables ζ± = k± − ξ± (with the constraint kη − ζη ≥ 0 due to the domain
Dη) ∫

d2x±g(x±)2〈T ren
−−〉ψ ≥ − 2

πn/2Γ
(
n−2

2

) ∫ d2k±
(2π)2

|g̃(k+, k−)|2∫ eηkη

0
dζ−

∫ e−ηkη−e−2ηζ−

0
dζ+(ζ+)n/2−2(ζ−)n/2Θ(kη) .

(108)

The ζ± integrals then give the final expression∫
d2x±g(x+, x−)2〈T ren

−−〉ψ ≥ −
e2η

(4π)
n−1

2 Γ
(
n+1

2

) ∫ d2k±
(2π)2

|g̃(k+, k−)|2 knη Θ(kη).

(109)

with kη = eηk+ + e−ηk−. This is the same expression as the one derived in Sec. 3.2 (in
the massless limit).
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Including a mass

We can compute the mass corrections, in 4d, to the massless bound,(109), by using the
expansion of the Hadamard parametrix. The relevant terms for the 4d massive scalar in
Minkowski spacetime are given by

H(1)(x, x
′) = H−1(x, x′) +H0(x, x′) +H1(x, x′) , (110)

where

H̃−1(x, x′) = H−1(x, x′) = − 1

4π2

1

(∆x−∆x+ − 2iε∆t−∆y2)

H̃0(x, x′) = H0(x, x′) = − v0

4π2
ln
(
(∆x−∆x+ − 2iε∆t−∆y2)/`2

)
H̃1(x, x′) = H1(x, x′) = − v1

4π2
(∆x−∆x+ −∆y2) ln

(
(∆x−∆x+ − 2iε∆t−∆y2)/`2

)
(111)

with coefficients7 [30]

v0 = −1

4
m2 , v1 =

1

32
m4 . (112)

Higher order terms vanish in the coincidence limit. Applying the derivatives gives

(∂−)(∂′−)H̃(1)(x, x
′) =

(∆x+)2

2π2(∆x−∆x+ − 2iε∆t−∆y2)3

+
m2(∆x+)2

16π2(∆x−∆x+ − 2iε∆t−∆y2)2
+

m4(∆x+)2

128π2(∆x−∆x+ − 2iε∆t−∆y2)
. (113)

Tracking the terms through the calculation of the previous section we arrive, intermedi-
ately, at∫

d2x±g(x+, x−)2〈T ren
−−〉ψ ≥ −

4

π2

∫
Dη

d2ξ±
(2π)2

∫
d2k±
(2π)2

|g̃(k+, k−)|2
∫
d2s±ei(k−ξ)±s

±

×
{

1

(s+ − iε)(s− − iε)3
+
m2

8

1

(s− − iε)2
+
m4

64

s+

(s− − iε)

}
≥ −8

∫
d2ζ±
(2π)2

∫
d2k±
(2π)2

|g̃(k+, k−)|2 Θ(kη − ζη)

×
{
ζ2
−Θ(ζ−)Θ(ζ+)− m2

4
δ(ζ+)ζ−Θ(ζ−) +

m4

32
δ′(ζ+)Θ(ζ−)

}
(114)

where in the second line we changed variables to ζ± = k± − ξ± and incorporated the
boosted domain, Dη into an appropriate theta function. From here the ζ± integrals are
simple to do (noting that ∂

∂ζ+
Θ(kη − ζη) = −eηδ(kη − ζη))∫

d2x±g(x+, x−)2〈T ren
−−〉ψ ≥ −

e2η

6π2

∫
d2k±
(2π)2

|g̃(k+, k−)|2
(
k4
η −

3

2
m2k2

η +
3

8
m4

)
Θ(kη) .

(115)
We note that this is a different lower bound for massive fields than what we found by
direct construction in Minkowski space, (50). As discussed at the end of section 4.1, this
is somewhat expected since Hadamard renormalization only subtracts a finite number of

7These coefficients differ slightly from [30] due to a difference in definition in σ(x, x′).
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Figure 1: In blue is the difference inequality, (50), which displays exponential damping in γ2.

In orange is the absolute inequality, (115), which increases (i.e. becomes weaker) for large

masses. This plot was made using square-root Gaussian smearing functions, (8), g(x+, x−) =
1√
δ+δ−

f√G(x+/δ+)f√G(x−/δ−) and choosing the boost parameter eη =
√
δ−/δ+ to scale out the

dependence on the smearing parameters as outlined in the paragraph above equation (52).

singular terms while normal ordering subtracts an expectation value containing all orders
in a mass expansion. To check this intuition we can compare (115) to a perturbative
expansion of (50)∫

d2x±g(x+, x−)2〈T ren
−−〉ψ ≥ −

e2η

6π2

∫
d2k±
(2π)2

|g̃(k+, k−)|2
{(

k4
η −

3

2
k2
ηm

2 +
3

8
m4

)
Θ(kη)

+k4
η

(
−mδ(kη) +

m2

2
δ′(kη)−

m3

6
δ′′(kη) +

m4

24
δ′′′(kη)

)
+ . . .

}
≥ − e

2η

6π2

∫
d2k±
(2π)2

|g̃(k+, k−)|2
{(

k4
η −

3

2
k2
ηm

2 +
3

8
m4

)
Θ(kη) + . . .

}
(116)

where the second line, coming from expanding Θ(kη −m), vanishes up to order m4. This
expansion matches (115) up to the “. . .” indicating higher order mass terms. Note that
while the coefficients of the mass terms can come with either sign, the general expectation
is that full difference inequality (50) is a qualitatively stronger lower bound than (115).
Indeed it was shown in [1] that for Gaussian smearing functions of smearing lengths δ±,
that at large mass the integral in (50) can be evaluated at saddle-point and is exponentially
suppressed in m2δ+δ− making the bound very tight. This is contrast to (115), which gets
weaker as the mass increases.

To illustrate that fact we write the bound as a function of γ := (δ+δ−m2)1/2

∫
d2x±g(x±)2〈T ren

−−〉ψ ≥ −
c

(4)
T−−

δ+(δ−)3
Q̃(γ) . (117)

and plot the two bounds as functions of γ. The two plots are shown in figure 1.

5 Boost optimization of the bound

Having derived the DSNEC bounds in Sec. 3.2 and Sec. 4.3 we now address the issue of
Lorentz covariance, namely that our boundary involves a explicit reference frame. We
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remind the reader that is related to a freedom in the choice of smooth sampling domain
that we discussed earlier.

In this section we utilize this freedom (or at least a portion of it) optimize the derived
bound over Lorentz boosts of the domain. We show in principle how this works in four
spacetime dimensions where we derive an “boost-optimized” bound. More generally, how-
ever, we show how a simple (albeit sub-optimal) Lorentz covariant bound can be derived in
general dimensions. For even spacetime dimensions, this bound can be expressed directly
in position space.

5.1 4-dimensions

We start with the expression Eq. (109) in n = 4 dimensions. Because the integrand is
even8 about kη → −kη we can extend Dη to the entire R2 plane at the expense of a factor
of 1/2:∫

d2x±g(x+, x−)2〈T ren
−−〉ψ ≥ −

1

12π2

∫
dk+dk−
(2π)2

|g̃(k+, k−)|2
(
β3k4

+ + 4β2k3
+k−

+6βk2
+k

2
− + 4k+k

3
− + β−1k4

−

)
, (118)

where β ≡ e2η. We will proceed by assuming that the smearing function factorizes as

|g̃(k+, k−)|2 = |g̃+(k+)|2|g̃−(k−)|2 (119)

normalized to ∫
dk±
2π
|g̃±(k±)|2 = 1. (120)

We will simplify the notation in what follows by defining moments∫
dk±
2π

kn± |g̃±(k±)|2 ≡ 〈kn±〉 n ∈ Z . (121)

While hidden in this notation, it is important to keep in mind that 〈kn±〉 is a functional
of g̃±, respectively. Additionally note that the assumption that the smearing function
factorizes forces the odd moments to vanish. So we have∫

d2x±g(x+, x−)2〈T ren
−−〉ψ ≥ −

1

12π2

(
β3〈k4

+〉+6β1〈k2
+〉〈k2

−〉+β−1〈k4
−〉
)
≡ −Q(β) . (122)

The minimizer of the bound, β0, is a real positive solution to

Q′(β0) = 0 ⇒ 〈k4
−〉 − 6β2

0〈k2
+〉〈k2

−〉 − 3β4
0〈k4

+〉 = 0 , (123)

and the boost-optimized bound is

Q(β0) =

√
〈k4
−〉

3π2

(
〈k4
−〉〈k4

+〉+ 3〈k2
−〉〈k2

+〉
(

3〈k2
−〉〈k2

+〉+
√

9〈k2
−〉2〈k2

+〉2 + 3〈k4
−〉〈k4

+〉
))

(
3〈k2
−〉〈k2

+〉+
√

9〈k2
−〉2〈k2

+〉2 + 3〈k4
−〉〈k4

+〉
)3/2

.

(124)
Before moving on, let us remark on some features of the above bound. Firstly, we em-
phasize that the optimization over boosts is only a one-parameter characterization of the
freedom in choosing a smooth sampling domain. Thus we strongly suspect that (124) is
not the truly optimal bound for 4d massless scalars.

8Since g is real in position space g̃(−k+,−k−) = g̃(k+, k−)∗.
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Secondly, boost optimization has restored Lorentz covariance to (124): under (k+, k−)→
(λk+, λk−) in the integrals defining the moments of |g̃|2, Q → λ4Q consistent with the
engineering dimension of T−− and under (k+, k−)→ (λk+, λ

−1k−), Q→ λ−2Q consistent
with the weight of T−− under boosts. We will find this to also be true of the bounds we
derive for general dimensions.

Thirdly, unlike what is suggested prima facie by (109), (124) is not a linear functional
of the original smearing function g2. This follows from solving Q′(β0) = 0 in terms of the
moments of |g̃|2, i.e. the optimizing boost parameter depends on the smearing function.
This is a common feature of the bounds we discuss for general dimensions below.

Lastly, for general dimensions (and in particular odd dimensions) the extension of
Dη → R1,1 is only valid for the absolute value of knη . As a consequence we will not
be able to drop odd moments of |g̃|2. Additionally, solving the resulting polynomial
Q′(β0) = 0 may not be analytically possible in generic dimensions. As we will soon see we
can circumvent these difficulties and derive a generic expression at the expense of making
the bound slightly weaker.

5.2 General dimensions

We start by noting∫
d2k±
(2π)2

|g̃(k+, k−)|2 knη Θ(kη) =
1

2

∫
d2k±
(2π)2

|g̃(k+, k−)|2 |kη|n . (125)

We will continue to assume that the smearing function factorizes as in Eq. (119) and
normalized as in Eq. (120), and we write

∫
d2x±g(x+, x−)2〈T ren

−−〉ψ ≥ −
c

(n)
T−−

2

n∑
m=0

(
n
m

)
e(2+2m−n)η〈|k+|m〉〈|k−|n−m〉 (126)

where we recall the definition of c
(n)
T−−

in equation (51). Note that we have made use of
the triangle inequality after expanding |kη|n and so we have already weakened the bound.
Next we implement Hölder’s inequality on each term of the sum. The inequality is the
following [35]: given a probability measure dµ and two measurable functions f1 and f2

then∫
dµ|f1||f2| ≤

(∫
dµ|f1|p1

)1/p1
(∫

dµ|f2|p2

)1/p2

, p1,2 ≥ 1, 1/p1 + 1/p2 = 1 .

(127)
For 〈|k+|m〉, for example, we use the measure dµ = dk+

2π |g̃+|2, functions f1 = |k+|m, f2 = 1,
and p1 = n/m, p2 = n

n−m . This doesn’t apply for the m = n term in the sum, however we
don’t need to implement the inequality for this term. We now have

∫
d2x±g(x+, x−)2〈T ren

−−〉ψ ≥ −
c

(n)
T−−

2

n∑
m=0

(
n
m

)
e(2+2m−n)η〈|k+|n〉m/n〈|k−|n〉1−m/n .

(128)

Now defining β̄ := e−η〈|k+|n〉−
1

2n 〈|k−|n〉
1

2n to arrive at

∫
d2x±g(x+, x−)2〈T ren

−−〉ψ ≥ −
c

(n)
T−−

2
Pn(β̄) 〈|k+|n〉

n−2
2n 〈|k−|n〉

n+2
2n (129)
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where we recall the notation 〈|k±|p〉 :=
∫
dk±|g̃±(k±)|2|k±|p. All residual dependence on

the boost parameter lies in

Pn(β̄) =

n∑
m=0

(
n
m

)
β̄n−2−2m = β̄−2(β̄−1 + β̄)n , (130)

which a simple polynomial of β̄ and whose optimal value is given by

β̄0 =

√
n+ 2

n− 2
, Pn(β̄0) =

n− 2

n+ 2

(√
n− 2

n+ 2
+

√
n+ 2

n− 2

)n
. (131)

Note that much like the 4d boost-optimal bound, (124), the general bound (129) has
restored covariance under boosts and rescalings of (k+, k−) and so fixes the dependence
on smearing lengths into the DSNEC form.

For instance, being explicit, we could choose the functions g± as

g±(x±) =
1√
δ±
f√G(x±/δ±) (132)

where we recall that f√G is the square-root Gaussian, (8). The moments are9

〈|k±|m〉 =
Γ
(
m+1

2

)
2
m+1

2

√
2π(δ±)m

. (133)

Then we see that Eq. (129) is precisely in the DSNEC form∫
d2x±

δ+δ−
f√G(x+/δ+)2f√G(x−/δ−)2〈T ren

−−〉ψ ≥ −An
1

(δ+)n/2−1(δ−)n/2+1
, (134)

where

An =
c

(n)
T−−

Pn(β̄0)Γ
(
n+1

2

)
2
n+3

2

√
2π

=
1

2(8π)n/2
n− 2

n+ 2

(√
n− 2

n+ 2
+

√
n+ 2

n− 2

)n
. (135)

It is also helpful to compare this general bound to the “boost-optimal” bound, (124) in
four dimensions, again using square-root Gaussians as the smearing functions. A simple
calculation reveals that (124) and (129) imply, respectively,∫

d2x±

δ+δ−
f√G(x+/δ+)2f√G(x−/δ−)2〈T ren

−−〉ψ ' − 2.18× 10−3

(δ+)3/2(δ−)5/2
, (Boost-optimized)∫

d2x±

δ+δ−
f√G(x+/δ+)2f√G(x−/δ−)2〈T ren

−−〉ψ ' − 7.51× 10−3

(δ+)3/2(δ−)5/2
. (Equation (129))

(136)

and so indeed (129) is a weaker bound.

9We will choose the convention g̃± := 1√
2

∫
dx+ eik±x

±
g±(x±) in accordance with the factor of two

encountered in footnote 5.
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5.3 Even dimensions

We finish this section of the paper by noting that while generally our bound is most
conveniently expressed in momentum space, in even dimensions the integrals can be inverse
Fourier transformed to integrals over local quantities in position space (this is not true in
odd dimensions because of our bound makes use of the absolute value of the momenta).
Indeed by noting

〈|k±|n〉g̃± =
1

2

∫
dk±
2π
|g̃±|2 kn± =

1

4

∫
dx± (g(n/2)(x±))2 , (137)

where the superscript (·)(n/2) indicates the n/2-th derivative, we arrive at simple position
space integrals∫

d2x±g(x±)2〈T ren
−−〉ψ ≥ −

c
(n)
T−−

Pn(β̄0)

8

×
(∫

dx+(g
(n/2)
+ (x+))2

)n−2
2n
(∫

dx−(g
(n/2)
− (x−))2

)n+2
2n

. (138)

where we recall the definitions of the constant c
(n)
T−−

in equation (51) and the coefficient

Pn(β̄0) in equation (131). In four dimensions, in particular, this is∫
d2x±g(x+, x−)2〈T ren

−−〉ψ ≥ −
16

81π2

(∫
dx+(g′′+(x+))2

)1/4(∫
dx−(g′′−(x−))2

)3/4

.

(139)

6 Discussion

In this work we investigated the double smeared null energy condition (DSNEC), a pro-
posed bound on the renormalized null energy smeared over two null directions. For free
fields in Minkowski space we derived this bound in two separate ways. First, we derived the
DSNEC as a quantum difference inequality using the Minkowski vacuum as the reference
state. We showed that this derivation generalizes to bounds on a large set of operators
including higher-spin currents. Second, we showed that the DSNEC arises naturally from
a general absolute quantum worldvolume inequality. The formalism of this second deriva-
tion allows for a straightforward generalization to curved spacetimes. As both approaches
require a fixed domain of momentum integration, we further utilized this degree of freedom
to optimize the bound over a set of boosted domains. This results in a bound that restores
Lorentz covariance and displays an unexpected, non-linear dependence on the smearing
function. Finally, we showed how the averaged null energy condition (ANEC) and the
smeared null energy condition (SNEC) can be derived from DSNEC at the correct limit.

There are several interesting directions for future work. The most obvious is to inves-
tigate the generalization of our bound to curved spacetimes. As mentioned above, this
is indeed a primary motivation for expressing the DSNEC as an absolute inequality: as
opposed to Minkowski space, there is no preferred reference vacuum state in curved spaces.
Renormalizing with respect to the Hadamard parametrix provides a canonical way to de-
rive the DSNEC while allowing for curvature contributions. Generalizing the DSNEC to
curved spaces is also a chief concern for applications to semiclassical gravity, which we will
return to discuss shortly. Thus this is a direction of high interest and importance.

Further probing the validity of the DSNEC, one can also speculate about its application
in generic quantum field theories in Minkowski spacetime. For theories that are relevant
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perturbations away from free field theory, we generally expect the DSNEC to hold following
the argument given in [1]: at large momenta (compared to any inverse correlation lengths
of the theory) the divergences appearing in vacuum expectation values are roughly given
by those of the UV fixed point. Having shown that the DSNEC holds for the free fixed
point, it is reasonable to assume that the smeared null energy is lower bounded in the
above situations as well. The engineering dimension of T−− and covariance under boosts
then fix the schematic form of this bound. For strongly interacting theories, the question
becomes more subtle and a proof of the DSNEC will likely require formal CFT techniques.
It has been suggested that by looking at states prepared by stress-tensor insertions [36],
that energy densities in 4d CFTs obey worldvolume inequalities. It would be interesting
to explore whether the same states suggest the validity of the DSNEC and more generally,
if the DSNEC can be proven in CFTs. For non-conformal general interacting QFTs, the
situation is more difficult as no such QEIs have been derived. Their existence has been
established only for operators arising from the operator product expansion of theories
satisfying a microscopic phase space condition [37]. However, it is not clear if these
operators include components of the stress energy tensor of interacting theories.

Another potential avenue for establishing the validity of the DSNEC in interacting
quantum field theories is to explore its connection (if any exists) to state-dependent en-
tropic bounds. The most pressing example is the QNEC, which, as discussed in the
introduction, has been proven to hold in generic Poincaré-invariant quantum field theo-
ries. There is a broad expectation that the QNEC is tight for interacting theories: for
holographic CFTs it is known that the QNEC is saturated [38] and there are strong argu-
ments (although not a strict proof) for QNEC saturation in interacting CFTs [39] (these
arguments break down precisely for free theories). Speculating along similar lines, one
may hope that any link between the DSNEC and the generalized second law, or the quan-
tum focusing conjecture may more directly establish a role in constraining semi-classical
gravity. However, it is not presently clear to us how one can effectively remove the non-
linear state-dependence of the QNEC through “double smearing” and arrive at a finite
state-independent bound such as the DSNEC. We finally remark on the possibility of
proving the DSNEC in the realm of holographic CFTs. Using the principle of “no bulk
shortcut” applied to boundary null geodesics, Leichenauer and Levine were able to prove
the SNEC [40] for such theories. For the DSNEC one would like to extend this reasoning
to a diamond in the (x+, x−) plane. One strategy is foliating the smearing region with
null-geodesics and applying “no bulk shortcut” to each geodesic, although some care will
be needed in not arriving simply at the SNEC trivially integrated over the other null
direction. Perhaps the broader principle of “causal wedge nesting” [41] is a more natural
starting point for the DSNEC; more ambitiously, a proof utilizing “entanglement wedge
nesting” [42] might also point towards connections with the QNEC (which follows from
entanglement wedge nesting in holographic theories [43]). We leave all of these points as
interesting and open lines for future research.

The other main direction for future work is to use this type of bound in order to
prove singularity theorems. Penrose showed, assuming the NEC, that trapped surfaces
lead to singularities [21]. These theorems are violated in semi-classical gravity due to
NEC violation. Thus, a result like our bound gives the natural starting point (replacing
the NEC) for proving semi-classical singularity theorems. One main obstacle for the
DSNEC as an assumption is that singularity theorems require bounds on individual null
geodesics. In Appendix B we explore one “light-ray limit” of the DSNEC in showing how
to reproduce the SNEC. The SNEC has been used as an assumption to a semiclassical
singularity theorem for null geodesic incompleteness [16]. However in the context of field
theory alone, the SNEC bound is not very useful as one must then make sense of the
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UV cutoff. An alternative direction is using the DNEC along with “segment inequality”
theorems [44]. Such theorems use worldvolume bounds on the Ricci tensor to show that
the length of any geodesic maximizing the distance to a Cauchy surface is bounded, thus
establishing singularity theorems.
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A On the validity of the Assumption 1

In this appendix we derive the constraints on what types of operators satisfy Assumption
1 from section 3. In line with the general philosophy that a QFT is defined by its flow
away from a conformal fixed point (and to be concrete), let us spell out what Assumption
1 implies for primary operators in a CFT (if Assumption 1 is satisfied by a primary then
it is also satisfied by its descendants by acting with derivatives). Thus the main object of
interest is

[O∆(t, ~x),O∆(0)] (A.1)

where ∆ is the conformal weight of O∆. For simplicity we will focus scalar primaries
although our main conclusions will be unchanged for spinning operators. This can be
evaluated with an appropriate iε prescription and using the operator product expansion
(OPE) [45]

[O∆(t, ~x),O∆(0)] = lim
ε→0
{O∆(t− iε, ~x)O∆(0)−O∆(t+ iε, ~x)O∆(0)}

= lim
ε→0

∑
∆′

G∆′
∆∆(t̄, ~x; ∂)

∣∣∣∣∣
t̄=t−iε

t̄=t+iε

O∆′(0) (A.2)

where the sum goes over all other primaries ∆′ and we intend this as an operator statement
true inside all Wightman functions with other local operators; via the operator-state
correspondence this statement holds in a dense set of the Hilbert space. The identity, 1̂,
(with ∆′ = 0) always appears in the operator product expansion of O∆ with itself. We are
interested in what other primaries can possibly contribute to this commutator. To isolate
the contribution of a primary O∆′ we can consider the overlap of (A.2) in the conformal
vacuum, Ωc, with O∆′(y) in the limit that |y| → ∞. For instance a typical term is

lim
|y|→∞

〈O∆′(y)O∆(x)O∆(0)〉Ωc = lim
|y|→∞

G∆′
∆∆(x;−∂(y))

1

|y|2∆′
(A.3)

where we have used the universal form of primary two-point functions. In the |y| → ∞
limit the contribution of descendants (coming from acting by ∂(y)) are subleading and
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so the leading contribution comes the primary operator itself. We can also evaluate the
left-hand side of (A.3) using the universal form of conformal three-point function and find

G∆′
∆∆(x; 0) = lim

|y|→∞
|y|2∆′〈O∆′(y)O∆(x)O∆(0)〉Ωc = lim

|y|→∞

|y|2∆′c∆′
∆∆

|y − x|∆′ |x|2∆−∆′ |y|∆′

=
c∆′

∆∆

|x|2∆−∆′
. (A.4)

Here c∆′
∆∆ are three-point coefficients and are c-numbers specifying the CFT and its oper-

ator content. To take stock, the contribution of primary operators to the commutator is
then

[O∆(t, ~x),O∆(0)] ⊃
∑
∆′

c∆′
∆∆O∆′(0)f∆− 1

2
∆′(t, ~x) (A.5)

with

fh(t, ~x) := lim
ε→0

{
1

(−(t− iε)2 + ~x2)h
− 1

(−(t+ iε)2 + ~x2)h

}
. (A.6)

Note that if a primary O∆′ appears in the OPE (i.e. c∆′
∆∆ 6= 0), it is still possible to vanish

in the commutator as long as the associated f∆−∆′/2 vanishes as a distribution,∫
dt ϕ(t)fh(t, ~x) = 0 ∀ smooth ϕ(t). (A.7)

This requires h ∈ Z≤0. For instance if h ∈ Z>0 then the poles in fh can contribute to the
integration against a test function and so as a distribution [45]

fh∈Z>0(t, ~x) =
2πi

Γ(h)

{
(t− |~x|)−h∂h−1

t δ(t+ |~x|) + (t+ |~x|)−h∂h−1
t δ(t− |~x|)

}
. (A.8)

And if h /∈ Z, fh possesses branch cuts contributing to integrations against test functions
leading to [45]

fh/∈Z ∝ sin(πh)(t2 − ~x2)−h {Θ(t− |~x|)−Θ(t+ |~x|)} . (A.9)

Thus we are lead to conclude that as a necessary condition for only the identity operator
to appear in commutator [O∆,O∆], the only primaries that can appear in O∆O∆ OPE
have conformal dimensions

∆′ = 2∆ +m m ∈ Z≥0. (A.10)

Since descendent operators have conformal dimensions differing from primaries by positive
integers this is also a sufficient condition. This is very constraining of the operator spec-
trum of a CFT. We in fact already know one set of primaries that naturally in appear in
such an OPE which are the so-called “double-trace” operators schematically of the form

O∆′(x) ∼ : O∆(∂2)`∂µ1 . . . ∂µsO∆ : (x) ∆′ = 2∆ + 2`+ s. (A.11)

Excepting the possibility of multiple conformal modules possessing the same conformal
weight, we find that O∆ only has its double-traces in its OPE which implies that higher-
point functions follow from Wick contractions, reminiscent of free fields. We make the
passing remark that the bounds we derive in 3 make no use of the particular form of
commutator, only that it is proportional to the identity and so we make no requirements
on the conformal dimension of O∆ itself. This allows for the possibility for O∆ to be a
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generalized free field at some interacting fixed point with some large parameter N sup-
pressing non-Wick contractions by powers of 1/N . Thus our construction in 3 provides
lower bounds on such primaries (and their descendants) to leading order in 1/N . However
to re-iterate our warning from 3 these operators in generalized free field theories bounded
by our method do not include the stress-tensor unless the field is strictly free (since the
stress-tensor is typically not quadratic in the generalized free field unless that field is free).

Moving away from the fixed point we can ask how deformations of the CFT affect
the above analysis. For one, we expect that in order to preserve the equal-time commu-
tators, [O∆(0, ~x),O∆(0)], in Assumption 1 irrelevant deformations should be prohibited
as they might contain derivative couplings (or perhaps might induce derivative couplings
via renormalization) that can alter the canonical structure. However, we also require As-
sumption 1 to hold over all points in a causal domain and so we must evolve O∆(0, ~x)
away from t = 0 using the interacting Hamiltonian. This will generically generate more
operators unless the deformation is Gaussian. Given these two arguments it seems that
Assumption 1 will only hold for the simplest massive deformation of a generalized free
field fixed point: m2O∆O∆.

B SNEC from DSNEC

It is clear that in a “light-ray” limit, say, by taking the δ+ → 0, the right-hand side of the
DSNEC diverges leaving a trivial bound. This is expected on general grounds: the null-
energy averaged along a finite portion of a light-ray is unbounded from below in QFT [17].
However, with the introduction of a UV cutoff of the theory, the bound remains finite
allowing the proof of SNEC [1,2]. Here, we investigate the derivation of the “field theory”
version of SNEC from DNEC at the appropriate limit.

First we examine the schematic form of DNEC (52), imposing the following cutoff: we
take δ+ → 0 while δ+δ− → `2UV. Similarly to the way we derived ANEC we require that
the smearing function factorizes and limδ+0 f+(x+/δ+)2/δ+ = δ(x+ − β). Then we have∫

dx−g−(x−)2〈T−−(x+ = β, x−)〉Ψ ≥ −
N2

`n−2
UV (δ−)2

, (B.1)

consistent with a schematic form of the SNEC.
To investigate if the DNSEC implies a SNEC type bound with the same number of

derivatives on the smearing function we start from Eq. (108). Picking the η → −∞ limit
of our boosted domains Dη the equation becomes 10∫

d2x±g(x±)2〈T ren
−−〉ψ & −

∫
d2k±|g̃(k+, k−)|2

∫ k−

0
dζ−

∫ ∞
0

dζ+(ζ+)n/2−2(ζ−)n/2Θ(k−) .

(B.2)
Then the right-hand side is independent of k+. One might now be tempted to take the
δ+ → 0 limit on both sides. However we have only moved the divergence to a new place:
the unbounded ζ+ integration. We cannot infinitely boost Dη and expect a finite lower
bound (indeed in this limit Dη fails to satisfy the criteria of a small sampling domain).
This is the point at which we implement the UV cutoff. We place this cutoff covariantly
on ζ±

ζ+ζ− < `−2
UV . (B.3)

In our first approach we additionally assume that momenta appearing in the state are
cutoff as ζ± ≤ Λ± This is no longer a Lorentz invariant cutoff as imposed in some versions

10For the rest of this calculation we will ignore constant prefactors of order one for simplicity.
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of SNEC. However, this approach will allow us to derive SNEC for momenta arbitrarily
close to Λ±. Then the ζ+ integral is bounded and Eq. (B.2) becomes∫

d2x±g(x±)2〈T ren
−−〉ψ & −

∫
d2k±|g̃(k+, k−)|2Λ

n/2−1
+ k

n/2+1
− . (B.4)

We will assume that the support of the smearing function in momentum space, |g̃|2,
only has support for momenta below these cutoffs, k± ≤ Λ±∫

d2x±g(x±)2〈T ren
−−〉ψ & −

1

`n−2
UV

∫
d2k±
(2π)2

|g̃(k+, k−)|2 k2
− & −

1

`n−2
UV

∫
d2x±(∂−g(x±))2 .

(B.5)
Evaluating the stress-tensor on the x− direction and assuming that the smearing function
factorizes as

g2(x±) = g2
−(x−)g2

+(x+) , (B.6)

reproduces the SNEC bound∫
dx−g−(x−)2〈T ren

−−〉ψ ≥ −
1

`n−2
UV

∫
dx−(∂−g−(x−))2 . (B.7)

In a different approach, we do not independently bound the ζ± momenta but just
implement the covariant cutoff of Eq. (B.3). On mass-shell, 4ζ+ζ− = ~ζ2

⊥ +m2, so one can
view this as a cutoff on the transverse momenta accessible to the theory. This is the same
regime in which light-sheets admit a “pencil decomposition” and in which the SNEC was
proven in [1]. Revisiting (108) in the large e−η limit, the upper limit of the ζ+ integration
is approximately replaced with

e−2η(ζ− − k−) ≤ ζ+ − k+ <
1

`2UV ζ−
(1− `2UV k+ζ−) . (B.8)

If we additionally assume that the maximum momenta for which the smearing function
has support obeys (k+)max(k−)max � `−2

UV , then the second term of (B.8) is subleading
(recall that ζ− integral only has support for ζ− < k−). Implementing this back into (108)∫

d2x±g(x±)2〈T ren
−−〉ψ &

−
∫

d2k±
(2π)2

|g̃(k+, k−)|2
∫ k−

0
dζ−

∫ 1

`2
UV

ζ−

0
dζ+(ζ+)n/2−2(ζ−)n/2Θ(k−)

& − 1

`n−2
UV

∫
d2k±
(2π)2

|g̃(k+, k−)|2 k2
− & −

1

`n−2
UV

∫
d2x±(∂−g(x±))2 (B.9)

again arriving at the SNEC as before. Note that in this covariant approach the assumption
that (k+)max(k−)max � `−2

UV places a strong limitation on how finely one can probe the
light-ray, depending on the UV cutoff.
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