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In lattice field theory, Monte Carlo simulation algorithms get highly affected by critical slowing
down in the critical region, where autocorrelation time increases rapidly. Hence the cost of generation
of lattice configurations near the critical region increases sharply. In this paper, we use a Conditional
Generative Adversarial Network (C-GAN) for sampling lattice configurations. We train the C-GAN
on the dataset consisting of Hybrid Monte Carlo (HMC) samples in regions away from the critical
region, i.e., in the regions where the HMC simulation cost is not so high. Then we use the trained C-
GAN model to generate independent samples in the critical region. We perform both interpolation
and extrapolation to the critical region. Thus, the overall computational cost is reduced. We test
our approach for Gross-Neveu model in 1+1 dimension. We find that the observable distributions
obtained from the proposed C-GAN model match with those obtained from HMC simulations, while
circumventing the problem of critical slowing down.
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I. INTRODUCTION

Lattice field theory is the most reliable and well estab-
lished technique to solve quantum field theories nonper-
turbatively. In this approach the theory is formulated
on a discrete space-time lattice to solve numerically. In
Monte Carlo(MC) simulation of lattice field theory the
efficiency of simulation depends on the algorithm used.
Algorithm like Hybrid Monte Carlo (HMC)[1] works well
away from the critical points of the lattice theory but
when one approaches the critical region the simulation
algorithm suffers severe critical slowing down [2][3]. Near
the critical point the autocorrelation time increases dra-
matically and can become larger than the total simulation
run time. Therefore we have no control over the statistical
uncertainties of calculated observable on the simulated
lattice configurations. As an example, in lattice QCD as
we approach the continuum limit a→ 0 for a fixed phys-
ical volume, the computational cost of HMC scales ap-
proximately as a−z with z > 6[3]. Several methods in
gauge theories has been developed [4][5][6] to improve
the MC simulations on lattice. Machine Learning(ML),
in the mean time has made tremendous advancements
and found application in many branches in physics. ML
has been applied extensively in many condense matter
and statistical physics problems[7–10]. In [11], supervised
learning has been adopted to accelerate the MC simula-
tions for statistical physics problems, a self learning MC
has been proposed in [12] to reduce the autocorrelation
time specially near the critical region by learning an effec-
tive Hamiltonian. In recent times some machine learning
approaches[13–20] are used to circumvent the problem of
diverging autocorrelation time in lattice filed theory and
XY model[21] as well. Machine Learning(ML) has been
also applied to circumvent the problem of critical slowing
down in U(1) gauge theory [17] and parameter regres-
sion task in [15]. In this work we explore a system with

fermions viz. the Gross-Neveu model[22]. In this work,
following the ML approach we have used Generative Ad-
versarial Network (GAN)[23] conditioned on parameter
of the theory to efficiently generate lattice field configu-
rations near critical point. ML based generative models
generates uncorrelated samples which is one of the reason
for using it as a replacement of MCMC simulation. To the
best of our knowledge, GANs have not been applied to
any fermionic system. However, normalizing flows have
been used for Yukawa model [14]. In Ref[21], C-GANs
have been found to be effective for studying phase tran-
sitions in XY model.
The critical point of a lattice theory corresponds to a
particular value of the parameters (λ) of the theory. Our
target is to generate uncorrelated samples from a prob-
ability distribution of kind: P (Φ|λcrit) = 1

Z e
−S(Φ,λcrit)

where Φ is lattice field, S is the action and Z is the parti-
tion function of the theory. The basic idea of our method
consists of the following three steps :

1. Generate samples using HMC for λ away from crit-
ical region of the lattice theory : Φ ∼ p(Φ|λnoncrit).

2. Train the GAN models conditioned on the param-
eter λ using the data from step 1, i.e., learn the
distribution p(Φ|λ).

3. Interpolate the trained generator model near the
critical point and generate samples from the C-
GAN model.

To implement the above ideas we have used a simple field
theory in lattice - the Gross-Neveu model(GN model) in
1+1 dimensions [22]. GN model possesses many proper-
ties similar to QCD. It is an asymptotically free theory
and re-normalizable in 1+1 dimension. GN model un-
dergoes a spontaneous chiral phase transition and is ex-
tensively used in the literature as a toy model for QCD.
With Wilson fermion, a parity broken phase (Aoki phase)
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emerges on a finite lattice [24]. The Aoki phase structure
of GN model with Wilson fermion and staggered fermion
with flavored mass term has been investigated in strong
coupling limit in [25]. The chiral phase transition of the
GN model with minimally doubled Borici-Creutz fermion
has been investigated in detail in Ref.[26]. The mass spec-
trum of GN model has been studied in Refs. [27, 28].
To check the validity of the generative model, we evalu-
ate it in the critical region. For evaluation, we compare
the observables calculated from the samples generated
by the proposed C-GAN with those from the samples
generated by HMC simulations. Since proposed C-GAN
model’s samples are independent, given λ, it alleviates the
critical slowing down problem. Since the lattice constant
a changes with parameter of the theory, we must choose
the lattice size accordingly so that at critical region we
get a lattice of desired physical volume.

II. GROSS-NEVEU MODEL IN 1+1
DIMENSION

A. Continuum Theory:

The Euclidean Lagrangian of GN model in 1+1 dimension
is [22]:

L =

Nf∑
f=1

ψf (x)( 6∂)ψf (x)− g2

2

( Nf∑
f=1

ψf (x)ψf (x)
)2

(1)

With the help of so called Hubbard-Stratonovich(HS)
transformation we can reduce the four fermion part to
a term quadratic in the fermion fields and an additional
auxiliary bosonic field. The transformation is basically a
shifted Gaussian integral.

exp(−
∫
d2x[

g2

2
(ψf (x)ψf (x))2]

= N [

∫
Dσ(x)exp(−

∫
d2x[

Nf
2λ̃
σ2(x) + ψf (x)σ(x)ψ(x)]

(2)

where λ̃ = g2Nf .

The partition function becomes

Z =

∫
DψDψDσe−Sσ[ψ,ψ,σ]. (3)

The action is given by

Sσ[ψ,ψ, σ] =

∫
d2x[

Nf
2λ̃
σ2(x) + ψfDGN (x)ψf (x)], (4)

where, DGN = 6∂ + σ(x)
One can show that the σ field and condensate field ψψ

are linked via

〈ψ(x)ψ(x)〉 =
−Nf
λ̃
〈σ(x)〉. (5)

Therefore, the average of auxialary field 〈σ(x)〉 can be
referred to as the Chiral Condensate. This 〈σ(x)〉 can
be used as an order parameter to study spontaneously
chiral symmetry breaking of the GN model. GN model
is analytically solvable in the infinite flavor limit:Nf →
∞. Its phase structure has been studied extensively in
this limit[29][30]. Inhomogeneous phases of GN model in
lattice are also studied for finite number of flavors with
proper continuum limit in [31, 32].

B. Lattice theory:

The action of lattice GN model in the staggered formal-
ism [33] is generally written as

S =
∑
x,y

[
λNf

2
σ2(x) +

f=Nf∑
f=1

χf (x)D(x, y)χf (y)] (6)

where the coupling constant is inverted to λ = 1/λ̃ for
simulation purpose and D = D1 + Σ with

D1(x, y) =
1

2
[δx,y+1̂ − δx,y−1̂] +

1

2
[δx,y+2̂ − δx,y−2̂] (7)

Σxy =
1

4
δxy[σ(x)+σ(x− 1̂)+σ(x− 2̂)+σ(x− 1̂− 2̂)] (8)

where 1̂ and 2̂ are unit vectors in the two directions in
2D.
This theory has discrete chiral symmetry :

χ→ (−1)x1+x2χ, χ→ −(−1)x1+x2χ, σ(x) = −σ(x)
(9)

Higher Nf value is necessary to match continuum
(Nf −→ ∞) results but Nf = 2 will serve our pur-
pose in this work. After introducing pseudofermionic[34]
method(for Nf = 2 ) action become non-local :

S[σ, φ, λ] =
∑
x,y

[
λ

4
σ2(x) + φ†(x)(M−1)φ(y)] (10)

where M = D†D and φ are pseudofermionic complex
field.
Partition function can be written as-

Z =

∫
DσDφ†Dφe−S[φ,φ†,σ]. (11)

With the action given in Eq.(10) we perform our HMC
simulations. In this work we have used the staggered
fermion(for details about staggered fermion, see [35]) for
lattice simulation.
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III. GENERATIVE ADVERSARIAL
NETWORK(GAN)

Generative Adversarial Networks (GANs) can be trained
to generate samples from a high dimensional probability
distribution. A GAN [23] basically consist of two neural
networks, namely, the generator and the discriminator,
where the generator’s prime job is to produce realistic
samples and discriminator distinguishes generator’s fake
samples from the real samples. Notably, GAN learns
from the samples from the true distribution, without
using the true distribution explicitly. Likewise, it gener-
ates samples and does not explicitly tell the probability
density.

The Generative model G, parameterized by Θ is a map
from a random noise z ∼ pz(z) to x ∼ pg(G(z,Θ)). The
training dataset is from a true distribution x ∼ preal(x).
The discriminator D(x,Φ) predict whether it is coming
from pg or preal. After completion of the training we ex-
pect pg to be as close as possible to preal. The training
process is a two players min-max game where discrimi-
nator improves its ability to distinguish generator’s fake
samples and generator also improves its ability to pro-
duce more realistic samples to fool the discriminator as
the training continues. In the training process both the
generator and discriminator’s weights are updated in tan-
dem.
The objective function of GAN is:

min
G

max
D

V (G,D) = Ex∼preal(x)[logD(x,Φ)]

+ Ez∼pg(z)[log(1−D(G(z,Θ),Φ))]

(12)

Conditional-GAN: If the true dataset has categories or
classes, then the original GAN approach has no control
over the type or class of output generated by the genera-
tor as output depends only on the random noise. But in
many situations it become necessary to generate data of
a particular type or class. So we want to train a GAN so
that it can learn a conditional probability distribution.
In C-GAN [36] we append the random noise with addi-
tional information λ, which could be attributes or class
labels to produce output G(λ, z,Θ), which is conditioned
on λ. We also append λ to the input of discriminator.

The Objective function of C-GAN is:

min
G

max
D

V (λ,G,D) = Ex∼preal(x)[logD(λ, x,Φ)]

+ Ez∼pg(z)[log(1−D(λ,G(λ, z,Θ),Φ))].

(13)

IV. HMC SIMULATION:

A. HMC Algorithm

HMC algorithm can be use to produce a Markov Chain
whose stationary distribution is:

P (σ, φ|λ) =
1

Z
e−S(σ,φ|λ), (14)

where S(σ, φ) is the lattice action and Z is the parti-
tion function defined in Eq.(10) and Eq.(11) respectively.
However, this partition function does not represent a clas-
sical Hamiltonian system. We can transform it by intro-
ducing a canonically conjugate momentum variable π(x)
into the system. Then it become a Hamiltonian system,
where Hamiltonian can be written as:

H(σ, π, φ) =
1

2

∑
x

π2(x) + S[σ, φ] (15)

In HMC algorithm we solve the Hamiltonian equation in
discrete time for σ(x) and π(x). We can sample pseud-
ofermionic variable φ easily by sampling complex vector
ξ from exp(−ξ†ξ) and setting φ = D†ξ. This ensures that
φ can be sampled according to the distribution (14) for a
given σ. For details of HMC for psedofermion action refer
to [35]. The common steps one follows in HMC simulation
are:

1. Choose σ0 configuration from cold-start or hot-
start.

2. Choose π from random Gaussian distribution.

3. Choose ξ as Gaussian noise and Evaluate:
φ = D†ξ.

4. MD steps to update σ and π keeping φ as
background field: Solve Hamiltonian differential
equations for some discrete time step τ .

d

dτ
σx(τ) =

∂

∂πx
H(π(τ), σ(τ), φ)

d

dτ
πx(τ) = − ∂

∂σx
H(π(τ), σ(τ), φ)

It will generate new configurations (σnew, πnew) as
the next proposal.

5. Do Metropolis test to accept or reject the new con-
figuration.

6. Return to step 2.
In this way we can generate ensemble of (σ, φ) con-
figurations according to the distribution (14).
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B. HMC Simulation and Observables

In this work, we simulate for Nf = 2, with lattice
size=32×32. During HMC simulation, we adjust the MD
step-size to keep acceptance rate around ∼ 80% with le-
gitimate autocorrelation time. We left first 500 lattice
configurations for thermalization. At each λ values in the
range [0.6 - 2.5], we generate 4000 lattice configurations
for training dataset and baseline for evaluation of our
proposed C-GAN, which is discussed further in section
VI.
The quantity: σ̄ = 1

N

∑
x σ(x), which is measured in a

single lattice configuration can be use to study the phase
transition as it’s ensemble average has direct relation to
Chiral Condensate 〈ψψ〉. However, there is a problem
with quantity σ̄ as its ensemble average 〈σ̄〉 vanishes even
for λ / λcrit i.e. even for broken phase close to the crit-
ical point. This can be seen from Fig.1 which is calcu-
lated near critical point where configurations fluctuates
between two minimum and hence average 〈σ̄〉 nearly van-
ishes. This is due to the ability of configurations to make
tunnel from one minimum to the other. So instead of us-
ing 〈σ̄〉, we choose 〈|σ̄|〉 as our order parameter which
is a suitable observable to study phase transition. One
more observable of importance is susceptibility. The two
observables can be defined as

〈|σ̄|〉 =
1

N
〈|
∑
x

σ(x)|〉; χ = N [〈σ̄2〉 − 〈|σ̄|〉2] (16)

where N is the lattice volume.

Figure 1. Fluctuations of σ̄ values for lattice configurations
during HMC simulation in between two minima at λ / λcrit .

V. PROPOSED METHOD

In HMC simulation we sample σ, φ field according to the
the distribution given in Eq.(14) i.e. σ, φ ∼ P (σ, φ|λ).
We want the C-GAN to learn the marginal distribution
of σ field i.e p(σ|λ). So we discard HMC generated pseud-
ofermionic φ samples and only consider σ samples which

now represent the marginal distribution of σ from the
joint distribution in Eq. (14). Let the samples from the C-
GAN represent an implicit distribution p̂(σ|λ). Our tar-
get is to train the C-GAN so that p̂(σ|λ) approximates
the true distribution p(σ|λ). To address the problem of
critical slowing down, we train the C-GAN model for λ
values sampled in non-critical region, where the autocor-
relation time is much smaller comparing to the critical
region. Hence generation of training dataset is not af-
fected by critical slowing down. Then we use the trained
C-GAN model to generate samples near critical λ. Since
C-GAN model generates independent samples, hence our
method can produce uncorrelated lattice configurations
in the critical region.
Vanilla C-GAN trained over the HMC samples fails to
learn the distribution reliably. The learning is made effi-
cient as well as robust by incorporating into the C-GAN
model the information of symmetries and constraints in
the theory. Also, transforming the samples so as to re-
duce the imbalance in their values improves learning. We
discuss these in detail in the following subsections.

A. Translation Symmetry

Due to translation symmetry in GN model lattices, C-
GAN generator made of dense layers fails to learn the true
distribution properly. Convolutional kernels allow trans-
lational invariance in the lattices. Hence, using convolu-
tional layers in the generator allows the learning to take
place efficiently.

B. Transformation of σ field:

Since the observables of GN model can be calculated from
|σ̄| , hence for training the C-GAN we transformed the
lattice configurations such that each configuration has
σ̄ > 0. This will reduce degrees of freedom for the C-
GAN model which will help in exploring the distribution
space more efficiently. For that purpose, we select a par-
ticular configuration and if found σ̄ < 0 then we apply a
transformation:

σ(x) = −σ(x), ∀x. (17)

For training purpose of C-GAN, we apply natural log
transformation to the HMC generated samples as follows:

σ′i(x) = ln(σi(x) + c), ∀x,i (18)

where i represent a single lattice configuration from the
ensemble and c is a constant such that the sum inside
the logarithm become positive. This transformation(18)
become necessary for stable training of C-GAN as it bal-
ances data values and reduces the dynamical range of the
σ(x) field.
For efficient training we apply the Min-Max scaling to
the above transformed data to bring into a range [-1,1].
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C. Periodic Boundary Condition:

During generation of configurations by HMC, we apply
periodic boundary condition i.e. we replace σ(i, j) by
σ′(i, j) := σ((i)N , (j)N ), where (i)N represents i modulo
N . In order to learn the periodicity by the C-GAN model
we apply periodic padding to the all layers of generator
and initial two layers of discriminator.

VI. NUMERICAL EXPERIMENT & RESULTS

A. Dataset:

Our training dataset is consisting of 10 ensembles,
each of which has 4000 lattice configurations corre-
sponding to 10 different λ values generated by HMC
simulation. Λtr is the set of λ on which we train
the C-GAN model. It includes λ values away from
the critical region. Assuming λcrit ∼ 1.5, Λtr =
{0.6, 0.8, 1.0, 1.2, 1.3, 1.8, 2.0, 2.2, 2.3, 2.5}. For inference
and evaluation of the proposed C-GAN model we use
Λts which includes λ values in the critical region too,
Λts = {0.6, 0.8, 1.0, 1.3, 1.5, 1.6, 1.7, 2.0, 2.3, 2.5}.

B. C-GAN Model Architecture and Training :

Input to the generator model consist of a 4×4 i.i.d Gaus-
sian noise with zero mean and unit variance , stacked to-
gether with 4 × 4 matrix containing all entries as λ. In
generator model three 2D Transposed convolutional lay-
ers are used for up-sampling to 32×32 final lattice config-
uration. We use kernel of sizes (3,3) & (4,4) and strides
(1,1) & (2,2) for generator model. In discriminator the
input is a grid of 32× 32 σ samples, concatenated with a
32× 32 channel with the λ value repeated in all the cells.
It has three 2D convolutional layers with Tanh activation
function followed by a dense layer with Sigmoid activa-
tion. We use kernel of sizes (4,4) and strides (2,2),(1,1)
for discriminator.The detail architecture of generator and
discriminator model is given in the appendix. We add pe-
riodic padding to the all layers of generator model and
only two initial layers of discriminator model to learn the
periodicity in the lattice configuration.
Once the training of C-GAN is over, we use the gen-
erator model to generate two ensembles each consist of
20000 configurations for Λtr and Λts respectively. In both
cases we evaluate our C-GAN model by comparing ob-
servables calculated on the above two set with those cal-
culated from the HMC generated ensembles. The observ-
ables used for this purpose are: 〈|σ̄|〉 and χ as defined in
Eq.(16).

C. Results

1. Testing on Λtr Set:

We do the analysis on λtr set to confirm that the C-
GAN model has correctly learned the training data dis-
tribution. In this ensemble we calculate the σ̄ for each
lattice configuration then plot the histogram of |σ̄| as
shown in Fig.2. Different peaks in the histogram roughly
corresponds to different λ values. The histogram gener-
ated from the proposed C-GAN model and HMC over-
laps quite well. It indicates that our proposed distribution
p̂(σ|λ) represented by C-GAN approximates the true dis-
tribution for the λtr set. Also in Fig.3, we plot ensemble
averaged 〈|σ̄|〉 for Λtr set. Here we take ensemble average
〈|σ̄|〉 for each λ separately and then plot 〈|σ̄|〉 vs λ. It
shows that the observables are matching well for both C-
GAN and HMC ensembles for Λtr i.e. the set used during
training.

Figure 2. Histogram of |σ̄| for λtr set, estimated from samples
obtained via HMC and C-GAN.

Figure 3. Mean 〈|σ̄|〉 and standard deviation on λtr set, esti-
mated from samples obtained via HMC and C-GAN.
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Figure 4. Susceptibility and its standard deviation on λtr set,
estimated from 8000 samples with bin size of 100.

2. Testing on Λts Set:

Since our main goal is to generate lattice ensembles in
the critical region we must evaluate our C-GAN model in
Λts. We asses the performance of the proposed C-GAN in
terms of being able to produce observables matching with
those obtained from true distributions(i.e., generated by
HMC).
Mean 〈|σ̄|〉 : In Fig.5 we can observe that histogram of
|σ̄| matches quite well with the true histogram obtained
via HMC samples even for Λts. Different peaks at high
|σ̄| values roughly represent different λ values. However,
there are no distinct peaks visible near low |σ̄| values as
the peaks gets overlapped. We also present the histograms
of |σ̄| in Figs.(6 & 7) for λ ∈ {1.5, 1.6} which are in the
critical region where we didn’t train the model. In Fig.8
we present the results for the mean 〈σ̄〉 in the critical
region. We can see that the phase transition behaviour is
described very well by the generator model.
Susceptibility χ : We show the susceptibility values
obtained from HMC configurations as well as those ob-
tained from C-GAN in Fig.4 for non-critical data set. One
can observe that the peak coincides for both HMC and
C-GAN. The same plot for critical dataset is shown in
Fig.9. We have found that in critical region both mean
〈σ̄〉 and susceptibility agree quite well with the HMC re-
sults even without training in that region. This gives a
good indication that the trained model can reproduce the
second order phase transition in the GN lattice model.
In Fig.10 we show the autocorrelation time generated
from HMC simulation with unit trajectory length in MD
step, while keeping acceptance rate ≈ 80%. We see that
near the phase transition point the the autocorrelation
time increases sharply. However, during sampling from
the C-GAN model we starts with a random Gaussian
noise vector to generate lattice configurations. Therefore,
the lattice configurations generated by the C-GAN model
are independent of each other, which will solve the crit-
ical slowing down problem. In this way we can generate

uncorrelated samples near critical region at the cost of
generation of samples by HMC at the non critical region.

Figure 5. Histogram of |σ̄| forΛts set, estimated from
samples obtained via HMC and C-GAN.

Figure 6. Histogram of |σ̄| at λ = 1.5 ∈ Λts: HMC and
C-GAN histograms overlaps quite well

Figure 7. Histogram of |σ̄| at λ = 1.6 ∈ Λts : HMC and
C-GAN histograms overlaps quite well
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Figure 8. Mean 〈|σ̄|〉 and standard deviation for Λts set,
estimated from samples obtained via HMC and C-GAN.

Figure 9. Susceptibility and its standard deviation on λts set,
estimated from 8000 samples with bin size of 100.

Figure 10. Integrated Autocorrelation time estimated from
HMC simulation with MD trajectory length, τ = 1.

D. Numerical experiment with data from a single
phase

We also train the C-GAN model using HMC generated
dataset consiting of λ values only from one single phase.
This experiment is necessary to check our model’s utility
in latttice gauge theory where extrapolation to critical
point is necessary from one direction of parameter space.

Figure 11. Histogram of |σ̄| forΛtr
1ph set, estimated from

samples obtained via HMC and C-GAN.

Figure 12. Mean 〈|σ̄|〉 and standard deviation for Λts
1ph set,

estimated from samples obtained via HMC and C-GAN.

The training set of λ values are λtr1ph ={0.4 ,0.6, 0.7 ,0.8

,0.9 ,1.0 ,1.1 ,1.2 ,1.25 ,1.3 ,1.35 ,1.4} taken from the
broken phase and the test set of λ values are λts1ph= {0.7

,0.9, ,1.0 ,1.2, 1.3 ,1.45 ,1.5 ,1.55, 1.6}. We extrapolate
the C-GAN model to critical region of λ values 1.45,1.5
,1.55 and 1.6.

The results are shown in figure 11-15. We observe that the
histogram and mean 〈σ̄〉 matches quite well with HMC
results for λts1ph, where critical points are included. Also
in figure 12,13,14 we have shown the individual histogram
of |σ̄| for λ=1.5 ,1.55, 1.6. We found that for the critical λ
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values observables does’t differ either we train the model
with one single phase or consider both the phases.

Figure 13. Histogram of |σ̄| at λ = 1.5 ∈ Λts
1ph: HMC and

C-GAN histograms overlaps quite well

Figure 14. Histogram of |σ̄| at λ = 1.55 ∈ Λts
1ph: HMC and

C-GAN histograms overlaps quite well

Figure 15. Histogram of |σ̄| at λ = 1.6 ∈ Λts
1ph: HMC and

C-GAN histograms overlaps quite well.

E. ABLATION ANALYSIS:

We perform ablation analysis to see the effect of certain
key component of the proposed method on its perfor-
mance.

Transformation of σ field: We find that log trans-
formation (18) is one of the crucial component for the
training of C-GAN model. On removing it ,the training
loss becomes high and the observables do not agree
well with the HMC observables which can be seen
from Figs.16-18. There is a large deviation of mean
of |σ̄| compared to HMC results in both critical and
non-critical regions as shown in Fig.16. It is observed
that susceptibility is too sensitive to log transformation
as shown in Fig.17. It is also seen that without Min-Max
scaling the C-GAN model is unable to learn different
modes corresponding to different λ values.

Periodic Boundary Condition: We have noticed that
the C-GAN performs well using periodic padding in both
discriminator and generator as seen from Figs.5-7. But
when we remove periodicity from both discriminator and
generator, C-GAN fails to reproduce the HMC results.
Figs.19 & 20 show the disagreements between C-GAN
and HMC results for 〈|σ̄|〉, susceptibility χ respectively
and Fig.21 compares the histogram of |σ̄| without peri-
odicity in C-GAN for λ = 1.5. Likewise, not applying
periodic padding to the generator and applying only to
the discriminator, also degrades the performance.

Figure 16. Ablation for log transformation: Mean 〈|σ̄|〉 and
standard deviation on Λts set without log transformation
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Figure 17. Ablation for log transformation: Susceptibility
on Λts set without log transformation.

Figure 18. Ablation for log transformation: Histogram of
|σ̄| at λ =1.5 ∈ Λts set without log transformation

Figure 19. Ablation for periodic padding: Mean 〈|σ̄|〉 and
standard deviation on Λts set without periodic padding in
both generator and discriminator

Figure 20. Ablation for periodic padding: Susceptibility on Λts

set without periodic padding in both generator and discrimi-
nator.

Figure 21. Ablation for periodic padding: Histogram of |σ̄| at
λ =1.5 ∈ Λts set without periodic padding in both generator
and discriminator

VII. SUMMARY & CONCLUSION:

MCMC methods are generally used to generate lattices
as they give theoretical guarantees on validity of samples.
In this work, we use GANs which don’t give theoretical
guarantees but the empirical results show that they are
able to efficiently interpolate as well as extrapolate to
critical regions. In lattice field theory, the cost of gen-
eration of lattice configurations by MCMC methods is
severely affected by critical slowing down as the lattice
parameters are tuned towards the critical region. At the
critical point the cost of HMC simulation diverges for the-
ories like QCD due to the diverging autocorrelation time.
Therefore, generation of configurations in lattice field the-
ory in the critical region is a challenging task. This paper
proposes to use HMC generated configurations for GN
model away from the critical region and trained a C-GAN
to generate lattice configuration near critical point. With
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HMC data in non-critical region, we train the C-GAN
model conditioned with parameter λ. For evaluation of
the proposed C-GAN model at critical region we com-
pare few observables on the samples generated from both
C-GAN and HMC. We found a good matching between
the results of HMC and our C-GAN model and also ob-
served that phase transition can be very well reproduced
by the generative approach. Since the C-GAN model in
the critical region gives correct critical behaviour, we can
infer that our generative model is a good interpolator in
the critical region. Since C-GAN generates independent
configurations, there is no correlation in the samples gen-
erated by the C-GAN model, thereby avoiding the criti-
cal slowing down problem. In this work we evaluate our
proposed C-GAN model by comparing observables with
HMC samples. We could also use our C-GAN model dis-
tribution p̂(σ|λ) as proposal distribution to construct a
Markov chain as done in [13]. However, to construct such

a Markov chain we must know the proposal density ex-
plicitly which is not available for GANs. Rather in this
work we have accepted all the samples generated by the
C-GAN model and thus having a vanishing autocorrela-
tion.
Although the problem of critical slowing down is not as
severe for GN model in 1+1 dimensions but building and
testing the C-GAN in the GN model establishes its ap-
plicability in the lattice formulation of fermionic system.
In this work, we dealt with only fermionic fields with-
out any gauge interaction. Extending our work to lattice
gauge theory and QCD will be an interesting as well as
challenging task.
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