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Lieb-Schultz-Mattis (LSM) theorems provide powerful constraints on the emergibility problem,
i.e. whether a quantum phase or phase transition can emerge in a many-body system. We derive the
topological partition functions that characterize the LSM constraints in spin systems with Gs×Gint
symmetry, where Gs is an arbitrary space group in one or two spatial dimensions, and Gint is any
internal symmetry whose projective representations are classified by Zk2 with k an integer. We then
apply these results to study the emergibility of a class of exotic quantum critical states, including
the well-known deconfined quantum critical point (DQCP), U(1) Dirac spin liquid (DSL), and
the recently proposed non-Lagrangian Stiefel liquid. These states can emerge as a consequence
of the competition between a magnetic state and a non-magnetic state. We identify all possible
realizations of these states on systems with SO(3) × ZT2 internal symmetry and either p6m or
p4m lattice symmetry. Many interesting examples are discovered, including a DQCP adjacent to a
ferromagnet, stable DSLs on square and honeycomb lattices, and a class of quantum critical spin-
quadrupolar liquids of which the most relevant spinful fluctuations carry spin-2. In particular, there
is a realization of spin-quadrupolar DSL that is beyond the usual parton construction. We further
use our formalism to analyze the stability of these states under symmetry-breaking perturbations,
such as spin-orbit coupling. As a concrete example, we find that a DSL can be stable in a recently
proposed candidate material, NaYbO2.
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I. Introduction

An important task of condensed matter physics is
to understand the quantum phase or phase transition
that emerges from a many-body system. However,
this is often challenging in strongly correlated systems,
both theoretically and experimentally, due to the lack
of i) theoretical tools to exactly solve the many-body
ground state in the generic setting, and ii) experimen-
tally accessible signatures that can unambiguously di-
agnose the nature of the phase or phase transition.

In light of this, Lieb-Shultz-Mattis (LSM) type con-
straints are especially valuable [1–3]. Given some gen-
eral symmetry-related properties of a system, which
are often relatively easy to determine, the LSM con-
straints constrain the emergibility of a phase or phase
transition, i.e., whether this phase or phase transition
can possibly emerge from this system. Such constraints
have been widely applied to the search for exotic states
beyond the symmetry-breaking paradigm, e.g., quan-
tum spin liquid phases and exotic phase transitions.
For instance, a simple example of LSM constraints
states that in a (d+1)-d lattice spin system with SO(3)
spin rotation and lattice translation symmetries that
are not explicitly or spontaneously broken, if each unit
cell hosts an odd number of spin-1/2 moments, then
the ground state must be exotic (i.e., topologically or-
dered or gapless). Since symmetry breaking is often
relatively easy to detect experimentally and numeri-
cally, its absence is often taken as the first evidence of
an exotic state in such systems.

There has been great progress in understanding LSM
constraints in recent years [4–10]. In particular, it
was realized that LSM constraints can be captured
by LSM anomalies, the quantum anomalies carried by
the boundaries of some higher-dimensional topological
crystalline phases. Such relations between LSM con-
straints and anomalies can be very powerful in con-
straining the emergibility of a phase or phase transi-
tion, because the quantum anomaly of this phase or
phase transition, which we refer to as its IR anomaly,

must match with the LSM anomaly (in a sense to be
sharpened later).

In order to utilize these constraints, we need to know
how to compare an LSM anomaly and an IR anomaly.
The latter can be derived from the effective field theory
of the corresponding phase or phase transition, and it
is often characterized by a topological partition func-
tion (TPF). However, to date the TPFs corresponding
to the LSM anomalies are unknown in the general set-
ting, so the full power of the LSM constraints has not
been uncovered; although these constraints have been
applied to various systems and shed important insights
in the emergibility of some states [11–14], most previ-
ous analyses were performed in a case-by-case manner
and/or did not take the full symmetry constraint into
account, and a systematic framework is lacking.

The first major goal of this paper is to fill this gap.
Motivated by the studies of quantum magnetism, we
consider (2 + 1)-d spin systems with Gs × Gint sym-
metry, where the lattice symmetry Gs is any of the
17 wallpaper groups, and Gint is any internal symme-
try whose projective representations are classified by
Zk2 with k some integer, e.g., Gint = SO(3) × ZT2 , the
combination of SO(3) spin rotational symmetry and
time reversal symmetry. Given Gs×Gint, there are still
topologically distinct LSM constraints, specified by the
projective representation (PR) under Gint carried by
the degrees of freedom (DOF) of the system, and the
spatial distribution of these DOF. For all cases, we de-
rive the TPFs of the LSM anomalies. Similar analysis
is also performed for (1+1)-d lattice spin systems. This
topological characterization of the LSM constraints is
the basis of a systematic framework that uses the LSM
constraints to understand the emergibility of quantum
phases and phase transitions in a many-body system.

The second major goal of this paper is to apply the
obtained topological characterization of the LSM con-
straints to study the emergibility of exotic states. Here
we focus on exotic quantum criticality, rather than
other classes of exotic states, e.g., topological phases,
which may be more commonly done in the literature.
Our choice is motivated by the following reasons. First,
quantum critical states may have many elegant struc-
tures that are worth studying, such as emergent con-
formal invariance at low energies. Second, many quan-
tum critical states can serve as the parent states of
other phases (including topological phases), which can
emerge through perturbing the quantum critical states.
So a thorough understanding of the quantum critical-
ity may provide a unified understanding of not only the
critical state itself, but also the nearby phases. How-
ever, compared to topological phases, quantum criti-
cality is much less understood, especially in two and
three spatial dimensions. So it is interesting and im-
portant to further explore them.

A useful notion here is symmetry-enriched quantum
criticality. This notion is actually rather familiar, but
let us discuss it in a more modern perspective. By now,
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Figure 1. If two states have the same emergent order and
exact microscopic symmetry, and if they can be smoothly
connected when symmetry-breaking perturbations are al-
lowed, but are necessarily separated by a phase transition
when the relevant symmetries are preserved, then these
states are said to have symmetry-protected distinction.

it is well appreciated that the universal long-distance
and low-energy physics of most (if not all) quantum
many-body systems are specified by two levels of data.
The first level is characterized by what we refer to as
the emergent order. In the language of renormalization
group (RG), the emergent order is described by proper-
ties of the RG fixed point corresponding to this system,
which are independent of the exact microscopic sym-
metry. For example, the RG fixed point corresponding
to gapped states are described by certain topological
quantum field theory (TQFT), or variants of it. Short-
range entangled (SRE) states, i.e., states smoothly
connected to a product state without quantum entan-
glement, are related to a trivial TQFT. In contrast,
long-range entangled gapped states, which cannot be
smoothly connected to product states, correspond to
some nontrivial TQFT. On the other hand, gapless
states have different emergent orders, and many of
their RG fixed points are described by a conformal field
theory (CFT). States described by different RG fixed
points are distinct at the level of their emergent orders.

Even if two states have the same emergent order
(RG fixed point), their exact microscopic symmetries
provide a second level of data that may distinguish
them. Two states with the same emergent order
but different exact microscopic symmetries are con-
sidered distinct. If they have the same emergent or-
der and same exact microscopic symmetries, they may
still have symmetry-protected distinction: they are not
smoothly connected if certain symmetries are imposed,
while they are if these symmetries are broken (see Fig.
1). Two SRE states with symmetry-protected dis-
tinction are referred to as different SPTs, two topo-
logical orders with symmetry-protected distinction are
referred to as different symmetry-enriched topologi-
cal states (SETs), and two quantum critical states
with symmetry-protected distinction are referred to
as different symmetry-enriched criticality. There has
been great progress in understanding SPTs and SETs
in the past years, but a systematic understanding of
symmetry-enriched criticality is lacking.

In this paper, we focus on the emergibility of a family
of quantum critical states dubbed Stiefel liquids (SLs),
each of which is labeled by an integer N > 5 and de-

noted by SL(N) [15]. The well-known deconfined quan-
tum critical point (DQCP) [16–19] and U(1) Dirac spin
liquid (DSL) [20–22] are unified as the two simplest
SLs, with N = 5 and N = 6, respectively. SL(N>7)

are conjectured to be non-Lagrangian, i.e., they are
so strongly interacting, such that they cannot be de-
scribed by any weakly-coupled continuum Lagrangian
at any energy scale. We would like to understand
whether the SLs can emerge in lattice spin systems,
and if they can, which different types of symmetry-
enriched SLs can emerge.

Here we characterize each realization of SL(N) by
its symmetry embedding pattern (SEP), i.e., how the
microscopic symmetries act on its local, low-energy
DOF. This characterization has a number of advan-
tages. First and most fundamentally, it captures the
symmetry actions in an intrinsic and direct way. This
is in contrast to the more common treatment of emer-
gent gauge theories in condensed matter physics (e.g.,
for DQCP and DSL), where one first considers the sym-
metry actions on gauge non-invariant operators (such
as spinons) and then converts them into actions on lo-
cal operators, which is indirect and sometimes com-
plicated, especially when there is a (2 + 1)-d U(1)
gauge field where the quantum numbers of the local
monopole operators cannot be identified with those of
any gauge-invariant composite of the matter fields, and
when some symmetries act as duality between differ-
ent gauge-theoretic formulations of the same critical
state. Second, using this characterization we can eas-
ily read off the symmetry-breaking patterns of the or-
dered phases adjacent to the exotic quantum criticality.
This information provides valuable guidance on where
to look for these quantum critical states: if the cor-
responding ordered phases are found in a material or
model, then exploring the vicinity of the phase dia-
gram may result in the critical state. Third, using this
characterization it is easy to check the stability of the
critical state under various perturbations, e.g., spin-
orbit couplings (SOC). Recently, NaYbO2 and related
materials emerge as candidates for DSL [23–32]. These
systems have strong SOC, so it is important to ask if
DSL remains stable under SOC. We showcase how to
use our approach to argue that the DSL can be stable
in NaYbO2.

To check the emergibility of a Stiefel liquid with a
given symmetry embedding pattern, we rely on the hy-
pothesis of emergibility [15]: a state is emergible if and
only if its IR anomaly matches with that of the LSM-
like anomaly of the microscopic system. The necessity
of this condition has been established, while its suffi-
ciency is hypothetical, but supported by many nontriv-
ial examples. Using the symmetry embedding pattern,
we can match the IR anomaly of an SL with the LSM
anomaly of a lattice spin system characterized by the
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TPF we derive1, and we search for all realizations of
SL(N=5,6,7) that can emerge due to the competition
between a magnetic state and a non-magnetic state
on lattice systems with Gs × Gint symmetry, where
Gs is either the p4m or p6m wallpaper group, and
Gint = SO(3) × ZT2 . We discover many interesting
realizations of these states. For example, we find that
the DSL can be realized as a quantum critical spin-
quadrupolar liquid, i.e., a critical state whose most
relevant spinful excitations have spin-2. So far, the
construction of the DSL is often based on a type of
parton mean field. However, we show that our spin-
quadrupolar realization of the DSL is beyond that par-
ton mean field. With all realizations at hand, we will
see that, given an SL(N) and its microscopic symme-
tries, different symmetry embedding patterns typically
correspond to different symmetry-enriched SLs (we dis-
cuss the subtle cases where this may not be true at the
end of Sec. IV).

We highlight that this exhaustive search of real-
izations of SLs is possible because we have obtained
our topological characterization of the LSM contraints,
without which we cannot examine the emergibility of
states systematically. We also remark that even if the
hypothesis of emergibility turns out to be false, i.e., it is
just a necessary but insufficient condition for emergi-
bility, the result of our search is still useful, because
all SLs that are emergible must belong to the ones we
identify.

The organization of the rest of the paper and a brief
summary of the main results are as follows.

1. In Sec. II, we derive the topological partition
functions of the LSM constraints of the lattice
spin systems of our interest. The structure of
these topological partition functions is given in
Eq. (1), where η is determined by the projec-
tive representation carried by the local degrees
of freedom under the internal symmetry, and λ is
determined by the locations of the local degrees
of freedom. The characterization of λ for differ-
ent space groups can be found in Secs. II B 1,
II B 2 and II B 3, and Appendix F. Some further
arguments leading to these topological partition
functions are presented in Appendices B, C, D
and G.

1 In Ref. [15], the TPFs for some of the LSM anomalies
are listed, and anomaly-matching is performed to check the
emergibility of various SLs. However, both those TPFs and
the anomaly-matching calculations therein are problematic,
and the current paper presents the correct TPFs and anomaly-
matching calculations. All specific examples studied in Ref.
[15] are treated with care in this paper (see Sec. III C and Ap-
pendix I), and it is found that all final physical results regard-
ing the emergibility of these examples are correctly obtained
in Ref. [15].

2. In Sec. III, we sketch how to use anomaly-
matching to understand the emergibility of var-
ious Stiefel liquids. Detailed examples of cacu-
lations are presented in this section and also in
Appendix I.

3. In Secs. IV and V, we present some interesting
realizations of SLs, while the complete results are
summarized in the attached codes, which can be
read with the instruction in Appendix J. Table I
records the total numbers of realizations in dif-
ferent cases, and Table II records the numbers of
realizations that are adjacent to classical regular
magnetic orders. The stability of each realiza-
tion is also analyzed, which is recorded in the
attached codes. In Appendix K, we present all
stable realizations on various familiar lattice sys-
tems. The highlighted examples in the main text
include i) a deconfined quantum critical point be-
tween a ferromagnet and a valence bond solid, ii)
stable U(1) Dirac spin liquids in spin-1/2 square
and honeycomb lattices, iii) various realizations
of the non-Lagrangian Stiefel liquid, and iv) re-
alizations of SLs where the most relevant spinful
excitations carry spin-2, which, in particular, in-
clude a U(1) Dirac spin liquid that cannot be
desribed by the usual parton approach.

4. We demonstrate how to use our formalism
to study the stability of these states under
symmetry-breaking perturbations in Sec. VI,
where we argue that the DSL can be stable in
NaYbO2. More analysis regarding NaYbO2 and
twisted bilayer WSe2 is presented in Appendix
M.

5. We conclude in Sec. VII.

6. Various appendices include further details, some
of which may be of general interest. For example,
Appendix A is a review of the basic mathematical
tools we use. Appendix E contains descriptions
of all 17 wallpaper groups, as well as information
about their Z2 cohomology, including their Z2

cohomology rings and all representative cochains
at degree 1 and 2. Appendix H contains more de-
tails of the Stiefel liquids, including some that do
not appear in Ref. [15]. Appendix L presents
the configurations of spins of all classical reg-
ular magnetic orders in triangular, honeycomb,
kagome and square lattices.

II. Topological characterization of LSM
constraints

In this section, we develop a topological characteri-
zation of the LSM constraints applicable to a (2 + 1)-
d lattice spin system, whose Hilbert space is a ten-
sor product of local bosonic Hilbert spaces, and whose
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Hamiltonian is also local. We assume that the system
has a symmetry group G = Gs×Gint, where Gs is one
of the 17 wallpaper groups and Gint is an internal sym-
metry group. Throughout this paper, we consider Gint
whose projective representations (PR) are classified by
Zk2 with some k ∈ N+, i.e., H2(Gint, U(1)ρ) = Zk2 2,
with the subscript ρ indicating the complex conjuga-
tion action of any spacetime orientation reversal sym-
metry on the U(1) coefficient. Typical examples of such
Gint include SO(3), SO(3) × ZT2 , ZT2 , O(2), Z2 × Z2,
etc. These choices of G and Gint are motivated by the
systems and models relevant to quantum magnetism.
We will also perform a similar analysis for (1 + 1)-d
lattice spin systems.

Some Gint may have multiple types of PR. For exam-
ple, for Gint = SO(3)×ZT2 , H2(SO(3)×ZT2 , U(1)ρ) =
Z2

2, so there are 3 different types of nontrivial PR, cor-
responding to spinor under SO(3) while Kramers sin-
glet under ZT2 , singlet under SO(3) while Kramers dou-
blet under ZT2 , and spinor under SO(3) while Kramers
doublet under ZT2 . In this paper, we will mainly con-
sider systems with at most one type of nontrivial PR,
i.e., there may be some DOF carrying trivial PR under
Gint, but all DOF with nontrivial PR carry the same
type of nontrivial PR which we refer to as the PR type
of the system. If all DOF carry trivial PR, then the
PR type of the system is said to be the trivial type.
Many of our results can be straightforwardly general-
ized to the case where the system has DOF with dif-
ferent types of nontrivial PR, on which we sometimes
explicitly comment.

A. Review of lattice homotopy and the
connection to SPT

To be self-contained, we begin by reviewing lattice
homotopy [5], in a way that will lead to our topological
characterization of the LSM constraints most easily.

All LSM constraints should be fully determined by
the spatial distribution of the DOF in the system. The
key idea of lattice homotopy is that, to characterize the
LSM constraints for a given lattice system, one can al-
ways first smoothly deform the system so that all DOF
are moved to the high-symmetry points of the cor-
responding wallpaper symmetry group, while preserv-
ing the G = Gs × Gint symmetry during the process.
These high-symmetry points are called the irreducible
Wyckoff positions (IWP); their precise definition can
be found in Ref. [5] and they are well documented for
each space group in the standard crystallographic liter-
ature. All distributions of DOF that can be smoothly

2 In this paper, a few different objects have the structure of Zk2
with some k ∈ N. These k’s are independent unless explicitly
claimed, and we will abuse the notation to use the same k
when we make a statement about this Zk2 structure.

deformed into each other are referred to be in the same
lattice homotopy class. Below we always assume that
a smooth deformation has been performed, such that
all DOF are located at some IWP. Then to determine
the presence or absence of an LSM constraint, one can
invoke one or multiple of the following 3 types of basic
no-go theorems that preclude symmetric SRE (sym-
SRE) ground states in various cases [5, 33]:

1. Define a fundamental domain to be a region that
tiles the 2D space under the actions of translation
and glide symmetries. When the total PR within
a fundamental domain is nontrivial, a sym-SRE
ground state is forbidden.

2. When there is a translation symmetry along a
mirror axis, and the total PR within a translation
unit along this mirror axis is nontrivial, a sym-
SRE ground state is forbidden.

3. In our case, the PR of Gint are classified by Zk2 .
Then if the total PR at a C2 rotation center is
nontrivial, a sym-SRE ground state is forbidden.
However, PR at a Cn rotation center for odd n
does not forbid a sym-SRE ground state.

Note that these no-go theorems do not require the
full wallpaper symmetry to be applicable. In partic-
ular, the first applies whenever there are translation
or glide symmetries, the second applies whenever there
are commuting translation and mirror symmetries, and
the last applies whenever there is a rotation symme-
try. When a full wallpaper symmetry is present, there
are often multiple translations, glide reflections, mir-
ror and rotation symmetries, so a given distribution
of DOF may trigger multiple of these basic no-go theo-
rems. It is straightforward to check that knowing which
no-go theorems are triggered is actually also sufficient
to know which lattice homotopy class this distribution
of DOF is in.

One can see that, for a given wallpaper group Gs
and a PR type of the system, the spatial distributions
of DOF form an Abelian group, denoted by ALH. Each
group element in ALH corresponds to a lattice homo-
topy class of distributions of DOF, the multiplication
between two group elements corresponds to physically
stacking two such distributions of DOF together, and
the trivial group element corresponds to a distribution
of DOF that is free of all 3 basic no-go theorems above
(i.e., a distribution of DOF with no net nontrivial PR
in any fundamental domain, any translation unit on
any mirror axis, or any C2 rotation center). Due to
the Z2 nature of the PR, the inverse of each group
element is itself, so ALH = Zk2 with k ∈ N.

It turns out that elements in ALH are in one-to-one
correspondence with different LSM constraints [5], i.e.,
the ground states emergible in systems with distribu-
tions of DOF corresponding to different group elements
of ALH must be different, in the sense that they have
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Figure 2. Panel (a) shows the generators of the wallpaper
group p6m. In panel (b), the hexagon is a translation unit
cell of the wallpaper group p6m. It has three IWP, usually
labelled by a, b and c in crystallography, and they form
the sites of the triangular, honeycomb and kagome lattices,
respectively. The C6 rotation center is at the type-a IWP.

different emergent order or symmetry-protected dis-
tinction. As an example, the trivial element represents
the absence of any LSM constraint, i.e., a sym-SRE
ground state is allowed if the microscopic DOF of the
system are arranged in a configuration corresponding
to the trivial element. Therefore, the intuitive geomet-
ric picture based on lattice homotopy gives an elegant
characterization and classification of LSM constraints.
An important observation that will be very useful later
is that the structure of ALH only depends on Gs and
the fact that all PR of Gint has a Z2 nature, but not
on other details of Gint.

When PR of Gint are Zk2-classified with k > 1, the
above discussion applies to the case where at most
one type of nontrivial PR is present in the system. If
all nontrivial PR are allowed to be present, all LSM
constraints are classified by AkLH, i.e., each nontrivial
PR can result in LSM constraints classified by ALH,
and nontrivial LSM constraints from different nontriv-
ial PR are all different.

To make this discussion more concrete, below we
consider two specific examples that will be relevant for
the later part of the paper.

1. Gs = p6m

We start with the example where Gs = p6m, which
is the symmetry group of triangular, kagome and hon-
eycomb lattices. The generators, a translation unit cell
and IWP of p6m are shown in Fig. 2. The translation
vectors of T1 and T2 have the same length, and their
angle is 2π/3. There is also a 6-fold rotational symme-
try, denoted by C6. Finally, there is a mirror symmetry
M , whose mirror axis passes through the C6-center and
bisects the translation vectors of T1 and T2.

We wish to understand how to identify the distribu-
tions of DOF with the elements in ALH in this example.
First consider the case where all DOF in the system are
in the trivial PR. This distribution of DOF is free of
all the 3 basic no-go theorems, so it corresponds to
the trivial element of ALH, which physically implies
that there is no LSM constraint associated with this

distribution of DOF, and sym-SRE ground states are
allowed. This is indeed the common belief.

Next, consider putting DOF with nontrivial PR on
any of the three types of IWP. First, imagine putting
DOF with nontrivial PR on the type-b IWP. One can
check that none of the 3 basic no-go theorems is trig-
gered, so this distribution of DOF also corresponds to
the trivial group element, and there should be no as-
sociated LSM constraint. Indeed, this configuration is
where the DOF are on a honeycomb lattice, and it is
known that sym-SRE ground states are allowed in this
case [34–37], consistent with the absence of any LSM
constraint. Second, imagine putting DOF with non-
trivial PR on the type-a IWP. One can check that all
3 basic no-go theorems are triggered, so this configura-
tion should correspond to a nontrivial element in ALH,
and such a system has a nontrivial LSM constraint that
precludes any sym-SRE ground state. The same is true
if DOF with nontrivial PR are put on the type-c IWP.
Moreover, one can also check that the distributions of
DOF on type-a and type-c IWP are in different lat-
tice homotopy classes, i.e., they cannot be smoothly
deformed into each other. So they correspond to dif-
ferent group elements in ALH, which indicates different
LSM constraints. These two types of IWP form a tri-
angular and kagome lattice, respectively, and there is
indeed no known example of symmetric states that can
emerge in both triangular and kagome lattices, without
showing any difference in emergent order or symmetry-
protected distinction.3

Finally, one can also consider putting DOF with non-
trivial PR on multiple of the three types of IWP. For
instance, putting these DOF on both type-a and type-c
IWP is equivalent to stacking systems with DOF ar-
ranged on a triangular lattice and kagome lattice to-
gether, which corresponds to multiplying the two non-
trivial group elements in the last paragraph.

Taken together, the above analysis indicates that the
LSM constraints on a lattice with p6m symmetry are
classified by ALH = Z2

2, and the two generators can be
taken to correspond to distributions of DOF on trian-
gular and kagome lattices, respectively.

In the above, we have worked out ALH by examining
whether any of the basic no-go theorems is triggered by
a distribution of DOF. To finish the discussion of this
case with Gs = p6m, we demonstrate how the infor-
mation about which basic no-go theorems are triggered
can uniquely determine the lattice homotopy class. In
this case, we just need to consider the third type of the

3 In fact, even spontaneously-symmetry-breaking states (such as
ferromagnetic states) realized on these two lattices should be
distinct, because they have different anomalies. However, to
the best of our knowledge, it is still an open problem to explic-
itly calculate the complete anomalies for these spontaneously-
symmetry-breaking states, which is an interesting problem be-
yond the scope of the current paper.
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Figure 3. Panel (a) shows the generators of the wallpaper
group p4m. In panel (b), the square is a translation unit
cell of the wallpaper group p4m. It has three IWP, usually
labelled by a, b and c in crystallography. Type-a and type-b
both form a square lattice. The C4 rotation center in panel
(a) is taken to be at the type-a IWP.

basic no-go theorems. For this type of no-go theorems,
there are two independent ones, triggered by putting
DOF with nontrivial PR on the type-a and type-c IWP,
respectively. So if we know which of the no-go theorems
are triggered, we also know whether there are nontriv-
ial PR carried by type-a and type-c IWP. From the
previous discussion, this can uniquely determine the
lattice homotopy class. This observation will be very
useful when we construct a topological characterization
of the LSM constraints later.

2. Gs = p4m

Warmed up with the example where Gs = p6m, now
we can easily apply the similar analysis to the other
16 wallpaper groups. Here, we examine the case where
Gs = p4m, which will be relevant to our later discus-
sion.

The p4m group describes the symmetry of square
and checkerboard lattices. The generators, a transla-
tion unit cell and IWP of p4m are shown in Fig. 3.
The translation vectors of T1 and T2 have the same
length and are perpendicular. There is also a 4-fold
rotational symmetry, denoted by C4. Finally, there is a
mirror symmetry M , whose mirror axis passes through
the C4-center and is parallel to the translation vector
of T2. There are 3 types of IWP. The type-a IWP is
the 2-fold rotation centers of C2

4 , the type-b IWP is the
2-fold rotation centers of T1T2C

2
4 , and the type-c IWP

includes the 2-fold rotation centers of both T1C
2
4 and

T2C
2
4 . Note that the type-a and type-b are actually

also 4-fold rotation centers, and all three IWP lie on
some mirror axes.

Below, we enumerate some distributions of DOF that
correspond to different elements in ALH in this case:

1. All DOF have trivial PR: trivial element in ALH.

2. DOF with nontrivial PR at one of the three types
of IWP: three different elements in ALH.

3. DOF with nontrivial PR at multiple of the IWP:
product of elements in the previous case.

This analysis implies that the LSM constraints on a
lattice with p4m symmetry are classified by ALH = Z3

2,
and the three generators can be taken to correspond to
distributions of DOF on the three types of IWP. Note
that both the type-a and type-b IWP form a square
lattice, and type-c IWP form a checkerboard lattice.
Again, it is easy to see that knowing which of the basic
no-go theorems are triggered can uniquely determine
the lattice homotopy class.

Before finishing the review, we note that it has also
been realized that LSM constraints are intimately re-
lated to anomalies and higher dimensional SPTs [4, 6–
9]. In the present context, our (2 + 1)-d system
with DOF carrying PR can be viewed as a bound-
ary of a (3 + 1)-d system made of stacked (1 + 1)-
d SPTs protected by Gint, which are also classified
by H2(Gint, U(1)ρ) = Zk2 . The spatial extension of
these (1+1)-d SPTs is along the extra dimension. The
boundaries of these SPTs carry the PR, whose types
and locations precisely match with the DOF of the orig-
inal (2 + 1)-d system, which have been moved to the
IWP using lattice homotopy. Furthermore, the wall-
paper symmetry Gs can be naturally extended into a
symmetry of the (3 + 1)-d system. Then the (3 + 1)-d
system is an SPT protected by Gs ×Gint, and a sym-
SRE boundary of such a nontrivial SPT is forbidden
due to the nontrivial quantum anomaly, which implies
the LSM constraints. Moreover, different SPTs have
different anomalies on the boundary, so their corre-
sponding LSM constraints must be different, such that
ground states emergible in systems with different LSM
constraints must have distinction in their emergent or-
der or symmetry-protected distinction. For these rea-
sons, in the following we will view an LSM constraint
and the (3 + 1)-d Gs×Gint SPT corresponding to this
LSM constraint on equal footing.

B. Topological characterization of the LSM
constraints

The above picture of lattice homotopy and higher di-
mensional SPTs allows us to derive a topological char-
acterization of the LSM constraints. In particular, we
will identify the topological partition function (TPF)
of the (3 + 1)-d SPT corresponding to each nontrivial
LSM constraint for a given Gs and Gint.

To do it, we use the fact that the SPT of interest
can be constructed by stacking the nontrivial (1 + 1)-d
Gint SPT at various IWP. Suppose, in the language
of Dijkgraff-Witten theories [38–40], the TPF of this
(1 + 1)-d SPT is encoded in a nontrivial cocycle in
H2(Gint, U(1)ρ) ∼= Zk2 , which can be represented by
exp (iπη(a1, a2)), where a1,2 ∈ Gint and η takes val-
ues in {0, 1} (taking η ∈ {0, 1} is valid since such
SPTs are Zk2-classified). To write down the TPF of
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the relevant (3 + 1)-d Gs × Gint SPT, we view Gs
on equal footing with Gint, keeping in mind that any
orientation-reversal element in Gs should also com-
plex conjugate the U(1) coefficient, in accordance with
the crystalline equivalence principle [41]. Then the
TPF can be encoded in a cocycle Ω(g1, g2, g3, g4) in
H4(Gs ×Gint, U(1)ρ), where g1,2,3,4 ∈ Gs ×Gint. The
picture based on lattice homotopy and stacks of (1+1)-
d Gint SPT strongly suggests that Ω(g1, g2, g3, g4)
takes the form

Ω(g1, g2, g3, g4) = eiπλ(l1,l2)η(a3,a4) (1)

where gi ∈ Gs × Gint is written as gi = li ⊗ ai, with
li ∈ Gs and ai ∈ Gint, and λ also takes values in {0, 1}.
Physically, λ encodes the information of which IWP
host the (1+1)-d Gint SPT. The lattice homotopy pic-
ture further suggests that λ is completely determined
by Gs and the lattice homotopy class corresponding to
the particular LSM constraint, and should be the same
for all Gint with Zk2-classified PR and all PR types of
the system. Such a cocycle implies that the TPF, in
terms of lattice gauge theory on a triangulated mani-
fold, takes the form

Z = e
iπ

∫
M4

λ[As]∪η[Aint] (2)

where M4 is the 4 dimensional spacetime manifold of
the SPT, As and Aint are the (1-form) gauge fields
resulting from gauging Gs and Gint, respectively, and
exp(iπ

∫
η[Aint]) gives the TPF of the (1 + 1)-d Gint

SPT. Note that although the TPF is constructed from
a cup product of λ and η, generically λ (or η) itself
cannot be written as a cup product of As (or Aint).

In Appendix B, we show that the above expectation
is indeed correct. Furthermore, λ(l1, l2) can be viewed
as a representative cochain in H2(Gs,Z2). Assuming
that the (1+1)-d Gint SPT is already understood (i.e.,
the η corresponding to the PR type of the system is
known), the task to identify the TPF for the (3 + 1)-d
Gs ×Gint SPT corresponding to the LSM constraints
becomes identifying λ(l1, l2) for a given Gs and lattice
homotopy class.

Before proceeding, let us pause to clarify what it
means to identify λ(l1, l2). After all, as reviewed in Ap-
pendix A 1, λ(l1, l2) changes under coboundary trans-
formations, so it is not an invariant characterization
of the LSM constraints. However, inequivalent λ’s can
be diagnosed by quantities related to it that are in-
variant under coboundary transformations. So identi-
fying λ(l1, l2) really means identifying these topological
invariants. To relate to some known results of such
topological invariants, we define ω(l1, l2) ≡ eiπλ(l1,l2),
which encodes the same information as λ(l1, l2). Then
a topological invariant takes the form of α[ω], a func-
tional of ω.

Now we proceed to derive these topological invari-
ants. Because λ(l1, l2) or ω(l1, l2) is the same for all
Gint, it suffices to derive it in a particularly simple
and illuminating case, i.e., Gint = SO(3). According

to Sec. II A, in this case the (3+1)-d Gs×Gint SPTs re-
lated to the LSM constraints are fully characterized by
the spatial distribution of Haldane chains, i.e., (1+1)-d
SPT protected by the SO(3) symmetry. Therefore, to
characterize the LSM constraints, all we have to do is to
identify topological invariants for H2(Gs,Z2) that can
tell us which IWP host Haldane chains. To this end,
we utilize the fact that, for a given spatial distribution
of Haldane chains, which IWP host Haldane chains is
fully encoded in which of the 3 basic no-go theorems
are triggered. So if we can characterize the 3 basic no-
go theorems using some topological invariants, we can
further get the topological invariants corresponding to
the LSM constraints.

To obtain the topological invariants corresponding to
the 3 basic no-go theorems, it is useful to consider cou-
pling the system to a probe gauge field of the SO(3)
symmetry and examine the monopoles of this SO(3)
gauge field, which is a method proven to be extremely
powerful [14, 42–47]. Because the wave function of the
system acquires a −1 topological phase factor when
an SO(3) monopole circles around a Haldane chain4,
we will see below that if any of the 3 basic no-go theo-
rems is triggered, the Gs symmetry will fractionalize on
the SO(3) monopole in a specific way, i.e., the SO(3)
monopole will carry a specific projective representa-
tion of Gs. The symmetry fractionalization pattern of
Gs on the SO(3) monopole will thus completely en-
code the LSM constraint. Since the fusion rule of the
SO(3) monopole is determined by π1(SO(3)) = Z2

[48], the symmetry fractionalization patterns of Gs
on the SO(3) monopole are classified by H2(Gs,Z2)
[12, 13, 49, 50]. So the LSM constraints can be char-
acterized by elements in H2(Gs,Z2), consistent with
the previous general discussion. This also implies that
when Gint = SO(3), for a given Gs and lattice homo-
topy class, the λ(l1, l2) in Eq. (1) should be precisely
the element in H2(Gs,Z2) that describes the symmetry
fractionalization pattern of Gs on the SO(3) monopole
in the corresponding SPT. However, one should not ex-
pect that all symmetry fractionalization patterns cap-
tured by H2(Gs,Z2) are related to LSM constraints.
To see it, consider breaking the SO(3) symmetry to
U(1). Then the original LSM-related Gs×SO(3) SPT

4 Consider moving a Haldane chain around an SO(3) monopole.
The topological phase factor generated in this process is given
by the topological partition function of the Haldane chain,
calculated on the manifold defined by the spacetime trajec-
tory it moves along, with a background SO(3) gauge bundle
exerted by the SO(3) monopole. It is known that the topo-

logical partition function of a Haldane chain is eiπ
∫
M w

SO(3)
2 ,

where w
SO(3)
2 is the second Stiefel-Whitney class of the SO(3)

gauge bundle. Furthermore,
∫
M w

SO(3)
2 = 1 around an SO(3)

monopole. Therefore, there is a −1 phase factor generated
in this process, which also implies that moving an SO(3)
monopole around a Haldane chain results in a −1 topologi-
cal phase factor.
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will become a trivial Gs × U(1) SPT, since the Hal-
dane chain is trivialized upon this symmetry breaking.
Therefore, the U(1) monopole, which is the descen-
dent of the SO(3) monopole after symmetry breaking,
should carry no nontrivial symmetry fractionalization
pattern. It implies that certain nontrivial symmetry
fractionalization pattern on the SO(3) monopoles, or
certain elements in H2(Gs,Z2), may be unrelated to
LSM constraints. We will see this explicitly below.

We start with the first no-go theorem, and focus on
the case where only translation symmetry is important,
and defer a similar discussion where the glide reflection
is also important to Appendix C. Denote the two trans-
lation generators by T1 and T2, and apply the operation
T−1

2 T−1
1 T2T1 to an SO(3) monopole, which moves it

around a translation unit cell. If each translation unit
cell constains an odd (even) number of Haldane chains,
this process results in a −1 (1) phase factor, which pre-
cisely characterizes how the translation symmetry frac-
tionalizes on the SO(3) monopole. By slightly abusing
the notation, we write the subgroup of Gs generated
by T1 and T2 as T1 × T2. The fractionalization pat-
terns of the T1 × T2 symmetry should be classified by
H2(T1 × T2,Z2) = Z2, so the aforementioned phase
factor must be given by the unique nontrivial topolog-

ical invariant in H2(T1×T2,Z2), i.e., α1[ω] = ω(T1,T2)
ω(T2,T1) .

Denote two elements in this subgroup by l1 = T x1
1 T y12

and l2 = T x2
1 T y22 , with x1,2, y1,2 ∈ Z, a representa-

tive cochain that triggers this topological invariant is
ω(l1, l2) = (−1)y1x2 .

Next, consider the second no-go theorem. Denote
the generator of the relevant mirror symmetry by M ,
and suppose T generates a translation symmetry on
the mirror plane. Note that this implies TM = MT .
Apply the operation MT−1MT to an SO(3) monopole,
which moves it along a trajectory that encloses a trans-
lation unit along the mirror plane. Suppose there is an
odd (even) number of Haldane chains in this transla-
tion unit, this process results in a −1 (1) phase fac-
tor, which precisely characterizes how the symmetry
group generated by M and T fractionalizes on the
SO(3) monopole. Write the subgroup of Gs gener-
ated by M and T as M × T , the fractionalization
patterns of the M × T symmetry are classified by
H2(M×T,Z2) = Z2

2. So there are two nontrivial topo-
logical invariants in H2(M × T,Z2), and they can be

written as α2[ω] = ω(T,M)
ω(M,T ) and αnon−LSM = ω(M,M)

ω(1,1) ,

where in the denominator 1 stands for the trivial group
element in M × T . Note that αnon−LSM = −1 would
imply when the SO(3) symmetry is broken to U(1),
the resulting Gs×U(1) state is a nontrivial SPT, since
this represents a nontrivial symmetry fractionalization
pattern of a U(1) monopole [45, 46]. According to the
previous general discussion, αnon−LSM should be unre-
lated to LSM constraints of interest.

We can also directly see that αnon−LSM is unrelated
to the LSM constraints without considering breaking

the SO(3) symmetry. Denote two elements in M × T
by l1 = T x1Mm1 and l2 = T x2Mm2 , with x1,2 ∈ Z
and m1,2 ∈ {0, 1}, representative cochains that trig-
ger these two topological invariants are ω(l1, l2) =
(−1)m1x2 and ω(l1, l2) = (−1)m1m2 , respectively. Sup-
pose λ in Eq. (1) constains a piece λ(l1, l2) = m1m2,
such that αnon−LSM = −1, from Eq. (2), we see
the TPF of the (3 + 1)-d SPT contains a part given

by exp(iπ
∫

(wTM1 )2w
SO(3)
2 ), where wTM1 is the first

Stiefel-Whitney class of the tangent bundle of the

spacetime manifold, and w
SO(3)
2 is the second Stiefel-

Whitney class of the SO(3) gauge bundle. In writing
this down, we have used that M is an orientation re-
versal symmetry and that the TPF of a Haldane chain

is exp(iπ
∫
w
SO(3)
2 ). This means that when the sym-

metry is broken down to M × SO(3), the system is
still a nontrivial SPT.5 However, all SPTs correspond-
ing to LSM constraints become trivial when the lattice
symmetry contains only a mirror symmetry (as can be
seen from lattice homotopy, or simply from the lack of
basic no-go theorem that only requires a mirror sym-
metry as the lattice symmetry), and hence a contra-
diction. This again means αnon−LSM = 1 for SPTs
corresponding to LSM constraints (see Appendix D for
the physics of the SPTs that trigger αnon−LSM). There-
fore, the phase factor resulted from acting MT−1MT
to an SO(3) monopole must be given by α2.

Finally, consider the third no-go theorem. Denote
the generator of the relevant 2-fold rotational sym-
metry by C2, and apply C2 to an SO(3) monopole
twice, which moves it around a C2 rotation axis. Sup-
pose there is an odd (even) number of Haldane chains
in this C2 rotation axis, this process results in a −1
(1) phase factor, which precisely characterizes how the
C2 rotational symmetry fractionalizes on the SO(3)
monopole. Write the subgroup of Gs generated by
C2 also as C2. The fractionalization patterns of the
C2 symmetry are classified by H2(C2,Z2) = Z2, so
the aforementioned phase factor must be given by
the unique topological invariant in H2(C2,Z2), i.e.,

α3[ω] = ω(C2,C2)
ω(1,1) . Denote two elements in this sub-

group by l1 = Cc12 and l2 = Cc22 , with c1,2 ∈ {0, 1},
a representative cochain that triggers this topological
invariant is ω(l1, l2) = (−1)c1c2 .

In summary, we have found 4 basic types of sym-
metry fractionalization patterns of Gs, characterized
by the above 4 types of topological invariants, α1,2,3

5 In this SPT, the symmetry M fractionalizes on the SO(3)
monopole, i.e., acting M twice on an SO(3) monopole yields
a −1 phase factor. This symmetry fractionalization pattern
is captured by H2(M,Z2) = Z2, whose unique topological
invariant is αnon−LSM. So αnon−LSM should be identified as
this phase factor. In Appendix D, we further show that such
an SPT can be constructed by putting on its M mirror plane a
(2+1)-d Z2×SO(3) SPT, whose Z2 domain walls are decorated
with Haldane chains.
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and αnon−LSM. The first three are related to the 3 ba-
sic no-go theorems, thus to the LSM constraints, while
the last is a non-LSM symmetry fractionalization pat-
tern. As mentioned before, if Gint = SO(3) is bro-
ken to U(1), αnon−LSM detects a nontrivial symmetry
fractionalization pattern of a U(1) monopole, captured
by a nontrivial element in H2(Gs, Uρ(1)) 6. One can
also see that α1,2,3 = −1 does not imply that the de-
scendent Gs × U(1) SPT is nontrivial, since they cor-
respond to trivial elements in H2(Gs, Uρ(1)). These
4 basic fractionalization patterns are clearly indepen-
dent of each other, as they correspond to completely
different (3 + 1)-d SPTs. Furthermore, for all 17 wall-
paper groups Gs, these 4 types of fractionalization pat-
terns give a complete set of topological invariants that
can distinguish all elements of H2(Gs,Z2), as explicitly
checked in Appendix F. These actually mean that

ALH = ker[̃i : H2(Gs,Z2)→ H2(Gs, U(1)ρ)] (3)

where ĩ is the map defined in Eq. (A13).
With this in mind, to further derive the topological

invariants corresponding to an LSM constraint, we just
need to write down the complete set of independent
topological invariants of H2(Gs,Z2), and bridge the
combinations of these topological invariants with dis-
tributions of DOF. Then each combination is a topolog-
ical invariant for an LSM constraint, which determines
λ in Eq. (1). Combined with η corresponding to the
PR type of the system, Eq. (1) or (2) gives the TPF
of the (3 + 1)-d Gs × Gint SPT corresponding to this
LSM constraint. An advantage of this approach is its
intuitive nature, i.e., everything can be done by simply
inspecting the IWP. Below we perform this analysis in
detail for the cases with Gs = p6m and Gs = p4m,
which will be relevant to the discussion of symmetry-
enriched criticality later in the paper. In Appendix
F, we present all topological invariants that character-
ize H2(Gs,Z2), with Gs being any of the 17 wallpaper
groups.

Before moving on, we stress again that the topolog-
ical characterization of the LSM constraints obtained
here applies to all Gint with Zk2-classified PR and all
PR types of the system, although it is derived in a
special case with Gint = SO(3).

1. Gs = p6m

All fractionalization patterns of p6m are classified by
H2(p6m,Z2) = Z4

2. As discussed in Sec. II A, p6m has
two IWP related to LSM constraints, type-a and type-
c. The former is the 2-fold rotation center of C3

6 , and
the latter includes the 2-fold rotation centers of T1C

3
6 ,

6 More precisely, H2
Borel(Gs, U(1)ρ). Especially,

H2
Borel(p1, U(1)ρ) ∼= H3(p1,Zρ) = 0.

T2C
3
6 and T1T2C

3
6 . In addition, p6m also has two inde-

pendent mirror symmetries, M and C3
6M . Using the

4 types of basic topological invariants discussed above,
we can immediately write down the complete set of in-
dependent topological invariants which can distinguish
all elements in H2(p6m,Z2):

αp6m1 [ω] =
ω(C3

6 , C
3
6 )

ω(1, 1)

αp6m2 [ω] =
ω(T1C

3
6 , T1C

3
6 )

ω(1, 1)

αp6m3 [ω] =
ω(M,M)

ω(1, 1)

αp6m4 [ω] =
ω(C3

6M,C3
6M)

ω(1, 1)

(4)

Physically, αp6m1 and αp6m2 measure the PR at the type-

a and type-c IWP, respectively, while αp6m3 and αp6m4

determine whether the (3+1)-d Gs×Gint SPT contains
a non-LSM component. Mathematically, the correct-
ness, completeness and independence of these topolog-
ical invariants can be checked using the representative
cochains in Appendix E.

Therefore, when αp6m3 = αp6m4 = 1, the combina-

tions (αp6m1 , αp6m2 ) are the sought-for topological in-
variants that characterize the LSM constraints in a
lattice with Gs = p6m. In particular, (αp6m1 , αp6m2 ) =

(−1, 1) and (αp6m1 , αp6m2 ) = (1,−1) imply that there
are DOF with nontrivial PR at the type-a and type-c
IWP, respectively, which are the generators of ALH, as
discussed in Sec. II A. When at least one of αp6m3 and

αp6m4 is −1, this combination does not correspond to
any LSM constraint.

We remark that the choice of topological in-
variants is not unique. For example, the ex-
pression of αp6m2 [ω] can be replaced by ei-

ther
ω(T2C

3
6 ,T2C

3
6 )

ω(1,1) or
ω(T1T2C

3
6 ,T1T2C

3
6 )

ω(1,1) , because
ω(T1C

3
6 ,T1C

3
6 )

ω(1,1) =
ω(T2C

3
6 ,T2C

3
6 )

ω(1,1) =
ω(T1T2C

3
6 ,T1T2C

3
6 )

ω(1,1) for a

cocycle ω(g1, g2) in H2(p6m,Z2), as can be checked
by using the representative cochains in Appendix E.
Physically, this just means that the 2-fold rotation
centers of T1C

3
6 , T2C

3
6 and T1T2C

3
6 are related by

symmetry, so the PR at these three rotation centers
should be the same. We can also replace the expression

of αp6m2 [ω] by ω(T1,T2)
ω(T2,T1) , which tells us whether there

is a net nontrivial PR in a translation unit cell and
equals αp6m1 [ω] · αp6m2 [ω]. This information combined

with αp6m1 [ω] also completely specifies which IWP
host Haldane chains.

It is useful to notice some interesting relations be-
tween LSM constraints with Gs = p6m and those with
Gs being a subgroup of p6m. In particular, consider
the case where Gs = cmm, which is a subgroup of p6m
generated by T1, T2, C2 ≡ C3

6 and M . That is, the
3-fold rotational symmetry generated by C2

6 is absent.
This wallpaper group has 3 IWP, where the first is the
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2-fold rotation center of C2, the second is the 2-fold
rotation center of T1T2C2, and the last includes the 2-
fold rotation centers of both T1C2 and T2C2. Further-
more, there are two independent mirror symmetries,
generated by M and C2M . Similar analysis as before
indicates that, for cmm, the 3 LSM fractionalization
patterns and 2 non-LSM fractionalization patterns are
detected by topological invariants

αcmm1 [ω] =
ω(C2, C2)

ω(1, 1)

αcmm2 [ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

αcmm3 [ω] =
ω(T1C2, T1C2)

ω(1, 1)

αcmm4 [ω] =
ω(M,M)

ω(1, 1)

αcmm5 [ω] =
ω(C2M,C2M)

ω(1, 1)

(5)

So when αcmm4 = αcmm5 = 1, the combinations
(αcmm1 , αcmm2 , αcmm3 ) are the topological invariants
that characterize the LSM constraints in a lattice with
Gs = cmm.

It is easy to see that the first IWP of cmm is just
the descendent of the type-a IWP of p6m, and the
second and third IWP of cmm are descendent of the
type-c IWP of p6m. Moreover, the mirror symmetries
of cmm are also the descendent mirror symmetries of
p6m. This means that the fractionalization pattern
of p6m can be completely specified by that of its cmm
subgroup. More precisely, for a cmm subgroup of p6m,
we have

αp6m1 = αcmm1 , αp6m2 = αcmm2 = αcmm3 ,

αp6m3 = αcmm4 , αp6m4 = αcmm5

(6)

These relations allow us to focus on the cmm subgroup
of a p6m group when we consider its fractionalization
classes, which sometimes simplifies the analysis.

2. Gs = p4m

Using similar analysis as before, it is easy to see that
the LSM constraints for the case with Gs = p4m are
classified by Z3

2, generated by distributions of DOF
with nontrivial PR on the 3 IWP. The 3 root LSM
constraints can be detected by topological invariants

αp4m1 =
ω(C2

4 , C
2
4 )

ω(1, 1)

αp4m2 =
ω(T1T2C

2
4 , T1T2C

2
4 )

ω(1, 1)

αp4m3 =
ω(T1C

2
4 , T1C

2
4 )

ω(1, 1)

(7)

Again, the p4m symmetry requires that
ω(T1C

2
4 ,T1C

2
4 )

ω(1,1) =
ω(T2C

2
4 ,T2C

2
4 )

ω(1,1) . There are also non-LSM fractionalization

patterns classified by Z3
2, with the following topological

invariants for the corresponding generators:

αp4m4 [ω] =
ω(M,M)

ω(1, 1)

αp4m5 [ω] =
ω(T1M,T1M)

ω(1, 1)

αp4m6 [ω] =
ω(C4M,C4M)

ω(1, 1)

(8)

In the case with Gint = SO(3), these three topolog-
ical invariants imply that acting M , T1M and C4M
on an SO(3) monopole twice yields a −1 phase factor,
respectively.

Therefore, when αp4m4 = αp4m5 = αp4m6 = 1, the

combinations (αp4m1 , αp4m2 , αp4m3 ) are the topological
invariants that characterize the LSM constraints in a
lattice with Gs = p4m.

Again, it is useful to note the relation between the
LSM constraints for Gs = p4m and those for its sub-
groups. Let us consider the pmm subgroup of p4m,
generated by T1, T2, M and C2 ≡ C2

4 . That is, the
4-fold rotation is absent while the 2-fold rotation is re-
tained in pmm. By inspecting the IWP of pmm, we
can immediately write down the topological invariants
corresponding to the LSM constraints

αpmm1 [ω] =
ω(C2, C2)

ω(1, 1)

αpmm2 [ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

αpmm3 [ω] =
ω(T1C2, T1C2)

ω(1, 1)

αpmm4 [ω] =
ω(T2C2, T2C2)

ω(1, 1)

(9)

and the topological invariants for the non-LSM frac-
tionalization patterns

αpmm5 [ω] =
ω(M,M)

ω(1, 1)

αpmm6 [ω] =
ω(C2M,C2M)

ω(1, 1)

αpmm7 [ω] =
ω(T1M,T1M)

ω(1, 1)

αpmm8 [ω] =
ω(T2C2M,T2C2M)

ω(1, 1)

(10)

So when all αpmm5 = αpmm6 = αpmm7 = αpmm8 = 1,
the combinations (αpmm1 , αpmm2 , αpmm3 , αpmm4 ) are the
topological invariants that characterize the LSM con-
straints in a lattice with Gs = pmm.

Furthermore, by examining the relation between
IWP of p4m and the IWP of its pmm subgroup, we
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get

αp4m1 = αpmm1 , αp4m2 = αpmm2 ,

αp4m3 = αpmm3 = αpmm4 ,

αp4m4 = αpmm5 = αpmm6 ,

αp4m5 = αpmm7 = αpmm8

(11)

So 5 of the 6 topological invariants for p4m can be de-
termined by examining its pmm subgroup. To further
determine the last topological invariant, αp4m6 , one can
simply examine the subgroup generated by C4M . This
observation will also simplify some analysis.

3. Topological characterization of the LSM constraints in
(1 + 1)-d

In the above we have derived the topological char-
acterization of LSM constraints in (2 + 1)-d systems.
Similar derivation can be carried out for (1 + 1)-d sys-
tems with Gs × Gint symmetry, where Gs is one of
the two line groups, and Gint is an internal symme-
try group whose PR are Zk2-classified. In this case, the
lattice homotopy picture still applies in an analogous
way, and there are (2 + 1)-d Gs × Gint SPTs corre-
sponding to each LSM constraint. Here we present the
cocycle and TPF of these SPTs, and leave the details
of derivation to Appendix G.

When Gs = p1, the line group that contains only
translation generated by T , the classification of LSM
constraints is Z2, detected by the total PR inside each
translation unit cell. The cocycle describing the (2+1)-
d p1 × Gint SPT related to the nontrivial LSM con-
straint is

Ω(g1, g2, g3) = eiπx1η(a2,a3) (12)

where gi = T xi ⊗ ai, with xi ∈ Z and ai ∈ Gint, for
i = 1, 2, 3. The corresponding TPF can be written as

Z = e
iπ

∫
M3

x∪η[Aint] (13)

whereM3 is the (2+1)-d spacetime manifold the SPT
lives in, and x is the gauge field corresponding to the
translation symmetry.

When Gs = p1m, the line group that contains both
translation T and mirror M , the classification of LSM
constraints is Z2

2, detected by the total PR at the mir-
ror centers of M and TM . For the case where only
the mirror center of M has a net nontrivial PR, the
corresponding cocycle is

Ω(g1, g2, g3) = eiπ(x1+m1)η(a2,a3) (14)

where gi = T xiMmi ⊗ ai, with xi ∈ Z, mi ∈ {0, 1} and
ai ∈ Gint, for i = 1, 2, 3. The corresponding TPF can
be written as

Z = e
iπ

∫
M3

(x+m)∪η[Aint] (15)

where x is still the gauge field of translation, and m is
the gauge field of mirror symmetry. For the case where
only the mirror center of TM has a net nontrivial PR,
using similar notations, the corresponding cocycle and
TPF are respectively

Ω(g1, g2, g3) = eiπx1η(a2,a3) (16)

and

Z = e
iπ

∫
M3

x∪η[Aint] (17)

III. Applications to symmetry-enriched quantum
criticality

The above topological characterization of the LSM
constraints is not only conceptually important, but also
of practical relevance. A crucial question in condensed
matter physics is what we call the question of emergi-
bility: given an IR effective theory, can it emerge at low
energies in a lattice system described by a local Hamil-
tonian? This question is generically rather challenging,
and we will utilize the hypothesis of emergibility: given
a (d+ 1)-dimensional IR effective theory with symme-
try GIR, a necessary and sufficient condition for it to
emerge from a lattice system with symmetry GUV is
that there is a symmetry embedding pattern (SEP),
i.e., a homomorphism ϕ

ϕ : GUV → GIR, (18)

such that the anomaly of this IR effective theory
matches with the anomaly of the lattice system coming
from the LSM-like constraint, in the sense that

ΩUV = ϕ∗ (ΩIR) (19)

where ΩUV describes the LSM-like anomaly of the lat-
tice system, ΩIR is the anomaly of the IR effective the-
ory, and ϕ∗ is the pullback induced by ϕ (see Appendix
A 2 for a review). In fact, the necessity of this condition
has been established (i.e., ’t Hooft anomaly-matching
condition), and only the sufficiency of it is hypotheti-
cal. Although this hypothesis has not been proved so
far, it is supported by many nontrivial examples. In
the following we will assume the correctness of the hy-
pothesis of emergibility.

The hypothesis of emergibility provides an intrinsic
characterization of the emergibility of an IR effective
theory, without relying on any of its specific construc-
tions. It is especially useful when there is no known
lattice construction of this IR effective theory, but its
anomaly is known. A class of such IR theories is the
non-Lagrangian Stiefel liquids (SLs) proposed in Ref.
[15]. A theory is Lagrangian if it can be described by
a weakly-coupled Lagrangian at high energies, which at
low energies may flow to a strongly-coupled fixed point
under RG. A non-Lagrangian theory is one that is so
strongly interacting, such that it cannot be described
by any weakly-coupled Lagrangian at any energy scale.
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The SLs are proposed to be an infinite family of quan-
tum critical states, where its simplest members are the
celebrated deconfined quantum critical point (DQCP)
and U(1) Dirac spin liquid (DSL), while other mem-
bers are conjectured to be non-Lagrangian. Due to the
intrinsic absence of a weakly-coupled description, it is
difficult to construct these non-Lagrangian states on a
lattice system by usual means. However, the anomalies
of these SLs are derived in Ref. [15]. With ΩUV de-
rived in Sec. II (given by Eqs. (1) or (2)), we can check
the emergibility of these states in various lattice spin
systems, by checking the existence of SEP that can
match the anomalies. Based on this approach, some
interesting realizations of the non-Lagrangian SLs on
triangular and kagome lattices are proposed [15]. Here
we will explore this problem more systematically.

Motivated by their relevance in the study of quan-
tum magnetism, in the following we will focus on lat-
tice systems with GUV = Gs × Gint symmetry, where
Gs is p4m or p6m, and Gint = O(3)T ≡ SO(3) × ZT2 ,
the product of spin rotation and time reversal sym-
metries. We further demand that the PR type of the
system correspond to half-integer spin, i.e., spinor un-
der SO(3) while Kramers doublet under ZT2 , which
implies that the (1 + 1)-d SPT related to the LSM

constraints has a TPF exp
(
iπ
∫
M2

(w
SO(3)
2 + t2)

)
=

exp
(
iπ
∫
M2

w
O(3)T

2

)
. For the IR effective theory, we

focus on DQCP, DSL, and the simplest non-Lagrangian
SL, denoted by SL(7). We will exhaustively search SEP
that can match the anomalies of these IR theories with
the LSM anomalies on these lattices, assuming that the
IR theories can emerge as a consequence of the com-
petition between a magnetic state (a state that breaks
the SO(3) spin rotational symmetry, e.g., a Neel state)
and a non-magnetic state (an SO(3) symmetric state,
e.g., a valance bond solid (VBS)).

A. Review of Stiefel liquids

First, we briefly review the physics of SLs [15] (see
Appendix H for more details, including useful informa-
tion absent in Ref. [15]). In Ref. [15], the proposed
non-Lagrangian SLs are defined in terms of 2+1 dimen-

sional non-linear sigma models with target spaces being
a Stiefel manifold. Although this sigma-model descrip-
tion is very effective in capturing the kinematic proper-
ties of the SLs, these non-renormalizable sigma models
have infinite-dimensional parameter spaces, and they
do not fully specify the universal low-energy physics
of the system until all their infinitely many parame-
ters are specified. So it is desirable to have a defini-
tion of these SLs without explicitly referring to any
Lagrangian. In the following, we will review the sym-
metries, anomalies and some dynamical aspects of the
SLs, and these proporties can also be viewed as an
intrinsic definition of SLs without relying on any La-
grangian.

A SL is labelled by an integer N > 5, and we denote
this state by SL(N). The DQCP and DSL correspond
to SL(5) and SL(6), respectively, and SL(N>6) are con-
jectured to be non-Lagrangian. The DOF of SL(N) is
represented by an N×(N−4) matrix n with orthonor-
mal columns. The symmetry GIR of SL(N) includes
Poincaré symmetry and

O(N)T ×O(N − 4)T

Z2
(20)

The O(N) acts as n → Ln with L ∈ O(N), and the
O(N − 4) acts as n → nR with R ∈ O(N − 4). The
superscript “T” represents a locking condition: an im-
proper rotation of either the O(N) or O(N − 4) is a
symmetry if and only if it is combined with a space-
time orientation reversal symmetry. This locking con-
dition is one of the reasons why SL(N>7) may be non-
Lagrangian (see Appendix H). The modding of Z2 is
because the operation with L = −IN and R = −IN−4

has no action on n. For N = 5, n reduces to a 5-
component vector, and GIR includes Poincaré symme-
try and an O(5)T symmetry that acts by left multipli-
cation on n, such that the improper rotation is com-
bined with a spacetime orientation reversal symmetry.

The anomaly of SL(N) is captured by ΩIR, an ele-
ment in H4(GIR, U(1)ρ). It is useful to consider the

projection from G̃IR ≡ O(N)T × O(N − 4)T to GIR,
and the pullback of ΩIR induced by the projection is

given by Ω̃IR = eiπL̃IR ∈ H4(G̃IR, U(1)ρ), where

L̃IR = w
O(N)
4 + w

O(N−4)
4 +

[
w
O(N−4)
2 +

(
w
O(N−4)
1

)2
](
w
O(N)
2 + w

O(N−4)
2

)
+
(
w
O(N−4)
1

)4

(21)

supplemented with a constraint wTM1 + w
O(N)
1 +

w
O(N−4)
1 = 0 (mod 2), which originates from the lock-

ing between the spacetime orientation reversals and the

improper rotations ofO(N) andO(N−4). Here w
O(N)
i ,

w
O(N−4)
i and wTMi are the i-th Stiefel-Whitney classes

of the O(N), O(N − 4) gauge bundles and the tan-
gent bundle of the spacetime manifold, respectively.
For odd N , Ω̃IR completely characterizes ΩIR (see Ap-

pendix H for more details). However, for even N , Ω̃IR

misses some important information. Fortunately, it
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turns out that Ω̃IR is still adequate for the following
discussion, even for the case with N = 6 (see Ap-
pendix I 2 and discussions below Eq. (I18)). Below

we will view Ω̃IR as the IR anomaly of SLs and omit
the tilde symbol, i.e., we rewrite Ω̃IR and L̃IR as ΩIR

and LIR for simplicity.
The low-energy dynamics of SLs is not fully under-

stood so far. There is evidence that DQCP is a pseudo-
critical state [19, 51–54], which can be approximated by
a CFT, whose relevant operators are the conserved cur-
rent, the SO(5) vector and symmetric traceless rank-2
tensor, and possibly time-reversal breaking SO(5) sin-
glet. There is also evidence that SL(N>6) are genuine
CFTs with no GIR-symmetric relevant operator. Fur-
thermore, various numerical studies (e.g. see a recent
conformal bootstrap study [55] and references therein)
give (indirect) support that the only relevant opera-
tors in these states are either conserved currents, or
time-reversal-breaking operators, or Lorentz scalar op-
erators in the representations (VL, VR) and (AL, AR),
where VL (VR) and AL (AR) represent the vector and
anti-symmetric rank-2 tensor of SO(N) (SO(N − 4)),
respectively. The effects of these relevant operators
are complicated: some of them change the emergent
order of the state, but others do not (see Appendix H
for more details). We are interested in the stability
of these states in a specific lattice realization, whose
symmetry is GUV. Some perturbations that are not
GIR-symmetric can be GUV-symmetric and drive the
states unstable. For a realization to be stable, we de-
mand that GUV forbid all the aforementioned relevant
perturbations that change the emergent order of the
state.

It is also sometimes useful to refer to the gauge-
theoretic description of the DSL (SL(6)). This descrip-
tion is in terms of 4 flavors of gapless Dirac fermions
coupled to a dynamical U(1) gauge field. The global
symmetry of this theory is given by Eq. (20) with
N = 6. The fundamental operator in this theory is
the monopole operators of the U(1) gauge field, which
transform as a bi-vector under the (SO(6)×SO(2))/Z2

symmetry [56–58]. These monopoles are represented
by the 6×2 matrix n in the language of SLs, which are
also the (VL, VR) relevant operator mentioned above.
In terms of the gauge theory, other relevant perturba-
tions listed above are as follows. The conserved cur-
rents are the flavor currents of the Dirac fermions and
the electromagnetic field strengths of the U(1) gauge
field, the time-reversal-breaking operator is the fermion
mass that is a singlet under the flavor symmetry, and
the (AL, AR) operator is the fermion mass that is in
the adjoint representation of the flavor symmetry.

B. Method for anomaly-matching

Now we sketch a streamlined method to check the
emergibility condition Eq. (19), for a given symmetry

embedding pattern (SEP) ϕ. This method crucially re-
lies on the fact that H4(GUV, U(1)ρ) = Zk2 with some
k ∈ N, which always holds if GUV = G′ × ZT2 with
some group G′. In our case, G′ = Gs × SO(3). More
generally, as long as GUV = G′ × ZT2 for any G′, we
expect this method to be useful in matching the LSM
anomaly of a lattice system with the anomaly of any
IR effective theories. This subsection is relatively for-
mal and abstract, and readers more interested in the
physical results can skip to the next section.

To motivate this method, first note that ΩUV and
ϕ∗(ΩIR) are elements in H4(GUV, U(1)ρ). To compare
two elements in H4(GUV, U(1)ρ), generically we need
a complete set of topological invariants (or some equiv-
alents) for H4(GUV, U(1)ρ), which is often difficult to
obtain. This difficulty comes from the fact that we are
considering cohomology with U(1) coefficients.

Nevertheless, simplification occurs when GUV =
G′ × ZT2 and hence H4(GUV, U(1)ρ) = Zk2 with some
k ∈ N. This enables us to connect ΩUV and ϕ∗(ΩIR) to
elements in H∗(GUV,Z2), which simplifies the analy-
sis due to the salient features of cohomologies with Z2

coefficients.
To see the connection to H∗(GUV,Z2), first recall

that ΩUV takes the form of Eq. (1). We can view
λ and η as elements in H2(Gs,Z2) and H2(Gint,Z2),
respectively. Then λ(l1, l2)η(a3, a4) is in fact the cup
product λ ∪ η 7, which is an element in H4(GUV,Z2)
that we denote by LUV. As a group, here the group
operation of two elements in H4(GUV,Z2) is realized
as the mod 2 addition of the representative cochains
of these elements, which take values in Z2 = {0, 1}.
Then ΩUV can be written as eiπLUV , or more formally
as ĩ(LUV), where ĩ is a map induced by the inclusion
i : Z2 → U(1) introduced in Eq. (A13). That is, the
LSM anomaly ΩUV can be expressed as an image of an
element LUV ∈ H4(GUV,Z2) under ĩ. 8

Furthermore, there is an injective map from
H4(GUV, U(1)ρ) to H5(GUV,Z2), given by p̃ ◦ β,
i.e., the combination of the Bockstein homorphism
β : H4(GUV, U(1)ρ) → H5(GUV,Zρ) and an injec-
tive map p̃ : H5(GUV,Zρ) → H5(GUV,Z2) (see Ap-
pendix A 2 for a brief introduction of these maps).
Here the fact that p̃ is injective is again guaranteed
by H4(GUV, U(1)ρ) = Zk2 , which is crucial for this
method. This means that checking Eq. (19) is equiva-
lent to checking

(p̃ ◦ β)ΩUV = (p̃ ◦ β)ϕ∗(ΩIR) (22)

where both sides are elements in H5(GUV,Z2).

7 More specifically, the cross product λ×η, defined in Eq. (A23)
in Appendix A 3.

8 In fact, since GUV = G′ × ZT2 , which implies that
Hn(GUV, U(1)ρ) = Zk2 for any n ∈ N, any element in
Hn(GUV, U(1)ρ) can be written as the image of an element in
Hn(GUV,Z2) under ĩ.
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Now we discuss the relevant simplifying features of
cohomology with Z2 coefficient. First, for any group
G, H∗(G,Z2) has a ring structure, where the addi-
tion is the mod 2 addition as above, and the multi-
plication between two elements is realized as their cup
product. The entire cohomology ring H∗(G,Z2) can be
presented by generators and relations, such that any of
its elements can be written as sum of cup products of
these generators, while the relations dictate that some
sums are in fact the trivial element.

Moreover, H∗(Gs × Gint,Z2) ∼= H∗(Gs,Z2) ⊗
H∗(Gint,Z2) for any Gs and Gint, which allows us
to understand H∗(Gs × Gint,Z2) by understanding
H∗(Gs,Z2) and H∗(Gint,Z2) separately.

We are interested in the case with Gint = O(3)T ≡
SO(3) × ZT2 . The cohomology ring H∗(O(3)T ,Z2) is
generated by the Stiefel-Whitney classes of O(3)T , i.e.,

w
O(3)T

1 ∈ H1(O(3)T ,Z2), w
O(3)T

2 ∈ H2(O(3)T ,Z2)

and w
O(3)T

3 ∈ H3(O(3)T ,Z2), with no relation among
the generators. Sometimes we also need to write
H∗(O(3)T ,Z2) as H∗(SO(3),Z2)⊗H∗(ZT2 ,Z2), where

H∗(SO(3),Z2) is generated by the Stiefel-Whitney

classes w
SO(3)
2 and w

SO(3)
3 of SO(3), and H∗(ZT2 ,Z2)

is generated by t ∈ H1(ZT2 ,Z2). These two sets of
generators are related by

w
O(3)T

1 = t

w
O(3)T

2 = w
SO(3)
2 + t2

w
O(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 (23)

As for H∗(Gs,Z2), we have calculated the Z2 coho-
mology ring, i.e., the generators and relations, of all 17
wallpaper groups (see Appendix E). It turns out that
for all wallpaper groups Gs except p4g, all generators
belong to H1(Gs,Z2) and H2(Gs,Z2). For p4g, besides
elements in H1(p4g,Z2) and H2(p4g,Z2), another ele-
ment in H3(p4g,Z2) is also needed to form a complete
set of generators.

The above observations motivate us to consider
the following diagram, where each rectangular sub-
diagram is commuting 9:

H4(GIR,Z2) H4(GIR, U(1)ρ) H5(GIR,Zρ) H5(GIR,Z2)

H4(GUV,Z2) H4(GUV, U(1)ρ) H5(GUV,Zρ) H5(GUV,Z2)

ϕ∗

ĩ

ϕ∗

β

ϕ∗

p̃

ϕ∗

ĩ β p̃

(24)

From the commutativity of the diagram, checking Eq.
(22) is equivalent to checking

SQ1(LUV) = ϕ∗(p̃ ◦ β)(ΩIR) (25)

in H5(GUV,Z2), where

SQ1 ≡ p̃ ◦ β ◦ ĩ. (26)

Some important properties and calculations of SQ1 are
given in Appendix A 4. Because of the salient fea-
tures of cohomologies with Z2 coeffiecients, checking
Eq. (25) is expected to be simpler than directly check-
ing Eq. (19) for a generic IR effective theory.

For SLs, a further simplification takes place since
ΩIR = eiπLIR ∈ H4(GIR, U(1)ρ) for SLs. Here LIR

can also be viewed as an element in H4(GIR,Z2), in
a way similar to LUV ∈ H4(GUV,Z2). Then ΩIR is

9 The reason to use dashed lines to connect the left corner of the
diagram to the rest is because H4(GIR,Z2) is relevant in this
analysis only for theories like SLs, where ΩIR is the image of
an element in H4(GIR,Z2) under ĩ. For a generic IR effective
theory, the left corner is irrelevant to the analysis of anomaly-
matching. See Appendix I 1 for an IR effective theory (the
SU(2)1 CFT) where this is the case.

the image of LIR under the map ĩ : H4(GIR,Z2) →
H4(GIR, U(1)ρ). Therefore, Eq. (25) becomes

SQ1(LUV) = ϕ∗(SQ1(LIR)) (27)

Below we will use this equation to check the emergibil-
ity of various SLs. We remark that to check Eq. (19),
one may attempt to check if LUV = ϕ∗(LIR). How-
ever, since ĩ is not injective, this is just a sufficient
but unnecessary condition of Eq. (19). As we have
checked, LUV 6= ϕ∗(LIR) in many examples where Eq.
(27) holds.

C. Example: anomaly matching for DQCP

To make this discussion more concrete, we showcase
this method in a concrete example in detail (see Ap-
pendix I for more examples, including an example in
(1 + 1)-d).

Consider the classic realization of DQCP (SL(5)) on
a square lattice [16, 17, 19]. For DQCP, GIR = O(5)T

and Eq. (21) becomes

ΩIR ≡ exp(iπLIR) = exp
(
iπw

O(5)
4

)
. (28)

In this realization, GUV = p4m × O(3)T and the SEP
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ϕ reads [15, 19],

T1 →

 −I3 −1
1

 , T2 →

 −I3 1
−1

 ,

C4 →

 I3
1

−1

 , M →

 I3
−1

1

 ,

O(3)T →
(
O(3)T

I2

)
,

(29)

where Ik denotes the k × k identity matrix. Note that
the locking between the spacetime orientation rever-
sals and improper rotations of O(5) is satisfied above.
The LSM anomaly Eqs. (1) or (2) in this case can be
written as

ΩUV ≡ exp(iπLUV) = exp
(
iλ1w

O(3)T

2

)
(30)

where λ1 ∈ H2(p4m,Z2) triggers αp4m1 in Eq. (7), i.e.,

define ω1 ≡ ĩ(λ1) = eiπλ1 , then αp4m1 [ω1] = −1 while

αp4mi [ω1] = 1 for i = 2, . . . , 6. As a concrete realization
of the DQCP, Eq. (19) must hold. Below we check it
by checking its equivalent form, Eq. (27).

According to Appendix A 2,

SQ1(LIR) = w
O(5)
5 , (31)

and

SQ1(LUV) = λ1w
O(3)T

3 , (32)

where w
O(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 and t ∈

H1(ZT2 ,Z2) corresponds to the gauge field of time re-
versal symmetry ZT2 , when pulled back to the space-
time manifold M4.

It remains to calculate the pullback ϕ∗(SQ1(LIR)).
Since the embedding ϕ is block-diagonal with a 3 × 3
block and a 2×2 block, invoking the Whitney product

formula, w
O(5)
5 = w

O(3)
3 w

O(2)
2

10, we get

ϕ∗
(
SQ1(LIR)

)
= ϕ∗

(
w
O(3)
3

)
∪ ϕ∗

(
w
O(2)
2

)
(33)

Hence we just need to calculate ϕ∗(w
O(3)
3 ) and

ϕ∗(w
O(2)
2 ). The calculation of ϕ∗(w

O(3)
3 ) is straight-

forward,

ϕ∗
(
w
O(3)
3

)
=

w
SO(3)
3 + (t+Ax+y)w

SO(3)
2 + (t+Ax+y)3,

(34)

10 Technically speaking, what we are doing is factorizing ϕ into
an embedding ϕ̃ : GUV → O(3) × O(2) composed with an
embedding ϕ0 : O(3) × O(2) → O(5). Then this equation

should be thought of as the pullback of w
O(5)
5 under ϕ0, which

can be proven by considering the diagonal Z5
2 symmetry. In

this paper we will omit this fine detail for simplicity.

where Ax+y ∈ H1(p4m,Z2) corresponds to the sum
of gauge fields of T1 and T2, when pulled back to the
spacetime manifold M4 (see Appendix E).

The pullback of w
O(2)
2 needs more consideration.

As ϕ∗
(
w
O(2)
2

)
∈ H2(p4m,Z2), it is completely de-

termined by its action on the 6 topological invari-
ants identified in Eqs. (7) and (8), i.e., αp4mi [ω] with

ω = ĩ(ϕ∗(w
O(2)
2 )), for i = 1, · · · 6. To obtain αp4mi [ω],

consider the six Z2 subgroups, denoted by Z(i)
2 with

i = 1, · · · , 6, generated by C2, T1C2, T1T2C2, M , T1M
and C4M , respectively. Their embedding into O(2)
reads:

C2 →
(
−1
−1

)
, T1T2C2 →

(
1

1

)
T1C2 →

(
1
−1

)
, M →

(
−1

1

)
T1M →

(
1

1

)
, C4M →

(
1

1

)
.

The pullback under the embedding Z(i)
2 → O(2) results

in an element in H2(Z(i)
2 ,Z2) = Z2, which is precisely

detected by the topological invariant αp4mi [ω]. Cal-
culating these six pullbacks via the Whitney product
formula, we find αp4m1 [ω] = −1, while other topological
invariants are +1. Hence, we establish that 11

ϕ∗(w
O(2)
2 ) = λ1 (35)

Finally, combining Eqs. (32-35) and λ1Ax+y =
0, a relation among the cohomology generators in
H∗(p4m,Z2) (see Appendix E), we establish that Eq.
(27) indeed holds, as expected.

We mention that some previous works have per-
formed anomaly-matching for this example, but some
of them only did it by restricting both GUV and GIR

to a few subgroups [8], and some used non-rigorous
method [15]. To the best of our knowledge, the analysis
above is the first that performs this anomaly-matching
via a rigorous method, while keeping track of the full
GUV and GIR. When checking emergibility below, we
always maintain such completeness and rigor.

IV. Deconfined quantum critical point and
quantum critical spin liquids

With the formalism developed in the previous sec-
tions, we perform an exhaustive search of realiza-
tions of SL(N=5,6,7) that can match certain LSM con-
straints on lattice spin systems with p6m × O(3)T or

11 In practice, to obtain this result, it suffices to only consider
the pmm subgroup and Z2 subgroup generated by C4M , as
argued in Section II B 2. Since the embedding of pmm is also
in the diagonal form, the calculation is as straightforward.
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p4m×O(3)T symmetry, if this realization is adjacent to
a magnetic state and a non-magnetic state (this means
that the SO(3) symmetry acts on some but not all en-
tries of n, the N × (N − 4) matrix representing the
DOF of SL(N)). This search can be efficiently done us-
ing a computer, and the complete results can be found
in the attached codes [59] with the help of Appendix
J. The numbers of different types of realizations are
in Table I, where each row represents a distinct LSM
constraint, or lattice homotopy class, labeled by the
IWP that hosts half-integer spins (see Figs. 2 and
3 for the symbols of IWP), and 0 means there is no
nontrivial LSM constraint, which applies to systems
with integer-spin moments or honeycomb lattice half-
integer spin systems. Note that for p4m, situations a
and b always have the same number of realizations in
each case, since they both correspond to square lat-
tice half-integer spin systems and they are related to
each other via a redefinition of the C4 center. How-
ever, these two situations should still be viewed as dis-
tinct, because they cannot be smoothly deformed into
each other once the p4m symmetry is specified, which
means, in particular, the C4 centers are fixed. The
same holds for situations a&c and b&c. In terms of
symmetry-enriched quantum criticality, we have found
12 different p6m × O(3)T symmetry-enriched DQCP,
105+1 = 106 different p6m×O(3)T symmetry-enriched
DSL, 705+14 = 719 different p6m×O(3)T symmetry-
enriched SL(7), 26 different p4m × O(3)T symmetry-
enriched DQCP, 372 + 1 = 373 different p4m×O(3)T

symmetry-enriched DSL, and 3819 − 27 + 29 = 3821
different p4m × O(3)T symmetry-enriched SL(7). The
reason for subtracting 27 in the last case is explained
at the end of this section. Many of these realizations
are unstable, in the sense that they require fine-tuning
due to the existence of one or more microscopic sym-
metry allowed relevant operators (see Appendix K for
all stable realizations on various systems).

Below we present some interesting examples. To the
best of our knowledge, none of these examples has been
discussed before. When we discuss a realization of a
SL, we will also comment on its nearby phases, which
are often (but not always) some simple ordered states
and relatively easy to detect. This provides useful
guide for the search of an SL, since if such an ordered
state can be found in a material or model, perturbing
this ordered state may result in an SL. A smoking-gun
signature of the SLs is their large emergent symme-
tries, which can manifest themselves in a set of singular
correlation functions with the same critical exponent.
Moreover, for all classical regular magnetic orders [60],
i.e., classical magnetic orders in which any broken lat-
tice symmetry can be compensated by a spin operation
(see Appendix L for their spin configurations), we iden-
tify the numbers of realizations of SLs adjacent to them
(see Table II).

In this section, we focus on realizations where the
most relevant spinful excitations have spin-1. In par-

Gs = p6m
spin-1/2
position

DQCP DSL SL(7) DSLquad SL
(7)
quad

0 10(2) 76(1) 453(0) 1(1) 12(2)
a 0 3(3) 41(8) 0 0
c 0 3(3) 35(9) 0 0

a&c 2(1) 23(5) 176(2) 0 2(0)

total
12
(3)

105
(12)

705
(19)

1
(1)

14
(2)

Gs = p4m
spin-1/2
position

DQCP DSL SL(7) SL
(7)
incom DSLquad SL

(7)
quad

0 19(0) 217(0) 1849(0) 2(0) 1(1) 22(4)
a 1(1) 23(3) 299(2) 3(2,1) 0 1(1)
b 1(1) 23(3) 299(2) 3(2,1) 0 1(1)
c 3(0) 56(4) 632(0) 2(2) 0 3(1)

a&b 1(1) 22(0) 279(0) 11(11) 0 1(0)
a&c 0 6(6) 117(6) 0 0 0
b&c 0 6(6) 117(6) 0 0 0

a&b&c 1(1) 19(2) 227(0) 6(6) 0 1(0)

total
26
(4)

372
(24)

3819
(16)

27
(23,2)

1
(1)

29
(7)

Table I. Numbers of realizations for DQCP, DSL and SL(7)

in spin systems with a p6m (upper) or p4m (lower) lattice
symmetry. Two realizations with symmetry actions related
by a similarity transformation are considered as a single
realization. The columns without (with) subscript “quad”
represent realizations where the most relevant spinful exci-
tations, i.e., the n modes that transform nontrivially under
the SO(3) spin rotational symmetry, carry spin-1 (spin-2).
No realization of DQCP has the n modes carrying spin-2.
The numbers in parenthesis are the numbers of stable real-
izations. Here a stable DQCP means a realization that has
a single relevant perturbation allowed by the microscopic

symmetry, and a stable DSL, SL(7), DSLquad and SL
(7)
quad

means a realization that has no relevant perturbation al-
lowed by the microscopic symmetry. For all columns ex-

cept SL
(7)
incom, the n modes are at high-symmetry momenta

in the Brillouin zone. For SL(7) realized on p4m symmet-
ric lattices, there are realizations with some n modes at

incommensurate momenta, and the column SL
(7)
incom docu-

ments the numbers of families of these realizations, where
each family includes infinitely many realizations labeled by
a momentum, which continuously interpolate between two
realizations in the column SL(7). Two continuous families of
realizations may share a common high-symmetry momen-
tum, at which these two realizations turn out to be always
distinct, in that symmetries other than translation are im-
plemented distinctly. (23, 2) means that there are 23 fami-
lies of realizations, such that as long as a given realization
is in the “interiors” of the family (i.e., not all n modes are
at high-symmetry momenta), the only symmetric relevant
perturbation is the one that shifts the momenta of n modes,
and there are 2 other families, such that this is still the
case except at two exceptional points in the interior, where
there is an additional symmetric relevant perturbation that
changes the emergent order. The symmetry actions of the
stable realizations are explicitly listed in ReadMe.nb.
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Lattice Colinear order spin-1/2 spin-1

Triangular F 0 2(1)

Kagome F 0 2(1)

Honeycomb
F 2(1) 2(1)

AF 2(1) 2(1)

Square
F 0 2(0)

AF (Neel) 1(1) 2(0)

Lattice Coplanar order spin-1/2 spin-1

Triangular 120◦ 1(1) 3(0)

Kagome
q = 0 1(1) 2(0)√
3×
√

3 0 3(0)

Honeycomb V 3(0) 3(0)

Square
V 1(0) 3(0)

Orthogonal 1(0) 1(0)

Lattice Non-Coplanar order spin-1/2 spin-1

Triangular
Tetrahedral 8(4) 2(0)
F umbrella 1(0) 4(0)

Kagome

Octahedral 0 2(0)
Cuboc1 3(2) 1(0)
Cuboc2 4(3) 1(0)

q = 0 umbrella 2(1) 3(0)√
3×
√

3 umbrella 1(1) 4(0)

Honeycomb
Tetrahedral 2(0) 2(0)

Cubic 1(0) 1(0)

Square
Tetrahedral umbrella 1 Incom 2(0)

F umbrella 2(0) 2(0)

Table II. Numbers of realizations for DQCP (top), DSL

(middle) and SL(7) (bottom) adjacent to some colinear,
coplanar and non-coplanar magnetic orders, respectively, of
triangular, kagome, honeycomb and square lattice spin-1/2
(or general half-integer-spin) systems (third column) and
spin-1 (or general integer-spin) systems (fourth column).
The numbers in parenthesis are the numbers of stable real-
izations (defined in the same way as in Table I). F stands for
Ferromagnetic while AF stands for Anti-ferromagnetic. “1
Incom” means that realizations of SL(7) adjacent to tetra-
hedral umbrella order on the square lattice spin-1/2 sys-
tems belong to a continuous family of realizations, where
the non-magnetic components of n can have continuously
changing momenta. See Appendix L for the spin config-
urations of these magnetic orders, and the attached code
ReadMe.nb for the explicit symmetry actions.

ticular, we describe examples of realizations of DQCP
as a (pseudo-)critical point, which has a single relevant
perturbation allowed by the microscopic symmetries,
and stable realizations of DSL, which has no relevant
perturbation allowed by the microscopic symmetries.
For SL(7), we discuss a realization without symmetry-
allowed relevant perturbation, and another example
with a single symmetry-allowed relevant perturbation
that nevertheless does not change the state. We view
both realizations of SL(7) as stable.

A. DQCP

It is known that there are two types of DQCPs prox-
imate to classical regular magnetic orders [17], both
are transitions from an anti-ferromagnetic state to a
VBS state, i.e., the columnar VBS for square spin-1/2
systems [61, 62] and the Kekule VBS for honeycomb
spin-1/2 systems [63]. Interestingly, we find another
realization of DQCP on a honeycomb lattice spin-1/2
system, as a transition between a ferromagnetic state
and a staggered VBS state. 12 The symmetries are
realized as

T1,2 : n→ n

C6 : n→

 I3
− 1

2

√
3

2

−
√

3
2 − 1

2

n

M : n→

 I3
−1

1

n

O(3)T : n→
(
O(3)T

I2

)
n

(36)

The components of n can be identified with micro-
scopic operators that transform identically under the
above symmetries. Denote the microscopic spin-1/2
operator on the A and B sublattices as SA(r) ≡
S
(
r + 2T1+T2

3

)
and SB(r) ≡ S

(
r + T1−T2

3

)
, respec-

tively, where r is the position of the C6 center of each
unit cell, and T1,2 is the translation vector of T1,2.
Then SA,i(r) = SB,i(r) ∼ ni for i = 1, 2, 3. De-

note the dimer operators as Dx(r) ≡ S(r + −T1+T2

3 ) ·
S
(
r + T1+2T2

3

)
, Dy(r) ≡ S

(
r + T1+2T2

3

)
· S(r +

2T1+T2

3 ), and Dz(r) ≡ S
(
r + 2T1+T2

3

)
·S
(
r + T1−T2

3

)
.

ThenDx(r)+ei
2π
3 Dy(r)+ei

4π
3 Dz(r) ∼ e−i 5π6 (n4−in5).

So n1,2,3 and n4,5 can be identified as the order param-
eters of a ferromagnet and a stacked VBS, respectively.
For examples below, one can perform similar analysis
to identify components of n with microscopic opera-
tors, but we will not explicitly showcase them.

Since this ferromagnetic DQCP is the simplest ex-
ample of new states discovered using our approach, it
will be reassuring to also have a traditional parton-
based construction [64]. Indeed this DQCP can be con-
structed using Schwinger bosons S = 1

2b
†
ασαβbβ , where

the bosonic spinons bα couple to a dynamicsl U(1)
gauge field aµ. To realize the staggered VBS, we put
the Schwinger bosons into the “featureless Mott insula-
tor” discussed in Ref. [34] – effectively this state is con-
structed by putting a spin-singlet, gauge-charge Q = 2

12 Due to the fact that a fully polarized ferromagnetic state is
always an exact eigenstate of any SO(3) symmetric Hamil-
tonian, the ferromagnetic state immediately adjacent to this
DQCP, which is partially polarized, must be separated from a
fully polarized one by a level crossing, i.e., first-order transi-
tion.



19

spinon “Cooper pair” at each C6 center. When coupled
to the dynamical U(1) gauge field, the monopole opera-
tor acquires nontrivial lattice symmetry quantum num-
bers due to the charged insulating background. For
example, the gauge charge Q = 2 at each C6 rotation
center gives the monopole a C6 angular momentum
ei2π/3 from the Aharanov-Bohm effect. Other lattice
symmetry quantum-numbers can be analyzed in a sim-
ilar fashion, following methods develped in Ref. [57]. It
turns out that the monopole carries exactly the sym-
metry quantum numbers of the staggered VBS. At low
energies the monopole will spontaneously condense and
confine the gauge theory, resulting in the staggered
VBS phase. To access the magnetically ordered phase,
we drive the spinons bα through an insulator-superfluid
transition and Higgs the U(1) gauge field. The fact
that bα do not carry any nontrival projective represen-
tation in this construction means that they can be con-
densed without breaking any lattice symmetry, which
means that the magnetically ordered phase obtained
this way is a ferromagnet. The effective field theory
at the phase transition is the standard (non-compact)
CP1 theory for DQCP [16], described by an SU(2)-
fundamental complex Wilson-Fisher boson coupled to
a dynamical U(1) gauge field aµ.

We remark that, compared to the standard
DQCP realization where the magnetic side is anti-
ferromagnetic, in this realization there is one more per-
turbation that is likely irrelevant at the transition, but
relevant in the ferromagnetic phase and responsible for
making the dispersion of the magnon quadratic. In the
CP1 formulation of the DQCP with Schwinger bosons
b [16, 17], this operator is (ib†σ∂tb) · (b†σb). In the
CPN generalization of this theory, this operator is in-
deed dangerously irrelevant in the large-N limit.

The simple nature of the magnetic and VBS phases
here suggests that this DQCP may be realizable in rel-
atively simple spin models. It will be interesting to
find a sign-problem-free lattice model and simulate this
transition with the quantum Monte Carlo approach.

B. DSL

DSLs have been constructed for various lattices using
the parton construction. There are two widely studied
DSLs: one is on the kagome lattice spin-1/2 system
proximate to the q = 0 coplanar magnetic order [22,
65–68]; the other is on the triangular spin-1/2 lattice
proximate to the 120◦ coplanar order [57, 58, 69–73].
On the other hand, the previously constructed DSLs
on the honeycomb and square lattices are unstable due
to the presence of GUV-symmetric monopole (i.e., the
n modes) [57, 58, 74, 75]. Interestingly, we find new
stable DSLs on square and honeycomb lattices. Our
complete classification also shows that there is no DSL
proximate to the

√
3×
√

3 coplanar order on the kagome
spin-1/2 system.

For the honeycomb lattice spin-1/2 system, the sym-
metries act as:

T1,2 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

n

C6 : n→

 I3
1
−1
−1

n

(
1
2 −

√
3

2√
3

2
1
2

)

M : n→

 I3
−1
−1

1

n

(
−1

1

)

O(3)T : n→
(
O(3)T

I3

)
n

(37)

The magnetic order adjacent to this DSL is a regu-
lar magnetic order, i.e., a magnetic order in which any
broken lattice symmetry can be compensated by a spin
operation [60]. However, the magnetic order here ap-
pears missing in the classification in Ref. [60], which
is possibly because all magnetic orders in Ref. [60]
are assumed to be realizable by product states. It is
known that some SRE states in a honeycomb lattice
spin-1/2 system cannot be realized by product states,
so we do not make this assumption [34–37]. This DSL
should also be emergible in a triangular or kagome lat-
tice integer-spin system. In these cases, the adjacent
magnetic orders are also regular but not realizable by
product states. In the future it is interesting to system-
atically explore the properties of these entanglement-
enabled symmetry-breaking orders. For now we just
note that they can essentially be viewed as SRE states
invariant under the remaining symmetry, which never-
theless cannot be realized as product states, and vari-
ous examples of such SRE states have been explicitly
constructed [34–37].

For the square lattice spin-1/2 system, the symme-
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tries act as:

T1 : n→

 I3
−1

1
−1

n

(
−1
−1

)
,

T2 : n→

 I3
1
−1
−1

n

(
−1
−1

)
,

C4 : n→

 I3
1

−1
1

n

(
−1
−1

)
,

M : n→

 I3
1
−1
−1

n

(
−1

1

)
,

O(3)T : n→
(
O(3)T

I3

)
n,

(38)

The magnetic order adjacent to this DSL is also an
entanglement-enabled regular magnetic order.

One interesting aspect of these realizations is that
all perturbations proportional to the entries of n are
forbidden by symmetries, and the lack of this prop-
erty is the reason why the previous constructions on
these systems are unstable [57, 58, 74, 75]. This prop-
erty implies that these realizations cannot be obtained
as a descendent state of an SU(2) DSL [57], which
is described by 2 flavors of Dirac fermions coupled to
an emergent SU(2) gauge field (including the 2 colors,
there are in total 4 Dirac fermions). To see it, note
that the emergent symmetry of the SU(2) DSL is just
O(5)T , so if a U(1) DSL is its descendent, all micro-
scopic symmetries will be embedded into the O(5)T

symmetry, which necessarily leaves some components
of n symmetry-allowed. The previous constructions of
the U(1) DSL on a square and honeycomb lattice spin-
1/2 systems are indeed descendents of an SU(2) DSL,
and it would be interesting to find a parton construc-
tion of our new realizations.

C. SL(7)

Two realizations of the conjectured non-Lagrangian
state SL(7) are given in Ref. [15]. Here we describe
some other interesting realizations.

On a kagome lattice spin-1/2 system, there is a re-

alization with the following symmetry actions:

T1 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1

n

 1
−1
−1



T2 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1

n

 −1
1
−1



C6 : n→


I3

1
−1
−1
−1

n

 −1
1

1



M : n→


I3
−1
−1

1
1

n

 −1
−1

1



O(3)T : n→
(
O(3)T

I4

)
n

(39)

The magnetic order adjacent to this SL(7) is the cuboc1
order, a good classical ground state for Heisenberg like
models [60], and was found in a J1-J2-J3 model [76].

We also note that, in contrast to the DQCP and
DSL, where all realizations are proximate to some com-
mensurate states, i.e., n have commensurate momenta
in those realizations, SL(7) can have realizations with
n at incommensurate momenta. For example, on a
square lattice spin-1/2 system, there is a family of re-
alization with the following symmetry actions:

T1 : n→

 I3
exp(−iσyk)

−I2

n

 −1
1
−1


T2 : n→

 I3
−I2

exp(iσyk)

n

 1
−1
−1



C4 : n→


I3

1
1

1
1

n

 1
1

1



M : n→


I3

1
1

1
1

n

O(3)T : n→
(
O(3)T

I4

)
n

(40)

where k ∈ [−π, π) is a generic momentum. The mag-
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netic order adjacent to this realization is the tetrahe-
dral umbrella order [60].

The above represents an infinite family of realiza-
tions, where the momenta of some n modes continu-
ously change in the Brillouin zone. Among the rele-
vant operators discussed in Sec. III A, there is only
a single one allowed by the microscopic symmetries
in this family of realizations, i.e., the SO(7) current
∼ (n4i∂xn5i + n6i∂yn7i). We believe all these realiza-
tions can actually be smoothly connected without en-
countering a phase transition, so they all represent the
same symmetry-enriched SL. This also imposes some
constraints on the low-energy dynamics of SL(7), i.e.,
although the above SO(7) conserved current is rele-
vant, it can merely shift the “zero momentum”, but
not really change the state (see Appendix H for more
discussions).

V. Quantum critical spin-quadrupolar liquids

Besides the previous case, we also find realiza-
tions where the most relevant spinful excitations carry
spin-2. We dub these states quantum critical spin-
quadrupolar liquids.

We have identified an interesting realization of the
DSL as a quantum critical spin-quadrupolar liquid.
This realization can actually be realized on any lattice
that has no nontrivial LSM constraint, including spin-1
systems on any lattice, spin-1/2 systems on honeycomb
lattice, etc. If the lattice has a p6m or p4m symmetry,
this is the only spin-quadrupolar realization of DSL.
The lattice translation and rotation symmetries leave
n invariant, and SO(3), time reversal T and lattice
reflection M (if any) act as

SO(3) : n→
(
ϕ5(SO(3))

1

)
n,

T : n→
(
I5
−1

)
n

M : n→
(
I5
−1

)
n

(41)

where ϕ5(SO(3)) represents the spin-2 representation
of SO(3). For this realization, if SO(3) × ZT2 and an
arbitrary lattice rotational symmetry are preserved, all
relevant perturbations listed in Sec. III A are forbid-
den. Even if only SO(3)×ZT2 is preserved while all lat-
tice symmetries are broken, the only symmetry-allowed
relevant perturbations are the spatial components of
the conserved current associated with the SO(2) emer-
gent symmetry, which are expected to retain the emer-
gent order (see Appendix H). So this realization repre-
sents a rare example of quantum critical liquid that re-
quires only internal symmetry (but not lattice symme-
try) to be stable. The magnetic state adjacent to this
DSL is a spin-quadrupolar order where the Goldstond
modes are at the Γ point of the Brillouin zone. For

the non-magnetic state, it is possible to have 〈n61〉 6= 0
while all other entries of n have zero expectation value.
This is a spin-quadrupolar realization of the DQCP,
and the only possible relevant perturbation is an SO(5)
singlet that breaks time reversal, which may drive the
system to forming a chiral spin liquid.

Usually, a DSL is constructed by fermionic partons
that have a non-interacting mean field with 4 Dirac
cones, which are coupled to an emergent U(1) gauge
field. Below we show that the realization above can-
not be constructed in this way, which may be its most
interesting property.

To see it, let us consider how the Dirac fermions
transform under the SO(3) spin rotational symme-
try. Denote the Dirac fermion operator as ψi with
i = 1, · · · 4, which transforms in the fundamental repre-
sentation of the emergent SU(4) flavor symmetry. It is
known that ψ̄iψj − 1

4 ψ̄ψδij , which is the fermion mass
in the SU(4) adjoint representation, is identified with
Ai1i2εj1j2ni1j1ni2j2 , with A and ε an anti-symmetric
6 × 6 and 2 × 2 real matrix, respectively [15, 57, 58].
Because under SO(3) spin rotational symmetry, part of
the latter operators transforms in the spin-3 represen-
tation, the former operator must also contain compo-
nents in the spin-3 representation, which implies that
the Dirac fermions must transform in the spin-3/2 rep-
resentation of the SO(3) symmetry, i.e., all 4 flavors of
Dirac fermions together form this spin-3/2 object.

Now suppose this state can be realized by a non-
interacting parton mean field with 4 Dirac cones (cou-
pled to an emergent U(1) gauge field), the mean-field
Hamiltonian of the partons must have an on-site U(4)
symmetry. In the presence of this U(4) and time re-
versal symmetries, there must be at least 8 Dirac cones
in the mean field. To see it, it suffices to consider one
of the 4 flavors, whose mean field has on-site U(1) and
time reversal symmetries. To avoid the parity anomaly,
there are necessarily an even number of Dirac cones.
So taken 4 flavors together, there are at least 8 Dirac
cones, which contradicts our starting point, i.e., the
mean field has only 4 Dirac cones.

The above argument shows that this realization is
beyond the simplest parton mean fields. However, it
is still possible to realize it if the partons are strongly
interacting (even without considering their coupling to
the emergent gauge field), so that at low energies 4
flavors of Dirac fermions emerge out of the strong in-
teractions. This might be theoretically described, say,
by a further parton decomposition of the partons them-
selves. This is possible because if besides time reversal
the on-site symmetry is only SO(3) but not U(4), there
is no anomaly, and hence no contradiction with having
4 Dirac cones while realizing these symmetries in an on-
site fashion.13 It is an interesting challenge to find such
a concrete construction in the future. This situation is

13 One can in principle also try to implement some of these sym-
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similar to the Standard Model in particle physics: the
Standard Model cannot be realized through lattice free
fermions coupled to gauge fields due to fermion dou-
bling, but it is believed to be realizable using strongly
interacting fermions since all the quantum anomalies
vanish [77–84].

Finally, we give an interesting realization of SL(7) as
a quantum critical spin-quadrupolar liquid, on a hon-
eycomb lattice half-integer-spin system or any integer-
spin system with p6m symmetry. The symmetries act
as follows:

SO(3) : n→
(
ϕ5 (SO(3))

I2

)
n

T : n→

 I5
−1

1

n

T1 : n→ n

 − 1
2 −

√
3

2√
3

2 − 1
2

1


T2 : n→ n

 − 1
2 −

√
3

2√
3

2 − 1
2

1


C6 : n→

 I5
1
−1

n

 1
−1

1


M : n→

 I5
−1

1

n

(42)

The nearby phases of this SL(7) can be very inter-
esting. It is possible to have 〈n73〉 6= 0 while all other
entries of n have zero expectation value. This results in
the spin-quadrupolar DSL (see Eq. (41)), except that
the C2 ≡ C3

6 symmetry is broken, while all other sym-
metries (including C3 ≡ C2

6 ) are intact. We can also
view the above realization of SL(7) as an unnecessary
phase transition in a p31m × O(3)T symmetric DSL
phase. This DSL is still stable, but the n modes are
at the ±K points. It is also possible to have 〈n13〉 6= 0
while all other entries of n have zero expectation value,
where our choice of basis is such that this condensation
pattern breaks the SO(3) symmetry to U(1). This re-
sults in a stable p6m×ZT2 ×U(1) symmetric DSL that
simultaneously has a spin-quadrupolar order. Again,
the above realization of SL(7) can be regarded as an
unnecessary phase transition in a p6m × ZT2 × U(1)
symmetric DSL phase.14

metries on the partons in a non-on-site fashion, but then it is
challenging to have all on-site symmetries acting on the phys-
ical operators in an on-site fashion.

14 Strictly speaking, the DSL states on the two sides of this
SL(7) are slightly different, since they have different quan-
tum anomalies if the entire emergent symmetry is taken into

VI. Stability under symmetry breaking

In this section we demonstrate how to use the SEP
to analyse the stability of these realizations under
symmetry-breaking perturbations. As a concrete ex-
ample, we focus on a realization of DSL on a triangular
lattice spin-1/2 system that is perturbed by spin-orbit
coupling (SOC), which may be relevant to NaYbO2. In
Appendix M, we give a few other examples of such anal-
ysis, which may be relevant to twisted bilayer WSe2,
a recently realized quantum simulator for triangular
lattice spin-1/2 models [85–87].

Without considering the SOC, the triangular lattice
spin-1/2 system has a p6m × O(3)T symmetry, which
acts on this DSL as:

T1 : n→

 I3
1
−1
−1

n

(
− 1

2 −
√

3
2√

3
2 − 1

2

)

T2 : n→

 I3
−1

1
−1

n

(
− 1

2 −
√

3
2√

3
2 − 1

2

)

C6 : n→

 I3
1

1
−1

n

(
1
−1

)

M : n→

 I3
−1

−1
1

n

O(3)T : n→
(
O(3)T

I3

)
n

(43)

This realization was discussed in Refs. [15, 57, 58, 69–
73], and it is shown in Appendix I 2 that the anomaly-
matching condition Eq. (19) is indeed satisfied. From
this symmetry action, it is straightforward to check
that all the relevant operators listed in Sec. III A are
symmetry-forbidden, so this realization is expected to
be stable if the full p6m×O(3)T symmetry is preserved.

Recently, a quantum disordered liquid was reported
in NaYbO2 [23–27] (similar phenomena were reported
in related materials including NaYbS2 and NaYbSe2

[28–32]). In particular, there is evidence that this state
is gapless with a low-temperature specific heat scaling

account. In Ref. [15], these two DSLs are denoted by SL(6,1)

and SL(6,−1), respectively. However, if we only look at the
remaining exact symmetries, there is no difference between
them. Furthermore, even if the entire emergent symmetry is
considered, all correlation functions in these two cases are sim-
ply related by a unitary transformation (which is not a sym-
metry of the DSL), so practically the DSL in the two sides can
be viewed as in the same phase [15]. The same is true for the
p31m×O(3)T symmetric DSL.
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as temperature squared, and that it has a critical mode
located at the ±K points in the Brillouin zone, which
are consistent with the above DSL realization. So it
was proposed that a DSL may be realized in NaYbO2.
However, due to SOC, the symmetry of NaYbO2 is
smaller than p6m×O(3)T , and an important question
is whether there is symmetry-allowed relevant pertur-
bation that would destabilize a DSL in NaYbO2.

NaYbO2 is a layered material with space group sym-
metry R3̄m. Restricted to a single layer, the remaining
symmetries are [88]

T1,2, C
∗
6 ≡ S3 · C6, M

∗ ≡ SM ·M, T (44)

where S3 and SM act in the spin space:

S3 :

 Sx
Sy
Sz

→
 − 1

2

√
3

2

−
√

3
2 − 1

2
1

 Sx
Sy
Sz


SM :

 Sx
Sy
Sz

→
 − 1

2

√
3

2√
3

2
1
2
−1

 Sx
Sy
Sz


(45)

with Sx,y,z the microscopic (effective) spin-1/2 opera-
tors.

Using Eq. (43), it is straightforward to extract
the actions of the remaining symmetry Eq. (44),
from which one can see that all relevant operators in
Sec. III A are still symmetry-forbidden. This means
that the DSL can be stably realized on NaYbO2. Of
course, whether NaYbO2 actually realizes a DSL re-
quires futher investigation.

VII. Discussion

In this paper we have achieved two major goals:
i) deriving the topological partition functions corre-
sponding to the LSM constraints in a large class of sys-
tems relevant to the study of quantum magnetism, and
ii) studying the emergibility of various Stiefel liquids
(SLs) in lattice spin systems. The former has wide ap-
plicability and can be applied to constrain the emergi-
bility of any state on the relevant lattice spin systems,
and the latter paves the way to further understand the
elusive strongly-interacting quantum critical states.

The SLs discussed in this paper are the simplest
members of their entire family, i.e., SL(N) with N =
5, 6, 7. In fact, our results have indications on the
emergibility of more complicated SLs, i.e., SL(N,m)

with N = 5, 6, 7 and m > 1 [15]. Just like SL(N),
the degrees of freedom of SL(N,m>1) are also charac-
terized by an N × (N − 4) matrix with orthonormal
columns, and this state can be obtained by coupling to-
gether m copies of SL(N) in a specifc way. Interestingly,
SL(5,m) can be viewed as a USp(2m) gauge theory with
2 flavors of gapless Dirac fermions, and SL(6,m) can be
viewed as 4 flavors of gapless Dirac fermions coupled

to a U(m) gauge field. It is expected that for a given
N , there is an mc(N) such that SL(N,m) is a CFT if
and only if m < mc(N), and mc(N > 6) > 1. To
discuss the emergibility of SL(N,m>1) in lattice spin
systems with p6m × O(3)T or p4m × O(3)T symme-
try, we can think that all SL(N,m) have the same IR
anomaly as SL(N) if m is odd, and all SL(N,m) have
no IR anomaly if m is even. Furthermore, because the
degrees of freedom of SL(N,m>1) are represented in the
same way as those in SL(N), a given symmetry embed-
ding pattern for SL(N) is also a valid one for SL(N,m>1),
and vice versa. So our results imply: i) For SL(N,m>1)

with an odd m and a given symmetry embedding pat-
tern, it can emerge in a lattice spin system if and only
if SL(N) with the same symmetry embedding pattern
can emerge in this system. ii) SL(N,m) with an even m
can only emerge in lattice spin systems with a vanish-
ing LSM anomaly, and in such a system any symmetry
embedding pattern defined by Eq. (18) satisfies the
emergibility condition Eq. (19), and is expected to de-
scribe a physical realization of SL(N,m) in this system.

We remark that our philosophy to study the emergi-
bility of a quantum phase or phase transition is differ-
ent from the conventional one. Our strategy is based
on anomaly-matching, while the conventional one is
based on explicit constructions of this phase or phase
transition, often in terms of a mean field (including par-
ton gauge mean field) or a wave function. We believe
that the anomaly-based strategy captures the intrin-
sic essence of emergibility. After all, any mean-field
construction is also a way of doing anomaly-matching
in disguise, and such a construction by itself cannot
rigorously prove the emergibility. On the other hand,
although a microscopic wave function can guarantee
the emergibility, it is generically difficult to read off
the universal physics encoded in a wave function, and
there is no guarantee that a proposed wave function in-
deed describes the quantum phase or phase transition
of interest - in fact, in general there is no guarantee that
such a wave function could be realized as the ground
state of any local Hamiltonian. So the significance of
this work is not only reflected by the specific results,
but also by the fact that it demonstrates the feasibility
of the anomaly-based framework of emergibility, and
the fact that this framework can yield interesting re-
sults not envisioned before.

This anomaly-based framework of emergibility is es-
tablished for lattice spin systems in this paper. An in-
teresting and important open problem is to generalize
the topological characterizations of LSM constraints
to other systems, and apply the results to study the
emergibility of other quantum phases and phase tran-
sitions. Systems of particular relevance are those in
(3 + 1)-d, those with spin-orbit coupling, those with
a filling constraint due to a U(1) symmetry, those
with long-range interactions, those with a constrained
Hilbert space, fermionic systems, etc. We leave these
for future work.
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We have assumed that the hypothesis of emergibil-
ity is a necessary and sufficient condition of emergibil-
ity. As mentioned before, its necessity has been estab-
lished, while the sufficiency is a reasonable conjecture.
It is important to further justify or disprove (the suffi-
ciency of) this hypothesis. If it is disproved, it will be
extremely interesting and valuable to identify a correct
necessary and sufficient condition of emergibility.

The realizations of symmetry-enriched SLs discussed
here give useful guidance for the search of these states
in real materials and models. Because the ordering
patterns of the nearby phases of the SLs can be read
off from the implementations of the microsopic symme-
tries, a practical strategy is to identify materials and
models that host these ordered states, and to explore
the vicinity of the phase diagram in order to find SLs.
A smoking-gun signature of the SLs is their large emer-
gent symmetries, which can manifest themselves in a
set of singular correlation functions with the same crit-
ical exponent.

Our results rule out many realizations of symmetry-
enriched SLs because their IR anomalies do not match
with the LSM anomalies. However, variants of these re-
alizations are still possible if there is a sector of anoma-
lous topological order in the system (in additional to
the gapless degrees of freedom from the SLs), whose
anomaly precisely compensates the mismatch between
the IR anomaly of the SL and the LSM anomaly. Al-
though it may be unnatural in a realistic material or
model, this is a valid theoretical possibility. It may be
interesting to study such realizations in the future.

Finally, we further comment on our characterization
of the symmetry enrichment pattern of a quantum crit-
ical state with a given emergent order. Our characteri-
zation is based on how the microscopic symmetries act
on the the local, low-energy degrees of freedom. As
reviewed in Introduction, in the literature the symme-
try enrichment pattern of an emergent gauge theory
is usually specified by how the symmetries act on var-
ious “fractionalized degrees of freedom”, represented
by gauge non-invariant operators [64]. This usual ap-
proach is appropriate for emergent gauge theories with
well-defined fractionalized quasi-particles, where sym-

metry fractionalization on these fractionalized quasi-
particles can be sharply defined based on symmetry
localization [89]. However, the quantum critical states
discussed here are not expected to have any well-
defined quasiparticle, and all degrees of freedom are
strongly coupled, which makes the notion of symmetry
localization ill-defined. So it is more appropriate to di-
rectly characterize these states using symmetry actions
on local operators. More formally, the former type of
theories have emergent higher-form symmetries, and
symmetry actions on fractionalized quasi-particles can
be viewed as the interplay between the ordinary sym-
metries and higher-form symmetries, captured by, e.g.,
topological terms involving both types of symmetries
(e.g., see Ref. [47]). The critical states discussed here
are believed to have no emergent higher-form symme-
try, and no such topological term exists. So it is ap-
propriate to directly discuss the symmetry actions on
local operators.

On the other hand, we also note that even for a
quantum critical state with a given emergent order and
given symmetry actions on local, low-energy degrees of
freedom, there may be multiple different symmetry-
enriched quantum critical states that are distinguished
by the symmetry actions on some non-local and/or
gapped degrees of freedom, which may manifest them-
selves by distinct boundary critical behavior [90–97].
A detailed study of this phenomenon is left for future
work.
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A. Review of mathematical background

In this appendix, we briefly review various mathematical concepts used in this paper. We also define some new
concepts that will be useful in the paper.

1. Group cohomology

In this sub-appendix, we provide a brief review of the fundamentals of group cohomology. See Refs. [39, 98, 99]
for more details.

Given a (discrete) group G, let X be an Abelian group equipped with a G action ρ : G × X → X, which is
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compatible with group multiplication, i.e., for any g, h ∈ G, e the identity element in G and a, b ∈ X, we have

Identity of Group Action : ρe(a) = a,

Compatibility of Group Action : ρg (ρh(a)) = ρgh(a),

Compatibility of Module : ρg(ab) = ρg(a)ρg(b).

(A1)

We leave the group multiplication symbols implicit in the above. Such an Abelian group X with G action ρ is
called a G-module, denoted by Xρ. In this paper, we will mainly consider three different cases of X, i.e., Z2, U(1)
and Z. In particular, when X = Z2, the action ρg is always trivial for any g ∈ G. When X = U(1) (X = Z), the
action ρg is either trivial or complex conjugation (multiplication by −1), i.e., a Z2 action. Therefore, ρ can be
defined by a homomorphism ρ̃ : G→ Z2, and whether ρ̃(g) equals +1 or −1 determines whether the action of ρg
on U(1) or Z is trivial or non-trivial.

Let ω(g1, . . . , gn) ∈ X be a function of n group elements with gi ∈ G for i = 1, . . . , n. Such a function is called
an n-cochain, and the set of all n-cochains is denoted by Cn(G,Xρ). They naturally form an Abelian group under
multiplication,

(ω · ω′)(g1, . . . , gn) = ω(g1, . . . , gn)ω′(g1, . . . , gn), (A2)

and the identity element is the trivial cochain ω(g1, . . . , gn) = 1 for every (g1, . . . , gn), where 1 is the identity
element in X.

We now define the coboundary map d : Cn(G,Xρ)→ Cn+1(G,Xρ) acting on cochains to be

(dω)(g1, . . . , gn+1) = ρg1 (ω(g2, . . . , gn+1))

n∏
j=1

(ω(g1, . . . , gj−1, gjgj+1, gj+2, . . . , gn+1))
(−1)j

(ω(g1, . . . , gn))
(−1)n+1

.

(A3)
One can directly verify that d(dω) = 1 for any ω ∈ Cn(G,Xρ), where 1 denotes the trivial cochain in Cn+2(G,Xρ).
With the coboundary map, we next define ω ∈ Cn(G,Xρ) to be an n-cocycle if it satisfies the condition dω = 1,
and all n-cocycles naturally form an Abelian group

Zn(G,Xρ) = ker[d : Cn(G,Xρ)→ Cn+1(G,Xρ)] = {ω ∈ Cn(G,Xρ) | dω = 1 }. (A4)

We also define ω ∈ Cn(G,Xρ) to be an n-coboundary if it satisfies the condition ω = dµ for some (n− 1)-cochain
µ ∈ Cn−1(G,Xρ), and all n-coboundaries naturally form an Abelian group

Bn(G,Xρ) = im[d : Cn−1(G,Xρ)→ Cn(G,Xρ)] = {ω ∈ Cn(G,Xρ) | ∃µ ∈ Cn−1(G,Xρ) : ω = dµ }. (A5)

Clearly, Bn(G,Xρ) ⊆ Zn(G,Xρ) ⊆ Cn(G,Xρ), and we define the n-th group cohomology of G to be the quotient
group

Hn(G,Xρ) =
Zn(G,Xρ)

Bn(G,Xρ)
. (A6)

In other words, Hn(G,Xρ) collects the equivalence classes of n-cocycles, where two n-cocycles are considered
equivalent if they differ by an n-coboundary.

It is instructive to look at the lowest cohomology groups. Let us first consider H1(G,Xρ):

Z1(G,Xρ) = {ω | ω(g1)ρg1 (ω(g2)) = ω(g1g2) }
B1(G,Xρ) = {ω | ω(g) = ρg(µ)µ−1 }.

(A7)

If the G-action on X is trivial, then B1(G,Xρ) = {1} and Z1(G,Xρ) consists of group homomorphisms from G
to X, which, in particular, map elements in the same conjugacy class to the same image, i.e.,

ω(g−1
2 g1g2) = ω(g1). (A8)

for any g1,2 ∈ G.
For the second cohomology, we have

Z2(G,Xρ) = {ω | ρg1 (ω(g2, g3))ω(g1, g2g3) = ω(g1, g2)ω(g1g2, g3) }
B2(G,Xρ) = {ω | ω(g1, g2) = ρg1 (µ(g2)) (µ(g1g2))

−1
µ(g1) }.

(A9)

In particular, H2(G,U(1)ρ) classifies all inequivalent complex projective representations of G, while H2(G,Z2)
classifies all inequivalent real orthogonal projective representations of G, which will be most useful throughout
the paper.
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2. Maps of group Cohomology

In this sub-appendix, we review various maps of group cohomology, which will be used throughout the paper.
The first map we consider is the pullback of group cohomology. Consider a map between two groups ϕ : G→ H

compatible with their respective group action ρG and ρH on X, in the sense that ρϕ(g)(a) = ρg(a) for any a ∈ X
and any g ∈ G or, in the case of X = U(1),Z, ρ̃H ◦ ϕ = ρ̃G. Given such a map, we can define the pullback from
Hn(H,Xρ) to Hn(G,Xρ), which can be defined on the representative cochain ω ∈ Cn(H,Xρ) as follows

(ϕ∗(ω))(g1, . . . , gn) ≡ ω(ϕ(g1), . . . , ϕ(gn)). (A10)

It is straightforward to check that it maps cocycles to cocycles, and coboundaries to coboundaries, so it gives a
well-defined map from Hn(H,Xρ) to Hn(G,Xρ),

ϕ∗ : Hn(H,Xρ)→ Hn(G,Xρ). (A11)

The second map we consider is the map of group cohomology induced by a map of G-modules i : X → Y . Here
i is any map from G-module X to G-module Y that preserves the action of G, i.e., for any a ∈ X and g ∈ G we
have ρg(i(a)) = i(ρg(a)). Then for any n-cochain ω(g1, . . . , gn) ∈ Cn(G,Xρ), we can map it to another n-cochain

ĩ(ω) such that

(̃i(ω))(g1, . . . , gn) ≡ i(ω(g1, . . . , gn)). (A12)

It is straightforward to check that it maps cocycles to cocycles, and coboundaries to coboundaries, so it gives a
well-defined map from Hn(G,Xρ) to Hn(G, Yρ),

ĩ : Hn(G,Xρ)→ Hn(G, Yρ). (A13)

We will frequently use this map to convert cohomology elements in Hn(G,Z2) to elements in Hn(G,U(1)ρ),

induced by the inclusion i of Z2 = {±1} into U(1). Note that the representative cochains ω and ĩ(ω) as a function
from Gn to Z2 and U(1) are manifestly the same, but a function representing a nontrivial element in Hn(G,Z2)
can represent a trivial element in Hn(G,U(1)ρ), because the module U(1)ρ in general yields more coboundaries
compared to the module Z2. We also consider the map of group cohomology p̃ induced by the projection p of Z
onto Z2 = {0, 1}

The third map which will be useful in the analysis of anomaly/anomaly-matching is the Bockstein homomor-
phism [100, 101]. Consider a short exact sequence of G-modules,

1 X Z Y 1i p
(A14)

with the map i : X → Z injective, the map p : Z → Y surjective and ker[p] = im[i]. There is a long exact
sequence of the cohomology of G associated to this short exact sequence, such that ker = im at any place of the
following chain of maps,

. . . Hn(G,Xρ) Hn(G,Zρ) Hn(G, Yρ) Hn+1(G,Xρ) . . .ĩ p̃ β ĩ (A15)

The map β, called the Bockstein homomorphism, is defined as follows. For [ω] ∈ Hn(G, Yρ) and a representative
cochain ω, choose a function ω̃ from Gn to Zρ such that

p((ω̃)(g1, . . . , gn)) = ω(g1, . . . , gn). (A16)

Because p is surjective, ω̃ always exists. For any choice of ω̃, it is straightforward to see that p((dω̃)(g1, . . . , gn)) = 0
and as a result (dω̃)(g1, . . . , gn) is in the image of i. Then we define this (unique) preimage to be the image of ω
under the Bockstein homomorphism, i.e., we have

β(ω) ≡ ĩ−1(dω̃). (A17)

There are several short exact sequences that we should pay special attention to. The first one is

1 Z R U(1) 1.
×2π mod 2π (A18)

When Hn(G,Zρ) and Hn+1(G,Zρ) contain torsion elements only, Hn(G,Rρ) = Hn+1(G,Rρ) = 0, and from Eq.
(A15) we see that the associated Bockstein homomorphism β : Hn(G,U(1)ρ)→ Hn+1(G,Zρ) is an isomorphism.
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For most discussions in this paper, this Bockstein homormorphism is indeed an isomorphism, and only in the
example in Appendix I 1 it is not, on which we will comment explicitly.

The second short exact sequence that is important to us is

1 Z Z Z2 1
×2 mod 2 (A19)

For x ∈ Hn(G,Z2), the Bockstein homomorphism β2 is sometimes written as

β2(x) =
1

2
dx. (A20)

When Hn(G,Zρ) = (Z2)k with some non-negative integer k, ĩ maps Hn(G,Zρ) to 0 in Hn(G,Zρ). Therefore,
from Eq. (A15), we see that p̃ is injective while β2 is surjective.

We can also consider the natural map from Eq. (A19) to Eq. (A18), which is inclusion for every factor as
follows,

1 Z R U(1) 1

1 Z Z Z2 1

×2π mod 2π

×2

∼=

mod 2

×π i (A21)

where i is again the inclusion of Z2 = {±1} into U(1). As a result, we have a map of long exact sequences,

. . . Hn(G,Z2) Hn+1(G,Zρ) Hn+1(G,Zρ) . . .

. . . Hn(G,U(1)ρ) Hn+1(G,Zρ) Hn+1(G,Rρ) . . .

ĩ

β2

∼=

β

(A22)

Here we distinguish the first Bockstein homomorphism by denoting it by β2, and ĩ denotes the map induced by
i : Z2 → U(1) specifically. Hence, we have β2 = β ◦ ĩ. When Hn(G,Zρ) = (Z2)k, since β is an isomorphism

while β2 is surjective , ĩ is surjective as well. It suggests that in this case every element Ω ∈ Hn(G,U(1)ρ) can be

written as ĩ(L) or eiπL for some L ∈ Hn(G,Z2). In fact, every element Ω ∈ Hn(G,U(1)ρ) whose inverse is itself
can be written as eiπL for some L ∈ Hn(G,Z2). We use this fact throughout the paper.

3. Cup product and Z2 cohomology ring

In this sub-appendix, we review cup product and Z2 cohomology ring in group cohomology that we will use
[98–100, 102]. We will specialize to the case where the module is Z2 = {0, 1} and the group action ρ is trivial. The
special feature of Z2, countrary to e.g. U(1), is the fact that Z2 is a ring. Note that here addition in Z2 is regarded
as the group multiplication used in Eq. (A2), and we will use + to denote this addition in this sub-appendix.
There is another ring multiplication that will be important later, which should be distinguished with the group
multiplication used in Appendix A 1.

The cross product is defined as the following operation on group cohomology,

× : Hm(G,Z2)⊗Hn(H,Z2)→ Hm+n(G×H,Z2), (A23)

such that for x ∈ Hm(G,Z2) and y ∈ Hn(H,Z2), after choosing cochain representatives x̃ and ỹ, we have the
cochain representative of x× y as follows,

x̃× y ((g1, h1), . . . , (gm+n, hm+n)) ≡ x̃(g1, . . . , gm) · ỹ(hm+1, . . . , hm+n), (A24)

where gi ∈ G, hi ∈ H, i = 1, . . . ,m+ n.
The cup product is defined as the following operation on group cohomology,

∪ : Hm(G,Z2)⊗Hn(G,Z2) Hm+n(G×G,Z2) Hm+n(G,Z2),
× ∆∗ (A25)

where ∆ : G → G × G is the diagonal embedding g → (g, g). We can also define it at the cochain level, i.e.,
for x ∈ Hm(G,Z2) and y ∈ Hn(G,Z2), after choosing cochain representatives x̃ and ỹ, we have the cochain
representative of x ∪ y as follows,

x̃ ∪ y (g1, . . . , gm+n) ≡ x̃(g1, . . . , gm) · ỹ(gm+1, . . . , gm+n). (A26)
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We can prove that cup product is commutative, i.e., x ∪ y = y ∪ x.
The cup product ∪ gives a multiplication on the direct sum of cohomology groups

H∗(G,Z2) =
⊕
k∈N

Hk(G,Z2), (A27)

Together with the fact that 1 ∪ x = x where x is any element in H∗(G,Z2) and 1 here denotes the nontrivial
element in H0(G,Z2) = Z2, the cup product ∪ turns H∗(G,Z2) into a ring that is naturally N graded and
commutative. We call this ring the Z2 cohomology ring of G.

Moreover, H∗(G,Z2) is also a Z2 algebra, and therefore can be presented by generators and relations, i.e.,
all elements in Hn(G,Z2) for any n > 0 are either generators or can be expressed as sum of (cup) products
of generators, and generators satisfy some relations which dictate that certain sums of cup products actually
yield a trivial cohomology element. We will call a generator in Hn(G,Z2) a degree n generator. Hence, the Z2

cohomology ring of G, i.e., H∗(G,Z2), can be written as follows,

H∗(G,Z2) = Z2[A•, · · · , B•, · · · ]/relations (A28)

with A•(B•) generators in degree 1(2) belonging to H1(G,Z2)(H2(G,Z2)), and • the name of the generator.
Together with potential higher order generators, e.g., C• in degree 3, that we do not explicitly write down here,
A• and B• form a complete set of generators of the entire cohomology ring.

For example, the Z2 cohomology ring of the group Z2 is

Z2[Ac], (A29)

where Ac is the nontrivial element in H1(Z2,Z2) and can be thought of as nothing but the gauge field of e.g., C2

rotation when pulled back to the spacetime manifold. In other words, for the Z2 cohomology ring of Z2, there is
a single generator Ac in degree 1 and no relation. Accordingly, we can see that Hn(G,Z2) = Z2 for n ∈ N, with
the nontrivial element given by Anc ≡ Ac ∪Ac ∪ · · · ∪Ac, the cup product of n Ac’s.

As another example, the Z2 cohomology ring of Z4 is

Z2[Ac, Bc2 ]/
(
A2
c = 0

)
, (A30)

where here Ac is the nontrivial element in H1(Z4,Z2) and can be thought of as (the Z2 reduction of) the
gauge field of C4 rotation when pulled back to the spacetime manifold, while Bc2 is the nontrivial element in
H2(Z4,Z2), which corresponds to the fractionalization pattern of the Z4 symmetry, e.g., on an SO(3) monopole,
with C4

4 = C2
2 = −1. That is to say, for the Z2 cohomology ring of Z4, there are two generators in degree 1 and 2

respectively, with the square of degree 1 generator Ac equal to 0. Then we see that Hn(Z4,Z2) = Z2 for n ∈ N as
well, where the nontrivial element is given by Bkc2 when n = 2k and AcB

k
c2 when n = 2k + 1 (k ∈ N). Note that

for both G = Z2 and G = Z4, Hn(G,Z2) = Z2 for any n ∈ N, but the Z2 cohomology rings give more information
that differentiates the two groups.

For any two groups G1 and G2, we have H∗(G1 ×G2,Z2) = H∗(G1,Z2)⊗H∗(G2,Z2). Moreover, if G can be
written as G1 oG2 , which is the case for wallpaper groups, the calculation of the Z2 cohomology ring of G can
be achieved with the help of spectral sequence [98, 99, 103] that connects the Z2 cohomology ring of G with the
Z2 cohomology ring of G1 and G2.

For further illustration, in the following we list the Z2 cohomology ring of three space groups in one or two
spatial dimensions, including the generators and relations.

• p1: Z2[x]/(x2 = 0).

Consider the line group p1, generated by a single translation T . The cohomology of p1 is H1(p1,Z2) ∼= Z2

while Hn(p1,Z2) ∼= 0, n > 1, and the Z2 cohomology ring is therefore given by Z2[x]/(x2 = 0), where
x ∈ H1(p1,Z2) corresponds to (the Z2 reduction of) the gauge field of translation. This relation is possibly
well-known.

• p1m: Z2[x,m]/(x2 = xm).

Consider the line group p1m, generated by translation T and mirror symmetry M with relation MTM =
T−1. The cohomology of p1m is Hn(p1m,Z2) ∼= Z2

2, n > 1, and the Z2 cohomology ring is Z2[x,m]/(x2 =
xm), where m,x ∈ H1(p1m,Z2) correspond to the gauge field of mirror symmetry and (the Z2 reduction
of) the gauge field of translation, respectively.

The relation x2 = xm can be seen by restricting to two Z2 subgroups of p1m, generated by TM and M ,
respectively. Specifically, given H2(p1m,Z2) ∼= Z2

2, some relation a1x
2 +a2xm+a3m

2 = 0 must hold where
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a1,2,3 ∈ {0, 1} and a1,2,3 cannot be 0 simultaneously. By restricting to Z2 subgroup generated by M , whose
Z2 cohomology ring can be denoted by Z2[m′], we see that x becomes 0 while m becomes m′, and thus
a3 = 0. By restricting to the Z2 subgroup generated by TM , whose Z2 cohomology ring can be denoted by
Z2[m′′], we see that both x and m become m′′, and thus a1 = a2 = 1. Therefore, we have x2 = xm.

The relation x2 = xm dictates that Hn(p1m,Z2), n > 1 is spanned by 2 elements, i.e., mn and mn−1x.
Note that both Hn(p1m,Z2) and Hn(p1 × Z2,Z2) are Z2

2 and generated by x and m, yet the relation in
H∗(p1m,Z2) is x2 = xm while the relation in H∗(p1×Z2,Z2) is x2 = 0, which differentiates the two groups.

• cm: Z2[Ax+y, Am, Bxy]/(Ax+yAm = 0, A2
x+y = 0, BxyAx+y = 0, B2

xy = 0).

Consider 2d wallpaper group cm, generated by two translation symmetries T1, T2 as well as mir-
ror symmetry M that interchanges the two translations, i.e., MT1M = T2 and MT2M = T1.
The cohomology of cm is Hn(cm,Z2) ∼= (Z2)2, n > 1, and the Z2 cohomology ring is
Z2[Ax+y, Am, Bxy]/

(
Ax+yAm = 0, A2

x+y = 0, BxyAx+y = 0, B2
xy = 0

)
, where Am, Ax+y ∈ H1(cm,Z2) cor-

respond to the gauge field of mirror symmetry and (the Z2 reduction of) the sum of gauge fields of T1 and
T2, respectively. Note that since T1 and T2 map to each other under conjugation by M , the gauge field of
the two translations x and y individually is not invariant under conjugation by M , yet their sum that we
denote by Ax+y is invariant under conjugation by all generators, which is a necessary condition for it to be
a cohomology element, as required by Eq. (A8). To conform to the notation, we also denote the gauge field
of mirror symmetry by Am when considering wallpaper groups. Moreover, there is a degree-2 generator
Bxy, i.e., an element belonging to H2(cm,Z2) that cannot be written as sum of cup product of elements in
H1(cm,Z2).

There are now 4 relations among generators, and these relations dictate that H1(cm,Z2) is spanned by
Ax+y and Am, while Hn(cm,Z2), n > 2 is spanned by BxyA

n−2
m and Anm. These relations can be most easily

seen by restricting to the subgroup pm generated by T1T
−1
2 , T1T2 and M .

4. SQ1

In this sub-appendix, we define a new map we call SQ1, reminiscent of Sq1 in regular Steenrod algebra, as
follows

SQ1 : Hn(G,Z2) Hn(G,U(1)ρ) Hn+1(G,Zρ) Hn+1(G,Z2),ĩ β p̃ SQ1 ≡ p̃ ◦ β ◦ ĩ, (A31)

where ĩ and p̃ are the map of group cohomology induced by the homomorphism of modules i : Z2 → U(1)
and p : Z → Z2, and β is the Bockstein homomorphism associated with the short exact sequence 1 → Z →
R → U(1) → 1. Note that β ◦ ĩ is the Bockstein homomorphism β2 associated with the short exact sequence
1→ Z→ Z→ Z2 → 1, and therefore when the action ρ is trivial, SQ1 is exactly Sq1 in regular Steenrod algebra.

Moreover, SQ1 is related to Sq1 via the following simple fact

Lemma A.1. For x ∈ Hn(G,Z2), we have

SQ1(x) = SQ1(1) ∪ x+ Sq1(x). (A32)

Proof. According to Eq. (A17), choosing a cochain x̃ ∈ Cn(G,Z) such that the Z2 reduction of x̃ is x, we have

SQ1(x) =
1

2

(−1)ρ̃(g1)x̃(g2, . . . , gn+1) +

n∑
j=1

(−1)j x̃(g1, . . . , gjgj+1, . . . , gn+1) + (−1)n+1x̃(g1, . . . , gn)


=

1

2

(
(−1)ρ̃(g1) − 1

)
x̃(g2, . . . , gn+1) + Sq1(x)

= SQ1(1) ∪ x+ Sq1(x) mod 2.

(A33)

�

For example, for ZT2 with nontrivial action on U(1) or Z, we have,

SQ1(t2n+1) = 0, SQ1(t2n) = t2n+1, (A34)

where t ∈ H1(ZT2 ,Z2) is the generator of the Z2 cohomology ring of ZT2 . We see that in the presence of nontrivial
ρ, the operation SQ1 is not distributive with respect to the cup product. Note that SQ1(1) is nonzero and equals



30

t, which when pulled back to the spacetime manifold M equals w1 as well, i.e., the first Stiefel-Whitney class of
M. In contrast, for Z2 with trivial action on U(1) or Z, we have

SQ1(A2n
c ) = 0, SQ1(A2n+1

c ) = A2n+2
c , (A35)

where Ac ∈ H1(Z2,Z2) is the generator of the Z2 cohomology ring of Z2 as well.
As another example, consider O(5) with ρ̃ : O(5) → Z2 the determinant, i.e., an O(5) element complex

conjugates an U(1) element or multiplies a Z element by −1 if and only if the determinant of the O(5) element
is −1. From Lemma A.1 we immediately have,

SQ1
(
w
O(5)
4

)
= w

O(5)
5 , (A36)

as suggested by the calculation in the context of DQCP in Refs. [19, 104].
Moreover, even if SQ1 is not distriutive with respect to the cup product, from Lemma A.1 SQ1 is still dis-

tributive with respect to the cross product involving two different groups, i.e., we have

Lemma A.2. For x ∈ Hm(G,Z2) and y ∈ Hn(H,Z2), we have x× y ∈ Hm+n(G×H,Z2) and

SQ1(x× y) = SQ1(x)× y + x× SQ1(y). (A37)

This lemma is also important when calculating SQ1 because it decomposes the calculation into different pieces
corresponding to different groups. For example, with the help of Eqs. (A34) and (A35), the lemma tells us how
to calculate SQ1 for the group (Z2)k with every Z2 piece acting trivially or nontrivially on U(1) or Z.

Finally, from the fact that

ALH
∼= ker

[̃
i : H2(Gs,Z2)→ H2(Gs, U(1)ρ)

]
, (A38)

as argued in Section II B, for LSM anomaly written as exp (iπλη) where λ ∈ H2(Gs,Z2) and η ∈ H2(Gint,Z2),
we have

SQ1(λ) = 0. (A39)

This can also be mathematically checked by considering different representations ρ : Gs → O(n). For example,
consider Gs = p4m. Then ALH is spanned by λ1 = Bxy +Ax+y(Ax+y +Am) +Bc2 , λ2 = Bxy, λ3 = Ax+y(Ax+y +
Am) in H2(p4m,Z2) (see Appendix E), corresponding to LSM anomaly associated to DOF at the site a, plaquette
center b, and bond center c as in Fig. 3, repectively. Consider the following three representations of p4m. The
first one is

Tx →

 −1 0 0
0 −1 0
0 0 1

 , Ty →

 −1 0 0
0 1 0
0 0 −1

 , C4 →

 1 0 0
0 0 1
0 −1 0

 , M →

 1 0 0
0 1 0
0 0 −1

 . (A40)

The pullback of w
O(3)
2 equals Bxy + Bc2 while the pullback of w

O(3)
3 is zero (see sub-Section III B and especially

Eq. (35)). From SQ1
(
w
O(3)
2

)
= w

O(3)
3 , we establish that

SQ1(Bxy +Bc2) = 0. (A41)

The second representation is

Tx →
(

1 0
0 1

)
, Ty →

(
1 0
0 1

)
, C4 →

(
0 1
−1 0

)
, M →

(
1 0
0 −1

)
, (A42)

The pullback of w
O(2)
2 equals Bc2 , and from SQ1

(
w
O(2)
2

)
= 0, we establish that

SQ1(Bc2) = 0 (A43)

The third representation is

Tx →
(
−1 0
0 −1

)
, Ty →

(
−1 0
0 −1

)
, C4 →

(
1 0
0 1

)
, M →

(
1 0
0 −1

)
, (A44)

and we have

SQ1(Ax+y(Ax+y +Am)) = 0. (A45)

Since Bxy +Bc2 , Bc2 , Ax+y(Ax+y +Am) span ALH as well, indeed we mathematically show that SQ1(λ) = 0 for
λ ∈ ALH in p4m. Then according to Lemma A.2 we also have

SQ1(λη) = SQ1(λ)× η + λ× SQ1(η) = λ× SQ1(η), (A46)

Note that this equation holds for LSM constraints on lattices with any wallpaper group.
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B. Topological partition function corresponding to LSM

In this appendix, we provide a more rigorous argument that the cocycle corresponding to the topological
partition function (TPF) of the (3 + 1)-d Gs ×Gint SPT, whose boundary has some LSM constraint, can indeed
be written in the form of Eq. (1). 15

To start, first recall that the lattice homotopy picture indicates that all LSM constraints for a given wallpaper
group Gs are classified by a group ALH = Zk2 with some integer k. This means that the sought-for cocycle in
H4(Gs ×Gint, U(1)ρ) can be written as

Ω(g1, g2, g3, g4) = eiπκ(g1,g2,g3,g4) (B1)

with κ taking values in {0, 1}. This allows us to view κ(g1, g2, g3, g4) as a representative cochain in H4(Gs ×
Gint,Z2), where the multiplication between two elements is implemented by the mod 2 addition of their corre-
sponding representative cochains. Since H4(Gs × Gint,Z2) ' ⊕4

i=0H
i(Gs,Z2) ⊗ H4−i(Gint,Z2), we can always

write Ω as

Ω(g1, g2, g3, g4) =

4∏
i=0

eiπλi(l1,··· ,li)η4−i(ai+1,··· ,a4) (B2)

where each gi ∈ Gs × Gint is again written as gi = li ⊗ ai, with li ∈ Gs and ai ∈ Gint. Both λi and η4−i
take values in {0, 1}, and they can be viewed as representative cochains in Hi(Gs,Z2) and H4−i(Gint,Z2),
respectively. Furthermore, we can view eiπη4−i(ai+1,··· ,a4) as a representative cochain in H4−i(Gint, U(1)ρ), which
can be physically interpreted as a Gint SPT living in 3− i spatial dimensions.

Previous studies of Gs × Gint SPTs indicate that all these SPTs have a real-space construction, in which
various lower dimensional SPTs (or invertible states) are decorated into various submanifolds of the entire crystal
[9, 105, 106]. Indeed, the SPT relevant to LSM constraints can be constructed by putting copies of (1 + 1)-d Gint
SPTs at various IWP of the wallpaper group Gs. Combining these two observations together, we conclude that
in Eq. (B2) only the factor with i = 2 can possibly be related to LSM constraints, because only that factor can
possibly be related to putting (1 + 1)-d Gint SPTs at various positions, while other factors involve SPTs living
in the wrong dimension (e.g., the i = 1 term means that some (2 + 1)-d Gint SPT is decorated into the system in
some way). Moreover, for a given PR type of the system, eiπη2(a3,a4) should be the cocycle corresponding to the
(1 + 1)-d Gint SPT whose boundary hosts this particular PR.

Therefore, the cocycle related to LSM constraints can always be written in a form given by Eq. (1), and λ(l1, l2),
which is written as λ2(l1, l2) in Eq. (B2), can be viewed as a representative cochain in H2(Gs,Z2). Furthermore,
according to the lattice homotopy picture, λ or λ2 should just encode the information of which IWP host (1+1)-d
Gint SPTs, so it should be completely determined by Gs and the lattice homotopy class corresponding to each
LSM constraint, and be the same for all Gint and all PR types of the system.

We remark that the above argument does not show that all cocycles in the form of Eq. (1) must be related to
LSM constraints. In fact, in Sec. II B we have found that some of them are not. Those SPTs can be constructed
by inserting a (2 + 1)-d Z2 × Gint SPT on the mirror plane, such that the Z2 domain wall is decorated with a
(1 + 1)-d Gint SPT. See Appendix D for more detail.

We also remark that although we have assumed that the projective representations of Gint are Zk2-classified
with k some integer in the above argument, we expect that the topological partition functions corresponding to
LSM constraints can always be written in a form similar to Eq. (1), for any Gint. Specially, if a PR type of Gint
has order n, then the LSM-related cocycle takes the form

Ω(g1, g2, g3, g4) = ei
2π
n λ(l1,l2)η(a3,a4) (B3)

where λ and η take integral values, and e
2πi
n η(a3,a4) is the cocycle corresponding to the relevant (1 + 1)-d Gint

SPT. Moreover, this statement, including its special form Eq. (1), has been derived in the special cases where Gs

15 Since the (3 + 1)-d Gs × Gint SPT is captured by an ele-
ment in H4(Gs ×Gint, U(1)ρ), one may attempt to show the
validity of Eq. (1) by combining the Kunneth decomposition
H4(Gs×Gint, U(1)ρ) ∼= ⊕4

i=0H
i(Gs, H4−i(Gint, U(1)ρ)) and

the fact that the relevant (1 + 1)-d Gint SPT is captured by
H2(Gint, U(1)ρ), which suggests that in the Kunneth decom-
position only the term H2(Gs, H2(Gint, U(1)ρ)) is relevant to

the LSM constraints. Although intuitively appealing, this ar-
gument is flawed, because there is generically no unambiguous
way to determine whether an element in H4(Gs×Gint, U(1)ρ)
is in H2(Gs, H2(Gint, U(1)ρ)). Our argument below does not
suffer from this ambiguity. Furthermore, even if we know that
the relevant cocycle is in H2(Gs, H2(Gint, U(1)ρ)), it requires
an explanation why its representative cochain can necessarily
be written as Eq. (1).
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contains only translation or only point group, using equivariant homology [10], and we expect that the method
in Ref. [10] can be generalized to an arbitrary lattice symmetry group Gs. A systematic proof of this statement
is beyond the scope of this paper and we leave it for future work.

C. Fractionalization pattern involving both translation and glide symmetries

Among all 17 wallpaper groups, there is only one group, pg, in which the fractionalization pattern has to be
specified in a way that necessarily invokes the glide symmetry. In this appendix, we present its corresponding
physical picture.

The group pg is generated by T1 and G, a translation and a glide reflection. The translation vector of T1 is
flipped under G, and G2 is another translation along a direction perpendicular to the translation vector of T1.
These generators satisfy G−1T1GT1 = 1.

Figure 4. Acting G−1T1GT1 on an SO(3) monopole. The first T1 action is marked in blue, the following G action is
marked in red, the next T1 action is marked in green, and the last G−1 action is marked in purple. The dashed line is the
reflection axis of G. This figure shows that the operation G−1T1GT1 moves an SO((3) monopole along a trajectory that
encloses a fundamental domain.

Consider the case where Gint = SO(3). Just as in the main text, we gauge the SO(3) symmetry and examine
the fractionalization pattern of pg on the SO(3) monopole by applying the operation G−1T1GT1 to an SO(3)
monopole, which moves the monopole around the fundamental domain (see Fig. 4). If the fundamental domain
contains an odd (even) number of Haldane chains, this process results in a −1 (1) phase factor, which is a signature
of nontrivial (trivial) PR of the pg symmetry carried by the SO(3) monopole. Because H2(pg,Z2) = Z2, there
is only one nontrivial PR. A topological invariant detecting the nontrivial element in H2(pg,Z2) is given in Eq.
(F4), so this must be the topological invariant that diagnoses the fractionalization pattern of the pg symmetry
on an SO(3) monopole.

D. Non-LSM fractionalization patterns

In this appendix, we discuss in more detail the M × SO(3) SPT corresponding to αnon−LSM = ω(M,M)
ω(1,1) = −1,

which has TPF exp(iπ
∫

(wTM1 )2w
SO(3)
2 ). In particular, we will show that this SPT can be constructed by inserting

into the mirror plane of M a (2 + 1)-d Z2 × SO(3) SPT, whose Z2 domain walls are decorated with Haldane
chains. Moreover, we will show that for any Gint with Zk2-classified PR, the (3 + 1)-d M × Gint SPTs with
αnon−LSM = −1 can always be constructed by inserting into the mirror plane of M a (2 + 1)-d Z2 × Gint SPT,
whose Z2 domain walls are decorated with the relevant nontrivial (1 + 1)-d Gint SPT.

Focusing on the case with Gint = SO(3), let us enumerate all (3 + 1)-d M × SO(3) SPTs. According to the
crystalline equivalence principle [41], the classification of these SPTs is the same as the classification of (3 + 1)-
d ZT2 × SO(3) SPTs, where ZT2 is a time reversal symmetry. It is known that the latter are classified by Z4

2

(e.g., see Appendix F of Ref. [45] for the descriptions of the physical properties of these SPTs). So (3 + 1)-d
M × SO(3) SPTs are Z4

2-classified. According to Ref. [107], these SPTs can all be constructed by putting on
the mirror plane of M some (2 + 1)-d invertible states that have at most a Z2 × SO(3) symmetry (note that
this Z2 symmetry does not reverse the spacetime orientation). The (2 + 1)-d Z2 × SO(3) SPTs are classified by
H3(Z2 × SO(3), U(1)) = Z2 × Z× Z2, where the Kunneth formula is used in calculating this classification. It is
easy to read off the physical meaning of the root states of these (2 + 1)-d SPTs: one Z2 factor represents SPTs
protected purely by the Z2 symmetry, the Z factor represents spin quantum Hall states [108], which are SPTs
protected purely by the SO(3) symmetry and has a TPF given by SO(3) Chern-Simons theories, and the other
Z2 factor must represent an SPT protected by both Z2 and SO(3). How can this SPT be constructed? The
decorated-domain-wall method allows us to construct it, by decorating the Z2 domain walls with a Haldane chain
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[109].
All the (2+1)-d Z2×SO(3) SPTs can be inserted into the mirror plane of M to construct a (3+1)-d M×SO(3)

SPT, and one can also insert an E8 state to the mirror plane. In total, these give the Z4
2 classification of (3 + 1)-d

M×SO(3) SPTs. Note inserting a Z2 SPT or an E8 state to the mirror plane results in a (3+1)-d SPT protected

by M only, so these states will not have a TPF exp(iπ
∫

(wTM1 )2w
SO(3)
2 ), which shows that this SPT requires

both M and SO(3) for protection. Now we are only left with the cases where the bosonic spin quantum Hall
state and/or the state constructed from decorated domain wall is inserted into the mirror plane. To understand
the physical properties of these states, we can refer to the corresponding (3 + 1)-d ZT2 × SO(3) SPTs. If a spin
quantum Hall state is decorated into the time reversal domain wall, the resulting state will have fermionic SO(3)
monopoles. Using the correspondence between ZT2 ×SO(3) SPTs and M ×SO(3) SPTs, this indicates that if the
spin quantum Hall state is inserted into the mirror plane, the SO(3) monopole will also be fermionic. However, the

TPF exp(iπ
∫

(wTM1 )2w
SO(3)
2 ) means that the SO(3) monopole is a boson (but carries nontrivial fractionalization

pattern of the M symmetry). This means that the (3 + 1)-d SPT of interest must be obtained from inserting to
the mirror plane the (2 + 1)-d SPT constructed from decorated domain wall.

In fact, one can explicitly demonstrate that a (3 + 1)-d M × SO(3) SPT constructed in this way indeed has
an SO(3) monopole carring the nontrivial fractionalization pattern of the M symmetry. To this end, it suffices
to show a simpler version of this statement: suppose we break the SO(3) symmetry in this SPT to U(1), the
U(1) monopole in the resulting state will carry the nontrivial fractionalization pattern of M . This statement
can be explicitly shown using the method in Ref. [46] (see Appendix B therein). This also means that upon
this symmetry breaking, the resulting M × U(1) symmetric state is a nontrivial SPT. According to the general
discussion in Sec. II B, this implies that αnon−LSM is unrelated to LSM constraints of interest.

The above discussion concerns about the case where Gint = SO(3). Now we argue that for any Gint with
Zk2-classified PR, αnon−LSM can be triggered in a (3 + 1)-d M × Gint SPT constructed in a way similar to the
above, and all we need to modify is to replace the Haldane chain decorated into the Z2 domain wall by a (1+1)-d

Gint SPT. To this end, it suffices to show that the TPF of this (3 + 1)-d M × Gint SPT is eiπ
∫

(wTM1 )2η, where

η ∈ H2(Gint,Z2) and eiπ
∫
η is the TPF of the (1 + 1)-d Gint SPT. This can be shown by noting i) this SPT is its

own inverse, and ii) this construction works for all such Gint. Then an argument very similar to that in Appendix

B suggests that the TPF of this SPT can indeed be written as eiπ
∫

(wTM1 )2η.

E. Group Cohomology and Z2 Cohomology ring of wallpaper groups

In this appendix, we list the Z2 cohomology rings of all 17 wallpaper groups. The calculation is done with the
help of spectral sequence. See Appendix A 3 for some brief mathematical introduction of the relevant concepts,
and Refs. [98–100] for more details. It turns out that for all wallpaper groups Gs except p4g, the cohomology
ring can be written as

H∗(Gs,Z2) = Z2[A•, · · · , B•, · · · ]/relations (E1)

with A• and B• the generators belonging to H1(Gs,Z2) and H2(Gs,Z2), respectively. Subscripts “•” are the
names of generators which differ for different Gs, and their meanings will often be clear in the context. As a
result, all elements of the cohomology ring H∗(Gs,Z2) can be written as cup product of the generators A• and
B•, but there are some relations that dictate that certain sums of cup products actually yield a trivial cohomology
element. We will present all elements of H1(Gs,Z2) and H2(Gs,Z2) together with their representative cochains,
as well as the complete set of the relations. This encodes the full information of the cohomology ring H∗(Gs,Z2).
The situation for p4g is similar, but we need an extra degree-3 generator C ∈ H3(p4g,Z2), which, together with
the generators in H1(p4g,Z2) and H2(p4g,Z2), forms a complete set of generators of H∗(p4g,Z2).

For later usage, we define a set of functions that take integers as their arguments:

P (x) =

{
1, x is odd
0, x is even

, Pc(x) = 1− P (x), Q(x) = (−1)x,

[x]a = {y = x (mod a)|0 6 y < a}, Pab(x) =

{
1, x = b (mod a)
0, otherwise

(E2)

• Wallpaper group 1: p1

This group is generated by T1 and T2, two independent translations which are commutative,

T1T2 = T2T1. (E3)
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An arbitrary group element in p1 can be written as g = T x1 T
y
2 , with x, y ∈ Z. For g1 = T x1

1 T y12 and
g2 = T x2

1 T y22 , the group multiplication rule gives

g1g2 = T x1+x2
1 T y1+y2

2 . (E4)

The Z2 cohomology ring of p1 is

Z2[Ax, Ay]/(A2
x = 0, A2

y = 0). (E5)

Here H1(p1,Z2) = Z2
2, with generators ξ1 = Ax, ξ2 = Ay, which have representative cochains,

ξ1(g) = x, ξ2(g) = y. (E6)

H2(p1,Z2) = Z2, with generators λ1 = AxAy, which have representative cochains,

λ1(g1, g2) = y1x2 (E7)

Indeed λ1 generates the LSM constraint.

• Wallpaper group 2: p2

This group is generated by T1, T2 and C2, two independent translations and a C2 rotational symmetry, with
the following relations among generators

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1. (E8)

An arbitrary group element in p2 can be written as g = T x1 T
y
2 C

c
2, with x, y ∈ Z and c ∈ {0, 1}. For

g1 = T x1
1 T y12 Cc12 and g2 = T x2

1 T y22 Cc22 , the group multiplication rule gives

g1g2 = T
x1+Q(c1)x2

1 T
y1+Q(c1)y2
2 C

P (c1+c2)
2 . (E9)

The Z2 cohomology ring of p2 is

Z2[Ax, Ay, Ac]/(A
2
x = AxAc, A

2
y = AyAc) (E10)

Here H1(p2,Z2) = Z3
2, with generators ξ1 = Ax, ξ2 = Ay, ξ3 = Ac, which have representative cochains,

ξ1(g) = x, ξ2(g) = y, ξ3(g) = c. (E11)

H2(p2,Z2) = Z4
2, with generators λ1 = (Ax+Ac)(Ay+Ac), λ2 = Ax(Ay+Ac), λ3 = (Ax+Ac)Ay, λ4 =

AxAy, which have representative cochains,

λ1(g1, g2) = y1x2 + c1(x2 + y2 + c2)

λ2(g1, g2) = (y1 + c1)x2

λ3(g1, g2) = y1x2 + c1y2

λ4(g1, g2) = y1x2

(E12)

The generators are chosen so that they have a 1-1 correspondence with topological invariants presented in
Appendix F. There we will also see that all of them, λ1, λ2, λ3, λ4, generate LSM constraints.

• Wallpaper group 3: pm

This group is generated by T1, T2 and M , where T1 and T2 are translations with perpendicular translation
vectors, and M is a mirror symmetry such that

M2 = 1, MT1M = T−1
1 , MT2M = T2, T1T2 = T2T1. (E13)
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An arbitrary element in pm can be written as g = T x1 T
y
2 M

m, with x, y ∈ Z and m ∈ {0, 1}. For g1 =
T x1

1 T y12 Mm1 and g2 = T x2
1 T y22 Mm2 , the group multiplication rule gives

g1g2 = T
x1+Q(m1)x2

1 T y1+y2
2 MP (m1+m2). (E14)

The Z2 cohomology ring of pm is

Z2[Ax, Ay, Am]/(A2
x = AxAm, A

2
y = 0) (E15)

Here H1(pm,Z2) = Z3
2, with generators ξ1 = Ax, ξ2 = Ay, ξ3 = Am, which have representative cochains,

ξ1(g) = x, ξ2(g) = y, ξ3(g) = m. (E16)

H2(pm,Z2) = Z4
2, with generators λ1 = (Ax +Am)Ay, λ2 = AxAy, λ3 = (Ax +Am)Am, λ4 = AxAm,

which have representative cochains,

λ1(g1, g2) = y1x2 +m1y2

λ2(g1, g2) = y1x2

λ3(g1, g2) = m1(x2 +m2)

λ4(g1, g2) = m1x2

(E17)

In Appendix F, we will see that λ1, λ2 generate LSM constraints, while λ3, λ4 correspond to non-LSM
fractionalization patterns.

• Wallpaper group 4: pg

This group is generated by T1 and G, where T1 is a translation and G is a glide reflection, such that

G−1T1G = T−1
1 . (E18)

Note that G2 is a translation along the direction perpendicular to the translation vector of T1. An arbitrary
element in pg can be written as g = T x1 G

s, with x, s ∈ Z. For g1 = T x1
1 Gs1 and g2 = T x2

1 Gs2 , the group
multiplication rule gives

g1g2 = T
x1+Q(s1)x2

1 Gs1+s2 . (E19)

The Z2 cohomology ring of pg is

Z2[Ax, As]/(A
2
x = AxAs, A

2
s = 0) (E20)

Here H1(pg,Z2) = Z2
2, with generators ξ1 = Ax, ξ2 = As, which have representative cochains,

ξ1(g) = x, ξ2(g) = s. (E21)

H2(pg,Z2) = Z2, with generators λ1 = AxAs, which have representative cochains,

λ1(g1, g2) = s1x2 (E22)

In Appendix F, we will see that λ1 generates LSM constraints.

• Wallpaper group 5: cm

This group is generated by T1, T2 and M , two independent translations and a mirror symmetry whose
mirror axis bisects the translation vectors of T1 and T2. They satisfy

M2 = 1, MT1M = T2, MT2M = T1, T1T2 = T2T1. (E23)
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An arbitrary element of cm can be written as g = T x1 T
y
2 M

m, with x, y ∈ Z and m ∈ {0, 1}. For g1 =
T x1

1 T y12 Mm1 and g2 = T x2
1 T y22 Mm2 , the group multiplication rule gives

g1g2 = T
x1+Pc(m1)x2+P (m1)y2
1 T

y1+Pc(m1)y2+P (m1)x2

2 MP (m1+m2). (E24)

The Z2 cohomology ring of cm is

Z2[Ax+y, Am, Bxy]/(A2
x+y = 0, Ax+yAm = 0, BxyAx+y = 0, B2

xy = 0) (E25)

Here H1(cm,Z2) = Z2
2, with two generators ξ1 = Ax+y, ξ2 = Am, which have representative cochains

ξ1(g) = x+ y, ξ2(g) = m. (E26)

H2(cm,Z2) = Z2
2, with generators λ1 = Bxy, λ2 = A2

m, which have representative cochains

λ1(g1, g2) = Pc(m1)y1x2 + P (m1)y2(x2 + y1)

λ2(g1, g2) = m1m2
(E27)

In Appendix F, we will see that λ1 generates LSM constraints, while λ2 corresponds to non-LSM fraction-
alization patterns.

• Wallpaper group 6: pmm

This group is generated by T1, T2, C2 and M , two translations with perpendicular translation vectors, a C2

rotation and a mirror symmetry such that

M2 = 1, MC2M = C2, MT1M = T−1
1 , MT2M = T2

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1.

(E28)

Note that C2M is another mirror symmetry that flips the translation vector of T2. An arbitrary element in
pmm can be written as g = T x1 T

y
2 C

c
2M

m, with x, y ∈ Z and c,m ∈ {0, 1}. For g1 = T x1
1 T y12 Cc22 M

m1 and
g2 = T x2

1 T y22 Cc22 M
m2 , the group multiplication rule gives

g1g2 = T
x1+Q(c1+m1)x2

1 T
y1+Q(c1)y2
2 C

P (c1+c2)
2 MP (m1+m2). (E29)

The Z2 cohomology ring of pmm is

Z2[Ax, Ay, Ac, Am]/(A2
x = Ax(Am +Ac), A

2
y = AyAc) (E30)

Here H1(pmm,Z2) = Z4
2, with generators ξ1 = Ax, ξ2 = Ay, ξ3 = Ac, ξ4 = Am, which have represen-

tative cochains,

ξ1(g) = x, ξ2(g) = y, ξ3(g) = c, ξ4(g) = m. (E31)

H2(pmm,Z2) = Z8
2, with generators λ1 = (Ax + Ac + Am)(Ay + Ac), λ2 = AxAy, λ3 = Ax(Ay +

Ac), λ4 = (Ax + Ac + Am)Ay, λ5 = (Ax + Ac + Am)Am, λ6 = (Ay + Ac)Am, λ7 = AxAm, λ8 =
AyAm, which have representative cochains,

λ1(g1, g2) = (y1 + c1)x2 + (c1 +m1)(y2 + c2)

λ2(g1, g2) = y1x2

λ3(g1, g2) = (y1 + c1)x2

λ4(g1, g2) = y1x2 + (c1 +m1)y2

λ5(g1, g2) = m1(x2 + c2 +m2)

λ6(g1, g2) = m1(y2 + c2)

λ7(g1, g2) = m1x2

λ8(g1, g2) = m1y2

(E32)

In Appendix F, we will see that λ1, λ2, λ3, λ4 generate LSM constraints, while λ5, λ6, λ7, λ8 correspond to
non-LSM fractionalization patterns.
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• Wallpaper group 7: pmg

This group is generated by T1, T2, C2 and M , two translations with perpendicular translation vectors, a
2-fold rotation and a mirror symmetry with mirror axis parallel to the translation vector of T2, and displaced
from the C2 rotation center by a quarter of the unit translation vector of T1. They satisfy

M2 = 1, MC2M = T1C2, MT1M = T−1
1 , MT2M = T2,

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1.

(E33)

An arbitrary element in pmg can be written as g = T x1 T
y
2 C

c
2M

m, with x, y ∈ Z and c,m ∈ {0, 1}. For
g1 = T x1

1 T y12 Cc12 M
m1 and g2 = T x2

1 T y22 Cc22 M
m2 , the group multiplication rule gives

g1g2 = T
x1+Q(c1+m1)x2+Q(c1)c2m1

1 T
y1+Q(c1)y2
2 C

P (c1+c2)
2 MP (m1+m2). (E34)

The Z2 cohomology ring of pmg is

Z2[Ay, Ac, Am]/(A2
y = AcAy, AcAm = 0) (E35)

Here H1(pmg,Z2) = Z3
2, with generators ξ1 = Ay, ξ2 = Ac, ξ3 = Am, which have representative

cochains,

ξ1(g) = y, ξ2(g) = c, ξ3(g) = m. (E36)

H2(pmg,Z2) = Z4
2, with generators λ1 = Ac(Ay + Ac), λ2 = AcAy, λ3 = AyAm, λ4 = A2

m, which
have representative cochains,

λ1(g1, g2) = c1(y2 + c2)

λ2(g1, g2) = c1y2

λ3(g1, g2) = m1y2

λ4(g1, g2) = m1m2

(E37)

In Appendix F, we will see that λ1, λ2 generate LSM constraints, while λ3, λ4 correspond to non-LSM
fractionalization patterns.

• Wallpaper group 8: pgg

This group is generated by T1, T2, C2 and G1, two translations with perpendicular translation vectors, a C2

rotation, and a glide reflection whose reflection axis is parallel to the translation vector of T2, and displaced
from the C2 center by a quarter of the unit translation vector of T1. They satisfy

C2
2 = 1, G1C2G

−1
1 = T1T2C2, C2T1C2 = T−1

1 , G1T1G
−1
1 = T−1

1 , G2
1 = T2. (E38)

An arbitrary element in pgg can be written as g = T x1 T
y
2 C

c
2G

s
1, with x, y ∈ Z and c, s ∈ {0, 1}. For

g1 = T x1
1 T y12 Cc12 G

s1
1 and g2 = T x2

1 T y22 Cc22 G
s2
1 , the group multiplication rule gives

g1g2 = T
x1+Q(c1+s1)x2+Q(c1)c2s1
1 T

y1+Q(c1)y2+Q(c1)c2s1+Q(c1+c2)s1s2
2 C

P (c1+c2)
2 G

P (s1+s2)
1 . (E39)

The Z2 cohomology ring of pgg is

Z2[Ac, As, Bc(x+y)]/(A
2
s = AsAc = 0, AsBc(x+y) = 0, B2

c(x+y) = A2
cBc(x+y)) (E40)

Here H1(pgg,Z2) = Z2
2, with generators ξ1 = Ac, ξ2 = As, which have representative cochains,

ξ1(g) = c, ξ2(g) = s. (E41)

H2(pgg,Z2) = Z2
2, with generators λ1 = Bc(x+y) +A2

c , ω2 = Bc(x+y), which have representative cochains,

λ1(g1, g2) = c1(x2 + y2 + c2) + (c1 + c2)s1s2 + s1x2

λ2(g1, g2) = c1(x2 + y2) + (c1 + c2)s1s2 + s1x2
(E42)

In Appendix F, we will see that λ1, λ2 generate LSM constraints.
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• Wallpaper group 9: cmm

This group is generated by T1, T2, C2 and M , two translations with translation vectors not perpendicular
to each other, a C2 rotation, and a mirror symmetry whose mirror axis bisects the translation vectors of T1

and T2. They satisfy

M2 = 1, MC2M = C2, MT1M = T2, MT2M = T1,

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1.

(E43)

Note that C2M is another mirror symmetry whose mirror axis bisects the translation vectors of T1 and
T−1

2 . An arbitrary element in cmm can be written as g = T x1 T
y
2 C

c
2M

m, with x, y ∈ Z and c,m ∈ {0, 1}.
For g1 = T x1

1 T y12 Cc12 M
m1 and g2 = T x2

1 T y22 Cc22 M
m2 , the group multplication rule gives

g1g2 = T
x1+Q(c1)X
1 T

y1+Q(c1)Y
2 C

P (c1+c2)
2 MP (m1+m2), (E44)

where X and Y are defined as

X = Pc(m1)x2 + P (m1)y2,

Y = Pc(m1)y2 + P (m1)x2.
(E45)

The Z2 cohomology ring of cmm is

Z2[Ax+y, Ac, Am, Bxy]/(A2
x+y = AcAx+y, Ax+yAm = 0, BxyAx+y = 0, B2

xy = (A2
c +AcAm)Bxy) (E46)

Here H1(cmm,Z2) = Z3
2, with generators ξ1 = Ax+y, ξ2 = Ac, ξ3 = Am, which have representative

cochains,

ξ1(g) = x+ y, ξ2(g) = c, ξ3(g) = m. (E47)

H2(cmm,Z2) = Z5
2, with generators λ1 = Bxy+AcAx+y+A2

c +AmAc, λ2 = Bxy, λ3 = AcAx+y, λ4 =
(Ac +Am)Am, λ5 = AcAm, which have representative cochains,

λ1(g1, g2) = Pc(m1)y1x2 + P (m1)y2(x2 + y1) + c1(x2 + y2 + c2 +m2)

λ2(g1, g2) = Pc(m1)y1x2 + P (m1)y2(x2 + y1)

λ3(g1, g2) = c1(x2 + y2)

λ4(g1, g2) = m1(c2 +m2)

λ5(g1, g2) = m1c2

(E48)

In Appendix F, we will that λ1, λ2, λ3 generate LSM constraints, while λ4, λ5 correspond to non-LSM
fractionalization pattern.

• Wallpaper group 10: p4

This group is generated by T1, T2 and C4, two translations with perpendicular translation vectors that have
equal length, and a 4-fold rotational symmetry, such that

C4
4 = 1, C4T1C

−1
4 = T2, C4T2C

−1
4 = T−1

1 , T1T2 = T2T1. (E49)

An arbitrary element in p4 can be written as g = T x1 T
y
2 C

c
4, with x, y ∈ Z and c ∈ {0, 1, 2, 3}. For

g1 = T x1
1 T y12 Cc14 and g2 = T x2

1 T y22 Cc24 , the group multiplication rule gives

g1g2 = T
x1+∆x(x2,y2,c1)
1 T

y1+∆y(x2,y2,c1)
2 C

[c1+c2]4
4 (E50)

where

∆x(x, y, c) =


x, c = 0
−y, c = 1
−x, c = 2
y, c = 3

, ∆y(x, y, c) =


y, c = 0
x, c = 1
−y, c = 2
−x, c = 3

(E51)
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The Z2 cohomology ring of p4 is

Z2[Ac, Ax+y, Bc2 , Bxy]/
(
A2
c = AcAx+y = 0,

BxyAx+y = BxyAc, Bc2Ax+y = A3
x+y +BxyAx+y, B

2
xy = Bc2Bxy

) (E52)

Here H1(p4,Z2) = Z2
2, with generators ξ1 = Ax+y, ξ2 = Ac, which have representative cochains,

ξ1(g) = x+ y, ξ2(g) = c. (E53)

H2(p4,Z2) = Z3
2, with generators λ1 = Bxy +A2

x+y +Bc2 , λ2 = Bxy, λ3 = A2
x+y, which have represen-

tative cochains,

λ1(g1, g2) = λ2(g1, g2) + λ3(g1, g2) +
[c1]4 + [c2]4 − [c1 + c2]4

4
λ2(g1, g2) = Pc(c1)y1x2 + P (c1)y2(x2 + y1)

λ3(g1, g2) = P41(c1)x2 + P42(c1)(x2 + y2) + P43(c1)y2

(E54)

In Appendix F, we will see that λ1, λ2, λ3 generate LSM constraints.

• Wallpaper group 11: p4m

This group is generated by T1, T2, C4 and M , where the first three generators have the same properties as
those in p4, and the last generator M is a mirror symmetry that flips the translation vector of T1, such that

M2 = 1, MC4M = C−1
4 , MT1M = T−1

1 , MT2M = T2,

C4
4 = 1, C4T1C

−1
4 = T2, C4T2C

−1
4 = T−1

1 , T1T2 = T2T1.
(E55)

An arbitrary element in p4m can be written as g = T x1 T
y
2 C

c
4M

m, with x, y ∈ Z, c ∈ {0, 1, 2, 3} and
m ∈ {0, 1}. For g1 = T x1

1 T y12 Cc14 M
m1 and g2 = T x2

1 T y22 Cc24 M
m2 , the group multiplication rule gives

g1g2 = T
x1+∆x(Q(m1)x2,y2,c1)
1 T

y1+∆y(Q(m1)x2,y2,c1)
2 C

[c1+Q(m1)c2]4
4 MP (m1+m2) (E56)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (E51).

The Z2 cohomology ring of p4m is

Z2[Ac, Ax+y, Am, Bc2 , Bxy]/
(
Ac(Ac +Am) = AcAx+y = 0,

BxyAx+y = Bxy(Ac +Am), Bc2Ax+y = A3
x+y +AmA

2
x+y +BxyAx+y,

B2
xy = Bc2Bxy

) (E57)

Here H1(p4m,Z2) = Z3
2, with generators ξ1 = Ax+y, ξ2 = Ac, ξ3 = Am, which have representative

cochains,

ξ1(g) = x+ y, ξ2(g) = c, ξ3(g) = m. (E58)

H2(p4m,Z2) = Z6
2, with generators λ1 = Bxy +Ax+y(Ax+y +Am) +Bc2 , λ2 = Bxy, λ3 = Ax+y(Ax+y +

Am), λ4 = Am(Am +Ax+y +Ac), λ5 = AmAx+y, λ6 = AmAc, which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) + λ3(g1, g2) +
[c1]4 +Q(m1)[c2]4 − [c1 +Q(m1)c2]4

4
λ2(g1, g2) = Pc(c1)y1x2 + P (c1)y2(x2 + y1)

λ3(g1, g2) = P41(c1)x2 + P42(c1)(x2 + y2) + P43(c1)y2 +m1y2

λ4(g1, g2) = m1(x2 + y2 + c2 +m2)

λ5(g1, g2) = m1(x2 + y2)

λ6(g1, g2) = m1c2

(E59)

In Appendix F, we will see that λ1, λ2, λ3 generate LSM constraints, while λ4, λ5, λ6 correspond to non-LSM
fractionalization patterns.
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• Wallpaper group 12: p4g

This group is generated by T1, T2, C4 and G. The first three generators have the same properties as those
in p4, and the last generator G is a glide reflection whose reflection axis passes through the rotation center
of C4 and bisects the translation vectors of T1 and T2, such that

C4
4 = 1, C4T1C

−1
4 = T2, C4T2C

−1
4 = T−1

1 , T1T2 = T2T1, (E60)

G2 = T1T2, GT1G
−1 = T2, GT2G

−1 = T1, GC4G
−1 = T2C

−1
4 . (E61)

Note that there is also a mirror symmetry M = T−1
1 G. An arbitrary element in p4g can be written as g =

T x1 T
y
2 C

c
4G

s, with x, y ∈ Z, c ∈ {0, 1, 2, 3} and s ∈ {0, 1}. For g1 = T x1
1 T y12 Cc14 G

s1 and g2 = T x2
1 T y22 Cc24 G

s2 ,
the group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(s1)c2]4
4 GP (s1+s2) (E62)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (E51), and

X = Pc(s1)x2 + P (s1)y2 + (P42(c2) + P43(c2)) s1 + ∆x(s1s2, s1s2, [Q(s1)c2]4)

Y = Pc(s1)y2 + P (s1)x2 + (P41(c2) + P42(c2)) s1 + ∆y(s1s2, s1s2, [Q(s1)c2]4)
(E63)

The Z2 cohomology ring of p4g is

Z2[Ac, As, Bc2 , Bc(x+y), Cc2(x+y)]/
(
A2
c = AcAs = 0, AcBc(x+y) = 0, AsBc(x+y) = AsBc2 ,

B2
c(x+y) = Bc2Bc(x+y), AcCc2(x+y) = 0,

Bc(x+y)Cc2(x+y) = Bc2Cc2(x+y),

C2
c2(x+y) = B3

c(x+y) +AsBc2Cc2(x+y)

) (E64)

Here H1(p4g,Z2) = Z2
2, with generators ξ1 = Ac, ξ2 = As, which have representative cochains,

ξ1(g) = c, ξ2(g) = s. (E65)

H2(p4g,Z2) = Z3
2, with generators λ1 = Bc(x+y) +Bc2 , λ2 = Bc(x+y), λ3 = A2

s, which have representa-
tive cochains,

λ1(g1, g2) = λ2(g1, g2) +
[c1]4 +Q(s1)[c2]4 − [c1 +Q(s1)c2]4

4
λ2(g1, g2) = P40(c1)s1(P43(c2) + (c1 − c2)s2) + P41(c1)[Pc(s1)y2 + s1(x2 + 1− P40(c2) + (c1 − c2)s2)]

+ P42(c1)[Pc(s1)(x2 + y2) + s1(x2 + y2 + P41(c2) + (c1 − c2)s2)]

+ P43(c1)[Pc(s1)x2 + s1(y2 + P42(c2) + (c1 − c2)s2)]

λ3(g1, g2) = s1s2

(E66)

In Appendix F, we will see that λ1, λ2 generate LSM constraints, while λ3 corresponds to non-LSM frac-
tionalization patterns.

Pay attention that there is a degree-3 generator Cc2(x+y) ∈ H3(p4g,Z2). We do not have the explicit form
of its representative cochain, but it can be determined by its pullback to the subgroup p4 generated by T1,
T2, C4, which is A3

x+y, as well as its pullback to the subgroup cmm generated by T1, T2, T2C2, T−1
1 G, which

is A3
x+y +A3

c +BxyAm +A2
cAm.

• Wallpaper group 13: p3

This group is generated by T1, T2 and C3, two translations with translation vectors that have the same
length and an angle of 2π/3, and a 3-fold rotational symmetry, such that

C3
3 = 1, C3T1C

−1
3 = T2, C3T2C

−1
3 = T−1

1 T−1
2 , T1T2 = T2T1. (E67)
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An arbitrary element in p3 can be written as g = T x1 T
y
2 C

c
3, with x, y ∈ Z and c ∈ {0, 1, 2}. For g1 =

T x1
1 T y12 Cc13 and g2 = T x2

1 T y22 Cc23 , the group multiplication rule gives

g1g2 = T
x1+∆x(x2,y2,c1)
1 T

y1+∆y(x2,y2,c1)
2 C

[c1+c2]3
3 (E68)

where

∆x(x, y, c) =

 x, c = 0
−y, c = 1
−x+ y, c = 2

, ∆y(x, y, c) =

 y, c = 0
x− y, c = 1
−x, c = 2

(E69)

The Z2 cohomology ring of p3 is

Z2[Bxy]/(B2
xy = 0) (E70)

Here H1(p3,Z2) = 0, while H2(p3,Z2) = Z2, with generator λ1 = Bxy, which have representative cochain,

λ1(g1, g2) =P30(c1)y1x2 + P31(c1)

(
y2(y2 − 1)

2
+ y2(x2 + y1)

)
+ P32(c1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

) (E71)

In Appendix F, we will see that λ1 generates LSM constraints.

• Wallpaper group 14: p3m1

This group is generated by T1, T2, C3 and M , where the first three generators have the same properties as
those in p3, and the last one is a mirror symmetry whose mirror axis passes through the C3 center, and is
perpendicular to the angle that bisects the two translation vectors of T1 and T2, such that

M2 = 1, MC3M = C−1
3 , MT1M = T−1

2 , MT2M = T−1
1 ,

C3
3 = 1, C3T1C

−1
3 = T2, C3T2C

−1
3 = T−1

1 T−1
2 , T1T2 = T2T1.

(E72)

An arbitrary element in p3m1 can be written as g = T x1 T
y
2 C

c
3M

m, with x, y ∈ Z, c ∈ {0, 1, 2} and M ∈ {0, 1}.
For g1 = T x1

1 T y12 Cc13 M
m1 and g2 = T x2

1 T y22 Cc23 M
m2 , the group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(m1)c2]3
3 MP (m1+m2) (E73)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (E69), and

X = Pc(m1)x2 − P (m1)y2

Y = Pc(m1)y2 − P (m1)x2
(E74)

The Z2 cohomology ring of p3m1 is

Z2[Am, Bxy]/(B2
xy = 0) (E75)

Here H1(p3m1,Z2) = 0, with generator ξ1 = Am, which have representative cochain,

ξ1(g) = m. (E76)

H2(p3m1,Z2) = Z2
2, with generators λ1 = Bxy, λ2 = A2

m, which have representative cochains,

λ1(g1, g2) = P30(c1)[Pc(m1)y1x2 +m1y2(x2 + y1)]

+ P31(c1)

[
Pc(m1)

(
y2(y2 − 1)

2
+ y2(x2 + y1)

)
+m1

(
x2(x2 + 1)

2
+ y1x2

)]
+ P32(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

)
+m1

(
y2(y2 + 1)

2
+ y1(x2 + y2)

)]
λ2(g1, g2) = m1m2

(E77)

In Appendix F, we will see that λ1 generates LSM constraints, while λ2 corresponds to non-LSM fraction-
alization pattern.
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• Wallpaper group 15: p31m

This group is generated by T1, T2, C3 and M , where the first three generators have the same properties
as those in p3 and p3m1, and the last one is a mirror symmetry whose mirror axis passes through the C3

center and bisects the translation vectors of T1 and T2, such that

M2 = 1, MC3M = C−1
3 , MT1M = T2, MT2M = T1,

C3
3 = 1, C3T1C

−1
3 = T2, C3T2C

−1
3 = T−1

1 T−1
2 , T1T2 = T2T1.

(E78)

An arbitrary element in p31m can be written as g = T x1 T
y
2 C

c
3M

m, with x, y ∈ Z, c ∈ {0, 1, 2} and M ∈ {0, 1}.
For g1 = T x1

1 T y12 Cc13 M
m1 and g2 = T x2

1 T y22 Cc23 M
m2 , the group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(m1)c2]3
3 MP (m1+m2) (E79)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (E69), and

X = Pc(m1)x2 + P (m1)y2

Y = Pc(m1)y2 + P (m1)x2
(E80)

The Z2 cohomology ring of p31m is

Z2[Am, Bxy]/(B2
xy = 0) (E81)

Here H1(p31m,Z2) = 0, with generator ξ1 = Am, which have representative cochain,

ξ1(g) = m. (E82)

H2(p31m,Z2) = Z2
2, with generator λ1 = Bxy, λ2 = A2

m, which have representative cochains,

λ1(g1, g2) = P30(c1) [Pc(m1)y1x2 +m1y2(x2 + y1)]

+ P31(c1)

[
Pc(m1)

(
y2(y2 + 1)

2
+ x2 + y2(x2 + y1)

)
+m1

(
x2(x2 + 1)

2
+ y2 + y1x2

)]
+ P32(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y2 + y1x2 + y2(x2 + y1)

)
+m1

(
y2(y2 − 1)

2
+ x2 + y1(x2 + y2)

)]
λ2(g1, g2) = m1m2

(E83)

In Appendix F, we will see that λ1 generates LSM constraints while λ2 corresponds to non-LSM fraction-
alization pattern.

• Wallpaper group 16: p6

This group is generated by T1, T2 and C6, two translations with translation vectors that have the same
length and an angle of 2π/3, and a 6-fold rotational symmetry, such that

C6
6 = 1, C6T1C

−1
6 = T1T2, C6T2C

−1
6 = T−1

1 , T1T2 = T2T1. (E84)

An arbitrary element in p6 can be written as g = T x1 T
y
2 C

c
6, with x, y ∈ Z and c ∈ {0, 1, 2, 3, 4, 5}. For

g1 = T x1
1 T y12 Cc16 and g2 = T x2

1 T y22 Cc26 , the group multiplication rule gives

g1g2 = T
x1+∆x(x2,y2,c1)
1 T

y1+∆y(x2,y2,c1)
2 C

[c1+c2]6
6 (E85)

where

∆x(x, y, c) =



x, c = 0
x− y, c = 1
−y, c = 2
−x, c = 3
−x+ y, c = 4
y, c = 5

, ∆y(x, y, c) =



y, c = 0
x, c = 1
x− y, c = 2
−y, c = 3
−x, c = 4
−x+ y, c = 5

(E86)
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The Z2 cohomology ring of p6 is

Z2[Ac, Bxy]/(B2
xy = A2

cBxy) (E87)

Here H1(p6,Z2) = Z2, with generator ξ1 = Ac, which have representative cochain,

ξ1(g) = c. (E88)

H2(p6,Z2) = Z2
2, with generators λ1 = Bxy +A2

c , λ2 = Bxy, which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) + +
[c1]6 + [c2]6 − [c1 + c2]6

6

λ2(g1, g2) = P60(c1)y1x2 + P61(c1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

)
+ P62(c1)

(
y2(y2 + 1)

2
+ x2 + y2(x2 + y1)

)
+ P63(c1)(x2 + y2 + y1x2)

+ P64(c1)

(
x2(x2 − 1)

2
+ y2 + y1x2 + y2(x2 + y1)

)
+ P65(c1)

(
y2(y2 + 1)

2
+ y2(x2 + y1)

)
(E89)

In Appendix F, we will see that λ1, λ2 generate LSM constraints.

• Wallpaper group 17: p6m

This group is generated by T1, T2, C6 and M , where the first three generators have the same properties
as those in p6, and the last one is a mirror symmetry whose mirror axis passes through the C6 center and
bisects T1 and T2, such that

M2 = 1, MC6M = C−1
6 , MT1M = T2, MT2M = T1,

C6
6 = 1, C6T1C

−1
6 = T1T2, C6T2C

−1
6 = T−1

1 , T1T2 = T2T1.
(E90)

An arbitrary element in p6m can be written as g = T x1 T
y
2 C

c
6M

m, with x, y ∈ Z, c ∈ {0, 1, 2, 3, 4, 5} and
m ∈ {0, 1}. For g1 = T x1

1 T y12 Cc16 M
m1 and g2 = T x2

1 T y22 Cc26 M
m2 , the group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(m1)c2]6
6 MP (m1+m2) (E91)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (E86), and X and Y are defined in Eq. (E80).

The Z2 cohomology ring of p6m is

Z2[Ac, Am, Bxy]/
(
B2
xy = (A2

c +AcAm)Bxy
)

(E92)

Here H1(p6m,Z2) = Z2
2, with generator ξ1 = Ac, ξ2 = Am, which have representative cochains,

ξ1(g) = c, ξ2(g) = m. (E93)

H2(p6m,Z2) = Z4
2, with generators λ1 = Bxy + A2

c + AcAm, λ2 = Bxy, λ3 = (Ac + Am)Am, λ4 =
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AcAm, which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) +
[c1]6 +Q(m1)[c2]6 − [c1 +Q(m1)c2]6

6
λ2(g1, g2) = P60(c1) [Pc(m1)y1x2 +m1y2(x2 + y1)]

+ P61(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

)
+m1

(
y2(y2 − 1)

2
+ y1(x2 + y2)

)]
+ P62(c1)

[
Pc(m1)

(
y2(y2 + 1)

2
+ x2 + y2(x2 + y1)

)
+m1

(
x2(x2 + 1)

2
+ y2 + y1x2

)]
+ P63(c1) [Pc(m1)(x2 + y2 + y1x2) +m1(x2 + y2 + y2(x2 + y1)]

+ P64(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y2 + y1x2 + y2(x2 + y1)

)
+m1

(
y2(y2 − 1)

2
+ x2 + y1(x2 + y2)

)]
+ P65(c1)

[
Pc(m1)

(
y2(y2 + 1)

2
+ y2(x2 + y1)

)
+m1

(
x2(x2 + 1)

2
+ y1x2

)]
λ3(g1, g2) = m1(c2 +m2)

λ4(g1, g2) = m1c2

(E94)

In Appendix F, we will see that λ1, λ2 generate LSM constraints, while λ3, λ4 correspond to non-LSM
fractionalization patterns.

F. Topological invariants for all LSM constraints

In this appendix, for each of the 17 wallpaper groups, we present the topological invariants for all LSM
constraints and topological invariants for all non-LSM fractionalization patterns. These topological invariants
can all be written down by simply inspecting the IWP and/or the mirror axes of the relevant wallpaper groups,
and they correspond to various (3 + 1)-d Gs × Gint SPTs that can be constructed in a manner described in
Sec. II B. This physics-based reasoning implies that the topological invariants we present here are complete and
independent. In Appendix E, we also provide explicit expressions of the representative cochains that correspond
to each of the topological invariants, which show mathematically that the topological invariants here are indeed
complete and independent.

• Wallpaper group 1: p1

All points in space correspond to the same IWP for p1. The fractionalization patterns of p1 are classified
by H2(p1,Z2) = Z2. There is only one nontrivial fractionalization pattern T1T2 = −T2T1, detected by the
topological invariant

α1[ω] =
ω(T1, T2)

ω(T2, T1)
. (F1)

This fractionalization pattern is related to the first of the 3 basic no-go theorems in Sec. II A, so it
corresponds to an LSM constraint, and the classification of LSM constraints is Z2. It is straightforward to
check that α1[(−1)λ1 ] = −1, where λ1 is defined in Appendix E.

• Wallpaper group 2: p2

There are 4 different IWP for p2, which are rotation centers for C2, T1C2, T2C2 and T1T2C2, respectively.
The fractionalization patterns of p2 are classified by H2(p2,Z2) = Z4

2. All fractionalization patterns are
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generated by 4 root patterns, detected by the topological invariants,

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1C2, T1C2)

ω(1, 1)

α3[ω] =
ω(T2C2, T2C2)

ω(1, 1)

α4[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

(F2)

corresponding to C2
2 = −1, (T1C2)2 = −1, (T2C2)2 = −1 and (T1T2C2)2 = −1 respectively. All these

topological invariants are related to the third of the 3 basic no-go theorems in Sec. II A, so they all
correspond to LSM constraints, and the classification of LSM constraints is Z4

2. It is straightforward to
check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 4, where λi is defined in Appendix E.

• Wallpaper group 3: pm

There are 2 different IWP for pm, which are the mirror axes for M and T1M , respectively. The fractional-
ization patterns of pm are classified by H2(pm,Z2) = Z4

2. All fractionalization patterns are generated by 4
root patterns, detected by the topological invariants

α1[ω] =
ω(T2,M)

ω(M,T2)

α2[ω] =
ω(T2, T1M)

ω(T1M,T2)

α3[ω] =
ω(M,M)

ω(1, 1)

α4[ω] =
ω(T1M,T1M)

ω(1, 1)

(F3)

The first two topological invariants are related to the second of the 3 basic no-go theorems, so they cor-
respond to LSM constraints, and the classification of LSM constraints is Z2

2. The last two are non-LSM
fractionalization patterns. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 4, where
λi is defined in Appendix E.

• Wallpaper group 4: pg

All points in space belong to one IWP of pg. The fractionalization patterns of pg are classified by
H2(pg,Z2) = Z2. There is only one nontrivial fractionalization pattern, detected by the topological in-
variant

α1[ω] =
ω(T1G

−1, T1G)ω(T1, G)

ω(G−1, G)ω(T1, G−1)
(F4)

corresponding to the symmetry fractionalization pattern G−1T1GT1 = −1. This topological invariant
is related to the first of the 3 basic no-go theorems, so it corresponds to an LSM constraint, and the
classification of LSM constraints is Z2. It is straightforward to check that α1[(−1)λ1 ] = −1, where λ1 is
defined in Appendix E.

• Wallpaper group 5: cm

The group cm has one IWP, which includes points along the mirror axis of M . The fractionalization patterns
of cm are classified by H2(cm,Z2) = Z2

2. All fractionalization patterns are generated by 2 root patterns,
detected by the topological invariants

α1[ω] =
ω(T1T2,M)

ω(M,T1T2)

α2[ω] =
ω(M,M)

ω(1, 1)

(F5)
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The first topological invariant is related to the second of the 3 basic no-go theorems, so it corresponds
to an LSM constraint, and the classification of LSM constraints is Z2. The second one is a non-LSM
fractionalization pattern. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is
defined in Appendix E.

• Wallpaper group 6: pmm

There are 4 different IWP for pmm, which are the intersecting point of M and C2M , the intersecting
point of T1M and C2M , the intersecting point of M and T2C2M , and the intersecting point of T1M and
T2C2M . Note that these 4 IWP can also be respectively viewed as the rotation centers for the following
four C2 rotations: C2, T1C2, T2C2 and T1T2C2. The fractionalization patterns of pmm are classified
by H2(pmm,Z2) = Z8

2. All fractionalization patterns are generated by 8 root patterns, detected by the
topological invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

α3[ω] =
ω(T1C2, T1C2)

ω(1, 1)

α4[ω] =
ω(T2C2, T2C2)

ω(1, 1)

α5[ω] =
ω(M,M)

ω(1, 1)

α6[ω] =
ω(C2M,C2M)

ω(1, 1)

α7[ω] =
ω(T1M,T1M)

ω(1, 1)

α8[ω] =
ω(T2C2M,T2C2M)

ω(1, 1)

(F6)

The first four topological invariants are related to the third of the 3 basic no-go theorems, so they cor-
respond to LSM constraints, and the classification of LSM constraints is Z4

2. The last four are non-LSM
fractionalization patterns. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 8, where
λi is defined in Appendix E.

• Wallpaper group 7: pmg

There are 3 different IWP for pmg. The first includes the rotation centers of C2 and T1C2, the second
includes the rotation centers of T2C2 and T1T2C2, and the third includes the mirror axes of M and T1M .
The fractionalization patterns of pmg are classified by H2(pmg,Z2) = Z4

2. All fractionalization patterns are
generated by 4 root patterns, detected by the topological invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

α3[ω] =
ω(T2,M)

ω(M,T2)

α4[ω] =
ω(M,M)

ω(1, 1)

(F7)

The first two topological invariants are related to the third of the 3 basic no-go theorems, and the third
is related to the second of the 3 basic no-go theorems, so they correspond to LSM constraints, and the
classification of LSM constraints is Z3

2. The fourth topological invariant is a non-LSM fractionalization
pattern. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 4, where λi is defined in
Appendix E.
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• Wallpaper group 8: pgg

There are 2 different IWP for pgg. The first includes the rotation centers of C2 and T1T2C2, and the
second includes the rotation centers of T1C2 and T2C2. The fractionalization patterns of pgg are classified
by H2(pgg,Z2) = Z2

2. All fractionalization patterns are generated by 2 root patterns, detected by the
topological invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1C2, T1C2)

ω(1, 1)

(F8)

Both topological invariants are related to the third of the 3 basic no-go theorems, so they both correspond
to LSM constraints, and the classification of LSM constraints is Z2

2. It is straightforward to check that
αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is defined in Appendix E.

• Wallpaper group 9: cmm

There are 3 different IWP for cmm. The first is the 2-fold rotation center of C2, the second is the 2-fold
rotation center of T1T2C2, and the third inlcudes the 2-fold rotation centers of T1C2 and T2C2.

The fractionalization patterns of cmm are classified by H2(cmm,Z2) = Z5
2. All fractionalization patterns

are generated by 5 root patterns, detected by the topological invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

α3[ω] =
ω(T1C2, T1C2)

ω(1, 1)

α4[ω] =
ω(M,M)

ω(1, 1)

α5[ω] =
ω(C2M,C2M)

ω(1, 1)

(F9)

The first three topological invariants are related to the third of the 3 basic no-go theorems, so they cor-
respond to LSM constraints, and the classification of LSM constraints is Z3

2. The last two are non-LSM
fractionalization patterns. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 5, where
λi is defined in Appendix E.

• Wallpaper group 10: p4

There are 3 different IWP for p4. The first is the 2-fold rotation center of C2
4 , the second is the 2-fold

rotation center of T1T2C
2
4 , and the third includes the 2-fold rotation centers of T1C

2
4 and T2C

2
4 . Note

that the first two IWP are also 4-fold rotation centers. The fractionalization patterns of p4 are classfied by
H2(p4,Z2) = Z3

2. All fractionalization patterns are generated by 3 root patterns, detected by the topological
invariants

α1[ω] =
ω(C2

4 , C
2
4 )

ω(1, 1)

α2[ω] =
ω(T1T2C

2
4 , T1T2C

2
4 )

ω(1, 1)

α3[ω] =
ω(T1C

2
4 , T1C

2
4 )

ω(1, 1)

(F10)

All these topological invariants are related to the third of the 3 basic no-go theorems, so they all correspond
to LSM constraints, and the classification of LSM constraints is Z3

2. It is straightforward to check that
αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 3, where λi is defined in Appendix E.
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• Wallpaper group 11: p4m

There are 3 different IWP for p4m, just like p4. The first is the 2-fold rotation center of C2
4 , the second

is the 2-fold rotation center of T1T2C
2
4 , and the third includes the 2-fold rotation centers for T1C

2
4 and

T2C
2
4 . All these IWP are also on some mirror axes, and the first two are also 4-fold rotation centers. The

fractionalization patterns of p4m are classified by H2(p4m,Z2) = Z6
2. All fractionalization patterns are

genereated by 6 root patterns, detected by the topological invariants

α1[ω] =
ω(C2

4 , C
2
4 )

ω(1, 1)

α2[ω] =
ω(T1T2C

2
4 , T1T2C

2
4 )

ω(1, 1)

α3[ω] =
ω(T1C

2
4 , T1C

2
4 )

ω(1, 1)

α4[ω] =
ω(M,M)

ω(1, 1)

α5[ω] =
ω(T1M,T1M)

ω(1, 1)

α6[ω] =
ω(C4M,C4M)

ω(1, 1)

(F11)

The first three topological invariants are related to the third of the 3 basic no-go theorems, so they correspond
to LSM constraints, and the classification of LSM constraints is Z3

2. The last three are non-LSM constraints.
It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 6, where λi is defined in Appendix
E.

• Wallpaper group 12: p4g

There are 2 different IWP for p4g. The first includes the 2-fold rotation centers of C2
4 and T1T2C

2
4 , and

the second includes the 2-fold rotation centers of T1C
2
4 and T2C

2
4 . Note that the first IWP are also 4-

fold rotation centers, and they do not lie on any mirror axis. The second IWP lies on some mirror axes.
The fractionalization patterns of p4g are classified by H2(p4g,Z2) = Z3

2. All fractionalization patterns are
generated by 3 root patterns, detected by the topological invariants

α1[ω] =
ω(C2

4 , C
2
4 )

ω(1, 1)

α2[ω] =
ω(T1C

2
4 , T1C

2
4 )

ω(1, 1)

α3[ω] =
ω(T−1

1 G,T−1
1 G)

ω(1, 1)

(F12)

The first two topological invariants are related to the third of the 3 basic no-go theorems, so they cor-
respond to LSM constraints, and the classification of LSM constraints is Z2

2. The last one is a non-LSM
fractionalization pattern. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 3, where
λi is defined in Appendix E.

• Wallpaper group 13: p3

There are 3 IWP for p3, and they are all 3-fold rotation centers. The fractionalization patterns of p3 are
classified by H2(p3,Z2) = Z2. All fractionalization patterns are generated by a root pattern, detected by
the topological invariant

α[ω] =
ω(T1, T2)

ω(T2, T1)
(F13)

This topological invariant is related to the first of 3 basic no-go theorems, so it corresponds to an LSM
constraint, and the classification of LSM constraints is Z2. It is straightforward to check that α1[(−1)λ1 ] =
−1 for i, j = 1, . . . , 8, where λ1 is defined in Appendix E.
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• Wallpaper group 14: p3m1

There are 3 different IWP for p3m1, and they are all 3-fold rotation centers, just as in p3, but they also
lie on the mirror axes. The fractionalization patterns of p3m1 are classified by H2(p3m1,Z2) = Z2

2. All
fractionalization patterns are generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(T1, T2)

ω(T2, T1)

α2[ω] =
ω(M,M)

ω(1, 1)

(F14)

The first topological invariant is related to the first of the 3 basic no-go theorems, so it corresponds to an LSM
constraint, and the classification of LSM constraints is Z2. The second one is a non-LSM fractionalization
pattern. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is defined in
Appendix E.

• Wallpaper group 15: p31m

There are 3 different IWP for p31m, and they are all 3-fold rotation centers, just as in p3, but only one of them
also lies on the mirror axes. The fractionalization patterns of p31m are classified by H2(p31m,Z2) = Z2

2.
All fractionalization patterns are generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(T1T2,M)

ω(M,T1T2)

α2[ω] =
ω(M,M)

ω(1, 1)

(F15)

The first topological invariant is related to the second of the 3 basic no-go theorems, so it corresponds to an
LSM constraint, and the classification of LSM constraints is Z2. The second is a non-LSM fractionalization
pattern. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is defined in
Appendix E.

• Wallpaper group 16: p6

There are 3 different IWP for p6, and they are centers of 6-fold, 3-fold and 2-fold rotations, respectively.
The fractionalization patterns of p6 are classified by H2(p6,Z2) = Z2

2. All fractionalization patterns are
generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(C3

6 , C
3
6 )

ω(1, 1)

α2[ω] =
ω(T1C

3
6 , T1C

3
6 )

ω(1, 1)

(F16)

Both topological invariants are related to the third of the 3 basic no-go theorems, so they both correspond
to LSM constraints, and the classification of LSM constraints is Z2

2. It is straightforward to check that
αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is defined in Appendix E.

• Wallpaper group 17: p6m

There are 3 different IWP for p6m. Just as p6, they are 6-fold, 3-fold and 2-fold rotation centers, respec-
tively. Here all IWP also lie on some mirror axes. The fractionalization patterns of p6m are classified by
H2(p6m,Z2) = Z4

2. All fractionalization patterns are generated by 4 root patterns, detected by topological
invariants

α1[ω] =
ω(C3

6 , C
3
6 )

ω(1, 1)

α2[ω] =
ω(T1C

3
6 , T1C

3
6 )

ω(1, 1)

α3[ω] =
ω(M,M)

ω(1, 1)

α4[ω] =
ω(C3

6M,C3
6M)

ω(1, 1)

(F17)
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The first two topological invariants are related to the third of the 3 basic no-go theorems, and they cor-
respond to LSM constraints, and the classification of LSM constraints is Z2

2. The last two are non-LSM
fractionalization patterns. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 4, where
λi is defined in Appendix E.

G. Topological characterization of LSM constraints in (1 + 1)-d

In this appendix, we present the derivation of the topological characterization of the LSM constraints for
(1 + 1)-d Gs ×Gint symmetric spin systems, where the results are already given in Sec. II B 3.

First, we note that an argument similar to the one in Appendix B for the (2 + 1)-d case shows that in this case
the relevant cocycle can be written as

Ω(g1, g2, g3) = eiπλ(l1)η(a2,a3) (G1)

where gi ∈ Gs×Gint is written as gi = li⊗ai, with li ∈ Gs and ai ∈ Gint. The cocycle for the nontrivial (1+1)-d
Gint SPT is precisely eiπη(a1,a2), and λ can be viewed as a cocycle in H1(Gs,Z2). Furthermore, λ is determined
completely by Gs and the lattice homotopy class, and it is the same for all Gint with Zk2-classified PR and for all
PR type of the system.

When Gs = p1, the line group that only contains translation generated by T , the lattice homotopy picture im-
plies that the LSM constraints in this case are classified by Z2, and the only nontrivial LSM constraint corresponds
to the case where the total PR inside each translation unit cell is nontrivial. On the other hand, H1(p1,Z2) = Z2,
so there is also only one nontrivial cocycle. Writing an elment in p1 as T x with x ∈ Z, λ(T x) = [x]2 is a rep-
resentative cochain of the nontrivial element in H1(p1,Z2). So we can identify the cocycle corresponding to the
nontrivial LSM constraint as

Ω(g1, g2, g3) = eiπx1η(a2,a3) (G2)

When Gs = p1m, the line group that contains a translation generated by T and a mirror symmetry generated
by M , with commutation relation MTM = T−1, there are two IWP in each translation unit cell, which are the
mirror centers of M and TM , respectively. The lattice homotopy picture implies that the LSM constraints in this
case are classified by Z2

2, and the two root LSM constraints can be taken to correspond to the cases where the
total PR at one of the two IWP is nontrivial. On the other hand, H1(p1m,Z2) = Z2

2, so all nontrivial cocycles
in H1(p1m,Z2) must correspond to some nontrivial LSM constraint. These cocycles can be generated by two
roots represented by λ1(T xMm) = x + m and λ2(T xMm) = x, with x ∈ Z and m ∈ {0, 1}. So the cocycles
corresponding to the LSM constraints can also be generated by

Ω1(g1, g2, g3) = eiπ(x1+m1)η(a2,a3)

Ω2(g1, g2, g3) = eiπx1η(a2,a3)
(G3)

where gi ∈ Gs ×Gint is written as gi = T xiMmi ⊗ ai, with ai ∈ Gint.
Now our task is just to identify Ω1 and Ω2 with the distributions of DOF that trigger the LSM constraint. To

this end, first note that if M is broken while T is preserved, both Ω1 and Ω2 reduces to Eq. (G2), which implies
that both of them correspond to a distribution of DOF with a net nontrivial PR inside each translation unit
cell. So one of them must correspond to the case where the mirror center of M hosts a nontrivial PR, while the
other corresponds to the case where the mirror center of TM hosts a nontrivial PR. Suppose the mirror center of
TM hosts a nontrivial PR, then after breaking the translation symmetry while keeping M unbroken, the system
should have no LSM constraint. Only Ω2 satisfies this condition, so this distribution of DOF is identified with
Ω2, and Ω1 corresponds to the case where the mirror center of M hosts a nontrivial PR.

H. More details of the Stiefel liquids

In this appendix, we discuss more details of Stiefel liquids, some of which do not appear in Ref. [15].
First we present some suggestive argument, but not rigorous proof, supporting that SL(N>6) are non-Lagrangian,

i.e., they cannot be described by any weakly-coupled renormalizable Lagrangian in the UV. The key observation
is that it appears unlikely for such Lagrangians to realize the SO(N), SO(N − 4) and reflection symmetries of
SL(N). To see it, let us start with even N . Usually in such a Lagrangian, symmetries like SO(N) and SO(N − 4)
are flavor symmetries, and there is a reflection symmetry that commutes with flavor symmetries. However, due
to the locking between spacetime orientation reversals and improper rotations of O(N) and O(N − 4), SL(N)
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has no such a reflection symmetry. This suggests that SO(N) and SO(N − 4) cannot be simultaneously flavor
symmetries. In the special case of N = 6, which does have a renormalizable Lagrangian description, indeed
only SO(6) but not SO(2) can be identified as a flavor symmetry. In this example, the SO(2) is realized as the
flux conservation symmetry in the gauge theoretic formulation. For N > 6, there is no known generalization of
the flux conservation symmetry that can give rise to symmetries like SO(N − 4). This indicates SL(N>6) with
an even N may be non-Lagrangian. Due to the cascade structure of SLs [15], it also suggests all SL(N>6) are
non-Lagrangian.

We emphasize that the above is just a suggestive argument, but not a rigorous proof. There can be ways to
get around the above obstruction, by, e.g., implementing some symmetries via dualities, considering Lagrangians
in very complicated forms, showing that Lagrangians with smaller symmetries can have emergent symmetries
of the SLs, etc. After finding a Lagrangian that can realize the symmetries of a SL, one still needs to make
sure that its anomaly and low-energy dynamics match with the SL, which appears also challenging. If all these
nontrivial challenges can be overcome and a renormalizable Lagrangian can be found to describe the SL at the
end, we believe this process can generate new insights and teach us some valuable general lessons of quantum
field theories.

Next we discuss the anomalies of SLs, which should be captured by ΩIR, an element in H4(GIR, U(1)ρ), where

GIR = (O(N)T × O(N − 4)T )/Z2. Consider the projection: pSL : G̃IR ≡ O(N)T × O(N − 4)T → GIR, which

induces a pullback p∗SL : H4(GIR, U(1)ρ) → H4(G̃IR, U(1)ρ). The pullback of ΩIR, Ω̃IR ≡ p∗SLΩIR, is given by

Eq. (21), in a form Ω̃IR = eiπL̃IR , with L̃IR ∈ H4(G̃IR,Z2) [15]. For even N , the structure of ΩIR is still not

completely understood, but it is known that Ω̃IR misses some important information. In particular, the form of
Ω̃IR suggests that two copies of SL(N) would be anomaly-free. However, only four copies of SL(N) is anomaly-free,
while two copies is still anomalous [15].

For odd N , because O(N)T = SO(N)×ZT2 , H4(GIR, U(1)ρ) has the structure of Zk2 with some k ∈ N, and there

exists LIR ∈ H4(GIR,Z2) such that ΩIR = eiπLIR . Now notice that the pullback from H4(GIR,Z2) to H4(G̃IR,Z2)

induced by pSL is injective, and hence we can uniquely identify LIR from L̃IR. The result is

LIR = w
SO(N)
4 + w

SO(N−4)
4 +

(
w
SO(N)
2 + w

SO(N−4)
2

)
w
SO(N−4)
2 +


w2

1w
SO(N)
2 , N = 1 ( mod 8)

w2
1w

SO(N−4)
2 , N = 3 ( mod 8)

w2
1(w

SO(N)
2 + w2

1), N = 5 ( mod 8)

w2
1(w

SO(N−4)
2 + w2

1), N = 7 ( mod 8)

(H1)

where w
SO(N)
i and w

SO(N−4)
i are the i-th Stiefel-Whitney class of the SO(N) and SO(N − 4) gauge bundles.

Considering enlarging SO(N) and SO(N − 4) to O(N) and O(N − 4), w1 is sum of the first Stiefel-Whitney
classes of the O(N) and O(N − 4) gauge bundles. Due to the locking between spacetime orientation reversals
and improper rotations of O(N) and O(N − 4), w1 can also be viewed as the first Stiefel-Whitney class of the
tangent bundle of the spacetime manifold.

Finally, we discuss the effects of relevant operators on the DQCP (SL(5)), DSL (SL(6)) and SL(7). Because
the low-energy dynamics of these states are not fully settled down, this discussion is also conjectural, and it is
important to study these issues in a more rigorous manner in the future. However, given our understanding of
these states, we believe the expectations below are reasonable.

For all SLs, the (VL, VR) operator (or the SO(5) vector for DQCP) should change the emergent order of the
state. Due to the cascade structure among SLs [15], it is natural that this operator will just drive SL(N) to
SL(N−1) (for DQCP, it simply gaps out the state). The time-reversal breaking operator that is a flavor singlet is
likely to drive the state into a semion topological order, and this expectation is supported by the gauge-theoretic
formulations of DQCP and DSL, as well as the fact that the semion topological order can match the anomaly of
SL(N) if time reversal is broken (for all N > 5) [15]. The (AL, AR) operator (for all N > 6) is expected to convert
SL(N) into certain spontaneous-symmetry-breaking state, as supported from the gauge-theoretic formulation of
DSL [18, 57, 58]. For DQCP, the traceless symmetric rank-2 tensor of SO(5) drives the state into a spontaneous-
symmetry-breaking state, and this operator is the tuning operator of the Neel-VBS transition in the standard
realization of DQCP [16, 17]. All these operators change the emergent order of the states.

The remaining relevant operators to be discussed are the conserved current operators, whose effects on various
states are complicated. It turns out that some of them can change the emergent order of the states, while others
only shift the “zero momenta”.

The simplest way to discuss it is perhaps to start from DSL, which has a relatively simple gauge-theoretic
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formulation in terms of Nf = 4 QED3:

L =

4∑
i=1

ψ̄ii /Daψi −
1

4e2
fµνf

µν (H2)

There are conserved currents due to the SO(6) and SO(2) symmetries, where a natural basis of the SO(6) currents
is ψ̄γµT

su(4)ψ, with γµ the Dirac matrices and T (su(4)) the generators of su(4) in its fundamental representation,
and the SO(2) currents are εµνλ∂

νaλ/(2π), with a the emergent U(1) gauge field. If the time component of the
SO(6) currents is added as a pertubation to the DSL, the Dirac fermions will be doped and acquire a finite Fermi
surface, so the emergent order of the state changes. If the time component of the SO(2) currents is added, the
Dirac fermions will experience magnetic fields, Landau levels will form, and the emergent order of the state also
changes. Below we discuss the effect of the spatial components of the currents.

For the SO(6) spatial currents, depending on the choice of T (su(4)) and γµ, various effects can be triggered. For
example, the current ψ̄γxσ30ψ merely shifts the positions of the Dirac cones in the momentum space in a flavor-
dependent way, which does not really change the emergent order of DSL (here σij ≡ σi ⊗ σj , where σi=0,1,2,3 are
the identity and standard Pauli matrices). The same is true for ψ̄(γxσ30 +γyσ03)ψ. However, as another example,
ψ̄(γxσ23+γyσ33)ψ actually converts the 4 Dirac cones into 2 pairs of quadratic band touching (and another 2 pairs
of gapped bands), which does change the emergent order of the state. By examining the effect of different spatial
currents, one can see more complicated patterns. Although a systematic description of the effects of these spatial
currents is lacking, it can be analyzed in a case-by-case manner. These spatial currents can all be converted into
the language of SL(6), in terms of the 6 × 2 matrix n. For example, using Appendix E of Ref. [15], we see that
ψ̄γxσ30ψ ∼ n3i∂xn4i, ψ̄(γxσ30 + γyσ03)ψ ∼ n3i∂xn4i + n1i∂yn2i, and ψ̄(γxσ23 + γyσ33)ψ ∼ n4i∂xn6i + n5i∂yn6i.

Next we turn to the SO(2) spatial current, which in the language of SL(6) is ni1∂x,yni2, and in the gauge theory
is the electric field of the emergent U(1) gauge field. It is not obvious what this perturbation does to the DSL.
However, we argue that its effect is also to shift the zero momenta. To see it, we consider Nf = 2 QED3, with
Lagrangian

L =

2∑
i=1

ψ̄ii /Daψi −
1

4e2
fµνf

µν (H3)

This theory is argued to describe the easy-plane DQCP, which has an emergent O(4) unitary symmetry (not to
be confused with the DQCP we have been discussing, which has an emergent SO(5) unitary symmetry) [19]. In
this theory, ψ̄γx,yσ3ψ clearly only shifts the zero momenta without changing the emergent order of the state. On
the other hand, the improper Z2 rotation of the O(4) symmetry maps this operator into the electric fields of the
emergent U(1) gauge fields [19], which means that the electric fields also play the role of shifting the zero momenta
without changing the emergent order. So we propose that in DSL (i.e., SL(6)), the SO(2) spatial currents also
only shift the zero momenta, but maintain the emergent order.

Now we turn to DQCP (SL(5)), which has a couple of gauge-theoretic formulations [19]. From any of these
formulations, one can see that the time component of the SO(5) currents changes the emergent order of the state.
The formulation that has a manifest O(5)T symmetry is an SU(2) gauge theory with 2 flavors of Dirac fermions,
where the SO(5) symmetry is the flavor symmetry of these Dirac fermions. Under similar consideration of the
SO(6) spatial currents in DSL, we see that the effects of the SO(5) spatial currents in DQCP are also complicated
and need to be analysed in a case-by-case manner: some of them changes the emergent order of the states, while
others only shift the zero momenta without changing the emergent order.

We remark that the effects of the spatial currents actually impose very strong constraints on the possible results
of our anomaly-based framework of emergibility. Within this framework, it is easy to see that all realizations of
DQCP and DSL on p6m × O(3)T and p4m × O(3)T symmetric lattice spin systems must have all entries of n
locating at some high-symmetry momenta in the Brillouin zone, because all possile symmetry embedding patterns
satisfy this condition. This means that in all realizations, it is impossible to have a spatial current operator that
is allowed by the microscopic symmetries and can shift the zero momenta. As we have explicitly checked, this
is indeed true for all realizations obtained in our anomaly-based framework, which can be viewed as a highly
nontrivial sanity check of this framework – It nicely corroborates the validity of the hypothesis of emergibility,
the proposal that DSL can indeed be described by SL(6), and the dynamics of DSL.

Finally, we turn to SL(7), whose low-energy dynamics is poorly understood so far. It is still likely that the time
component of the SO(7) and SO(3) currents will change the emergent order. For the spatial currents, we propose
the following rule. Writing an SO(7) spatial current operator as a sum of terms of the form ni1j∂x,yni2j , then we
consider the effect of the same operator in DSL (it turns out that all such operators allowed by our microscopic
symmetries only involve at most 4 rows of n, so its corresponding operator in DSL can always be found). If this
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operator changes the emergent order of DSL, then it also changes the emergent order of SL(7), and if it only shifts
the zero momenta of DSL, it also only shifts the zero momenta of SL(7). For the SO(3) spatial currents, it can
be expanded as a sum as ∼ a1ni1∂xni2 + a2ni1∂xni3 + a3ni2∂xni3 + b1ni1∂yni2 + b2ni1∂yni3 + b3ni2∂yni3. We
propose to first convert it into an SO(7) spatial current ∼ a1n1i∂xn2i + a2n1i∂xn3i + a3n2i∂xn3i + b1n1i∂yn2i +
b2n1i∂yn3i + b3n2i∂yn3i. If this SO(7) spatial current changes the emergent order (only shifts zero momenta)
using the the above criterion, then the original SO(3) spatial current also changes the emergent order (only shifts
zero momenta).

The above proposal is of course conjectural, and more rigorous work is needed to fully settle it down. However,
this proposal is supported by our results of anomaly-matching. We have checked all realizations of SL(7) obtained
from the anomaly-based framework of emergibility, and found that the current operators that can shift zero
momenta (according to the above proposal) are allowed by microscopic symmetries in a realization if and only if
this realization belongs to a family where the momenta of some entries of n can change continuously.

I. More examples of the calculation of pullback

In this appendix, we give three more examples of the analysis of anomaly matching, for SU(2)1, DSL and
SL(7). In Appendix I 4, we also provide relevant formula for the calculation of pullback involving 5-dimensional
representation of SO(3).

1. SU(2)1 and emergent anomaly

First let us consider a representative (1 + 1)-d quantum critical state, i.e., the (1 + 1)-d SU(2)1 conformal
field theory, which describes the spin-1/2 antiferromagnetic Heisenberg chain at low energies [110–112]. The IR

symmetry of the theory is SU(2)×SU(2)
Z2

o ZT2 ∼= O(4).

Ref. [104] works out the anomaly term of SU(2)1 after gauging the SO(4) part of GIR = O(4), which corre-
sponds to the interger Euler class of SO(4), e ∈ H4(SO(4),Z). The bulk topological partition function capturing
this anomaly is the Chern-Simons theory at level (+1,−1) for the two su(2) factors of so(4) ∼= su(2) × su(2),
which can be written in terms of two su(2) gauge fields A(1), A(2) as follows

S =
i

4π

∫
tr

(
A1 ∧ dA(1) +

2

3
A(1) ∧A(1) ∧A(1)

)
− tr

(
A(2) ∧ dA(2) +

2

3
A(2) ∧A(2) ∧A(2)

)
. (I1)

It is straightforward to inspect that after gauging the ZT2 part of GIR, the anomaly term should correspond to the
twisted Euler class of O(4), and we denote it by ẽ ∈ H4(O(4),Zρ). Note that this anomaly does not correspond to
any element in H3(GIR, U(1)ρ), i.e., the group cohomology (not the Borel cohomology in Ref. [39]) of GIR acting
nontrivially on the U(1) coeffficient – this is the only example in this paper where the Bockstein homomorphism
in Eq. (A18) is not an isomorphism. Hence we need some special care to write down the TPF of the bulk SPT
theory. 16

Consider the following homomorphism ϕ from GUV = p1m×O(3) to GIR = O(4),

T →
(
−I3

−1

)
, M →

(
I3
−1

)
, O(3)→

(
O(3)T

1

)
(I5)

16 In this footnote we briefly review how to write down the TPF
worked out in Ref. [38]. Suppose a (2+1)-d IR theory has
gauge symmmetryG and is defined on the manifoldM3, which
serves as the base space of some principal bundle of G. Given
an element ω ∈ H4(G,Z), it is possible to define a 3d topo-
logical gauge theory of G as follows

S =
1

n

(∫
B4

Ω− 〈γ∗ω, [B4]〉
)

mod 1, (I2)

where Ω is the de Rham representative of the image of ω in
H4(BG,R), [B4] ∈ H4(B4,Z) is the fundamental class of the
manifold B4 that bounds n copies of the manifold M3 with
some extension of the principle bundle of G, and γ is the clas-
sifying map of the extension. When ω is a torsion element,
Ω = 0, and we retrieve the more familiar form of TPF

S = 〈γ∗(β−1(ω)), [M3]〉, (I3)

where β is the Bockstein homomorphism associated to the
short exact sequence 1 → Z → R → U(1) → 1. In particular,
when G = SO(4) and a corresponds to the Euler class e, Ω
can be explicitly written as follows,

Ω =
1

8π2

(
tr
(
F (1) ∧ F (1)

)
− tr

(
F (2) ∧ F (2)

))
. (I4)

In the presence of anti-unitary symmetries, the manifold M3

is assumed to be non-orientable. Then we have to choose B4
to be non-orientable as well, and demand [B4] ∈ H4(B4,Zw)
to be the fundamental class of the non-orientable manifold B4
twisted by the orientation character w [100].



54

The LSM anomaly of a 1D chain has been worked out in Appendix G, i.e.,

ΩUV ≡ exp(iπLUV) = exp
(
iπ(x+m)w

O(3)T

2

)
. (I6)

We aim to prove that under the homomorphism ϕ, the pullback of the IR theory is the UV theory. Specifically,
we need to prove that 17

β(ΩUV) = ϕ∗(ẽ), (I7)

where β is the Bockstein homomorphism associated to the short exact sequence 1→ Z→ R→ U(1)→ 1.
From the commutativity of the square in the diagram below

H4(GIR,Zρ) H4(GIR,Z2)

H3(GUV,Z2) H3(GUV, U(1)ρ) H4(GUV,Zρ) H4(GUV,Z2)

ϕ∗

p̃

ϕ∗

ĩ β p̃

(I8)

we just need to prove that

SQ1(LUV) = ϕ∗(p̃(ẽ)). (I9)

In particular, on the left hand side we have

SQ1(LUV) = (x+m)w
O(3)T

3 (I10)

according to Appendix A 4, where w
O(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 and t ∈ H1(ZT2 ,Z2) corresponds to the gauge

field of time-reversal symmetry when pulled back to the spacetime manifoldM3. On the right hand side we have

p̃(ẽ) = w
O(4)
4 , and

ϕ∗
(
w
O(4)
4

)
= (x+m)

(
w
SO(3)
3 + (t+ x)w

SO(3)
2 + (t+ x)3

)
(I11)

Finally, using the cohomology relation x2 = xm, we see that both sides are equal to each other. Hence we
establish that the pullback of the anomaly of IR CFT SU(2)1 under the homomorphism ϕ as in Eq. (I5) is the
LSM anomaly of (1+1)-d spin chain.

Below we discuss the phenomenon of emergent anomalies. Following Ref. [8], by imposing an extra constraint

T 2 = 1, we can factorize ϕ acting on p1m into two pieces, i.e., a projection p on Z2 × Z2 generated by T̃ or M ,
where T̃ acts trivially on U(1) or Z while M acts nontrivially on U(1) or Z, composed with an embedding ϕ̃ of
the Z2 × Z2 into O(4).

ϕ = ϕ̃ ◦ p : p1m = Z o Z2 Z2 × Z2 O(4)
p ϕ̃

(I12)

With slight abuse of notation, we denote the gauge field of T̃ as x as well. Then we have

ϕ̃∗
(
w
O(4)
4

)
= (x+m)

(
w
SO(3)
3 + (t+ x)w

SO(3)
2 + (t+ x)3

)
= SQ1

(
(x+m)w

O(3)T

2 + (x+m)x2
)

(I13)

in H4(Z2×Z2×O(3)T ,Z2). According to the terminology in Ref. [8], the first term (x+m)w
O(3)T

2 as in Eq. (I6)
is the intrinsic anomaly, while the second term (x + m)x2 is identified as the emergent anomaly. The emergent
anomaly should be absent when pulled back to p1m, which is guaranteed by the relation (x + m)x = 0 present
in p1m. As a sanity check, in the absence of mirror symmetry, i.e., in the line group p1, the intrinsic anomaly

becomes xw
O(3)T

2 and the emergent anomaly becomes x3, consistent with the example in Ref. [8].
We envision that similar emergent anomaly will be present in IR theories emerging from a 2d lattice system

with wallpaper group Gs, because a lot of cohomology relations of Gs will be absent when projected to a finite

17 There are two terms in Eq. (I2). The first term will become
0 when pulled back to GUV, which can be explicitly checked
by considering the diagonal embedding of the Lie-algebra of

so(3) ∼= su(2) into so(4) ∼= su(2) × su(2). Then we just need
to consider the pullback of the second term.
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group by imposing Tn1 = Tn2 = 1 for some integer n. More precisely, write Gs = (Z× Z) o Os, if we can find an
integer n such that ϕ : Gs → GIR factorizes as the composition of projection and another embedding

ϕ = ϕ̃ ◦ p : Gs = (Z× Z) oOs G̃s ≡ (Zn × Zn) oOs GIR,
p ϕ̃

(I14)

then ϕ̃∗(ΩIR) ∈ H4(G̃s ×Gint, U(1)ρ) will generically not be in the form of exp(iπλη) with λ ∈ H2(G̃s,Z2) and
η ∈ H2(Gint,Z2), but contains a nonzero piece that nevertheless vanishes when pulled back to Gs, using certain

cohomology relations of Gs that is not present in G̃s. Specifically, when n = 2, of the 3 important relations
displayed in Appendix E, the first two relations, i.e., x2 = 0 in p1 and x2 = xm in p1m, will be absent when
projected to G̃s, while the third relation, i.e., Ax+yAm = 0 in cm, will still be present when projected to G̃s.

For example, when the IR effective theory is the DQCP emergent from a square lattice spin-1/2 system with

wallpaper group p4m, we can choose n = 2 and G̃s = (Z2 × Z2) oD4. The Z2 cohomology ring of G̃s is

Z2[Ax+y, Am, Ac, Bxy, Bc2 ,Bc(x+y)]/
(
Ax+yAc = 0, (Am +Ac)Ac = 0, Bc(x+y)Ac = 0,

Bc(x+y)

(
Bc(x+y) +Ax+y(Am +Ac)

)
= (A2

m +A2
c)Bxy +A2

x+yBc2
)
,

(I15)

with the pullback of Bc(x+y) equal to Ax+y(Ax+y + Am) in H∗(p4m,Z2), and the pullback of
Ax+y, Am, Ac, Bxy, Bc2 their namesake. Then from the fact that the IR anomaly of DQCP corresponds to

w
O(5)
5 ∈ H5(O(5),Z2), we have

ϕ̃∗
(
w
O(5)
5

)
=
(
Bxy +Bc(x+y) +Bc2

) (
w
SO(3)
3 + (t+Ax+y)w

SO(3)
2 + (t+Ax+y)3

)
= SQ1

((
Bxy +Bc(x+y) +Bc2

)
w
O(3)T

2 +
(
Bxy +Bc(x+y) +Bc2

)
A2
x+y

)
.

(I16)

The first term
(
Bxy +Bc(x+y) +Bc2

)
w
O(3)T

2 is again the intrinsic anomaly, while the second term(
Bxy +Bc(x+y) +Bc2

)
A2
x+y is the emergent anomaly that vanishes when pulled back to Gs = p4m. This is

a slight generalization of the result in Ref. [8] to the whole group p4m.

2. DSL

Next consider DSL [15, 57, 113], whose IR symmetry GIR is O(6)×O(2)
Z2

, where an improper rotation of either

O(6) or O(2) complex conjugates the U(1) coefficient of H4(GIR, U(1)ρ). The precise form of the anomaly
term for GIR is unknown, yet it is possible to write down its pullback to O(6) × O(2) under the projection

p : O(6)×O(2)→ O(6)×O(2)
Z2

[15]

Ω̃IR ≡ exp(iπL̃IR)

= exp
[
iπ
(
w
O(6)
4 + w

O(6)
2

(
w
O(2)
2 + (w

O(2)
1 )2

)
+
(

(w
O(2)
2 )2 + w

O(2)
2 (w

O(2)
1 )2 + (w

O(2)
1 )4

))] (I17)
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where L̃IR ∈ H4(O(6) × O(2),Z2). On a triangular lattice, we consider the following example embedding ϕ of
GUV = p6m×O(3)T into GIR,

T1 : n→

 I3
1
−1
−1

n

(
− 1

2 −
√

3
2√

3
2 − 1

2

)

T2 : n→

 I3
−1
−1
−1

n

(
− 1

2 −
√

3
2√

3
2 − 1

2

)

C6 : n→

 I3
1

1
−1

n

(
1
−1

)

M : n→

 I3
−1

−1
1

n

O(3)T : n→
(
O(3)T

I3

)
n

(I18)

Note that ϕ factorizes into an embedding ϕ̃ into O(6) × O(2) composed with the projection p, i.e., ϕ = p ◦ ϕ̃.
In fact, for GUV = Gs × O(3)T with any Gs, if ϕ satisfies the condition that some but not all entries of n are
left invariant under SO(3), then ϕ can always factorize into p ◦ ϕ̃, where ϕ̃ is a homomorphism from GUV to
O(6) × O(2). Therefore, we can think of the IR symmetry as O(6) × O(2) for simplicity in the calculation of
pullback. Moreover, we can always choose ϕ̃ such that Gs acts as identity and ZT2 acts as minus identity in the
block where SO(3) acts.

The LSM anomaly of a triangular lattice spin-1/2 system has been obtained in Appendix E, and we repeat it
here

ΩUV ≡ exp(iπLUV) = exp
(
iπ (Bxy +Ac(Ac +Am))w

O(3)T

2

)
, (I19)

where LUV ∈ H4(GUV,Z2). We wish to prove that ΩUV = ϕ∗ΩIR, which amounts to proving ΩUV = ϕ̃∗Ω̃IR.
Again, from the commuting diagram Eq. (24) (with GIR changed to O(6) × O(2) and ϕ changed to ϕ̃), we just
need to prove that

SQ1(LUV) = ϕ̃∗
(
SQ1(L̃IR)

)
. (I20)

According to Lemma A.1, we have

SQ1(L̃IR) =w
O(6)
5 + w

O(6)
4 w

O(2)
1 + w

O(6)
3

(
w
O(2)
2 + (w

O(2)
1 )2

)
+ w

O(6)
2 (w

O(2)
1 )3

+ w
O(6)
1

(
(w

O(2)
2 )2 + w

O(2)
2 (w

O(2)
1 )2 + (w

O(2)
1 )4

)
+
(

(w
O(2)
2 )2w

O(2)
1 + (w

O(2)
1 )5

)
.

(I21)

On the other hand,

SQ1(LUV) = ((Bxy +Ac(Ac +Am))w
O(3)T

3 , (I22)

where w
O(3)T

3 = w
SO(3)
3 +tw

SO(3)
2 +t3 and t ∈ H1(ZT2 ,Z2) corresponds to the gauge field of time-reversal symmetry

when pulled back to the spacetime manifold M4.

What remains is the calculation of the pullback ϕ̃∗
(
SQ1(L̃IR)

)
, which is a straightforward application of the

Whitney product formula. In particular, considering the O(2) block, the pullback gives

ϕ̃∗
(
w
O(2)
1

)
= Ac

ϕ̃∗
(
w
O(2)
2

)
= 0

(I23)
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On the other hand, O(6) factorizes into two 3× 3 blocks, and for the lower 3× 3 block we have

ϕ̃∗
(
w
O(3)
1

)
= Ac +Am

ϕ̃∗
(
w
O(3)
2

)
= Bxy +A2

c

ϕ̃∗
(
w
O(3)
3

)
= AcBxy +A2

c(Ac +Am)

(I24)

Assembling the Stiefel-Whitney class of the lower O(3) and upper O(3)T into the Stiefel-Whitney class of O(6),
we have

ϕ̃∗
(
w
O(6)
5

)
= w

O(3)T

3 (Bxy +A2
c) + w

O(3)T

2 (AcBxy +A2
c(Ac +Am))

ϕ̃∗
(
w
O(6)
4

)
= w

O(3)T

3 (Ac +Am) + w
O(3)T

2 (Bxy +A2
c) + t(AcBxy +A2

c(Ac +Am))

ϕ̃∗
(
w
O(6)
3

)
= w

O(3)T

3 + w
O(3)T

2 (Ac +Am) + t(Bxy +A2
c) + (AcBxy +A2

c(Ac +Am))

ϕ̃∗
(
w
O(6)
2

)
= w

O(3)T

2 + t(Ac +Am) + (AcBxy +A2
c(Ac +Am))

ϕ̃∗
(
w
O(6)
1

)
= t+ (Ac +Am)

(I25)

Combining Eqs. (I21), (I22), (I23) and (I25), indeed we get Eq. (I20). Hence we establish that ΩUV = ϕ∗ΩIR.

3. SL(7)

The next examples we want to consider are two realizations of N = 7 Stiefel liquid, i.e. SL(7), proposed in

Ref. [15] (see Sec. VII D therein). The IR symmetry GIR of the theory is O(7)×O(3)
Z2

, and the precise form of the

anomaly is given in Eq. (H1) for N = 7. However, following the example in Appendix I 2, for the sake of the
analysis of anomaly-matching, we can again think of the IR symmetry as O(7)×O(3) and consider the pullback

of the anomaly under the projection p : O(7)×O(3)→ O(7)×O(3)
Z2

,

Ω̃IR ≡ exp(iπL̃IR)

= exp
(
iπ
(
w
O(7)
4 + w

O(7)
2

(
w
O(3)
2 + (w

O(3)
1 )2

)
+
(

(w
O(3)
2 )2 + w

O(3)
2 (w

O(3)
1 )2 + (w

O(3)
1 )4

))) (I26)

where L̃IR ∈ H4(O(7)×O(3),Z2). We will omit the tilde symbol in the following calculation.
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On a triangular lattice, we consider the following embedding ϕ of GUV = p6m×O(3)T into O(7)×O(3),

T1 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2

− 1
2

√
3

2

−
√

3
2 − 1

2

n

 1
−1
−1



T2 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2

− 1
2

√
3

2

−
√

3
2 − 1

2

n

 −1
1
−1



C6 : n→


I3

1
−1

1
−1

n

 1
1

1



M : n→


I3
−1
−1

1
1

n

 1
1

1



O(3)T : n→
(
O(3)T

I4

)
n

(I27)

Again, the LSM anomaly of a triangular lattice spin-1/2 system is

ΩUV ≡ exp(iπLUV) = exp
(
iπ (Bxy +Ac(Ac +Am))w

O(3)T

2

)
, (I28)

where LUV ∈ H4(GUV,Z2). We wish to prove that ΩUV = ϕ∗ΩIR. From the commuting diagram Eq. (24), we
just need to prove that

SQ1(LUV) = ϕ∗
(
SQ1(LIR)

)
. (I29)

According to Lemma A.1, we have

SQ1(LIR) =w
O(7)
5 + w

O(7)
4 w

O(3)
1 + w

O(7)
3

(
w
O(3)
2 + (w

O(3)
1 )2

)
+ w

O(7)
2

(
w
O(3)
3 + (w

O(3)
1 )3

)
+ w

O(7)
1

(
(w

O(3)
2 )2 + w

O(3)
2 (w

O(3)
1 )2 + (w

O(3)
1 )4

)
+
(
w
O(3)
3 (w

O(3)
1 )2 + (w

O(3)
2 )2w

O(3)
1 + (w

O(3)
1 )5

)
.

(I30)

Also,

SQ1(LUV) = ((Bxy +Ac(Ac +Am))w
O(3)T

3 , (I31)

where w
O(3)T

3 = w
SO(3)
3 +tw

SO(3)
2 +t3 and t ∈ H1(ZT2 ,Z2) corresponds to the gauge field of time-reversal symmetry

when pulled back to the spacetime manifold M4.

What remains is the calculation of the pullback ϕ∗
(
SQ1(LIR)

)
, which is a straightforward application of the

Whitney product formula. In particular, O(7) factorizes into one 3 × 3 block and two 2 × 2 block, and for the
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O(3) part and the O(7) part seperately, the pullback gives

ϕ∗
(
w
O(3)
1

)
= Am,

ϕ∗
(
w
O(3)
2

)
= Bxy,

ϕ∗
(
w
O(3)
3

)
= 0,

ϕ∗
(
w
O(7)
1

)
= t,

ϕ∗
(
w
O(7)
2

)
= w

SO(3)
2 + t2 +A2

c +A2
m +AmAc,

ϕ∗
(
w
O(7)
3

)
=
(
w
SO(3)
3 + tw

SO(3)
2 + t3

)
+ t(A2

c +A2
m +AmAc) +AcAm(Ac +Am),

ϕ∗
(
w
O(7)
4

)
= (w

SO(3)
2 + t2)(A2

c +A2
m +AmAc) + tAcAm(Ac +Am),

ϕ∗
(
w
O(7)
5

)
=
(
w
SO(3)
3 + tw

SO(3)
2 + t3

)
(A2

c +A2
m +AmAc) + (w

SO(3)
2 + t2)AcAm(Ac +Am),

(I32)

Substituting them back into Eq. (I30), and using the cohomology relation B2
xy = Bc2Bxy, indeed we get Eq.

(I31) as promised. Hence we establish that ΩUV = ϕ∗ΩIR.

On a Kagome lattice spin-1/2 system, we consider the following embedding ϕ of GUV = p6m × O(3)T into
O(7)×O(3),

T1 : n→ n

 1
−1
−1


T2 : n→ n

 −1
1
−1



C6 : n→


I3
−1

1
−1
−1

n

 −1
1

1



M : n→


I3
−1
−1

1
1

n

 −1
−1

1



O(3)T : n→
(
O(3)T

I4

)
n

(I33)

The LSM anomaly of a Kagome lattice spin-1/2 system is

ΩUV ≡ exp(iπLUV) = exp
(
iπBxyw

O(3)T

2

)
. (I34)

Again, we wish to prove that ΩUV = ϕ∗ΩIR by proving SQ1(LUV) = ϕ∗
(
SQ1(LIR)

)
. SQ1(LIR) is given in Eq.

(I30), while for SQ1(LUV) we have

SQ1(LUV) = Bxyw
O(3)T

3 . (I35)
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It is now straightforward to calculate the pullback of various Stiefel-Whitney classes in Eq. (I30),

ϕ∗
(
w
O(3)
1

)
= Am +Ac

ϕ∗
(
w
O(3)
2

)
= Bxy +A2

c

ϕ∗
(
w
O(3)
3

)
= A3

c +A2
cAm +AcBxy

ϕ∗
(
w
O(7)
1

)
= t+Ac,

ϕ∗
(
w
O(7)
2

)
= w

SO(3)
2 + t2 + tAc +A2

c +AcAm +A2
m,

ϕ∗
(
w
O(7)
3

)
=
(
w
SO(3)
3 + tw

SO(3)
2 + t3

)
+
(
w
SO(3)
2 + t2

)
Ac + t

(
A2
c +AcAm +A2

m

)
+A3

c ,

ϕ∗
(
w
O(7)
4

)
=
(
w
SO(3)
3 + tw

SO(3)
2 + t3

)
Ac +

(
w
SO(3)
2 + t2

) (
A2
c +AcAm +A2

m

)
+ tA3

c +A2
cAm(Ac +Am),

ϕ∗
(
w
O(7)
5

)
=
(
w
SO(3)
3 + tw

SO(3)
2 + t3

) (
A2
c +AcAm +A2

m

)
+
(
w
SO(3)
2 + t2

)
A3
c + tA2

cAm(Ac +Am).

(I36)

Substituting them into (I30) and using the cohomology relation B2
xy = Bc2Bxy, indeed we get Eq. (I35), and

thus establish that SQ1(LUV) = ϕ∗
(
SQ1(LIR)

)
.

4. Five dimensional representation of SO(3)

In all previous examples presented in this appendix, the SO(3) spin rotation symmetry is embedded into
the IR symmetry GIR as a 3 dimensional representation. It is natural to consider embedding involving other
representations of SO(3), whose physical relevance is illustrated in Section V. In this sub-appendix, we present
formula relevant to mapping SO(3) into GIR as a 5 dimensional representation of SO(3).

First consider the 5 dimensional representation ϕ5 : SO(3)→ O(5) of SO(3) alone, which can be thought of as
a symmetric traceless tensor V5, whose 5 basis are

1√
2

(n1 ⊗ n2 + n2 ⊗ n1) ,
1√
2

(n2 ⊗ n3 + n3 ⊗ n2) ,
1√
2

(n3 ⊗ n1 + n1 ⊗ n3) ,

1√
2

(n2 ⊗ n2 − n3 ⊗ n3) ,
1√
6

(2n1 ⊗ n1 − n2 ⊗ n2 − n3 ⊗ n3) ,

(I37)

where n1,2,3 form an SO(3) vector. Consider the Z2
2 subgroup of SO(3), generated by π-rotations around the x-

and y-axes, respectively. Using the above 5 basis, these two π-rotations are mapped into diag(−1, 1,−1, 1, 1) and
diag(−1,−1, 1, 1, 1), respectively, from which (or from the splitting principle [102]) we see that

ϕ∗5

(
w
O(5)
2

)
= w

SO(3)
2 , ϕ∗5

(
w
O(5)
3

)
= w

SO(3)
3 , ϕ∗5

(
w
O(5)
1

)
= 0, ϕ∗5

(
w
O(5)
4

)
= 0, ϕ∗5

(
w
O(5)
5

)
= 0 (I38)

Now go back to GUV = SO(3)× G̃ and consider a 5 dimensional representation ϕ5 : GUV → O(5) that can be
written as V5⊗V1, where V5 denotes the 5 dimensional representation of SO(3) while V1 denotes a 1 dimensional

real representation of G̃ correponding to x ∈ H1(G̃,Z2). Again from inspecting the action of the diagonal Z2
2

subgroup, we have

ϕ∗5

(
w
O(5)
1

)
= x,

ϕ∗5

(
w
O(5)
2

)
= w

SO(3)
2 ,

ϕ∗5

(
w
O(5)
3

)
= w

SO(3)
3 + xw

SO(3)
2 ,

ϕ∗5

(
w
O(5)
4

)
= x2w

SO(3)
2 + x4,

ϕ∗5

(
w
O(5)
5

)
= x2w

SO(3)
3 + x3w

SO(3)
2 + x5.

(I39)
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J. Strategy of exhaustive search of SEP and results

In this appendix, we briefly review our strategy of the exhaustive search of SEP. We also illustrate how to
check all the SEPs from the csv data files we provide in the Data and Codes folder and the mathematica file
embedding.m, which transforms the data in csv files into matrices representing generators C6/C4, M , T1, T2 and
T . Some interesting realizations have been shown in Sections IV and V.

In order to enumerate all SEPs that match LSM constraints with IR anomaly, we just need to enumerate all
embeddings from GUV to GIR and, following Section III and Appendix I, calculate the pullback ϕ∗(ΩIR) to see if it
is identical to ΩUV corresponding to a particular LSM constraint. Motivated by quantum magnetism, we assume
that the IR theory will emerge as a consequence of the competition between a magnetic state and a non-magnetic
state. Therefore, we only consider embeddings such that, in terms of the N × (N − 4) matrix n for SL(N), some
but not all entries of n transform under the SO(3) symmetry.

For DQCP, since the IR symmetry is O(5), all embeddings are just composed of representations of GUV. For

DSL and SL(7), even though the IR symmetry is O(6)×O(2)
Z2

and O(7)×O(3)
Z2

, respectively, because of the constraints

on the embeddings, it suffices to only consider embeddings into O(6)×O(2)
Z2

and O(7)×O(3)
Z2

which can be respectively

lifted to an embedding into O(6)×O(2) or O(7)×O(3), as discussed below Eq. (I18). Therefore, all embeddings
we consider are just composed of real representations of GUV. In other words, our task to specify an embedding
becomes finding appropriate irreducible representations of GUV, and fill them into the O(N) and O(N − 4)
matrices in a block diagonal form.

Hence let us make a detour and discuss representations of GUV = Gs × SO(3) × ZT2 . For any two groups
G1,2, an irreducible representation V of G1 × G2 is V1 ⊗ V2, where V1,2 is an irreducible representation of G1,2,

respectively. So any irreducible representation V of GUV takes the form of V = V 2n+1
SO(3) ⊗ Vs ⊗ VT , where V 2n+1

SO(3)

is a (2n + 1)-dimensional irreducible representation of SO(3) with n ∈ N, Vs is an irreducible representation of
Gs, and VT = ±1 is an irreducible representation of ZT2 . The complete list of irreducible representations Vs of Gs
can be found using the method of induced representations [114–116], and we provide complete lists of irreducible
representations of p4m and p6m in the Mathematica file Representation.nb.

To figure out which representations of GUV are relevant to our discussions, it is useful to analyze in which
blocks the SO(3) can act nontrivially, with the assumption that some but not all entries of n transform under
the SO(3) symmetry. For DQCP, SO(3) must act nontrivially in a 3-d block, while the rest 2-d block should be
a reducible or irreducible representation of Gs×ZT2 . That is, the relevant representation V of GUV schematically
takes the form

VDQCP =


(
V 3
SO(3) ⊗ V

1
s ⊗ V 1

T

)3×3 (
V 1
SO(3) ⊗ V

2
Gs×ZT2

)2×2

 , (J1)

where V 1
s and V 1

T are 1-d representations of Gs and ZT2 respectively, and V 2
Gs×ZT2

is a 2-d (reducible or irreducible)

representation of Gs × ZT2 .
For DSL, the block involving nontrivial SO(3) actions can be 3-d or 5-d, and it has to lie in O(6). For SL(7),

the block involving SO(3) should embed into O(7) and can be 3-d, 5-d or 6-d. The 6-d representation takes
the form of VSO(3) ⊗ V 2

Gs×ZT2
, where VSO(3) is the 3-d representation of SO(3), and V 2

Gs×ZT2
involves either two

1-d representations of Gs × ZT2 or one irreducible 2-d representation of Gs × ZT2 . However, it turns out that
it is impossible to match the anomaly with any LSM constraint in the presence of some 6-d block involving
SO(3). Therefore, for DSL and SL(7), we consider two cases, i.e., either SO(3) embeds as a 3-d representation,
corresponding to deconfined quantum criticle points or quantum critical spin liquids in Section IV, or as a 5-d
representation, corresponding to quantum critical spin-quadrupolar liquids in Section V.

For DSL and SL(7), we still have freedom to choose the lifting to O(6) × O(2) or O(7) × O(3), and different

embeddings into O(6)×O(2) or O(7)×O(3) may correspond to the same embedding into O(6)×O(2)
Z2

or O(7)×O(3)
Z2

.

For embeddings involving 3-d representation of SO(3), we choose such that only T acts in the 3 × 3 block as
−I3, while Gs acts trivially in that block. That is, for DSL and SL(7), the relevant representations V of GUV

schematically take the form as follows

VDSL =


(
V 3
SO(3) ⊗ 1s ⊗ (−1T )

)3×3 (
V 1
SO(3) ⊗ V

3
Gs×ZT2

)3×3

× (V 1
SO(3) ⊗ V

2
Gs×ZT2

)2×2

(J2)
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and

VSL(7) =


(
V 3
SO(3) ⊗ 1s ⊗ (−1T )

)3×3 (
V 1
SO(3) ⊗ V

4
Gs×ZT2

)4×4

× (V 1
SO(3) ⊗ V

3
Gs×ZT2

)3×3

(J3)

where 1s is the 1-d trivial representation of Gs, and −1T is the 1-d non-trivial representation of ZT2 . For
embeddings involving 5-d representation of SO(3), we choose such that both ZT2 and Gs act trivially in the 5× 5
block. That is, the relevant representations V of GUV schematically take the form

VDSL =


(
V 5
SO(3) ⊗ 1s ⊗ 1T

)5×5 (
V 1
SO(3) ⊗ V

1
Gs×ZT2

)1×1

× (V 1
SO(3) ⊗ V

2
Gs×ZT2

)2×2

(J4)

and

VSL(7) =


(
V 5
SO(3) ⊗ 1s ⊗ 1T

)5×5 (
V 1
SO(3) ⊗ V

2
Gs×ZT2

)2×2

× (V 1
SO(3) ⊗ V

3
Gs×ZT2

)3×3

(J5)

where 1s and 1T are 1-d trivial representations of Gs and ZT2 , respectively.

Having identified all possible embeddings, it is a striaghtforward exercise to calculate the pullback in each
case following Section III and Appendix I. We use Mathematica to automate the computation and store results
in csv files in the ancillary folder [59]. For example, data.csv contains data for matching LSM constraints with
IR anomaly of SL(N=5,6,7) when SO(3) embeds into O(6) as a 3-d representaion, while dataSL5Rep.csv contains
data for matching LSM constraints of p4m with IR anomaly of SL(7) when SO(3) embeds into O(7) as a 5-d
representaion. Moreover, for both p4m and p6m, there is a single embedding involving 5-d representation of
SO(3) that can match IR anomaly of DSL, shown in Eq. (41), which actually matches IR anomaly with zero
LSM constraint.

To read the embeddings, i.e., to read the explicit image of the generators C4/C6, M , T1, T2 and T in GIR,
we provide a wrapper file Embedding.m. When SO(3) embeds into GIR as a 3-d representation, it provides two
functions

p4mPrintEmbedding[n Integer, lsm Integer, p Integer]

p6mPrintEmbedding[n Integer, lsm Integer, p Integer]

The arguments are n = 5, 6, 7 corresponding to DQCP, DSL and SL(7) respectively, lsm = 1, . . . , 8 in p4m or lsm =
1, . . . , 4 corresponding to a particular LSM constraint with the order shown in Table I, and p corresponding to a
position in the array for a particular embedding/realization. When SO(3) embeds into GIR as a 5-d representation
and the IR theory is SL(7), it also provides two functions

p4m5dPrintEmbedding[lsm Integer, p Integer]

p6m5dPrintEmbedding[lsm Integer, p Integer]

with similar arguments and output. Note that in this scenario for DQCP there is no realization, and for DSL
there is a single realization in p4m or p6m shown in Eq. (41). For p4m and SL(7), it also provides a function

IncommensuratePrintEmbedding[lsm Integer, p Integer]

to check whether some embedding corresponds to an incommensurate order, and if it does, output the corre-
sponding incommensurate embedding. An illustration of how to use these functions is provided in ReadMe.nb.
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K. Stable realizations on various lattice spin systems

In this appendix, we list all stable realizations of DQCP, DSL and SL(7) on triangular, kagome, and square
lattice half-integer spin systems, as well as those on p6m-anomaly-free systems (including honeycomb lattice
half-integer spin systems and all integer-spin systems with p6m lattice symmetry) and p4m-anomaly-free systems
(including all integer-spin systems with p4m lattice symmetry). For square lattice, we only list the realizations
in lattice homotopy class with PR at the type-a IWP, from which the ones with PR at the type-b IWP can
be obtained by redefining the C4 center. As in the main text, here a stable DQCP means a realization with
only a single relevant perturbation allowed by microscopic symmetries, so that it can be realized as a generic
(pseudo-)critical point. A stable DSL means a realization with no relevant perturbation allowed by microscopic
symmetries, so that it can be realized as a stable phase. A stable SL(7) means a realization with either no relevant
perturbation allowed by microscopic symmetries, or a single symmetry-allowed relevant perturbation that does
not change the emergent order but only shifts the “zero momenta”, so that this realization can still be viewed as
a stable phase. All stable realizations of these states, including those on lattice systems discussed here and also
those on other lattice systems, are explicitly documented in ReadMe.nb.

1. Stable realizations of DQCP

On all these systems, there is a single new stable realization of DQCP, given by Eq. (36), adjacent to ferromag-
netic order on triangular lattice, kagome lattice integer spin systems or honeycomb lattice half-integer/integer
spin systems. There is a known stable realization of DQCP on the square lattice half-integer spin system, given
by Eq. (29), adjacent to anti-ferromagnetic (Neel) order. There is another known stable realization of DQCP
on p6m-anomaly-free system [17], adjacent to anti-ferromagnetic order on honeycomb lattice half-integer/integer
spin systems, given by

T1,2 : n→

 I3
− 1

2

√
3

2

−
√

3
2 − 1

2

n, C6 : n→

 −I3 1
−1

n,

M : n→

 −I3 1
1

n, O(3)T : n→
(
O(3)T

I2

)
n

(K1)

These three are all stable realizations of DQCP.

2. Stable realizations of DSL

On p6m-anomaly-free systems, there is a single stable realization of DSL where the most relevant spin fluctua-
tions carry spin-1, given by Eq. (37). On both p6m-anomaly-free systems and p4m-anomaly-free systems, there
is also a single stable realization of DSL where the most relevant spinful fluctuations carry spin-2, given by Eq.
(41). Below we discuss the other systems.

Triangular lattice half-integer spin systems

On triangular lattice half-integer spin systems, there are 3 stable realizations of DSL. One of them is known
[15, 57, 58, 69–73], given by Eq. (43), adjacent to 120◦ order. The other two have identical actions of T1,2, C6

and O(3)T :

T1 : n→

 I3
1
−1
−1

n, T2 : n→

 I3
−1

1
−1

n

C6 : n→

 I3
1

1
−1

n

(
−1

1

)
, O(3)T : n→

(
O(3)T

I3

)
n

(K2)
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The action of the mirror symmetry M in these two realizations are respectively

M : n→

 I3
−1

−1
1

n (K3)

and

M : n→

 I3
1

1
−1

n

(
−1

1

)
(K4)

Kagome lattice half-integer spin systems

On kagome lattice half-integer spin systems, there are 3 stable realizations of DSL. One of them is known
[15, 22, 57, 58, 65–68], adjacent to q = 0 order, given by

T1 : n→

 I3
1
−1
−1

n, T2 : n→

 I3
−1

1
−1

n, C6 : n→

 I3
1

1
1

n

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
,

M : n→

 I3
−1

−1
−1

n

(
−1

1

)
, O(3)T : n→

(
O(3)T

I3

)
n

(K5)

The other two have the same actions of T1,2, C6 and O(3)T :

C6 : n→

 I3
1

1
1

n, T1 : n→

 I3
1
−1
−1

n,

T2 : n→

 I3
−1

1
−1

n, O(3)T : n→
(
O(3)T

I3

)
n

(K6)

And the action of M in the two realizations are respectively

M : n→

 I3
1

1
1

n (K7)

and

M : n→

 I3
−1

−1
−1

n

(
−1

1

)
(K8)
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Square lattice half-integer spin systems

On square lattice half-integer spin systems, there are 3 stable realizations of DSLs. One of them is given by
Eq. (38). The other two have the same actions of T1,2, C4 and O(3)T :

T1 : n→

 I3
−1

1
1

n

(
−1

1

)
, T2 : n→

 I3
1
−1

1

n

(
−1

1

)

C4 : n→

 I3
1

−1
−1

n

(
−1

1

)
, O(3)T : n→

(
O(3)T

I3

)
n

(K9)

The action of M on these two realizations are respectively

M : n→

 I3
1
−1

1

n (K10)

and

M : n→

 I3
−1

1
−1

n

(
−1

1

)
(K11)

3. Stable realizations of SL(7)

Below we list the stable realizations of SL(7) on various systems.

p6m-anomaly-free systems

On p6m-anomaly-free systems, there are two stable realizations of SL(7), both of which have the most relevant
spinful fluctuations carrying spin-2. The symmetry actions of one of them is given by Eq. (42). The other one
has symmetry actions:

SO(3) : n→
(
ϕ5(SO(3))

I2

)
n, T : n→

 I5
−1
−1

n

 −1
1

1

 , T1,2 : n→

 I5
− 1

2

√
3

2

−
√

3
2 − 1

2

n,

C6 : n→

 I5
1
−1

n

 −1
1

1

 , M : n→

 I5
−1
−1

n

 −1
1

1

 ,

(K12)

Triangular lattice half-integer spin systems

On triangular lattice half-integer spin systems, there are 8 stable realizations of SL(7). The first has appeared
in Ref. [15], given by Eq. (I27).
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The second has symmetry actions:

T1 : n→ n

 1
−1
−1

 , T2 : n→ n

 −1
1
−1

 ,

C6 : n→


I3
−1

1
−1

1

n

 1
1

1

 , M : n→


I3
−1
−1

1
1

n

 1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(K13)

The third has symmetry actions:

T1 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1

n

 1
−1
−1

 , T2 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1

n

 −1
1
−1

 ,

C6 : n→


I3

1
−1
−1

1

n

 1
1

1

 , M : n→


I3
−1
−1

1
1

n

 1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(K14)

The fourth has symmetry actions:

T1 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1

n

 1
−1
−1

 , T2 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1
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 −1
1
−1

 ,

C6 : n→


I3

1
−1
−1

1

n

 1
1

1

 , M : n→


I3

1
1
−1
−1

n

 1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(K15)

The first to the fourth realization are all adjacent to tetrahedral order.
The fifth has symmetry actions:

T1 : n→ n

 1
−1
−1

 , T2 : n→ n

 −1
1
−1

 ,

C6 : n→


I3
−1

1
1
−1

n

 1
1

1

 , M : n→


I3
−1
−1
−1

1

n

 −1
−1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(K16)
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The sixth has symmetry actions:

T1 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1

n

 1
−1
−1

 , T2 : n→


I3
− 1

2

√
3

2

−
√

3
2 − 1

2
1

1
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 −1
1
−1
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C6 : n→


I3

1
−1

1
−1

n

 1
1

1

 , M : n→


I3
−1
−1
−1

1

n

 −1
−1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(K17)

The seventh has symmetry actions:

T1 : n→


I3

1
1
−1
−1

n

 − 1
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√
3

2√
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2 − 1
2

1
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√
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I3
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1
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1
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(
O(3)T

I4

)
n

(K18)

The eighth has symmetry actions:

T1 : n→


I3

1
1
−1
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n
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√
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2√
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1
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√
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1
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1
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1
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1
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 −1
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1
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O(3)T

I4

)
n

(K19)

Kagome lattice half-integer spin systems

On kagome lattice half-integer spin systems, there are 9 stable realizations of SL(7). The first has appeared in
Ref. [15] and is given by Eq. (I33). The second is given by Eq. (39). Both realizations are adjacent to cuboc1
order.
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The third has symmetry actions

T1 : n→ n

 1
−1
−1

 , T2 : n→ n

 −1
1
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C6 : n→
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1
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(K20)

The fourth has symmetry actions

T1 : n→
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−
√
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(K21)

The fifth has symmetry actions

T1 : n→
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(K22)

The third to the fifth realization are all adjacent to cuboc2 order.
The sixth has symmetry actions:

T1 : n→
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1
1
−1
−1
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(K23)
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The sixth realization is adjacent to q = 0 umbrella order.

The seventh has symmetry actions:
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(K24)

The seventh realization is adjacent to q =
√

3×
√

3 umbrella order.

The eighth has symmetry actions:
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(K25)

The ninth has symmetry actions:
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p4m-anomaly-free systems

On p4m-anomaly-free systems, there are 4 stable realizations of SL(7), all of which has the most relevant spinful
fluctuations carrying spin-2.
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The first has symmetry actions:

SO(3) : n→
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ϕ5(SO(3))

I2

)
n, T : n→

 I5
−1

1

n, T1,2 : n→

 I5
1
−1

n

 −1
1

1

 ,

C4 : n→

 I5
1
−1

n

 1
−1

1

 , M : n→

 I5
−1

1

n

(K27)

The second has symmetry actions:
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The third has symmetry actions:
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The fourth has symmetry actions:
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Square lattice half-integer spin systems

On square lattice half-integer spin systems, there are 2 stable realizations of SL(7) where the most relevant
spinful fluctuations have spin-1 and all n modes are at high-symmetry momenta in the Brillouin zone. There are
also three realizations where some n modes can have continuously changing momenta, among which two of them
have only a single symmetric relevant perturbation that shifts the momenta of the n modes, as long as these
momenta are not tuned to high-symmetry point. This is the case for the third family of realizations for most
non-high-symmetry momenta, except at two special momentum points (see below). Furthermore, there is also one
stable realization where the most relevant spinful fluctuations have spin-2 and all n modes are at high-symmetry
momenta.

We start with the 2 realizations with the most relevant spinful fluctuations carrying spin-1 and all n modes
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locating at high-symmetry momenta. The first has symmetry actions:

T1 : n→


I3
−1

1
1

1

n

 −1
1

1

 , T2 : n→


I3

1
−1

1
1

n

 −1
1

1

 ,

C4 : n→


I3

1
−1

1
1

n

 1
−1
−1

 ,M : n→


I3
−1

1
−1
−1

n

 −1
−1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(K31)

The second has symmetry actions:
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Next, we turn to the three realizations with some n modes at continuously changing momenta. The first has
symmetry actions given by Eq. (40), adjacent to tetrahedral umbrella order, and the second has symmetry actions
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where k ∈ (−π, π) is a generic momentum. In both of these two realizations, the only relevant perturbation that
is allowed by microscopic symmetries is the one that shifts the momenta of the n modes.
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The third has symmetry actions:
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where k ∈ (−π, π) is a generic momentum. For this family of realizations, as long as k 6= ±π/2, the only
symmetric relevant perturbation is the one that shifts the momenta of the n modes. When k = ±π/2, besides
this symmetric relevant perturbation, there is an additional one that can change the emergent order of SL(7) and
make it unstable.

Finally, there is one realization where all n modes are at high-symmetry momentum, and the most spinful
fluctuations have spin-2. It has symmetry actions:

SO(3) : n→
(
ϕ5(SO(3))

I2

)
n, T : n→

 I5
−1
−1

n

 −1
1

1


T1 : n→

 I5
−1

1

n

 −1
1

1

 , T2 : n→

 I5
1
−1

n

 −1
1

1

 ,

C4 : n→

 I5
1

−1

n, M : n→

 I5
1
−1

n

(K35)

L. Classical regular magnetic orders

Ref. [60] studied regular magnetic orders, i.e., magnetic orders that respect all the lattice symmetries modulo
global O(3)T spin transformations (rotations and/or spin flips). In particular, on triangular, kagome, honeycomb
and square lattices, all classical regular magnetic orders are classified. These classical orders can all be realized by
a product state, where each spin moment on the lattice can be assigned a definite orientation. In this appendix, we
explicitly write down the spin configurations of these classical regular magnetic orders, and the lattice symmetry
actions on the order parameters.

In terms of the symmetry breaking pattern of the spin O(3)T symmetry, there are three types of magnetic orders:
collinear, coplanar and non-coplanar. The order parameter of a collinear magnetic order is a three-component
vector, n, which transforms in the spin-1 representation of the O(3)T spin symmetry. The order parameters
of a coplanar magnetic order consists of two orthonormal three-component vectors, n1,2, both transforming in
the spin-1 representation of the O(3)T spin symmetry. The order parameters of a non-coplanar magnetic order
consists of three orthonormal three-component vectors, n1,2,3, all transforming in the spin-1 representation of the
O(3)T spin symmetry.

We start from the triangular lattice. We will denote the position r of a site on a triangular lattice by its
coordinates in the basis of translation vectors of T1,2 (see Fig. 2), such that r = xT1 + yT2, where T1,2 is the
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translation vector of T1,2. Under the p6m symmetry,

T1 : (x, y)→ (x+ 1, y)

T2 : (x, y)→ (x, y + 1)

C6 : (x, y)→ (x− y, x)

M : (x, y)→ (y, x)

(L1)

1. There is a single collinear classical regular magnetic order, the ferromagnetic order, where S(x, y) = n.
Under the p6m symmetry, n is invariant.

2. There is a single coplanar classical regular magnetic order, the 120◦ order, where S(x, y) =

(−1)x+y cos π(x+y)
3 n1 + (−1)x+y sin π(x+y)

3 n2. Under the p6m symmetry,

T1,2 : n1 → −
1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2

C6 : n1 → n1, n2 → −n2

M : n1,2 → n1,2

(L2)

3. There are two non-coplanar classical regular magnetic order. The first is the tetrahedral order, where
S(x, y) = (−1)xn1 + (−1)yn2 + (−1)x+yn3. Under the p6m symmetry,

T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C6 : n1 → n2, n2 → n3, n3 → n1

M : n1 → n2, n2 → n1, n3 → n3

(L3)

4. The second non-coplanar classical regular magnetic order is the F-umbrella order, where S(x, y) =

(−1)x+y cos π(x+y)
3 sin θn1 + (−1)x+y sin π(x+y)

3 sin θn2 + cos θn3, with θ a free parameter. Under the p6m
symmetry,

T1,2 : n1 → −
1

2
n1 +

√
3

2
n2, n2 → −

√
3

2
n1 −

1

2
n2, n3 → n3

C6 : n1 → n1, n2 → −n2, n3 → n3

M : n1,2,3 → n1,2,3

(L4)

Next we turn to the kagome lattice. Each unit cell in a kagome lattice includes three sites, so the spin
configuration will be written as Si(x, y), where (x, y) labels the position of the unit cell in the same way as
the triangular lattice, and i = 1, 2, 3 represents the site obtained by applying a half translation T1/2, T2/2 and
(T1 + T2)/2 to the C6 center of the unit cell, respectively.

1. There is a single collinear classical regular magnetic order, the ferromagnetic order, where Si(x, y) = n for
i = 1, 2, 3. Under the p6m symmetry, n is invariant.

2. There are two coplanar classical regular magnetic orders. The first is the q = 0 order, where S1(x, y) = n1,

S2(x, y) = − 1
2n1 +

√
3

2 n2, and S3(x.y) = − 1
2n1 −

√
3

2 n2. Under the p6m symmetry,

T1,2 : n1,2 → n1,2

C6 : n1 → −
1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2

M : n1 → −
1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2

(L5)
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3. The second coplanar classical regular magnetic order is the q =
√

3 ×
√

3 order, where S1(x, y) =

(−1)x+y cos π(x+y)
3 n1 +(−1)x+y sin π(x+y)

3 n2, S2(x, y) = S1(x, y), and S3(x, y) = (−1)x+y cos π(x+y+2)
3 n1 +

(−1)x+y sin π(x+y+2)
3 n2. Under the p6m symmetry,

T1,2 : n1 → −
1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2

C6 : n1 → −
1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2

M : n1,2 → n1,2

(L6)

4. There are five non-coplanar classical regular magnetic orders. The first is the octahedral order, where
S1(x, y) = (−1)yn1, S2(x, y) = (−1)xn2 and S3(x, y) = (−1)x+yn3. Under the p6m symmetry,

T1 : n1 → n1, n2 → −n2, n3 → (−1)x+yn3

T2 : n1 → −n1, n2 → n2, n3 → −n3

C6 : n1 → n3, n2 → n1, n3 → n2

M : n1 → n2, n2 → n1, n3 → n3

(L7)

5. The second non-coplanar classical regular magnetic order is the cuboc1 order, where S1(x, y) = (−1)xn2 +
(−1)x+yn3, S2(x, y) = (−1)yn1 + (−1)x+yn3 and S3(x, y) = −(−1)xn2 − (−1)yn1. Under the p6m sym-
metry,

T1 : n1 → n1, n2 → −n2, n3 → −n3

T2 : n1 → −n1, n2 → n2, n3 → −n3

C6 : n1 → −n3, n2 → −n1, n3 → −n2

M : n1 → n2, n2 → n1, n3 → n3

(L8)

6. The third non-coplanar classical regular magnetic order is the cuboc2 order, where S1(x, y) = (−1)xn2 −
(−1)x+yn3, S2(x, y) = (−1)yn1+(−1)x+yn3 and S3(x, y) = (−1)xn2+(−1)yn1. Under the p6m symmetry,

T1 : n1 → n1, n2 → −n2, n3 → −n3

T2 : n1 → −n1, n2 → n2, n3 → −n3

C6 : n1 → n3, n2 → n1, n3 → −n2

M : n1 → n2, n2 → n1, n3 → −n3

(L9)

7. The fourth non-coplanar is the q = 0 umbrella order, where S1(x, y) = sin θn1 + cos θn3, S2(x, y) =

− 1
2 sin θn1 +

√
3

2 sin θn2 +cos θn3, and S3(x, y) = − 1
2 sin θn1−

√
3

2 sin θn2 +cos θn3, with θ a free parameter.
Under the p6m symmetry,

T1,2 : n1,2,3 → n1,2,3

C6 : n1 → −
1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2, n3 → n3

M : n1 → −
1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2, n3 → n3

(L10)

8. The last non-coplanar classical regular magnetic order is the q =
√

3 ×
√

3 umbrella order, where

S1(x, y) = (−1)x+y cos π(x+y)
3 sin θn1 + (−1)x+y sin π(x+y)

3 sin θn2 + cos θn3, S2(x, y) = S1(x, y), and

S3(x, y) = −(−1)x+y cos π(x+y−1)
3 sin θn1 − (−1)x+y sin π(x+y−1)

3 sin θn2 + cos θn3. Under the p6m sym-
metry,

T1,2 : n1 → −
1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2, n3 → n3

C6 : n1 → −
1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2, n3 → n3

M : n1,2,3 → n1,2,3

(L11)
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Now we turn to the honeycomb lattice. Each unit cell of a honeycomb lattice includes two sites, so the spin
configuration will be written in terms of SA(x, y) and SB(x, y), where the A and B sublattice can be obtained
by translating by 2T1+T2

3 and T1−T2

3 from the C6 center, respectively.

1. There are two collinear classical regular magnetic orders. The first is the ferromagnetic order, where
SA(x, y) = SB(x, y) = n. Under the p6m symmetry, n is invariant.

2. The second collinear classical regular magnetic order is the anti-ferromagnetic order, where SA(x, y) =
−SB(x, y) = n. Under the p6m symmetry,

T1,2 : n→ n

C6 : n→ −n
M : n→ −n

(L12)

3. There is a single coplanar classical regular magnetic order, the V order, where SA(x, y) = cos θn1− sin θn2

and SB(x, y) = cos θn1 + sin θn2, with θ a free parameter. Under the p6m symmetry,

T1,2 : n1,2 → n1,2

C6 : n1 → n1, n2 → −n2

M : n1 → n1, n2 → −n2

(L13)

4. There are two non-coplanar classical regular magnetic orders. The first is the cubic order, where SA(x, y) =
(−1)xn1+(−1)yn2+(−1)x+yn3 and SB(x, y) = (−1)xn1−(−1)yn2+(−1)x+yn3. Under the p6m symmetry,

T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C6 : n1 → n2, n2 → −n3, n3 → n1

M : n1 → n2, n2 → n1, n3 → −n3

(L14)

5. The second non-coplanar classical regular magnetic order is the tetrahedral order, where SA(x, y) =
(−1)xn1 + (−1)yn2 + (−1)x+yn3 and SB(x, y) = −(−1)xn1 + (−1)yn2 − (−1)x+yn3. Under the p6m
symmetry,

T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C6 : n1 → −n2, n2 → n3, n3 → −n1

M : n1 → −n2, n2 → −n1, n3 → n3

(L15)

Finally, we discuss the square lattice. We will denote the position of a site by its coordinates in the basis of
translation vectors of T1,2 (see Fig. 3). such that r = xT1 + yT2, where T1,2 is the translation vector of T1,2.
Under the p4m symmetry,

T1 : (x, y)→ (x+ 1, y)

T2 : (x, y)→ (x, y + 1)

C4 : (x, y)→ (−y, x)

M : (x, y)→ (−x, y)

(L16)

1. There are two collinear classical regular magnetic orders. The first is the ferromagnetic order, where
S(x, y) = n. Under the p4m symmetry, n is invariant.

2. The second collinear classical regular magnetic order is the anti-ferromagnetic order, where S(x, y) =
(−1)x+yn. Under the p4m symmetry,

T1,2 : n→ −n
C4 : n→ −n
M : n→ n

(L17)
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3. There are two coplanar classical regular magnetic orders. The first is the orthogonal order, where S(x, y) =
(−1)x+(−1)y

2 n1 + −(−1)x+(−1)y

2 n2. Under the p4m symmetry,

T1 : n1 → n2, n2 → n1

T2 : n1 → −n2, n2 → −n1

C4 : n1 → n1, n2 → −n2

M : n1,2 → n1,2

(L18)

4. The second coplanar classical regular magnetic order is the V order, where S(x, y) = cos θn1 −
(−1)x+y sin θn2, where θ a free parameter. Under the p4m symmetry,

T1,2 : n1 → n1, n2 → −n2

C4 : n1,2 → n1,2

M : n1,2 → n1,2

(L19)

5. There are two non-coplanar classical regular magnetic orders. The first is the tetrahedral umbrealla order

(also known as the AF umbrella order), where S(x, y) = (−1)x sin θ√
2

n1− (−1)y sin θ√
2

n2− (−1)x+y cos θn3, with

θ a free parameter. Under the p4m symmetry,

T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C4 : n1 → −n2, n2 → −n1, n3 → n3

M : n1,2,3 → n1,2,3

(L20)

6. The second non-coplanar classical regular magnetic order is the umbrella order (also known as the F umbrella

order), where S(x, y) = cos θn1 + (−1)x sin θ√
2

n2 + (−1)y sin θ√
2

n3. Under the p4m symmetry,

T1 : n1 → n1, n2 → −n2, n3 → n3

T2 : n1 → n1, n2 → n2, n3 → −n3

C4 : n1 → n1, n2 → n3, n3 → n2

M : n1,2,3 → n1,2,3

(L21)

M. Stability of DSL realizations on NaYbO2 and twisted bilayer WSe2

In this appendix, we discuss the stability of a few more examples of DSL realizations on systems with spin-orbit
coupling (SOC). The specific systems we have in mind are NaYbO2 and twisted bilayer WSe2 (tWSe2). Recently,
it was pointed out that tWSe2 is a good quantum simulator of triangular lattice Hubbard model, which can be
effectively described by a triangular lattice spin-1/2 system in the strong coupling regime [85–87].

The symmetries of NaYbO2 are given in Eq. (44). The symmetries of tWSe2 are

T1,2, C3 ≡ C2
6 , SO(2), T (M1)

where SO(2) is a reduced spin rotational symmetry 18.
On triangular lattice spin-1/2 systems with the full p6m × O(3)T symmetry, our exhaustive search finds 3

realizations of DSL, given by Eqs. (43), (K2) and (K3). Using these symmetry actions, it is straightforward
to see that for all three realizations, the remaining symmetries of NaYbO2 are sufficient to forbid all relevant
operators of DSL listed in Sec. III A. However, for the symmetry setting of tWSe2 and for all three realizations,
the (AL, AR) operator (the fermion mass that transforms in the adjoint representation of the flavor symmetry)
is always symmetry-allowed and will destablize the DSL. This means if a DSL is stably realized in tWSe2, that
realization cannot be compatible with a full p6m×O(3)T symmetry.

18 These are the symmetries of tWSe2 in the presence of a dis-
placement field, which is satisfied in the generic experimental

setting. If there is no displacement field, there is an extra
mirror symmetry.
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