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Abstract

It is well known that quantum-mechanical perturbation theory often give rise to diver-
gent series that require proper resummation. Here I discuss simple ways in which these
divergences can be avoided in the first place. Using the elementary technique of relaxed
fixed-point iteration, I obtain convergent expressions for various challenging ground
states wavefunctions, including quartic, sextic and octic anharmonic oscillators, the hy-
drogenic Zeeman problem, and the Herbst-Simon Hamiltonian (with finite energy but
vanishing Rayleigh-Schrödinger coefficients), all at arbitarily strong coupling. These
results challenge the notion that non-analytic functions of coupling constants are in-
trinsically “non-perturbative”. A possible application to exact diagonalization is briefly
discussed.

Introduction. Dyson was the first to observe that, since quantum electrodynamics with a
negative fine structure constant is unstable, the perturbative series in powers of αmust diverge
in the physical sector with α > 0, no matter how small its numerical value [1]. Unfortunately,
such asymptotic series with zero radius of convergence are the rule rather than the exception:
simple problems such as the one-dimensional quartic anharmonic oscillator or the hydrogen
atom in an external field already give rise to perturbative series that diverge for any coupling
strength [2]. Similar issues arise in molecular [3] and nuclear [4] physics, quantum chemistry
[5], and field theory [6].

The usual strategy to deal with a divergent perturbative series is to attempt to resum it,
i.e. to use its coefficients to construct a convergent expression in ways other than simple
summation [7–9]. Various procedures have been developed for this purpose, including se-
quence transformations [10], Padé approximants [11], Borel-Laplace resummation [12–14],
and order-dependent mappings [15]. Applying these procedures in practice can be diffi-
cult. For starters, since the perturbative coefficients grow factorially or super-factorially, high-
precision (or exact) arithmetics is usually required. Second, methods based on analytic con-
tinuations (e.g. Borel resummation or order-dependent mappings) require a priori knowledge
of the singularity structure of the eigenvalues, which must obtained through semiclassical es-
timates [7] or some other technique [16], and can give rise to ambiguities [14].

Worse still, resummation is not always possible. Herbst and Simon exhibited an anhar-
monic oscillator with finite ground state energy E(g) ∼ e−d/g2

(with d > 0) but vanishing
perturbative coefficients at all orders [17], meaning that perturbation theory contains no infor-
mation about the ground state. To make progress, Jentschura and Zinn-Justin leveraged semi-
classical estimates to conjecture a modified Born-Sommerfeld quantization condition [18,19]
which gives the energy as a resurgent expansion [20]. Combined with Borel-Padé resumma-
tion, this approach allows to compute E(g) at small coupling values g [21]. However—like
other resummation procedures—the method does not by itself allow to construct the corre-
sponding eigenvector.
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The basic problem underlying the divergence of perturbative expansions is that a function
E(g) of a variable g with a singularity at g∗ ∈ C—e.g. “intruder state” [22]—cannot be ex-
pressed as a convergent powers series in g outside a disk of convergence of radius |g∗| (Abel’s
lemma); when such a singularity lies at g = 0, a power series expansions can never converge.
Resummation theory is an effort to bypass this obstruction by interpreting the perturbation se-
ries as the Taylor expansion of some member of a more general, yet sufficiently rigid, class of
function of g: a rational function for Padé approximants, a resurgent function for Borel-Ecalle
resummation, etc. A common view is that non-analytic contributions to the energy function
E(g) (e.g. instantons ∼ e−d/g2

), being intrinsically “non-perturbative”, can only be captured
from the large order behavior of perturbation theory, if at all.

But there is more to perturbation theory than Taylor expansions in the theory’s coupling
constant g. First, given a Hamiltonian H = F + g I (where F stands for “free” and I for
“interaction”), nothing dictates that we treat F as the unperturbed Hamiltonian and g I as the
perturbation. When we use any another partitioning into H = H0 + λH1 (with H0 a spectral
function of F , with the same eigenvectors), the Rayleigh-Schrödinger (RS) algorithm yields a
solution which is a power series in λ, but not in g. Second, whether we use F or some other
H0 as unperturbed Hamiltonian, assuming a power series ansatz is not necessarily the most
straightforward approach to solving the perturbation equation. I discuss below an alternative
formulation of perturbation theory, called “iterative perturbation theory” (IPT), that does not
rely on this ansatz and is more computationally efficient.

These observations are elementary, but also empowering. In the following I show that con-
vergent approximations of the ground state energy—and eigenvector—of even anharmonic
oscillators, the Zeeman problem and the Herbst-Simon Hamiltonian can be constructed per-
turbatively, at any coupling strength and without the need for educated guesses, extraneous
semiclassical estimates, ingenious resummation techniques, or knowledge of the nature and
location of singular points in the complex g plane.

Many authors have noted that the convergence of perturbation theory can be improved by
using the freedom to repartition the Hamiltonian [15,23–28]. However, the large-order behav-
ior of these optimized schemes has rarely been analyzed. To my knowledge, the resummation-
free construction of a non-trivial quantum-mechanical ground state at arbitrarily high coupling
strength with these methods has not been reported (with the exception of a zero-dimensional
model [29]). More importantly—as I hope to convince the reader—none of these optimized
perturbation methods is as elementary as the relaxed iterative scheme proposed here.

Eigenvalue perturbation theory. Consider a Hamiltonian of the form H = H0+λH1 where
H0 has a known spectrum and H1 is a perturbation. (The method also applies to non-Hermitian
problems, but we restrict to Hamiltonian operators here for simplicity). Here λ is a perturba-
tion parameter which we will eventually set to 1. We focus on an isolated, non-degenerate,
stable1 eigenvalue E0 with corresponding eigenvector ψ0 and eigenprojection P0. We seek an
eigenvector ψ of H with eigenvalue E and 〈ψ0|ψ〉 = 1. Under this normalization condition,
the eigenvalue equation Hψ= Eψ is equivalent to

ψ=ψ0 +λR0(E)(H1 + E − E)ψ,

where R0(E) = (I−P0)(E−H0)−1(I−P0) is the reduced resolvent. In the following we focus on
the choice E = E0 = E − 〈ψ0|H1ψ〉, which turns the perturbation equation into the quadratic
equation2

ψ=ψ0 +λR0(E0)(H1 − 〈ψ0|H1ψ〉). (1)

1Stability here means that the eigenvalues remains isolated and non-degenerate for small values of λ.
2Choosing instead E = E is the starting point of Brillouin-Wigner perturbation theory, in which E is computed

implicitly rather than explicitly.
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Figure 1: Ground state energy of the quartic oscillator computed with IPT (α= 1/2)
under EN partitioning (6) (continuous lines) compared to exact diagonalization in a
basis set with 5 · 104 harmonic oscillator states (dashed lines), for increasingly large
coupling constants g. Eigenvectors and eigenvalues both converge (albeit slowly)
without the need for any resummation procedure.

In a broad sense, perturbation theory consists in finding solution to (1) iteratively. There is
more than one way to approach this problem.

RS perturbation theory. Conventional RS theory seeks solutions of (1) as a power series
ψRS =

∑

l≥0λ
l al . Inserting this ansatz into (1) and collecting terms of the same order in λ

gives the well-known recursion relation al+1 =QRS(a0, · · · , al) with

QRS(a0, · · · , al)≡ λR0(E0)[H1al −
l
∑

s=0

〈ψ0|H1as〉al−s] (2)

with initial condition a0 = ψ0. In many cases of physical interest (including all examples
below, and others [30]), the perturbation H1 is block-diagonal in the basis of unperturbed
eigenstates, hence (2) is effectively a final-dimensional problem which can be solved at any
finite order k using computer algebra3. (When this condition is not met, the perturbation
equations must usually be solved numerically in a finite basis set, i.e. perturbation theory
becomes a variational approximation.) From these eigenvector coefficients the energy can
be computed at any order k, either directly as E(k)RS =

∑k−1
l≥0 λ

l〈ψ0|Hal〉, or more efficiently
through Wigner’s 2n+ 1 theorem.

Iterative perturbation theory. An alternative approach, termed here “iterative perturbation
theory” (IPT), starts from the observation that (1) is a fixed-point equation ψ = F(ψ) for the

3In particular, to any finite perturbative order k, all sums over unperturbed eigenstates are all finite sums.
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Figure 2: Convergence of IPT energy iterates E(k) for the ground states of the quartic,
sextic and octic anharmonic oscillators, all with g = 100. Here we used α= 1/2 and
EN partitioning; E is obtained by exact diagonalization. Note the doubly-logarithmic
axes: convergence is slow for these examples.

non-linear operator
QIPT(ψ)≡ψ0 +λR0(E0)(H1 − 〈ψ0|H1ψ〉). (3)

This suggests that ψ can also be computed dynamically, as the limit of the sequence of it-
erates ψ(k+1)

IPT = QIPT(ψ(k)) starting from ψ(0) = ψ0. The corresponding energy given by

E(k)IPT = 〈ψ0|Hψ
(k−1)
IPT 〉. This approach is a priori more efficient than the RS recursion (2): IPT is a

first-order recurrence relation, whereas (2) involves all previous al coefficients. Moreover, IPT
makes it easy to prove convergence results using Banach’s fixed point theorem. For instance,
we can show that, if H1 is bounded, ψ(k) converges as k→∞ for any |λ|< (3−2

p
2)/‖H1‖δ

where δ the distance between E0 and the rest of H0’s spectrum [31]. The corresponding result
in RS theory is “not at all trivial” dixit Kato [32]. Finally, IPT is directly related to RS as follows:
after k iterations, ψ(k)IPT contains powers of λ with exponents up to 2k−1, but low-order terms

coincide with RS, viz. ψ(k)IPT =ψ
(k)
RS +O(λk+1), as can be easily seen by recursion.

Relaxation. Both RS and IPT involve recurrence relations of the form Xn+1 = Q(Xn). The
main purpose of this paper is to direct attention to the fact that the convergence of perturbative
calculations is much improved if we use instead the relaxed iteration procedure

Xn+1 = αQ(Xn) + (1−α)Xn for some 0< α < 1. (4)

Relaxation is a well-known technique in numerical analysis: it simply amounts to choosing a
smaller time step in the Euler discretization of a dynamical system—a natural strategy to im-
prove convergence. From the perspective of perturbation theory, (4) turns out to be equivalent
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to a repartitioning of the Hamiltonian into

H = [α−1H0] + [H1 + (1−α−1)H0]. (5)

Eq. (5) with a special choise of α is known in quantum chemistry as “Feenberg scaling”
[33–35]. Such a repartitioning is also the starting point of order-dependent mappings [15]
and of self-consistent expansions [25]. They key point is that, upon such a repartitioning,
neither RS nor IPT give rise to power series of λ4, but instead to expansions of the form
ψ(k) =

∑c(k)
l=0 bk,l(α)λl with c(k) = k for RS theory and c(k) = 2k − 1 for IPT. Abel’s lemma

does not apply to such expansions: ψ= limk→∞ψ
(k) can admit a singularity at some λ= λ∗,

and nevertheless converge outside the disk with radius |λ∗|. For an illustration of this fact
using a simple two-dimensional example see Appendix A.

Epstein-Nesbet partitioning. We have noted before that, given H = F + g I where F is a
free theory (say a harmonic oscillator or a Fockian) and g a physical coupling constant, setting
H0 = F and H1 = g I is not necessarily the most judicious choice. Indeed another natural
choice, Epstein-Nesbet (EN) partitioning [36], is often preferable. In the basis of eigenvectors
of F , this is defined by

H0 = diag(Hnn)n≥0 = F + g diag(Inn)n≥0 (6)

and H1 = H −H0. Perhaps because it is incompatible with the notion that perturbation theory
should provide an expansion in powers of g, this choice is rarely used in the physical literature.

We now proceed to illustrate the virtues of combining EN partitioning with relaxed iter-
ation through several examples. Although both RS and IPT give comparable results, in the
following I focus on the latter (omitting subscripts) owing to its simpler structure and greater
computational efficiency.

Even anharmonic oscillators. Even-order one-dimensional anharmonic oscillor H = p2+x2+g x2s

are commonly cited to illustrate the difficulties encountered in RS theory [2, 9]. In the usual
partitioning with H0 = p2+ x2 and α= 1, the RS coefficients for the ground state energy grow
like (−1)n((s−1)n)! and the corresponding series diverges for any value of g 6= 0 due to branch
point singularities accumulating at g = 0 [37, 38]. For s = 2,3 the RS series for the ground
state energy is Padé-summable, but for higher orders it is not; (generalized) Borel summation
is however always possible [9]. It was noted in [39] that, using (6) but no relaxation, the RS
series for the quartic oscillator s = 2 may converge for very small values of g. We checked that
this is no longer true for s = 3,4.

Relaxed perturbation theory with EN partitioning, on the other hand, always converges.
Fig. 1 shows IPT energy iterates for the quartic oscillator at increasingly large coupling g; Fig.
2 in turn shows the relative errors for the quartic, sextic and octic oscillators with g = 100.
Without restrictions, we find that E(k) converges to the exact eigenvalue E as k→∞, albeit
increasingly slowly as s or g gets larger. We emphasize that the convergence of E(k) is under-
pinned by the convergence of the eigenvector ψ(k) itself, as can be checked by computing the
residuals ‖Hψ(k) − 〈ψ0, Hψ(k)〉ψ(k)‖ (not shown).

Herbst-Simon Hamiltonian. The Herbst-Simon anharmonic oscillator with potential V (x; g) = 2g x−2g x3+g2 x4

has a purely instantonic positive ground state energy E ∼ e−d/g2
for some d > 0. This unusual

non-analytic behaviour precludes a meaningful expansion in power of g, and shows that the
standard RS expansion (identically zero in this case) can sometimes converge to the wrong
value. As already noted, successful perturbative calculations of E for g up to

p
0.3 have so far

involved educated guesses and sophisticated resummation procedures [18,21].
4IPT never does: even with α= 1, ψ(k)IPT is a polynomial in λ with k-dependent coefficients.
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Figure 3: The Herbst-Simon ground state energy vanishes to all orders in g, but can
be accurately computed using relatex perturbation theory, here IPT with α= 1/2 and
EN partitioning (6).

Using IPT with α= 1/2 (again in EN partitioning) we easily compute E for any g, to arbi-
trary accuracy. For instance, to obtain E(

p
0.3) ' 1.11 to two significant figures (the state of

art using the methods of Ref. [21]), we only need a dozen iterations of IPT. With k = 220 iter-
ations, we obtain all 13 figures of the exact result [E(

p
0.3)− 1]/2 = 5.318357438655 · 10−2

cited in [21, Table III]. Fig. 3 illustrates the convergence of E(k) to the exact value (indistin-
guishable from the red curve on this figure), with its non-polynomial behavior near g = 0.

Zeeman problem. We close with an example of historical as well as experimental signifi-
cance, the hydrogen atom in a magnetic field, H = −∆/2− 1/r + g(x2 + y2) with g = B2/8
(in atomic units). To compute Zeeman shifts it is useful to make use of the SO(4, 2) dynamical
symmetry of the problem [30,40]. Thus, for the ground state ψ with energy E = −1/2+∆E,
the Schrödinger equation may be reformulated as the generalized eigenvalue problem

(T3 − 1+ gW )ψ= (∆E)Sψ (7)

where T3 is a generators of a so(2,1) sub-algebra (with discrete spectrum), W and S can be
expressed in terms of the other generators of so(4, 2) [30, Chap. 9]. Using this representation
with the partitioning H0 = T3− I , it is possible to compute the RS coefficients ofψ to large or-
ders [3]. The resulting series diverges for any g 6= 0, but Padé approximants provide accurate
estimates of E up to g ' 1. In stronger fields, Borel resummation combined with order depen-
dent mappings [41] or sequence transformations [42] give better results. These methods are
all rather sophisticated and generally use additional information about the g →∞ limit, e.g.
via a scaling of space which maps g to the unit interval5.

5The RS series for the Zeeman has been called “one of the most difficult summable divergent series encountered
in physics” [42].
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Disorder h IPR Iterations / CPU time (s)
IPT-AA KS LOBPCG

1 0.004 396/19.4 8/2.1 85/4.4
2 0.11 64/3.2 7/1.9 65/3.4
5 0.68 21/1.0 7/1.8 62/3.3
10 0.92 14/0.64 5/1.3 45/2.4
50 0.99 7/0.30 4/1.1 32/1.7
100 0.999 5/0.22 3/0.93 27/1.4

Table 1: Exact (numerical) diagonalization of the ground state of the random-field
Heisenberg spin chain. For disorder strengths h ≥ 3.7 this system is many-body
localized, implying that eigenstates are close to states in the computional basis [43]
and display high inverse participation ratio (IPR). We used L = 20 spins, periodic
boundary conditions and set the tolerance to 10−10. The Hamiltonian matrix was
built using quimb [44], and Krylov-Schur (KS) and LOBPCG calculations were done
with SLEPc [45]. For LOBPCG we used a trivial preconditioner, which proved more
efficient than a diagonal preconditioner in this case. IPT was applied with Anderson
acceleration (IPT-AA) with memory M = 10 [46]. Timings are with a 3.6 GHz 10-core
Intel i9 processor.

A straightforward generalization of IPT to account for the S matrix on the RHS of (7)
reproduces these results without using ad hoc information , and without any limitation on g
(other than the slow convergence in very strong fields). For B = 1 (a strong field of 2·105 T) we
obtain the correct result E = −0.3312 with just k = 100 iterations of IPT (α= 0.3). For B = 10,
k = 1000 iterations give E(k) = 3.72, to be compared with E = 3.25 obtained in Ref. [42] using
Weniger-type sequence transformations. Using elementary Aitken extrapolation this improves
to E(k)

′
= 3.356.

IPT as eigensolver. Like conventional RS theory, IPT is a scheme for computing analytical
approximations of perturbed eigenvectors. However, in cases where H1 is not block diago-
nal or can only be obtained in a finite basis set, as is common in quantum chemistry, the
latter can also be used as an efficient numerical eigensolver. Given a matrix H, the sim-
plest numerical implementation of IPT consists in replicating the relaxed perturbative cal-
culations above: set H0 = diag(H), start from a basis vector, sayψ0 = (1,0, · · · , 0), and iterate
ψ(k+1) = αQ(ψ(k)) + (1 − α)ψ(k) until a convergence condition is met. However, instead of
using a fixed α, it is more efficient to use an optimal convex combination of F(ψk−1) and pre-
vious iterates. This method, known as Anderson acceleration [47], constructs the new iterate
as

ψ(k+1) =
M
∑

m=0

βmQ(ψ(k−m)), (8)

where M is a memory parameter and the positive coefficients βm’s are recomputed at each
step by minimizing the residual norm.

With this modification, IPT provides an eigensolver that can be remarkably efficient: a
python implementation given in Appendix B proves up to 5x faster that state-of-the-art imple-
mentations of the Implicitly Restarted Lanczos and Locally Optimal Block Preconditioned Con-
jugate Gradient (LOBPCG) algorithms7. (Other recent methods, such as Generalized Davidson
or Jacobi-Davidson, were slower in this case.) Table 1 reports the number of iterations and

6Aitken extrapolation of a sequence sn is s′n = (snsn+2 − s2
n+1)/(sn + sn+2 − 2sn+1).

7IPT can also be applied to non-Hermitian problems, in which case speed-up factors reach 100 or more [31].
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CPU time required to compute the ground state of a random-field Heisenberg spin chain at
various disorder strengths h, showing significant speed-ups in the many-body localized phase
h≥ 3.7 (for notation and motivation see e.g. [48]). It is important to emphasize, however, that
unlike Lanczos and other general-purpose eigenvalue algorithms, IPT has a limited applicabil-
ity: due to its perturbative nature, the performance of IPT degrades rapidly when off-diagonal
elements become large compared to the separation between its diagonal elements. For more
details on the numerical aspects of IPT, I refer the reader to Ref. [31].

Conclusion. “Relaxed perturbation theory” is the idea of applying relaxed iteration to com-
pute the eigenvectors of perturbed operators, either using the well-known RS scheme, or, more
conveniently, through the application of the non-linear operator QIPT. Combined with the
Epstein-Nesbet partitioning prescription, this technique provides convergent approximations
for the ground state wavefunctions (not just energies) of challenging Hamiltonians, includ-
ing the purely instantonic Herbst-Simon Hamiltonian and the hydrogenic Zeeman problem,
up to arbitrarily high field coupling strengths. My interpretation of these results is that “non-
perturbative physics” is, in fact, squarely within the scope of perturbation theory.
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A Relaxed pertubation theory: a toy example

To build intuition for the difference between relaxed RS and IPT theories on the one hand,
and conventional perturbative expansions on the other hand, it is useful to consider the simple
two-dimensional Hamiltonian

H = H0 +H1 with H0 =

�

0 0
0 1

�

and H1 =

�

0 g
g 0

�

. (A1)

This matrix has ground state energy E(g) = (1 −
p

1+ 4g2)/2. At the exceptional points
g = ±i/2, this function has branch-point singularities which signal that H is no longer di-
agonalizable. Consequently, the conventional RS expansion of E(g) can only converge in a
centered disk D1/2 with radius 1/2, although E(g) is analytic everywhere except at g = ±i/2.
Let us now examine how relaxed perturbation theory behaves in this case.

Relaxed IPT. The simpler case to analyze is IPT. For the ground state we have

ψ
(k)
IPT =

�

1
qk
α(0)

�

with qα(x) = αg(x2 − 1) + (1−α)x . (A2)

Here the superscript denotes k-fold composition. Evaluated at its fixed point x∗ = (1−
p

1+ 4g2)/2g,
the Jacobian of qα reads q′α(x∗) = 1−α

p

1+ 4g2. This quantity has modulus smaller than 1
inside a cardioid-shape domain in the complex plane, which is therefore the domain of con-
vergence of IPT. This domain excludes the singular points ±i/2, but extends along the real
axis up to arbitrarily large values of g for sufficiently small α. For α = 1 (no relaxation), this
domain is strictly greater than the disk D1/2.

Relaxed RS theory. The RS expansion of the ground state with α-relaxation to k-th order
reads [35]

ψ
(k)
RS =

k
∑

l=0

l
∑

s=1

�

l − 1
s− 1

�

αs(1−α)l−s gsas (A3)

where as are the coefficients of the standard (unrelaxed) RS expansion of ψ. This expression
is not a power series in g, hence its domain of convergence is not restricted to the disk D1/2.

Fig. A1 illustrates these constructions graphically. From this figure it is apparent that, at
least in this simple case, IPT at a given order k = 10 approximates E(g) better than RS theory
at the same order, and that in both cases α= 1/2 provides extended convergence with respect
to the α= 1.
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Figure A1: Different ways to construct a complex function with singularities with
polynomials. In all plots color indicates argument, brightness indicates log-modulus,
and saturation indicates real and imaginary magnitude. Left: Left: The exact eigen-
value E(g) = (1−

p

1+ 4g2)/2, with its branch-point singularities at g = ±i/2. Its
Taylor expansion in g must diverge outside the disk D1/2 with radius 1/2. Right, top
row: the conventional RS series (α = 1) is valid inside a circle with radius 1/2, but
the same expansion with α = 1/2 has a larger, non-circular domain of convergence.
Right, bottom row: IPT with α= 1 converges inside a cardioid shaped domain which
is stricly larger than D1/2; with α= 1/2 this domain extends yet further.
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B Python code for IPT-AA

import aa # Anderson acceleration from https :// github.com/cvxgrp/aa

import numpy as np
import time

def eigs_ipt(H, i = 0, v0 = None , mem = 10 , maxiter = 1000 , tol = 1e-
10):

dim = H.shape[0]
H0 = H.diagonal () # Epstein -Nesbet partitioning
g = H0[i] - H0; g[i]=1; R0 = 1/g; R0[i] = 0 # Reduced resolvent
aa_wrk = aa.AndersonAccelerator(dim , mem) # Initialize

accelerator
e = np.zeros(dim); e[i] = 1 # Unperturbed eigenvector (basis

state)
if v0 is not None:

w = v0
else:

w = e

def Q(v, R0, H0): # Quadratic operator , eq. (3) in main text
H1v = H @ v - np.multiply(H0 , v)
return(e + np.multiply(R0, H1v - H1v[i]*v), H1v)

err = [1]
l = 0

tic = time.time()
while l <= maxiter and err[-1]>tol:

v = w
w, H1v = Q(v, R0, H0) # Iterate Q
l += 1
aa_wrk.apply(w, v) # Anderson acceleration
E = H0[i] + H1v[i] # Evaluate energy
err.append(np.linalg.norm(v - w)) # Estimate error

toc = time.time()

print(’Iterations:’, l - 1)
print(’Time:’, toc - tic)

return(E, v)
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